llvm-project/llvm/lib/Target/X86/X86AsmPrinter.cpp

448 lines
16 KiB
C++

//===-- X86AsmPrinter.cpp - Convert X86 LLVM IR to X86 assembly -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file the shared super class printer that converts from our internal
// representation of machine-dependent LLVM code to Intel and AT&T format
// assembly language.
// This printer is the output mechanism used by `llc'.
//
//===----------------------------------------------------------------------===//
#include "X86AsmPrinter.h"
#include "X86ATTAsmPrinter.h"
#include "X86COFF.h"
#include "X86IntelAsmPrinter.h"
#include "X86MachineFunctionInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/Module.h"
#include "llvm/DerivedTypes.h"
#include "llvm/ParameterAttributes.h"
#include "llvm/Type.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Support/Mangler.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Target/TargetOptions.h"
using namespace llvm;
static X86MachineFunctionInfo calculateFunctionInfo(const Function *F,
const TargetData *TD) {
X86MachineFunctionInfo Info;
uint64_t Size = 0;
switch (F->getCallingConv()) {
case CallingConv::X86_StdCall:
Info.setDecorationStyle(StdCall);
break;
case CallingConv::X86_FastCall:
Info.setDecorationStyle(FastCall);
break;
default:
return Info;
}
unsigned argNum = 1;
for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
AI != AE; ++AI, ++argNum) {
const Type* Ty = AI->getType();
// 'Dereference' type in case of byval parameter attribute
if (F->paramHasAttr(argNum, ParamAttr::ByVal))
Ty = cast<PointerType>(Ty)->getElementType();
// Size should be aligned to DWORD boundary
Size += ((TD->getABITypeSize(Ty) + 3)/4)*4;
}
// We're not supporting tooooo huge arguments :)
Info.setBytesToPopOnReturn((unsigned int)Size);
return Info;
}
/// decorateName - Query FunctionInfoMap and use this information for various
/// name decoration.
void X86SharedAsmPrinter::decorateName(std::string &Name,
const GlobalValue *GV) {
const Function *F = dyn_cast<Function>(GV);
if (!F) return;
// We don't want to decorate non-stdcall or non-fastcall functions right now
unsigned CC = F->getCallingConv();
if (CC != CallingConv::X86_StdCall && CC != CallingConv::X86_FastCall)
return;
// Decorate names only when we're targeting Cygwin/Mingw32 targets
if (!Subtarget->isTargetCygMing())
return;
FMFInfoMap::const_iterator info_item = FunctionInfoMap.find(F);
const X86MachineFunctionInfo *Info;
if (info_item == FunctionInfoMap.end()) {
// Calculate apropriate function info and populate map
FunctionInfoMap[F] = calculateFunctionInfo(F, TM.getTargetData());
Info = &FunctionInfoMap[F];
} else {
Info = &info_item->second;
}
const FunctionType *FT = F->getFunctionType();
switch (Info->getDecorationStyle()) {
case None:
break;
case StdCall:
// "Pure" variadic functions do not receive @0 suffix.
if (!FT->isVarArg() || (FT->getNumParams() == 0) ||
(FT->getNumParams() == 1 && F->hasStructRetAttr()))
Name += '@' + utostr_32(Info->getBytesToPopOnReturn());
break;
case FastCall:
// "Pure" variadic functions do not receive @0 suffix.
if (!FT->isVarArg() || (FT->getNumParams() == 0) ||
(FT->getNumParams() == 1 && F->hasStructRetAttr()))
Name += '@' + utostr_32(Info->getBytesToPopOnReturn());
if (Name[0] == '_') {
Name[0] = '@';
} else {
Name = '@' + Name;
}
break;
default:
assert(0 && "Unsupported DecorationStyle");
}
}
/// doInitialization
bool X86SharedAsmPrinter::doInitialization(Module &M) {
if (TAI->doesSupportDebugInformation()) {
// Emit initial debug information.
