llvm-project/lld/lib/ReaderWriter/ELF/SegmentChunks.cpp

478 lines
18 KiB
C++

//===- lib/ReaderWriter/ELF/SegmentChunks.h -------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "SegmentChunks.h"
#include "TargetLayout.h"
namespace lld {
namespace elf {
template <class ELFT>
bool SegmentSlice<ELFT>::compare_slices(SegmentSlice<ELFT> *a,
SegmentSlice<ELFT> *b) {
return a->startSection() < b->startSection();
}
template <class ELFT>
Segment<ELFT>::Segment(const ELFLinkingContext &ctx, StringRef name,
const typename TargetLayout<ELFT>::SegmentType type)
: Chunk<ELFT>(name, Chunk<ELFT>::Kind::ELFSegment, ctx), _segmentType(type),
_flags(0), _atomflags(0) {
this->_alignment = 1;
this->_fsize = 0;
_outputMagic = ctx.getOutputMagic();
}
// This function actually is used, but not in all instantiations of Segment.
LLVM_ATTRIBUTE_UNUSED
static DefinedAtom::ContentPermissions toAtomPerms(uint64_t flags) {
switch (flags & (SHF_ALLOC | SHF_WRITE | SHF_EXECINSTR)) {
case SHF_ALLOC | SHF_WRITE | SHF_EXECINSTR:
return DefinedAtom::permRWX;
case SHF_ALLOC | SHF_EXECINSTR:
return DefinedAtom::permR_X;
case SHF_ALLOC:
return DefinedAtom::permR__;
case SHF_ALLOC | SHF_WRITE:
return DefinedAtom::permRW_;
default:
return DefinedAtom::permUnknown;
}
}
template <class ELFT> void Segment<ELFT>::append(Chunk<ELFT> *chunk) {
_sections.push_back(chunk);
Section<ELFT> *section = dyn_cast<Section<ELFT>>(chunk);
if (!section)
return;
if (_flags < section->getFlags())
_flags |= section->getFlags();
if (_atomflags < toAtomPerms(_flags))
_atomflags = toAtomPerms(_flags);
if (this->_alignment < section->alignment())
this->_alignment = section->alignment();
}
template <class ELFT>
bool Segment<ELFT>::compareSegments(Segment<ELFT> *sega, Segment<ELFT> *segb) {
int64_t type1 = sega->segmentType();
int64_t type2 = segb->segmentType();
if (type1 == type2)
return sega->atomflags() < segb->atomflags();
// The single PT_PHDR segment is required to precede any loadable
// segment. We simply make it always first.
if (type1 == llvm::ELF::PT_PHDR)
return true;
if (type2 == llvm::ELF::PT_PHDR)
return false;
// The single PT_INTERP segment is required to precede any loadable
// segment. We simply make it always second.
if (type1 == llvm::ELF::PT_INTERP)
return true;
if (type2 == llvm::ELF::PT_INTERP)
return false;
// We then put PT_LOAD segments before any other segments.
if (type1 == llvm::ELF::PT_LOAD)
return true;
if (type2 == llvm::ELF::PT_LOAD)
return false;
// We put the PT_GNU_RELRO segment last, because that is where the
// dynamic linker expects to find it
if (type1 == llvm::ELF::PT_GNU_RELRO)
return false;
if (type2 == llvm::ELF::PT_GNU_RELRO)
return true;
// We put the PT_TLS segment last except for the PT_GNU_RELRO
// segment, because that is where the dynamic linker expects to find
if (type1 == llvm::ELF::PT_TLS)
return false;
if (type2 == llvm::ELF::PT_TLS)
return true;
// Otherwise compare the types to establish an arbitrary ordering.
// FIXME: Should figure out if we should just make all other types compare
// equal, but if so, we should probably do the same for atom flags and change
// users of this to use stable_sort.
return type1 < type2;
}
template <class ELFT>
void Segment<ELFT>::assignFileOffsets(uint64_t startOffset) {
uint64_t fileOffset = startOffset;
uint64_t curSliceFileOffset = fileOffset;
bool isDataPageAlignedForNMagic = false;
bool alignSegments = this->_ctx.alignSegments();
uint64_t p_align = this->_ctx.getPageSize();
uint64_t lastVirtualAddress = 0;
this->setFileOffset(startOffset);
for (auto &slice : slices()) {
bool isFirstSection = true;
for (auto section : slice->sections()) {
// Handle linker script expressions, which may change the offset
if (!isFirstSection)
if (auto expr = dyn_cast<ExpressionChunk<ELFT>>(section))
fileOffset += expr->virtualAddr() - lastVirtualAddress;
// Align fileoffset to the alignment of the section.
fileOffset = llvm::RoundUpToAlignment(fileOffset, section->alignment());
// If the linker outputmagic is set to OutputMagic::NMAGIC, align the Data
// to a page boundary
if (isFirstSection &&
_outputMagic != ELFLinkingContext::OutputMagic::NMAGIC &&
_outputMagic != ELFLinkingContext::OutputMagic::OMAGIC) {
// Align to a page only if the output is not
// OutputMagic::NMAGIC/OutputMagic::OMAGIC
if (alignSegments)
fileOffset = llvm::RoundUpToAlignment(fileOffset, p_align);
else {
// Align according to ELF spec.
