llvm-project/lldb/source/Symbol/ClangASTContext.cpp

2564 lines
93 KiB
C++

//===-- ClangASTContext.cpp -------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Symbol/ClangASTContext.h"
// C Includes
// C++ Includes
#include <string>
// Other libraries and framework includes
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTImporter.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/Type.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/TargetOptions.h"
#include "clang/Frontend/FrontendOptions.h"
#include "clang/Frontend/LangStandard.h"
// Project includes
#include "lldb/Core/dwarf.h"
#include <stdio.h>
using namespace lldb_private;
using namespace llvm;
using namespace clang;
static void
ParseLangArgs
(
LangOptions &Opts,
InputKind IK
)
{
// FIXME: Cleanup per-file based stuff.
// Set some properties which depend soley on the input kind; it would be nice
// to move these to the language standard, and have the driver resolve the
// input kind + language standard.
if (IK == IK_Asm) {
Opts.AsmPreprocessor = 1;
} else if (IK == IK_ObjC ||
IK == IK_ObjCXX ||
IK == IK_PreprocessedObjC ||
IK == IK_PreprocessedObjCXX) {
Opts.ObjC1 = Opts.ObjC2 = 1;
}
LangStandard::Kind LangStd = LangStandard::lang_unspecified;
if (LangStd == LangStandard::lang_unspecified) {
// Based on the base language, pick one.
switch (IK) {
case IK_None:
case IK_AST:
assert(0 && "Invalid input kind!");
case IK_OpenCL:
LangStd = LangStandard::lang_opencl;
break;
case IK_Asm:
case IK_C:
case IK_PreprocessedC:
case IK_ObjC:
case IK_PreprocessedObjC:
LangStd = LangStandard::lang_gnu99;
break;
case IK_CXX:
case IK_PreprocessedCXX:
case IK_ObjCXX:
case IK_PreprocessedObjCXX:
LangStd = LangStandard::lang_gnucxx98;
break;
}
}
const LangStandard &Std = LangStandard::getLangStandardForKind(LangStd);
Opts.BCPLComment = Std.hasBCPLComments();
Opts.C99 = Std.isC99();
Opts.CPlusPlus = Std.isCPlusPlus();
Opts.CPlusPlus0x = Std.isCPlusPlus0x();
Opts.Digraphs = Std.hasDigraphs();
Opts.GNUMode = Std.isGNUMode();
Opts.GNUInline = !Std.isC99();
Opts.HexFloats = Std.hasHexFloats();
Opts.ImplicitInt = Std.hasImplicitInt();
// OpenCL has some additional defaults.
if (LangStd == LangStandard::lang_opencl) {
Opts.OpenCL = 1;
Opts.AltiVec = 1;
Opts.CXXOperatorNames = 1;
Opts.LaxVectorConversions = 1;
}
// OpenCL and C++ both have bool, true, false keywords.
Opts.Bool = Opts.OpenCL || Opts.CPlusPlus;
// if (Opts.CPlusPlus)
// Opts.CXXOperatorNames = !Args.hasArg(OPT_fno_operator_names);
//
// if (Args.hasArg(OPT_fobjc_gc_only))
// Opts.setGCMode(LangOptions::GCOnly);
// else if (Args.hasArg(OPT_fobjc_gc))
// Opts.setGCMode(LangOptions::HybridGC);
//
// if (Args.hasArg(OPT_print_ivar_layout))
// Opts.ObjCGCBitmapPrint = 1;
//
// if (Args.hasArg(OPT_faltivec))
// Opts.AltiVec = 1;
//
// if (Args.hasArg(OPT_pthread))
// Opts.POSIXThreads = 1;
//
// llvm::StringRef Vis = getLastArgValue(Args, OPT_fvisibility,
// "default");
// if (Vis == "default")
Opts.setVisibilityMode(LangOptions::Default);
// else if (Vis == "hidden")
// Opts.setVisibilityMode(LangOptions::Hidden);
// else if (Vis == "protected")
// Opts.setVisibilityMode(LangOptions::Protected);
// else
// Diags.Report(diag::err_drv_invalid_value)
// << Args.getLastArg(OPT_fvisibility)->getAsString(Args) << Vis;
// Opts.OverflowChecking = Args.hasArg(OPT_ftrapv);
// Mimicing gcc's behavior, trigraphs are only enabled if -trigraphs
// is specified, or -std is set to a conforming mode.
Opts.Trigraphs = !Opts.GNUMode;
// if (Args.hasArg(OPT_trigraphs))
// Opts.Trigraphs = 1;
//
// Opts.DollarIdents = Args.hasFlag(OPT_fdollars_in_identifiers,
// OPT_fno_dollars_in_identifiers,
// !Opts.AsmPreprocessor);
// Opts.PascalStrings = Args.hasArg(OPT_fpascal_strings);
// Opts.Microsoft = Args.hasArg(OPT_fms_extensions);
// Opts.WritableStrings = Args.hasArg(OPT_fwritable_strings);
// if (Args.hasArg(OPT_fno_lax_vector_conversions))
// Opts.LaxVectorConversions = 0;
// Opts.Exceptions = Args.hasArg(OPT_fexceptions);
// Opts.RTTI = !Args.hasArg(OPT_fno_rtti);
// Opts.Blocks = Args.hasArg(OPT_fblocks);
// Opts.CharIsSigned = !Args.hasArg(OPT_fno_signed_char);
// Opts.ShortWChar = Args.hasArg(OPT_fshort_wchar);
// Opts.Freestanding = Args.hasArg(OPT_ffreestanding);
// Opts.NoBuiltin = Args.hasArg(OPT_fno_builtin) || Opts.Freestanding;
// Opts.AssumeSaneOperatorNew = !Args.hasArg(OPT_fno_assume_sane_operator_new);
// Opts.HeinousExtensions = Args.hasArg(OPT_fheinous_gnu_extensions);
// Opts.AccessControl = Args.hasArg(OPT_faccess_control);
// Opts.ElideConstructors = !Args.hasArg(OPT_fno_elide_constructors);
// Opts.MathErrno = !Args.hasArg(OPT_fno_math_errno);
// Opts.InstantiationDepth = getLastArgIntValue(Args, OPT_ftemplate_depth, 99,
// Diags);
// Opts.NeXTRuntime = !Args.hasArg(OPT_fgnu_runtime);
// Opts.ObjCConstantStringClass = getLastArgValue(Args,
// OPT_fconstant_string_class);
// Opts.ObjCNonFragileABI = Args.hasArg(OPT_fobjc_nonfragile_abi);
// Opts.CatchUndefined = Args.hasArg(OPT_fcatch_undefined_behavior);
// Opts.EmitAllDecls = Args.hasArg(OPT_femit_all_decls);
// Opts.PICLevel = getLastArgIntValue(Args, OPT_pic_level, 0, Diags);
// Opts.Static = Args.hasArg(OPT_static_define);
Opts.OptimizeSize = 0;
// FIXME: Eliminate this dependency.
// unsigned Opt =
// Args.hasArg(OPT_Os) ? 2 : getLastArgIntValue(Args, OPT_O, 0, Diags);
// Opts.Optimize = Opt != 0;
unsigned Opt = 0;
// This is the __NO_INLINE__ define, which just depends on things like the
// optimization level and -fno-inline, not actually whether the backend has
// inlining enabled.
//
// FIXME: This is affected by other options (-fno-inline).