DW.BeginModule(&M);
}
bool Result = AsmPrinter::doInitialization(M);
// Darwin wants symbols to be quoted if they have complex names.
if (Subtarget->isTargetDarwin())
Mang->setUseQuotes(true);
return Result;
}
/// PrintUnmangledNameSafely - Print out the printable characters in the name.
/// Don't print things like \n or \0.
static void PrintUnmangledNameSafely(const Value *V, std::ostream &OS) {
for (const char *Name = V->getNameStart(), *E = Name+V->getNameLen();
Name != E; ++Name)
if (isprint(*Name))
OS << *Name;
}
bool X86SharedAsmPrinter::doFinalization(Module &M) {
// Note: this code is not shared by the Intel printer as it is too different
// from how MASM does things. When making changes here don't forget to look
// at X86IntelAsmPrinter::doFinalization().
const TargetData *TD = TM.getTargetData();
// Print out module-level global variables here.
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I) {
if (!I->hasInitializer())
continue; // External global require no code
// Check to see if this is a special global used by LLVM, if so, emit it.
if (EmitSpecialLLVMGlobal(I)) {
if (Subtarget->isTargetDarwin() &&
TM.getRelocationModel() == Reloc::Static) {
if (I->getName() == "llvm.global_ctors")
O << ".reference .constructors_used\n";
else if (I->getName() == "llvm.global_dtors")
O << ".reference .destructors_used\n";
}
continue;
}
std::string name = Mang->getValueName(I);
Constant *C = I->getInitializer();
const Type *Type = C->getType();
unsigned Size = TD->getABITypeSize(Type);
unsigned Align = TD->getPreferredAlignmentLog(I);
if (I->hasHiddenVisibility()) {
if (const char *Directive = TAI->getHiddenDirective())
O << Directive << name << "\n";
} else if (I->hasProtectedVisibility()) {
if (const char *Directive = TAI->getProtectedDirective())
O << Directive << name << "\n";
}
if (Subtarget->isTargetELF())
O << "\t.type\t" << name << ",@object\n";
if (C->isNullValue() && !I->hasSection()) {
if (I->hasExternalLinkage()) {
if (const char *Directive = TAI->getZeroFillDirective()) {
O << "\t.globl " << name << "\n";
O << Directive << "__DATA, __common, " << name << ", "
<< Size << ", " << Align << "\n";
continue;
}
}
if (!I->isThreadLocal() &&
(I->hasInternalLinkage() || I->hasWeakLinkage() ||
I->hasLinkOnceLinkage())) {
if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
if (!NoZerosInBSS && TAI->getBSSSection())
SwitchToDataSection(TAI->getBSSSection(), I);
else
SwitchToDataSection(TAI->getDataSection(), I);
if (TAI->getLCOMMDirective() != NULL) {
if (I->hasInternalLinkage()) {
O << TAI->getLCOMMDirective() << name << "," << Size;
if (Subtarget->isTargetDarwin())
O << "," << Align;
} else {
O << TAI->getCOMMDirective() << name << "," << Size;
// Leopard and above support aligned common symbols.
if (Subtarget->getDarwinVers() >= 9)
O << "," << Align;
}
} else {
if (!Subtarget->isTargetCygMing()) {
if (I->hasInternalLinkage())
O << "\t.local\t" << name << "\n";
}
O << TAI->getCOMMDirective() << name << "," << Size;
if (TAI->getCOMMDirectiveTakesAlignment())
O << "," << (TAI->getAlignmentIsInBytes() ? (1 << Align) : Align);
}
O << "\t\t" << TAI->getCommentString() << " ";
PrintUnmangledNameSafely(I, O);
O << "\n";
continue;
}
}
switch (I->getLinkage()) {
case GlobalValue::LinkOnceLinkage:
case GlobalValue::WeakLinkage:
if (Subtarget->isTargetDarwin()) {
O << "\t.globl " << name << "\n"
<< TAI->getWeakDefDirective() << name << "\n";
SwitchToDataSection("\t.section __DATA,__datacoal_nt,coalesced", I);
} else if (Subtarget->isTargetCygMing()) {
std::string SectionName(".section\t.data$linkonce." +
name +
",\"aw\"");
SwitchToDataSection(SectionName.c_str(), I);
O << "\t.globl\t" << name << "\n"
<< "\t.linkonce same_size\n";
} else {
std::string SectionName("\t.section\t.llvm.linkonce.d." +
name +
",\"aw\",@progbits");
SwitchToDataSection(SectionName.c_str(), I);
O << "\t.weak\t" << name << "\n";
}
break;
case GlobalValue::DLLExportLinkage:
DLLExportedGVs.insert(Mang->makeNameProper(I->getName(),""));
// FALL THROUGH
case GlobalValue::AppendingLinkage:
// FIXME: appending linkage variables should go into a section of
// their name or something. For now, just emit them as external.