// in p75, http://www.sco.com/developers/devspecs/gabi41.pdf
uint64_t virtualAddress = slice->virtualAddr();
Section<ELFT> *sect = dyn_cast<Section<ELFT>>(section);
if (sect && sect->isLoadableSection() &&
((virtualAddress & (p_align - 1)) !=
(fileOffset & (p_align - 1))))
fileOffset = llvm::RoundUpToAlignment(fileOffset, p_align) +
(virtualAddress % p_align);
}
} else if (!isDataPageAlignedForNMagic && needAlign(section)) {
fileOffset =
llvm::RoundUpToAlignment(fileOffset, this->_ctx.getPageSize());
isDataPageAlignedForNMagic = true;
}
if (isFirstSection) {
slice->setFileOffset(fileOffset);
isFirstSection = false;
curSliceFileOffset = fileOffset;
}
section->setFileOffset(fileOffset);
fileOffset += section->fileSize();
lastVirtualAddress = section->virtualAddr() + section->memSize();
}
slice->setFileSize(fileOffset - curSliceFileOffset);
}
this->setFileSize(fileOffset - startOffset);
}
/// \brief Assign virtual addresses to the slices
template <class ELFT> void Segment<ELFT>::assignVirtualAddress(uint64_t addr) {
int startSection = 0;
int currSection = 0;
SectionIter startSectionIter;
// slice align is set to the max alignment of the chunks that are
// contained in the slice
uint64_t sliceAlign = 0;
// Current slice size
uint64_t curSliceSize = 0;
// Current Slice File Offset
uint64_t curSliceAddress = 0;
startSectionIter = _sections.begin();
startSection = 0;
bool isDataPageAlignedForNMagic = false;
uint64_t startAddr = addr;
SegmentSlice<ELFT> *slice = nullptr;
uint64_t tlsStartAddr = 0;
bool alignSegments = this->_ctx.alignSegments();
StringRef prevOutputSectionName = StringRef();
uint64_t tbssMemsize = 0;
// If this is first section in the segment, page align the section start
// address. The linker needs to align the data section to a page boundary
// only if NMAGIC is set.
auto si = _sections.begin();
if (si != _sections.end()) {
if (alignSegments &&
_outputMagic != ELFLinkingContext::OutputMagic::NMAGIC &&
_outputMagic != ELFLinkingContext::OutputMagic::OMAGIC) {
// Align to a page only if the output is not
// OutputMagic::NMAGIC/OutputMagic::OMAGIC
startAddr = llvm::RoundUpToAlignment(startAddr, this->_ctx.getPageSize());
} else if (needAlign(*si)) {
// If the linker outputmagic is set to OutputMagic::NMAGIC, align the
// Data to a page boundary.
startAddr = llvm::RoundUpToAlignment(startAddr, this->_ctx.getPageSize());
isDataPageAlignedForNMagic = true;
}
// align the startOffset to the section alignment
uint64_t newAddr = llvm::RoundUpToAlignment(startAddr, (*si)->alignment());
// Handle linker script expressions, which *may update newAddr* if the
// expression assigns to "."
if (auto expr = dyn_cast<ExpressionChunk<ELFT>>(*si))
expr->evalExpr(newAddr);
curSliceAddress = newAddr;
sliceAlign = (*si)->alignment();
(*si)->setVirtualAddr(curSliceAddress);
// Handle TLS.
if (auto section = dyn_cast<Section<ELFT>>(*si)) {
if (section->getSegmentType() == llvm::ELF::PT_TLS) {
tlsStartAddr =
llvm::RoundUpToAlignment(tlsStartAddr, (*si)->alignment());
section->assignVirtualAddress(tlsStartAddr);
tlsStartAddr += (*si)->memSize();
} else {
section->assignVirtualAddress(newAddr);
}
}
// TBSS section is special in that it doesn't contribute to memory of any
// segment. If we see a tbss section, don't add memory size to addr The
// fileOffset is automatically taken care of since TBSS section does not
// end up using file size
if ((*si)->order() != TargetLayout<ELFT>::ORDER_TBSS) {
curSliceSize = (*si)->memSize();
tbssMemsize = 0;
} else {
tbssMemsize = (*si)->memSize();
}
++currSection;
++si;
}
for (auto e = _sections.end(); si != e; ++si) {
uint64_t curAddr = curSliceAddress + curSliceSize;
if (!isDataPageAlignedForNMagic && needAlign(*si)) {
// If the linker outputmagic is set to OutputMagic::NMAGIC, align the
// Data
// to a page boundary
curAddr = llvm::RoundUpToAlignment(curAddr, this->_ctx.getPageSize());
isDataPageAlignedForNMagic = true;
}
uint64_t newAddr = llvm::RoundUpToAlignment(curAddr, (*si)->alignment());
// Handle linker script expressions, which *may update newAddr* if the
// expression assigns to "."