Opts.NoInline = !Opt;
// unsigned SSP = getLastArgIntValue(Args, OPT_stack_protector, 0, Diags);
// switch (SSP) {
// default:
// Diags.Report(diag::err_drv_invalid_value)
// << Args.getLastArg(OPT_stack_protector)->getAsString(Args) << SSP;
// break;
// case 0: Opts.setStackProtectorMode(LangOptions::SSPOff); break;
// case 1: Opts.setStackProtectorMode(LangOptions::SSPOn); break;
// case 2: Opts.setStackProtectorMode(LangOptions::SSPReq); break;
// }
}
//----------------------------------------------------------------------
// ClangASTContext constructor
//----------------------------------------------------------------------
//ClangASTContext::ClangASTContext(Module *module) :
// m_target_triple(),
// m_ast_context_ap(),
// m_language_options_ap(),
// m_source_manager_ap(),
// m_target_info_ap(),
// m_identifier_table_ap(),
// m_selector_table_ap(),
// m_builtins_ap()
//{
// if (module)
// {
// ObjectFile * objfile = module->GetObjectFile();
// if (objfile)
// objfile->GetTargetTriple(m_target_triple);
// }
//}
//ClangASTContext::ClangASTContext(const ConstString& target_triple) :
// m_target_triple(target_triple),
// m_ast_context_ap(),
// m_language_options_ap(),
// m_source_manager_ap(),
// m_target_info_ap(),
// m_identifier_table_ap(),
// m_selector_table_ap(),
// m_builtins_ap()
//{
//}
ClangASTContext::ClangASTContext(const char *target_triple) :
m_target_triple(),
m_ast_context_ap(),
m_language_options_ap(),
m_source_manager_ap(),
m_diagnostic_ap(),
m_target_options_ap(),
m_target_info_ap(),
m_identifier_table_ap(),
m_selector_table_ap(),
m_builtins_ap()
{
if (target_triple && target_triple[0])
m_target_triple.assign (target_triple);
}
//----------------------------------------------------------------------
// Destructor
//----------------------------------------------------------------------
ClangASTContext::~ClangASTContext()
{
m_builtins_ap.reset();
m_selector_table_ap.reset();
m_identifier_table_ap.reset();
m_target_info_ap.reset();
m_target_options_ap.reset();
m_diagnostic_ap.reset();
m_source_manager_ap.reset();
m_language_options_ap.reset();
m_ast_context_ap.reset();
}
void
ClangASTContext::Clear()
{
m_ast_context_ap.reset();
m_language_options_ap.reset();
m_source_manager_ap.reset();
m_diagnostic_ap.reset();
m_target_options_ap.reset();
m_target_info_ap.reset();
m_identifier_table_ap.reset();
m_selector_table_ap.reset();
m_builtins_ap.reset();
}
const char *
ClangASTContext::GetTargetTriple ()
{
return m_target_triple.c_str();
}
void
ClangASTContext::SetTargetTriple (const char *target_triple)
{
Clear();
m_target_triple.assign(target_triple);
}
ASTContext *
ClangASTContext::getASTContext()
{
if (m_ast_context_ap.get() == NULL)
{
m_ast_context_ap.reset(
new ASTContext(
*getLanguageOptions(),
*getSourceManager(),
*getTargetInfo(),
*getIdentifierTable(),
*getSelectorTable(),
*getBuiltinContext()));
}
return m_ast_context_ap.get();
}
Builtin::Context *
ClangASTContext::getBuiltinContext()
{
if (m_builtins_ap.get() == NULL)
m_builtins_ap.reset (new Builtin::Context(*getTargetInfo()));
return m_builtins_ap.get();
}
IdentifierTable *
ClangASTContext::getIdentifierTable()
{
if (m_identifier_table_ap.get() == NULL)
m_identifier_table_ap.reset(new IdentifierTable (*ClangASTContext::getLanguageOptions(), NULL));
return m_identifier_table_ap.get();
}
LangOptions *
ClangASTContext::getLanguageOptions()
{
if (m_language_options_ap.get() == NULL)
{
m_language_options_ap.reset(new LangOptions());
ParseLangArgs(*m_language_options_ap, IK_ObjCXX);
// InitializeLangOptions(*m_language_options_ap, IK_ObjCXX);
}
return m_language_options_ap.get();
}
SelectorTable *
ClangASTContext::getSelectorTable()
{
if (m_selector_table_ap.get() == NULL)
m_selector_table_ap.reset (new SelectorTable());
return m_selector_table_ap.get();
}
SourceManager *
ClangASTContext::getSourceManager()
{
if (m_source_manager_ap.get() == NULL)
m_source_manager_ap.reset(new SourceManager(*getDiagnostic()));
return m_source_manager_ap.get();
}
Diagnostic *
ClangASTContext::getDiagnostic()
{
if (m_diagnostic_ap.get() == NULL)
m_diagnostic_ap.reset(new Diagnostic());
return m_diagnostic_ap.get();
}
TargetOptions *
ClangASTContext::getTargetOptions()
{
if (m_target_options_ap.get() == NULL && !m_target_triple.empty())
{
m_target_options_ap.reset (new TargetOptions());
if (m_target_options_ap.get())
m_target_options_ap->Triple = m_target_triple;
}
return m_target_options_ap.get();
}
TargetInfo *
ClangASTContext::getTargetInfo()
{
// target_triple should be something like "x86_64-apple-darwin10"
if (m_target_info_ap.get() == NULL && !m_target_triple.empty())
m_target_info_ap.reset (TargetInfo::CreateTargetInfo(*getDiagnostic(), *getTargetOptions()));
return m_target_info_ap.get();
}
#pragma mark Basic Types
static inline bool
QualTypeMatchesBitSize(const uint64_t bit_size, ASTContext *ast_context, QualType qual_type)
{
uint64_t qual_type_bit_size = ast_context->getTypeSize(qual_type);
if (qual_type_bit_size == bit_size)
return true;
return false;
}
void *
ClangASTContext::GetBuiltinTypeForEncodingAndBitSize (lldb::Encoding encoding, uint32_t bit_size)
{
ASTContext *ast_context = getASTContext();
assert (ast_context != NULL);
return GetBuiltinTypeForEncodingAndBitSize (ast_context, encoding, bit_size);
}
void *
ClangASTContext::GetBuiltinTypeForEncodingAndBitSize (clang::ASTContext *ast_context, lldb::Encoding encoding, uint32_t bit_size)
{
if (!ast_context)
return NULL;
switch (encoding)
{
case lldb::eEncodingInvalid:
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->VoidPtrTy))
return ast_context->VoidPtrTy.getAsOpaquePtr();
break;
case lldb::eEncodingUint:
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->UnsignedCharTy))
return ast_context->UnsignedCharTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->UnsignedShortTy))
return ast_context->UnsignedShortTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->UnsignedIntTy))
return ast_context->UnsignedIntTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->UnsignedLongTy))
return ast_context->UnsignedLongTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->UnsignedLongLongTy))
return ast_context->UnsignedLongLongTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->UnsignedInt128Ty))
return ast_context->UnsignedInt128Ty.getAsOpaquePtr();
break;
case lldb::eEncodingSint:
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->CharTy))
return ast_context->CharTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->ShortTy))
return ast_context->ShortTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->IntTy))
return ast_context->IntTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->LongTy))
return ast_context->LongTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->LongLongTy))
return ast_context->LongLongTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->Int128Ty))
return ast_context->Int128Ty.getAsOpaquePtr();
break;
case lldb::eEncodingIEEE754:
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->FloatTy))
return ast_context->FloatTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->DoubleTy))
return ast_context->DoubleTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->LongDoubleTy))
return ast_context->LongDoubleTy.getAsOpaquePtr();
break;
case lldb::eEncodingVector:
default:
break;
}
return NULL;
}
void *
ClangASTContext::GetBuiltinTypeForDWARFEncodingAndBitSize (const char *type_name, uint32_t dw_ate, uint32_t bit_size)
{
ASTContext *ast_context = getASTContext();
#define streq(a,b) strcmp(a,b) == 0
assert (ast_context != NULL);
if (ast_context)
{
switch (dw_ate)
{
default:
break;
case DW_ATE_address:
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->VoidPtrTy))
return ast_context->VoidPtrTy.getAsOpaquePtr();
break;
case DW_ATE_boolean:
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->BoolTy))
return ast_context->BoolTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->UnsignedCharTy))