case GlobalValue::ExternalLinkage:
// If external or appending, declare as a global symbol
O << "\t.globl " << name << "\n";
// FALL THROUGH
case GlobalValue::InternalLinkage: {
if (I->isConstant()) {
const ConstantArray *CVA = dyn_cast<ConstantArray>(C);
if (TAI->getCStringSection() && CVA && CVA->isCString()) {
SwitchToDataSection(TAI->getCStringSection(), I);
break;
}
}
// FIXME: special handling for ".ctors" & ".dtors" sections
if (I->hasSection() &&
(I->getSection() == ".ctors" ||
I->getSection() == ".dtors")) {
std::string SectionName = ".section " + I->getSection();
if (Subtarget->isTargetCygMing()) {
SectionName += ",\"aw\"";
} else {
assert(!Subtarget->isTargetDarwin());
SectionName += ",\"aw\",@progbits";
}
SwitchToDataSection(SectionName.c_str());
} else if (I->hasSection() && Subtarget->isTargetDarwin()) {
// Honor all section names on Darwin; ObjC uses this
std::string SectionName = ".section " + I->getSection();
SwitchToDataSection(SectionName.c_str());
} else {
if (C->isNullValue() && !NoZerosInBSS && TAI->getBSSSection())
SwitchToDataSection(I->isThreadLocal() ? TAI->getTLSBSSSection() :
TAI->getBSSSection(), I);
else if (!I->isConstant())
SwitchToDataSection(I->isThreadLocal() ? TAI->getTLSDataSection() :
TAI->getDataSection(), I);
else if (I->isThreadLocal())
SwitchToDataSection(TAI->getTLSDataSection());
else {
// Read-only data.
bool HasReloc = C->ContainsRelocations();
if (HasReloc &&
Subtarget->isTargetDarwin() &&
TM.getRelocationModel() != Reloc::Static)
SwitchToDataSection("\t.const_data\n");
else if (!HasReloc && Size == 4 &&
TAI->getFourByteConstantSection())
SwitchToDataSection(TAI->getFourByteConstantSection(), I);
else if (!HasReloc && Size == 8 &&
TAI->getEightByteConstantSection())
SwitchToDataSection(TAI->getEightByteConstantSection(), I);
else if (!HasReloc && Size == 16 &&
TAI->getSixteenByteConstantSection())
SwitchToDataSection(TAI->getSixteenByteConstantSection(), I);
else if (TAI->getReadOnlySection())
SwitchToDataSection(TAI->getReadOnlySection(), I);
else
SwitchToDataSection(TAI->getDataSection(), I);
}
}
break;
}
default:
assert(0 && "Unknown linkage type!");
}
EmitAlignment(Align, I);
O << name << ":\t\t\t\t" << TAI->getCommentString() << " ";
PrintUnmangledNameSafely(I, O);
O << "\n";
if (TAI->hasDotTypeDotSizeDirective())
O << "\t.size\t" << name << ", " << Size << "\n";
// If the initializer is a extern weak symbol, remember to emit the weak
// reference!