if (auto expr = dyn_cast<ExpressionChunk<ELFT>>(*si))
expr->evalExpr(newAddr);
Section<ELFT> *sec = dyn_cast<Section<ELFT>>(*si);
StringRef curOutputSectionName;
if (sec) {
curOutputSectionName = sec->outputSectionName();
} else {
// If this is a linker script expression, propagate the name of the
// previous section instead
if (isa<ExpressionChunk<ELFT>>(*si))
curOutputSectionName = prevOutputSectionName;
else
curOutputSectionName = (*si)->name();
}
bool autoCreateSlice = true;
if (curOutputSectionName == prevOutputSectionName)
autoCreateSlice = false;
// If the newAddress computed is more than a page away, let's create
// a separate segment, so that memory is not used up while running.
// Dont create a slice, if the new section falls in the same output
// section as the previous section.
if (autoCreateSlice && ((newAddr - curAddr) > this->_ctx.getPageSize()) &&
(_outputMagic != ELFLinkingContext::OutputMagic::NMAGIC &&
_outputMagic != ELFLinkingContext::OutputMagic::OMAGIC)) {
auto sliceIter =
std::find_if(_segmentSlices.begin(), _segmentSlices.end(),
[startSection](SegmentSlice<ELFT> *s) -> bool {
return s->startSection() == startSection;
});
if (sliceIter == _segmentSlices.end()) {
slice = new (_segmentAllocate.Allocate<SegmentSlice<ELFT>>())
SegmentSlice<ELFT>();
_segmentSlices.push_back(slice);
} else {
slice = *sliceIter;
}
slice->setStart(startSection);
slice->setSections(make_range(startSectionIter, si));
slice->setMemSize(curSliceSize);
slice->setAlign(sliceAlign);
slice->setVirtualAddr(curSliceAddress);
// Start new slice
curSliceAddress = newAddr;
if ((*si)->order() == TargetLayout<ELFT>::ORDER_TBSS)
curSliceAddress += tbssMemsize;
(*si)->setVirtualAddr(curSliceAddress);
startSectionIter = si;
startSection = currSection;
if (auto section = dyn_cast<Section<ELFT>>(*si))
section->assignVirtualAddress(newAddr);
curSliceSize = newAddr - curSliceAddress + (*si)->memSize();
sliceAlign = (*si)->alignment();
} else {
if (sliceAlign < (*si)->alignment())
sliceAlign = (*si)->alignment();
if ((*si)->order() == TargetLayout<ELFT>::ORDER_TBSS)
newAddr += tbssMemsize;
(*si)->setVirtualAddr(newAddr);
// Handle TLS.
if (auto section = dyn_cast<Section<ELFT>>(*si)) {
if (section->getSegmentType() == llvm::ELF::PT_TLS) {
tlsStartAddr =
llvm::RoundUpToAlignment(tlsStartAddr, (*si)->alignment());
section->assignVirtualAddress(tlsStartAddr);
tlsStartAddr += (*si)->memSize();
} else {
section->assignVirtualAddress(newAddr);
}
}
// TBSS section is special in that it doesn't contribute to memory of
// any segment. If we see a tbss section, don't add memory size to addr
// The fileOffset is automatically taken care of since TBSS section does
// not end up using file size.
if ((*si)->order() != TargetLayout<ELFT>::ORDER_TBSS) {
curSliceSize = newAddr - curSliceAddress + (*si)->memSize();
tbssMemsize = 0;
} else {
// Although TBSS section does not contribute to memory of any segment,
// we still need to keep track its total size to correct write it
// down. Since it is done based on curSliceAddress, we need to add
// add it to virtual address.