return ast_context->UnsignedCharTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->UnsignedShortTy))
return ast_context->UnsignedShortTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->UnsignedIntTy))
return ast_context->UnsignedIntTy.getAsOpaquePtr();
break;
case DW_ATE_complex_float:
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->FloatComplexTy))
return ast_context->FloatComplexTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->DoubleComplexTy))
return ast_context->DoubleComplexTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->LongDoubleComplexTy))
return ast_context->LongDoubleComplexTy.getAsOpaquePtr();
break;
case DW_ATE_float:
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->FloatTy))
return ast_context->FloatTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->DoubleTy))
return ast_context->DoubleTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->LongDoubleTy))
return ast_context->LongDoubleTy.getAsOpaquePtr();
break;
case DW_ATE_signed:
if (type_name)
{
if (streq(type_name, "int") ||
streq(type_name, "signed int"))
{
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->IntTy))
return ast_context->IntTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->Int128Ty))
return ast_context->Int128Ty.getAsOpaquePtr();
}
if (streq(type_name, "long int") ||
streq(type_name, "long long int") ||
streq(type_name, "signed long long"))
{
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->LongTy))
return ast_context->LongTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->LongLongTy))
return ast_context->LongLongTy.getAsOpaquePtr();
}
if (streq(type_name, "short") ||
streq(type_name, "short int") ||
streq(type_name, "signed short") ||
streq(type_name, "short signed int"))
{
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->ShortTy))
return ast_context->ShortTy.getAsOpaquePtr();
}
if (streq(type_name, "char") ||
streq(type_name, "signed char"))
{
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->CharTy))
return ast_context->CharTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->SignedCharTy))
return ast_context->SignedCharTy.getAsOpaquePtr();
}
if (streq(type_name, "wchar_t"))
{
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->WCharTy))
return ast_context->WCharTy.getAsOpaquePtr();
}
}
// We weren't able to match up a type name, just search by size
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->CharTy))
return ast_context->CharTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->ShortTy))
return ast_context->ShortTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->IntTy))
return ast_context->IntTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->LongTy))
return ast_context->LongTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->LongLongTy))
return ast_context->LongLongTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->Int128Ty))
return ast_context->Int128Ty.getAsOpaquePtr();
break;
case DW_ATE_signed_char:
if (type_name)
{
if (streq(type_name, "signed char"))
{
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->SignedCharTy))
return ast_context->SignedCharTy.getAsOpaquePtr();
}
}
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->CharTy))
return ast_context->CharTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->SignedCharTy))
return ast_context->SignedCharTy.getAsOpaquePtr();
break;
case DW_ATE_unsigned:
if (type_name)
{
if (streq(type_name, "unsigned int"))
{
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->UnsignedIntTy))
return ast_context->UnsignedIntTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->UnsignedInt128Ty))
return ast_context->UnsignedInt128Ty.getAsOpaquePtr();
}
if (streq(type_name, "unsigned int") ||
streq(type_name, "long unsigned int") ||
streq(type_name, "unsigned long long"))
{
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->UnsignedLongTy))
return ast_context->UnsignedLongTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->UnsignedLongLongTy))
return ast_context->UnsignedLongLongTy.getAsOpaquePtr();
}
if (streq(type_name, "unsigned short") ||
streq(type_name, "short unsigned int"))
{
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->UnsignedShortTy))
return ast_context->UnsignedShortTy.getAsOpaquePtr();
}
if (streq(type_name, "unsigned char"))
{
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->UnsignedCharTy))
return ast_context->UnsignedCharTy.getAsOpaquePtr();
}
}
// We weren't able to match up a type name, just search by size
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->UnsignedCharTy))
return ast_context->UnsignedCharTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->UnsignedShortTy))
return ast_context->UnsignedShortTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->UnsignedIntTy))
return ast_context->UnsignedIntTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->UnsignedLongTy))
return ast_context->UnsignedLongTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->UnsignedLongLongTy))
return ast_context->UnsignedLongLongTy.getAsOpaquePtr();
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->UnsignedInt128Ty))
return ast_context->UnsignedInt128Ty.getAsOpaquePtr();
break;
case DW_ATE_unsigned_char:
if (QualTypeMatchesBitSize (bit_size, ast_context, ast_context->UnsignedCharTy))
return ast_context->UnsignedCharTy.getAsOpaquePtr();
break;
case DW_ATE_imaginary_float:
break;
}
}
// This assert should fire for anything that we don't catch above so we know
// to fix any issues we run into.
assert (!"error: ClangASTContext::GetClangTypeForDWARFEncodingAndSize() contains an unhandled encoding. Fix this ASAP!");
return NULL;
}
void *
ClangASTContext::GetVoidBuiltInType()
{
return getASTContext()->VoidTy.getAsOpaquePtr();
}
void *
ClangASTContext::GetCStringType (bool is_const)
{
QualType char_type(getASTContext()->CharTy);
if (is_const)
char_type.addConst();
return getASTContext()->getPointerType(char_type).getAsOpaquePtr();
}
void *
ClangASTContext::GetVoidPtrType (bool is_const)
{
return GetVoidPtrType(getASTContext(), is_const);
}
void *
ClangASTContext::GetVoidPtrType (clang::ASTContext *ast_context, bool is_const)
{
QualType void_ptr_type(ast_context->VoidPtrTy);
if (is_const)
void_ptr_type.addConst();
return void_ptr_type.getAsOpaquePtr();
}
void *
ClangASTContext::CopyType(clang::ASTContext *dest_context,
clang::ASTContext *source_context,
void * clang_type)
{
Diagnostic diagnostics;
FileManager file_manager;
ASTImporter importer(diagnostics,
*dest_context, file_manager,
*source_context, file_manager);
QualType ret = importer.Import(QualType::getFromOpaquePtr(clang_type));
return ret.getAsOpaquePtr();
}
#pragma mark CVR modifiers
void *
ClangASTContext::AddConstModifier (void *clang_type)
{
if (clang_type)
{
QualType result(QualType::getFromOpaquePtr(clang_type));
result.addConst();
return result.getAsOpaquePtr();
}
return NULL;
}
void *
ClangASTContext::AddRestrictModifier (void *clang_type)
{
if (clang_type)
{
QualType result(QualType::getFromOpaquePtr(clang_type));
result.getQualifiers().setRestrict (true);
return result.getAsOpaquePtr();
}
return NULL;
}
void *
ClangASTContext::AddVolatileModifier (void *clang_type)
{
if (clang_type)
{
QualType result(QualType::getFromOpaquePtr(clang_type));
result.getQualifiers().setVolatile (true);
return result.getAsOpaquePtr();
}
return NULL;
}
#pragma mark Structure, Unions, Classes
void *
ClangASTContext::CreateRecordType (const char *name, int kind, DeclContext *decl_ctx)
{
ASTContext *ast_context = getASTContext();
assert (ast_context != NULL);
if (decl_ctx == NULL)
decl_ctx = ast_context->getTranslationUnitDecl();
// NOTE: Eventually CXXRecordDecl will be merged back into RecordDecl and
// we will need to update this code. I was told to currently always use
// the CXXRecordDecl class since we often don't know from debug information
// if something is struct or a class, so we default to always use the more
// complete definition just in case.