if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
if (GV->hasExternalWeakLinkage())
ExtWeakSymbols.insert(GV);
EmitGlobalConstant(C);
}
// Output linker support code for dllexported globals
if (!DLLExportedGVs.empty()) {
SwitchToDataSection(".section .drectve");
}
for (std::set<std::string>::iterator i = DLLExportedGVs.begin(),
e = DLLExportedGVs.end();
i != e; ++i) {
O << "\t.ascii \" -export:" << *i << ",data\"\n";
}
if (!DLLExportedFns.empty()) {
SwitchToDataSection(".section .drectve");
}
for (std::set<std::string>::iterator i = DLLExportedFns.begin(),
e = DLLExportedFns.end();
i != e; ++i) {
O << "\t.ascii \" -export:" << *i << "\"\n";
}
if (Subtarget->isTargetDarwin()) {
SwitchToDataSection("");
// Output stubs for dynamically-linked functions
unsigned j = 1;
for (std::set<std::string>::iterator i = FnStubs.begin(), e = FnStubs.end();
i != e; ++i, ++j) {
SwitchToDataSection("\t.section __IMPORT,__jump_table,symbol_stubs,"
"self_modifying_code+pure_instructions,5", 0);
O << "L" << *i << "$stub:\n";
O << "\t.indirect_symbol " << *i << "\n";
O << "\thlt ; hlt ; hlt ; hlt ; hlt\n";
}
O << "\n";
if (TAI->doesSupportExceptionHandling() && MMI && !Subtarget->is64Bit()) {
// Add the (possibly multiple) personalities to the set of global values.
// Only referenced functions get into the Personalities list.
const std::vector<Function *>& Personalities = MMI->getPersonalities();
for (std::vector<Function *>::const_iterator I = Personalities.begin(),
E = Personalities.end(); I != E; ++I)
if (*I) GVStubs.insert("_" + (*I)->getName());
}
// Output stubs for external and common global variables.
if (!GVStubs.empty())
SwitchToDataSection(
"\t.section __IMPORT,__pointers,non_lazy_symbol_pointers");
for (std::set<std::string>::iterator i = GVStubs.begin(), e = GVStubs.end();
i != e; ++i) {
O << "L" << *i << "$non_lazy_ptr:\n";
O << "\t.indirect_symbol " << *i << "\n";
O << "\t.long\t0\n";
}
// Emit final debug information.
DW.EndModule();
// Funny Darwin hack: This flag tells the linker that no global symbols
// contain code that falls through to other global symbols (e.g. the obvious
// implementation of multiple entry points). If this doesn't occur, the
// linker can safely perform dead code stripping. Since LLVM never
// generates code that does this, it is always safe to set.
O << "\t.subsections_via_symbols\n";
} else if (Subtarget->isTargetCygMing()) {
// Emit type information for external functions
for (std::set<std::string>::iterator i = FnStubs.begin(), e = FnStubs.end();
i != e; ++i) {
O << "\t.def\t " << *i
<< ";\t.scl\t" << COFF::C_EXT
<< ";\t.type\t" << (COFF::DT_FCN << COFF::N_BTSHFT)
<< ";\t.endef\n";
}
// Emit final debug information.
DW.EndModule();
} else if (Subtarget->isTargetELF()) {
// Emit final debug information.
DW.EndModule();
}
return AsmPrinter::doFinalization(M);
}
/// createX86CodePrinterPass - Returns a pass that prints the X86 assembly code
/// for a MachineFunction to the given output stream, using the given target
/// machine description.
///
FunctionPass *llvm::createX86CodePrinterPass(std::ostream &o,
X86TargetMachine &tm) {
const X86Subtarget *Subtarget = &tm.getSubtarget<X86Subtarget>();
if (Subtarget->isFlavorIntel()) {
return new X86IntelAsmPrinter(o, tm, tm.getTargetAsmInfo());
} else {
return new X86ATTAsmPrinter(o, tm, tm.getTargetAsmInfo());
}
}