tbssMemsize = (*si)->memSize();
}
}
prevOutputSectionName = curOutputSectionName;
++currSection;
}
auto sliceIter = std::find_if(_segmentSlices.begin(), _segmentSlices.end(),
[startSection](SegmentSlice<ELFT> *s) -> bool {
return s->startSection() == startSection;
});
if (sliceIter == _segmentSlices.end()) {
slice = new (_segmentAllocate.Allocate<SegmentSlice<ELFT>>())
SegmentSlice<ELFT>();
_segmentSlices.push_back(slice);
} else {
slice = *sliceIter;
}
slice->setStart(startSection);
slice->setVirtualAddr(curSliceAddress);
slice->setMemSize(curSliceSize);
slice->setSections(make_range(startSectionIter, _sections.end()));
slice->setAlign(sliceAlign);
// Set the segment memory size and the virtual address.
this->setMemSize(curSliceAddress - startAddr + curSliceSize);
this->setVirtualAddr(curSliceAddress);
std::stable_sort(_segmentSlices.begin(), _segmentSlices.end(),
SegmentSlice<ELFT>::compare_slices);
}
// Write the Segment
template <class ELFT>
void Segment<ELFT>::write(ELFWriter *writer, TargetLayout<ELFT> &layout,
llvm::FileOutputBuffer &buffer) {
for (auto slice : slices())
for (auto section : slice->sections())
section->write(writer, layout, buffer);
}
template <class ELFT> int64_t Segment<ELFT>::flags() const {
int64_t fl = 0;
if (_flags & llvm::ELF::SHF_ALLOC)
fl |= llvm::ELF::PF_R;
if (_flags & llvm::ELF::SHF_WRITE)
fl |= llvm::ELF::PF_W;
if (_flags & llvm::ELF::SHF_EXECINSTR)
fl |= llvm::ELF::PF_X;
return fl;
}
template <class ELFT> void Segment<ELFT>::finalize() {
// We want to finalize the segment values for now only for non loadable
// segments, since those values are not set in the Layout
if (_segmentType == llvm::ELF::PT_LOAD)
return;
// The size is the difference of the
// last section to the first section, especially for TLS because
// the TLS segment contains both .tdata/.tbss
this->setFileOffset(_sections.front()->fileOffset());
this->setVirtualAddr(_sections.front()->virtualAddr());
size_t startFileOffset = _sections.front()->fileOffset();
size_t startAddr = _sections.front()->virtualAddr();
for (auto ai : _sections) {
this->_fsize = ai->fileOffset() + ai->fileSize() - startFileOffset;
this->_msize = ai->virtualAddr() + ai->memSize() - startAddr;
}
}
template <class ELFT> int Segment<ELFT>::getContentType() const {
int64_t fl = flags();
switch (_segmentType) {
case llvm::ELF::PT_LOAD: {
if (fl && llvm::ELF::PF_X)
return Chunk<ELFT>::ContentType::Code;
if (fl && llvm::ELF::PF_W)
return Chunk<ELFT>::ContentType::Data;
}
case llvm::ELF::PT_TLS:
return Chunk<ELFT>::ContentType::TLS;
case llvm::ELF::PT_NOTE:
return Chunk<ELFT>::ContentType::Note;
default:
return Chunk<ELFT>::ContentType::Unknown;
}
}
template <class ELFT> int64_t Segment<ELFT>::atomflags() const {
switch (_atomflags) {
case DefinedAtom::permUnknown:
return permUnknown;
case DefinedAtom::permRWX:
return permRWX;
case DefinedAtom::permR_X:
return permRX;
case DefinedAtom::permR__:
return permR;
case DefinedAtom::permRW_L:
return permRWL;
case DefinedAtom::permRW_:
return permRW;
case DefinedAtom::perm___:
default:
return permNonAccess;
}
}
/// \brief Check if the chunk needs to be aligned
template <class ELFT> bool Segment<ELFT>::needAlign(Chunk<ELFT> *chunk) const {
if (chunk->getContentType() == Chunk<ELFT>::ContentType::Data &&
_outputMagic == ELFLinkingContext::OutputMagic::NMAGIC)
return true;
return false;
}
template <class ELFT> void ProgramHeaderSegment<ELFT>::finalize() {
// If the segment is of type Program Header, then the values fileOffset
// and the fileSize need to be picked up from the last section, the first
// section points to the ELF header and the second chunk points to the
// actual program headers
this->setFileOffset(this->_sections.back()->fileOffset());
this->setVirtualAddr(this->_sections.back()->virtualAddr());
this->_fsize = this->_sections.back()->fileSize();
this->_msize = this->_sections.back()->memSize();
}
#define INSTANTIATE(klass) \
template class klass<ELF32LE>; \
template class klass<ELF32BE>; \
template class klass<ELF64LE>; \
template class klass<ELF64BE>
INSTANTIATE(ExpressionChunk);
INSTANTIATE(ProgramHeaderSegment);
INSTANTIATE(Segment);
INSTANTIATE(SegmentSlice);
} // end namespace elf
} // end namespace lld