CXXRecordDecl *decl = CXXRecordDecl::Create(*ast_context,
(TagDecl::TagKind)kind,
decl_ctx,
SourceLocation(),
name && name[0] ? &ast_context->Idents.get(name) : NULL);
return ast_context->getTagDeclType(decl).getAsOpaquePtr();
}
bool
ClangASTContext::AddFieldToRecordType (void * record_clang_type, const char *name, void * field_type, int access, uint32_t bitfield_bit_size)
{
if (record_clang_type == NULL || field_type == NULL)
return false;
ASTContext *ast_context = getASTContext();
IdentifierTable *identifier_table = getIdentifierTable();
assert (ast_context != NULL);
assert (identifier_table != NULL);
QualType record_qual_type(QualType::getFromOpaquePtr(record_clang_type));
Type *clang_type = record_qual_type.getTypePtr();
if (clang_type)
{
const RecordType *record_type = dyn_cast<RecordType>(clang_type);
if (record_type)
{
RecordDecl *record_decl = record_type->getDecl();
CXXRecordDecl *cxx_record_decl = dyn_cast<CXXRecordDecl>(record_decl);
if (cxx_record_decl)
cxx_record_decl->setEmpty (false);
clang::Expr *bit_width = NULL;
if (bitfield_bit_size != 0)
{
APInt bitfield_bit_size_apint(ast_context->getTypeSize(ast_context->IntTy), bitfield_bit_size);
bit_width = new (*ast_context)IntegerLiteral (bitfield_bit_size_apint, ast_context->IntTy, SourceLocation());
}
FieldDecl *field = FieldDecl::Create(*ast_context,
record_decl,
SourceLocation(),
name ? &identifier_table->get(name) : NULL, // Identifier
QualType::getFromOpaquePtr(field_type), // Field type
NULL, // DeclaratorInfo *
bit_width, // BitWidth
false); // Mutable
field->setAccess((AccessSpecifier)access);
if (field)
{
record_decl->addDecl(field);
return true;
}
}
}
return false;
}
bool
ClangASTContext::FieldIsBitfield (FieldDecl* field, uint32_t& bitfield_bit_size)
{
return FieldIsBitfield(getASTContext(), field, bitfield_bit_size);
}
bool
ClangASTContext::FieldIsBitfield
(
ASTContext *ast_context,
FieldDecl* field,
uint32_t& bitfield_bit_size
)
{
if (ast_context == NULL || field == NULL)
return false;
if (field->isBitField())
{
Expr* bit_width_expr = field->getBitWidth();
if (bit_width_expr)
{
llvm::APSInt bit_width_apsint;
if (bit_width_expr->isIntegerConstantExpr(bit_width_apsint, *ast_context))
{
bitfield_bit_size = bit_width_apsint.getLimitedValue(UINT32_MAX);
return true;
}
}
}
return false;
}
bool
ClangASTContext::RecordHasFields (const RecordDecl *record_decl)
{
if (record_decl == NULL)
return false;
if (!record_decl->field_empty())
return true;
// No fields, lets check this is a CXX record and check the base classes
const CXXRecordDecl *cxx_record_decl = dyn_cast<CXXRecordDecl>(record_decl);
if (cxx_record_decl)
{
CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end;
++base_class)
{
const CXXRecordDecl *base_class_decl = cast<CXXRecordDecl>(base_class->getType()->getAs<RecordType>()->getDecl());
if (RecordHasFields(base_class_decl))
return true;
}
}
return false;
}
void
ClangASTContext::SetDefaultAccessForRecordFields (void *clang_qual_type, int default_accessibility, int *assigned_accessibilities, size_t num_assigned_accessibilities)
{
if (clang_qual_type)
{
QualType qual_type(QualType::getFromOpaquePtr(clang_qual_type));
Type *clang_type = qual_type.getTypePtr();
if (clang_type)
{
RecordType *record_type = dyn_cast<RecordType>(clang_type);
if (record_type)
{
RecordDecl *record_decl = record_type->getDecl();
if (record_decl)
{
uint32_t field_idx;
RecordDecl::field_iterator field, field_end;
for (field = record_decl->field_begin(), field_end = record_decl->field_end(), field_idx = 0;
field != field_end;
++field, ++field_idx)
{
// If no accessibility was assigned, assign the correct one
if (field_idx < num_assigned_accessibilities && assigned_accessibilities[field_idx] == clang::AS_none)
field->setAccess ((AccessSpecifier)default_accessibility);
}
}
}
}
}
}
#pragma mark C++ Base Classes
CXXBaseSpecifier *
ClangASTContext::CreateBaseClassSpecifier (void *base_class_type, int access, bool is_virtual, bool base_of_class)
{
if (base_class_type)
return new CXXBaseSpecifier(SourceRange(), is_virtual, base_of_class, (AccessSpecifier)access, QualType::getFromOpaquePtr(base_class_type));
return NULL;
}
bool
ClangASTContext::SetBaseClassesForClassType (void *class_clang_type, CXXBaseSpecifier const * const *base_classes, unsigned num_base_classes)
{
if (class_clang_type)
{
ASTContext *ast_context = getASTContext();
IdentifierTable *identifier_table = getIdentifierTable();
assert (ast_context != NULL);
assert (identifier_table != NULL);
Type *clang_type = QualType::getFromOpaquePtr(class_clang_type).getTypePtr();
if (clang_type)
{
RecordType *record_type = dyn_cast<RecordType>(clang_type);
if (record_type)
{
CXXRecordDecl *cxx_record_decl = dyn_cast<CXXRecordDecl>(record_type->getDecl());
if (cxx_record_decl)
{
//cxx_record_decl->setEmpty (false);
cxx_record_decl->setBases(base_classes, num_base_classes);
return true;
}
}
}
}
return false;
}
#pragma mark Aggregate Types
bool
ClangASTContext::IsAggregateType (void *clang_type)
{
if (clang_type == NULL)
return false;
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
if (qual_type->isAggregateType ())
return true;
switch (qual_type->getTypeClass())
{
case Type::IncompleteArray:
case Type::VariableArray:
case Type::ConstantArray:
case Type::ExtVector:
case Type::Vector:
case Type::Record:
return true;
case Type::Typedef:
return ClangASTContext::IsAggregateType (cast<TypedefType>(qual_type)->LookThroughTypedefs().getAsOpaquePtr());
default:
break;
}
// The clang type does have a value
return false;
}
uint32_t
ClangASTContext::GetNumChildren (void *clang_qual_type, bool omit_empty_base_classes)
{
if (clang_qual_type == NULL)
return 0;
uint32_t num_children = 0;
QualType qual_type(QualType::getFromOpaquePtr(clang_qual_type));
switch (qual_type->getTypeClass())
{
case Type::Record:
{
const RecordType *record_type = cast<RecordType>(qual_type.getTypePtr());
const RecordDecl *record_decl = record_type->getDecl();
assert(record_decl);
const CXXRecordDecl *cxx_record_decl = dyn_cast<CXXRecordDecl>(record_decl);
if (cxx_record_decl)
{
if (omit_empty_base_classes)
{
// Check each base classes to see if it or any of its
// base classes contain any fields. This can help
// limit the noise in variable views by not having to
// show base classes that contain no members.
CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end;
++base_class)
{
const CXXRecordDecl *base_class_decl = cast<CXXRecordDecl>(base_class->getType()->getAs<RecordType>()->getDecl());
// Skip empty base classes
if (RecordHasFields(base_class_decl) == false)
continue;
num_children++;
}
}
else
{
// Include all base classes
num_children += cxx_record_decl->getNumBases();
}
}
RecordDecl::field_iterator field, field_end;
for (field = record_decl->field_begin(), field_end = record_decl->field_end(); field != field_end; ++field)
++num_children;
}
break;
case Type::ConstantArray:
num_children = cast<ConstantArrayType>(qual_type.getTypePtr())->getSize().getLimitedValue();
break;
case Type::Pointer:
{
PointerType *pointer_type = cast<PointerType>(qual_type.getTypePtr());
QualType pointee_type = pointer_type->getPointeeType();
uint32_t num_pointee_children = ClangASTContext::GetNumChildren (pointee_type.getAsOpaquePtr(), omit_empty_base_classes);
// If this type points to a simple type, then it has 1 child
if (num_pointee_children == 0)
num_children = 1;
else
num_children = num_pointee_children;
}
break;
case Type::Typedef:
num_children = ClangASTContext::GetNumChildren (cast<TypedefType>(qual_type)->LookThroughTypedefs().getAsOpaquePtr(), omit_empty_base_classes);
break;
default:
break;
}
return num_children;
}
void *
ClangASTContext::GetChildClangTypeAtIndex
(
const char *parent_name,
void *parent_clang_type,
uint32_t idx,
bool transparent_pointers,
bool omit_empty_base_classes,
std::string& child_name,
uint32_t &child_byte_size,
int32_t &child_byte_offset,
uint32_t &child_bitfield_bit_size,
uint32_t &child_bitfield_bit_offset
)
{
if (parent_clang_type)
return GetChildClangTypeAtIndex (getASTContext(),
parent_name,
parent_clang_type,
idx,
transparent_pointers,
omit_empty_base_classes,
child_name,
child_byte_size,
child_byte_offset,
child_bitfield_bit_size,
child_bitfield_bit_offset);
return NULL;
}
void *
ClangASTContext::GetChildClangTypeAtIndex
(
ASTContext *ast_context,
const char *parent_name,
void *parent_clang_type,
uint32_t idx,
bool transparent_pointers,
bool omit_empty_base_classes,
std::string& child_name,
uint32_t &child_byte_size,
int32_t &child_byte_offset,
uint32_t &child_bitfield_bit_size,
uint32_t &child_bitfield_bit_offset
)
{
if (parent_clang_type == NULL)
return NULL;
if (idx < ClangASTContext::GetNumChildren (parent_clang_type, omit_empty_base_classes))
{
uint32_t bit_offset;
child_bitfield_bit_size = 0;
child_bitfield_bit_offset = 0;
QualType parent_qual_type(QualType::getFromOpaquePtr(parent_clang_type));
switch (parent_qual_type->getTypeClass())
{
case Type::Record:
{
const RecordType *record_type = cast<RecordType>(parent_qual_type.getTypePtr());
const RecordDecl *record_decl = record_type->getDecl();
assert(record_decl);
const ASTRecordLayout &record_layout = ast_context->getASTRecordLayout(record_decl);
uint32_t child_idx = 0;
const CXXRecordDecl *cxx_record_decl = dyn_cast<CXXRecordDecl>(record_decl);
if (cxx_record_decl)
{
// We might have base classes to print out first
CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end;
++base_class)
{
const CXXRecordDecl *base_class_decl = NULL;
// Skip empty base classes
if (omit_empty_base_classes)
{
base_class_decl = cast<CXXRecordDecl>(base_class->getType()->getAs<RecordType>()->getDecl());
if (RecordHasFields(base_class_decl) == false)
continue;
}
if (idx == child_idx)
{
if (base_class_decl == NULL)
base_class_decl = cast<CXXRecordDecl>(base_class->getType()->getAs<RecordType>()->getDecl());
if (base_class->isVirtual())
bit_offset = record_layout.getVBaseClassOffset(base_class_decl);
else
bit_offset = record_layout.getBaseClassOffset(base_class_decl);
// Base classes should be a multiple of 8 bits in size
assert (bit_offset % 8 == 0);
child_byte_offset = bit_offset/8;
std::string base_class_type_name(base_class->getType().getAsString());
child_name.assign(base_class_type_name.c_str());
uint64_t clang_type_info_bit_size = ast_context->getTypeSize(base_class->getType());
// Base classes biut sizes should be a multiple of 8 bits in size
assert (clang_type_info_bit_size % 8 == 0);
child_byte_size = clang_type_info_bit_size / 8;
return base_class->getType().getAsOpaquePtr();
}
// We don't increment the child index in the for loop since we might
// be skipping empty base classes
++child_idx;
}
}
const unsigned num_fields = record_layout.getFieldCount();
// Make sure index is in range...
uint32_t field_idx = 0;
RecordDecl::field_iterator field, field_end;
for (field = record_decl->field_begin(), field_end = record_decl->field_end(); field != field_end; ++field, ++field_idx, ++child_idx)
{
if (idx == child_idx)
{
// Print the member type if requested
// Print the member name and equal sign
child_name.assign(field->getNameAsString().c_str());
// Figure out the type byte size (field_type_info.first) and
// alignment (field_type_info.second) from the AST context.
std::pair<uint64_t, unsigned> field_type_info = ast_context->getTypeInfo(field->getType());
assert(field_idx < num_fields);
child_byte_size = field_type_info.first / 8;
// Figure out the field offset within the current struct/union/class type
bit_offset = record_layout.getFieldOffset (field_idx);
child_byte_offset = bit_offset / 8;
if (ClangASTContext::FieldIsBitfield (ast_context, *field, child_bitfield_bit_size))
child_bitfield_bit_offset = bit_offset % 8;
return field->getType().getAsOpaquePtr();
}
}
}
break;
case Type::ConstantArray:
{
const ConstantArrayType *array = cast<ConstantArrayType>(parent_qual_type.getTypePtr());
const uint64_t element_count = array->getSize().getLimitedValue();
if (idx < element_count)
{
std::pair<uint64_t, unsigned> field_type_info = ast_context->getTypeInfo(array->getElementType());
char element_name[32];
::snprintf (element_name, sizeof (element_name), "%s[%u]", parent_name ? parent_name : "", idx);
child_name.assign(element_name);
assert(field_type_info.first % 8 == 0);
child_byte_size = field_type_info.first / 8;
child_byte_offset = idx * child_byte_size;
return array->getElementType().getAsOpaquePtr();
}
}
break;
case Type::Pointer:
{
PointerType *pointer_type = cast<PointerType>(parent_qual_type.getTypePtr());
QualType pointee_type = pointer_type->getPointeeType();
if (transparent_pointers && ClangASTContext::IsAggregateType (pointee_type.getAsOpaquePtr()))
{
return GetChildClangTypeAtIndex (ast_context,
parent_name,
pointer_type->getPointeeType().getAsOpaquePtr(),
idx,
transparent_pointers,
omit_empty_base_classes,
child_name,
child_byte_size,
child_byte_offset,
child_bitfield_bit_size,
child_bitfield_bit_offset);
}
else
{
if (parent_name)
{
child_name.assign(1, '*');
child_name += parent_name;
}
// We have a pointer to an simple type
if (idx == 0)
{
std::pair<uint64_t, unsigned> clang_type_info = ast_context->getTypeInfo(pointee_type);
assert(clang_type_info.first % 8 == 0);
child_byte_size = clang_type_info.first / 8;
child_byte_offset = 0;
return pointee_type.getAsOpaquePtr();
}
}
}
break;
case Type::Typedef:
return GetChildClangTypeAtIndex (ast_context,
parent_name,
cast<TypedefType>(parent_qual_type)->LookThroughTypedefs().getAsOpaquePtr(),
idx,
transparent_pointers,
omit_empty_base_classes,
child_name,
child_byte_size,
child_byte_offset,
child_bitfield_bit_size,
child_bitfield_bit_offset);
break;
default:
break;
}
}
return false;
}
static inline bool
BaseSpecifierIsEmpty (const CXXBaseSpecifier *b)
{
return ClangASTContext::RecordHasFields(cast<CXXRecordDecl>(b->getType()->getAs<RecordType>()->getDecl())) == false;
}
static uint32_t
GetNumBaseClasses (const CXXRecordDecl *cxx_record_decl, bool omit_empty_base_classes)
{
uint32_t num_bases = 0;
if (cxx_record_decl)
{
if (omit_empty_base_classes)
{
CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end;
++base_class)
{
// Skip empty base classes
if (omit_empty_base_classes)
{
if (BaseSpecifierIsEmpty (base_class))
continue;
}
++num_bases;
}
}
else
num_bases = cxx_record_decl->getNumBases();
}
return num_bases;
}
static uint32_t
GetIndexForRecordBase
(
const RecordDecl *record_decl,
const CXXBaseSpecifier *base_spec,
bool omit_empty_base_classes
)
{
uint32_t child_idx = 0;
const CXXRecordDecl *cxx_record_decl = dyn_cast<CXXRecordDecl>(record_decl);
// const char *super_name = record_decl->getNameAsCString();
// const char *base_name = base_spec->getType()->getAs<RecordType>()->getDecl()->getNameAsCString();
// printf ("GetIndexForRecordChild (%s, %s)\n", super_name, base_name);
//
if (cxx_record_decl)
{
CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end;
++base_class)
{
if (omit_empty_base_classes)
{
if (BaseSpecifierIsEmpty (base_class))
continue;
}
// printf ("GetIndexForRecordChild (%s, %s) base[%u] = %s\n", super_name, base_name,
// child_idx,
// base_class->getType()->getAs<RecordType>()->getDecl()->getNameAsCString());
//
//
if (base_class == base_spec)
return child_idx;
++child_idx;
}
}
return UINT32_MAX;
}
static uint32_t
GetIndexForRecordChild
(
const RecordDecl *record_decl,
NamedDecl *canonical_decl,
bool omit_empty_base_classes
)
{
uint32_t child_idx = GetNumBaseClasses (dyn_cast<CXXRecordDecl>(record_decl), omit_empty_base_classes);
// const CXXRecordDecl *cxx_record_decl = dyn_cast<CXXRecordDecl>(record_decl);
//
//// printf ("GetIndexForRecordChild (%s, %s)\n", record_decl->getNameAsCString(), canonical_decl->getNameAsCString());
// if (cxx_record_decl)
// {
// CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
// for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end();
// base_class != base_class_end;
// ++base_class)
// {
// if (omit_empty_base_classes)
// {
// if (BaseSpecifierIsEmpty (base_class))
// continue;
// }
//
//// printf ("GetIndexForRecordChild (%s, %s) base[%u] = %s\n",
//// record_decl->getNameAsCString(),
//// canonical_decl->getNameAsCString(),
//// child_idx,
//// base_class->getType()->getAs<RecordType>()->getDecl()->getNameAsCString());
//
//
// CXXRecordDecl *curr_base_class_decl = cast<CXXRecordDecl>(base_class->getType()->getAs<RecordType>()->getDecl());
// if (curr_base_class_decl == canonical_decl)
// {
// return child_idx;
// }
// ++child_idx;
// }
// }
//
// const uint32_t num_bases = child_idx;
RecordDecl::field_iterator field, field_end;
for (field = record_decl->field_begin(), field_end = record_decl->field_end();
field != field_end;
++field, ++child_idx)
{
// printf ("GetIndexForRecordChild (%s, %s) field[%u] = %s\n",
// record_decl->getNameAsCString(),
// canonical_decl->getNameAsCString(),
// child_idx - num_bases,
// field->getNameAsCString());
if (field->getCanonicalDecl() == canonical_decl)
return child_idx;
}
return UINT32_MAX;
}
// Look for a child member (doesn't include base classes, but it does include
// their members) in the type hierarchy. Returns an index path into "clang_type"
// on how to reach the appropriate member.
//
// class A
// {
// public:
// int m_a;
// int m_b;
// };
//
// class B
// {
// };
//
// class C :
// public B,
// public A
// {
// };
//
// If we have a clang type that describes "class C", and we wanted to looked
// "m_b" in it:
//
// With omit_empty_base_classes == false we would get an integer array back with:
// { 1, 1 }
// The first index 1 is the child index for "class A" within class C
// The second index 1 is the child index for "m_b" within class A
//
// With omit_empty_base_classes == true we would get an integer array back with:
// { 0, 1 }
// The first index 0 is the child index for "class A" within class C (since class B doesn't have any members it doesn't count)
// The second index 1 is the child index for "m_b" within class A
size_t
ClangASTContext::GetIndexOfChildMemberWithName
(
ASTContext *ast_context,
void *clang_type,
const char *name,
bool omit_empty_base_classes,
std::vector<uint32_t>& child_indexes
)
{
if (clang_type && name && name[0])
{
QualType qual_type(QualType::getFromOpaquePtr(clang_type));
switch (qual_type->getTypeClass())
{
case Type::Record:
{
const RecordType *record_type = cast<RecordType>(qual_type.getTypePtr());
const RecordDecl *record_decl = record_type->getDecl();
assert(record_decl);
uint32_t child_idx = 0;
const CXXRecordDecl *cxx_record_decl = dyn_cast<CXXRecordDecl>(record_decl);
// Try and find a field that matches NAME
RecordDecl::field_iterator field, field_end;
StringRef name_sref(name);
for (field = record_decl->field_begin(), field_end = record_decl->field_end();
field != field_end;
++field, ++child_idx)
{
if (field->getName().equals (name_sref))
{
// We have to add on the number of base classes to this index!
child_indexes.push_back (child_idx + GetNumBaseClasses (cxx_record_decl, omit_empty_base_classes));
return child_indexes.size();
}
}
if (cxx_record_decl)
{
const RecordDecl *parent_record_decl = cxx_record_decl;
//printf ("parent = %s\n", parent_record_decl->getNameAsCString());
//const Decl *root_cdecl = cxx_record_decl->getCanonicalDecl();
// Didn't find things easily, lets let clang do its thang...
IdentifierInfo & ident_ref = ast_context->Idents.get(name, name + strlen (name));
DeclarationName decl_name(&ident_ref);
CXXBasePaths paths;
if (cxx_record_decl->lookupInBases(CXXRecordDecl::FindOrdinaryMember,
decl_name.getAsOpaquePtr(),
paths))
{
uint32_t child_idx;
CXXBasePaths::const_paths_iterator path, path_end = paths.end();
for (path = paths.begin(); path != path_end; ++path)
{
const size_t num_path_elements = path->size();
for (size_t e=0; e<num_path_elements; ++e)
{
CXXBasePathElement elem = (*path)[e];
child_idx = GetIndexForRecordBase (parent_record_decl, elem.Base, omit_empty_base_classes);
if (child_idx == UINT32_MAX)
{
child_indexes.clear();
return 0;
}
else
{
child_indexes.push_back (child_idx);
parent_record_decl = cast<RecordDecl>(elem.Base->getType()->getAs<RecordType>()->getDecl());
}
}
DeclContext::lookup_iterator named_decl_pos;
for (named_decl_pos = path->Decls.first;
named_decl_pos != path->Decls.second && parent_record_decl;
++named_decl_pos)
{
//printf ("path[%zu] = %s\n", child_indexes.size(), (*named_decl_pos)->getNameAsCString());
child_idx = GetIndexForRecordChild (parent_record_decl, *named_decl_pos, omit_empty_base_classes);
if (child_idx == UINT32_MAX)
{
child_indexes.clear();
return 0;
}
else
{
child_indexes.push_back (child_idx);
}
}
}
return child_indexes.size();
}
}
}
break;
case Type::ConstantArray:
{
// const ConstantArrayType *array = cast<ConstantArrayType>(parent_qual_type.getTypePtr());
// const uint64_t element_count = array->getSize().getLimitedValue();
//
// if (idx < element_count)
// {
// std::pair<uint64_t, unsigned> field_type_info = ast_context->getTypeInfo(array->getElementType());
//
// char element_name[32];
// ::snprintf (element_name, sizeof (element_name), "%s[%u]", parent_name ? parent_name : "", idx);
//
// child_name.assign(element_name);
// assert(field_type_info.first % 8 == 0);
// child_byte_size = field_type_info.first / 8;
// child_byte_offset = idx * child_byte_size;
// return array->getElementType().getAsOpaquePtr();
// }
}
break;
// case Type::MemberPointerType:
// {
// MemberPointerType *mem_ptr_type = cast<MemberPointerType>(qual_type.getTypePtr());
// QualType pointee_type = mem_ptr_type->getPointeeType();
//
// if (ClangASTContext::IsAggregateType (pointee_type.getAsOpaquePtr()))
// {
// return GetIndexOfChildWithName (ast_context,
// mem_ptr_type->getPointeeType().getAsOpaquePtr(),
// name);
// }
// }
// break;
//
case Type::LValueReference:
case Type::RValueReference:
{
ReferenceType *reference_type = cast<ReferenceType>(qual_type.getTypePtr());
QualType pointee_type = reference_type->getPointeeType();
if (ClangASTContext::IsAggregateType (pointee_type.getAsOpaquePtr()))
{
return GetIndexOfChildMemberWithName (ast_context,
reference_type->getPointeeType().getAsOpaquePtr(),
name,
omit_empty_base_classes,
child_indexes);
}
}
break;
case Type::Pointer:
{
PointerType *pointer_type = cast<PointerType>(qual_type.getTypePtr());
QualType pointee_type = pointer_type->getPointeeType();
if (ClangASTContext::IsAggregateType (pointee_type.getAsOpaquePtr()))
{
return GetIndexOfChildMemberWithName (ast_context,
pointer_type->getPointeeType().getAsOpaquePtr(),
name,
omit_empty_base_classes,
child_indexes);
}
else
{
// if (parent_name)
// {
// child_name.assign(1, '*');
// child_name += parent_name;
// }
//
// // We have a pointer to an simple type
// if (idx == 0)
// {
// std::pair<uint64_t, unsigned> clang_type_info = ast_context->getTypeInfo(pointee_type);
// assert(clang_type_info.first % 8 == 0);
// child_byte_size = clang_type_info.first / 8;
// child_byte_offset = 0;
// return pointee_type.getAsOpaquePtr();
// }
}
}
break;
case Type::Typedef:
return GetIndexOfChildMemberWithName (ast_context,
cast<TypedefType>(qual_type)->LookThroughTypedefs().getAsOpaquePtr(),
name,
omit_empty_base_classes,
child_indexes);
default:
break;
}
}
return 0;
}
// Get the index of the child of "clang_type" whose name matches. This function
// doesn't descend into the children, but only looks one level deep and name
// matches can include base class names.
uint32_t
ClangASTContext::GetIndexOfChildWithName
(
ASTContext *ast_context,
void *clang_type,
const char *name,
bool omit_empty_base_classes
)
{
if (clang_type && name && name[0])
{
QualType qual_type(QualType::getFromOpaquePtr(clang_type));
switch (qual_type->getTypeClass())
{
case Type::Record:
{
const RecordType *record_type = cast<RecordType>(qual_type.getTypePtr());
const RecordDecl *record_decl = record_type->getDecl();
assert(record_decl);
uint32_t child_idx = 0;
const CXXRecordDecl *cxx_record_decl = dyn_cast<CXXRecordDecl>(record_decl);
if (cxx_record_decl)
{
CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end;
++base_class)
{
// Skip empty base classes
CXXRecordDecl *base_class_decl = cast<CXXRecordDecl>(base_class->getType()->getAs<RecordType>()->getDecl());
if (omit_empty_base_classes && RecordHasFields(base_class_decl) == false)
continue;
if (base_class->getType().getAsString().compare (name) == 0)
return child_idx;
++child_idx;
}
}
// Try and find a field that matches NAME
RecordDecl::field_iterator field, field_end;
StringRef name_sref(name);
for (field = record_decl->field_begin(), field_end = record_decl->field_end();
field != field_end;
++field, ++child_idx)
{
if (field->getName().equals (name_sref))
return child_idx;
}
}
break;
case Type::ConstantArray:
{
// const ConstantArrayType *array = cast<ConstantArrayType>(parent_qual_type.getTypePtr());
// const uint64_t element_count = array->getSize().getLimitedValue();
//
// if (idx < element_count)
// {
// std::pair<uint64_t, unsigned> field_type_info = ast_context->getTypeInfo(array->getElementType());
//
// char element_name[32];
// ::snprintf (element_name, sizeof (element_name), "%s[%u]", parent_name ? parent_name : "", idx);
//
// child_name.assign(element_name);
// assert(field_type_info.first % 8 == 0);
// child_byte_size = field_type_info.first / 8;
// child_byte_offset = idx * child_byte_size;
// return array->getElementType().getAsOpaquePtr();
// }
}
break;
// case Type::MemberPointerType:
// {
// MemberPointerType *mem_ptr_type = cast<MemberPointerType>(qual_type.getTypePtr());
// QualType pointee_type = mem_ptr_type->getPointeeType();
//
// if (ClangASTContext::IsAggregateType (pointee_type.getAsOpaquePtr()))
// {
// return GetIndexOfChildWithName (ast_context,
// mem_ptr_type->getPointeeType().getAsOpaquePtr(),
// name);
// }
// }
// break;
//
case Type::LValueReference:
case Type::RValueReference:
{
ReferenceType *reference_type = cast<ReferenceType>(qual_type.getTypePtr());
QualType pointee_type = reference_type->getPointeeType();
if (ClangASTContext::IsAggregateType (pointee_type.getAsOpaquePtr()))
{
return GetIndexOfChildWithName (ast_context,
reference_type->getPointeeType().getAsOpaquePtr(),
name,
omit_empty_base_classes);
}
}
break;
case Type::Pointer:
{
PointerType *pointer_type = cast<PointerType>(qual_type.getTypePtr());
QualType pointee_type = pointer_type->getPointeeType();
if (ClangASTContext::IsAggregateType (pointee_type.getAsOpaquePtr()))
{
return GetIndexOfChildWithName (ast_context,
pointer_type->getPointeeType().getAsOpaquePtr(),
name,
omit_empty_base_classes);
}
else
{
// if (parent_name)
// {
// child_name.assign(1, '*');
// child_name += parent_name;
// }
//
// // We have a pointer to an simple type
// if (idx == 0)
// {
// std::pair<uint64_t, unsigned> clang_type_info = ast_context->getTypeInfo(pointee_type);
// assert(clang_type_info.first % 8 == 0);
// child_byte_size = clang_type_info.first / 8;
// child_byte_offset = 0;
// return pointee_type.getAsOpaquePtr();
// }
}
}
break;
case Type::Typedef:
return GetIndexOfChildWithName (ast_context,
cast<TypedefType>(qual_type)->LookThroughTypedefs().getAsOpaquePtr(),
name,
omit_empty_base_classes);
default:
break;
}
}
return UINT32_MAX;
}
#pragma mark TagType
bool
ClangASTContext::SetTagTypeKind (void *tag_clang_type, int kind)
{
if (tag_clang_type)
{
QualType tag_qual_type(QualType::getFromOpaquePtr(tag_clang_type));
Type *clang_type = tag_qual_type.getTypePtr();
if (clang_type)
{
TagType *tag_type = dyn_cast<TagType>(clang_type);
if (tag_type)
{
TagDecl *tag_decl = dyn_cast<TagDecl>(tag_type->getDecl());
if (tag_decl)
{
tag_decl->setTagKind ((TagDecl::TagKind)kind);
return true;
}
}
}
}
return false;
}
#pragma mark DeclContext Functions
DeclContext *
ClangASTContext::GetDeclContextForType (void *clang_type)
{
if (clang_type == NULL)
return NULL;
QualType qual_type(QualType::getFromOpaquePtr(clang_type));
switch (qual_type->getTypeClass())
{
case Type::FunctionNoProto: break;
case Type::FunctionProto: break;
case Type::IncompleteArray: break;
case Type::VariableArray: break;
case Type::ConstantArray: break;
case Type::ExtVector: break;
case Type::Vector: break;
case Type::Builtin: break;
case Type::ObjCObjectPointer: break;
case Type::BlockPointer: break;
case Type::Pointer: break;
case Type::LValueReference: break;
case Type::RValueReference: break;
case Type::MemberPointer: break;
case Type::Complex: break;
case Type::ObjCInterface: break;
case Type::Record:
return cast<RecordType>(qual_type)->getDecl();
case Type::Enum:
return cast<EnumType>(qual_type)->getDecl();
case Type::Typedef:
return ClangASTContext::GetDeclContextForType (cast<TypedefType>(qual_type)->LookThroughTypedefs().getAsOpaquePtr());
case Type::TypeOfExpr: break;
case Type::TypeOf: break;
case Type::Decltype: break;
//case Type::QualifiedName: break;
case Type::TemplateSpecialization: break;
}
// No DeclContext in this type...
return NULL;
}
#pragma mark Namespace Declarations
NamespaceDecl *
ClangASTContext::GetUniqueNamespaceDeclaration (const char *name, const Declaration &decl, DeclContext *decl_ctx)
{
// TODO: Do something intelligent with the Declaration object passed in
// like maybe filling in the SourceLocation with it...
if (name)
{
ASTContext *ast_context = getASTContext();
if (decl_ctx == NULL)
decl_ctx = ast_context->getTranslationUnitDecl();
return NamespaceDecl::Create(*ast_context, decl_ctx, SourceLocation(), &ast_context->Idents.get(name));
}
return NULL;
}
#pragma mark Function Types
FunctionDecl *
ClangASTContext::CreateFunctionDeclaration (const char *name, void *function_clang_type, int storage, bool is_inline)
{
if (name)
{
ASTContext *ast_context = getASTContext();
assert (ast_context != NULL);
if (name && name[0])
{
return FunctionDecl::Create(*ast_context,
ast_context->getTranslationUnitDecl(),
SourceLocation(),
DeclarationName (&ast_context->Idents.get(name)),
QualType::getFromOpaquePtr(function_clang_type),
NULL,
(FunctionDecl::StorageClass)storage,
(FunctionDecl::StorageClass)storage,
is_inline);
}
else
{
return FunctionDecl::Create(*ast_context,
ast_context->getTranslationUnitDecl(),
SourceLocation(),
DeclarationName (),
QualType::getFromOpaquePtr(function_clang_type),
NULL,
(FunctionDecl::StorageClass)storage,
(FunctionDecl::StorageClass)storage,
is_inline);
}
}
return NULL;
}
void *
ClangASTContext::CreateFunctionType (void *result_type, void **args, unsigned num_args, bool isVariadic, unsigned TypeQuals)
{
ASTContext *ast_context = getASTContext();
assert (ast_context != NULL);
std::vector<QualType> qual_type_args;
for (unsigned i=0; i<num_args; ++i)
qual_type_args.push_back (QualType::getFromOpaquePtr(args[i]));
// TODO: Detect calling convention in DWARF?
return ast_context->getFunctionType(QualType::getFromOpaquePtr(result_type),
qual_type_args.data(),
qual_type_args.size(),
isVariadic,
TypeQuals,
false, // hasExceptionSpec
false, // hasAnyExceptionSpec,
0, // NumExs
0, // const QualType *ExArray
FunctionType::ExtInfo ()).getAsOpaquePtr(); // NoReturn);
}
ParmVarDecl *
ClangASTContext::CreateParmeterDeclaration (const char *name, void * return_type, int storage)
{
ASTContext *ast_context = getASTContext();
assert (ast_context != NULL);
return ParmVarDecl::Create(*ast_context,
ast_context->getTranslationUnitDecl(),
SourceLocation(),
name && name[0] ? &ast_context->Idents.get(name) : NULL,
QualType::getFromOpaquePtr(return_type),
NULL,
(VarDecl::StorageClass)storage,
(VarDecl::StorageClass)storage,
0);
}
void
ClangASTContext::SetFunctionParameters (FunctionDecl *function_decl, ParmVarDecl **params, unsigned num_params)
{
if (function_decl)
function_decl->setParams (params, num_params);
}
#pragma mark Array Types
void *
ClangASTContext::CreateArrayType (void *element_type, size_t element_count, uint32_t bit_stride)
{
if (element_type)
{
ASTContext *ast_context = getASTContext();
assert (ast_context != NULL);
llvm::APInt ap_element_count (64, element_count);
return ast_context->getConstantArrayType(QualType::getFromOpaquePtr(element_type),
ap_element_count,
ArrayType::Normal,
0).getAsOpaquePtr(); // ElemQuals
}
return NULL;
}
#pragma mark TagDecl
bool
ClangASTContext::StartTagDeclarationDefinition (void *clang_type)
{
if (clang_type)
{
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
Type *t = qual_type.getTypePtr();
if (t)
{
TagType *tag_type = dyn_cast<TagType>(t);
if (tag_type)
{
TagDecl *tag_decl = tag_type->getDecl();
if (tag_decl)
{
tag_decl->startDefinition();
return true;
}
}
}
}
return false;
}
bool
ClangASTContext::CompleteTagDeclarationDefinition (void *clang_type)
{
if (clang_type)
{
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
Type *t = qual_type.getTypePtr();
if (t)
{
TagType *tag_type = dyn_cast<TagType>(t);
if (tag_type)
{
TagDecl *tag_decl = tag_type->getDecl();
if (tag_decl)
{
tag_decl->completeDefinition();
return true;
}
}
}
}
return false;
}
#pragma mark Enumeration Types
void *
ClangASTContext::CreateEnumerationType (const Declaration &decl, const char *name)
{
// TODO: Do something intelligent with the Declaration object passed in
// like maybe filling in the SourceLocation with it...
ASTContext *ast_context = getASTContext();
assert (ast_context != NULL);
EnumDecl *enum_decl = EnumDecl::Create(*ast_context,
ast_context->getTranslationUnitDecl(),
SourceLocation(),
name && name[0] ? &ast_context->Idents.get(name) : NULL,
SourceLocation(),
NULL);
if (enum_decl)
return ast_context->getTagDeclType(enum_decl).getAsOpaquePtr();
return NULL;
}
bool
ClangASTContext::AddEnumerationValueToEnumerationType
(
void *enum_clang_type,
void *enumerator_clang_type,
const Declaration &decl,
const char *name,
int64_t enum_value,
uint32_t enum_value_bit_size
)
{
if (enum_clang_type && enumerator_clang_type && name)
{
// TODO: Do something intelligent with the Declaration object passed in
// like maybe filling in the SourceLocation with it...
ASTContext *ast_context = getASTContext();
IdentifierTable *identifier_table = getIdentifierTable();
assert (ast_context != NULL);
assert (identifier_table != NULL);
QualType enum_qual_type (QualType::getFromOpaquePtr(enum_clang_type));
Type *clang_type = enum_qual_type.getTypePtr();
if (clang_type)
{
const EnumType *enum_type = dyn_cast<EnumType>(clang_type);
if (enum_type)
{
llvm::APSInt enum_llvm_apsint(enum_value_bit_size, false);
enum_llvm_apsint = enum_value;
EnumConstantDecl *enumerator_decl =
EnumConstantDecl::Create(*ast_context,
enum_type->getDecl(),
SourceLocation(),
name ? &identifier_table->get(name) : NULL, // Identifier
QualType::getFromOpaquePtr(enumerator_clang_type),
NULL,
enum_llvm_apsint);
if (enumerator_decl)
{
enum_type->getDecl()->addDecl(enumerator_decl);
return true;
}
}
}
}
return false;
}
#pragma mark Pointers & References
void *
ClangASTContext::CreatePointerType (void *clang_type)
{
if (clang_type)
return getASTContext()->getPointerType(QualType::getFromOpaquePtr(clang_type)).getAsOpaquePtr();
return NULL;
}
void *
ClangASTContext::CreateLValueReferenceType (void *clang_type)
{
if (clang_type)
return getASTContext()->getLValueReferenceType (QualType::getFromOpaquePtr(clang_type)).getAsOpaquePtr();
return NULL;
}
void *
ClangASTContext::CreateRValueReferenceType (void *clang_type)
{
if (clang_type)
return getASTContext()->getRValueReferenceType (QualType::getFromOpaquePtr(clang_type)).getAsOpaquePtr();
return NULL;
}
void *
ClangASTContext::CreateMemberPointerType (void * clang_pointee_type, void * clang_class_type)
{
if (clang_pointee_type && clang_pointee_type)
return getASTContext()->getMemberPointerType(QualType::getFromOpaquePtr(clang_pointee_type),
QualType::getFromOpaquePtr(clang_class_type).getTypePtr()).getAsOpaquePtr();
return NULL;
}
size_t
ClangASTContext::GetPointerBitSize ()
{
ASTContext *ast_context = getASTContext();
return ast_context->getTypeSize(ast_context->VoidPtrTy);
}
bool
ClangASTContext::IsPointerOrReferenceType (void *clang_type, void **target_type)
{
if (clang_type == NULL)
return false;
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
switch (qual_type->getTypeClass())
{
case Type::ObjCObjectPointer:
if (target_type)
*target_type = cast<ObjCObjectPointerType>(qual_type)->getPointeeType().getAsOpaquePtr();
return true;
case Type::BlockPointer:
if (target_type)
*target_type = cast<BlockPointerType>(qual_type)->getPointeeType().getAsOpaquePtr();
return true;
case Type::Pointer:
if (target_type)
*target_type = cast<PointerType>(qual_type)->getPointeeType().getAsOpaquePtr();
return true;
case Type::MemberPointer:
if (target_type)
*target_type = cast<MemberPointerType>(qual_type)->getPointeeType().getAsOpaquePtr();
return true;
case Type::LValueReference:
if (target_type)
*target_type = cast<LValueReferenceType>(qual_type)->desugar().getAsOpaquePtr();
return true;
case Type::RValueReference:
if (target_type)
*target_type = cast<LValueReferenceType>(qual_type)->desugar().getAsOpaquePtr();
return true;
case Type::Typedef:
return ClangASTContext::IsPointerOrReferenceType (cast<TypedefType>(qual_type)->LookThroughTypedefs().getAsOpaquePtr());
default:
break;
}
return false;
}
size_t
ClangASTContext::GetTypeBitSize (clang::ASTContext *ast_context, void *clang_type)
{
if (clang_type)
return ast_context->getTypeSize(QualType::getFromOpaquePtr(clang_type));
return 0;
}
size_t
ClangASTContext::GetTypeBitAlign (clang::ASTContext *ast_context, void *clang_type)
{
if (clang_type)
return ast_context->getTypeAlign(QualType::getFromOpaquePtr(clang_type));
return 0;
}
bool
ClangASTContext::IsIntegerType (void * clang_type, bool &is_signed)
{
if (!clang_type)
return false;
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
const BuiltinType *builtin_type = dyn_cast<BuiltinType>(qual_type->getCanonicalTypeInternal());
if (builtin_type)
{
if (builtin_type->isInteger())
is_signed = builtin_type->isSignedInteger();
return true;
}
return false;
}
bool
ClangASTContext::IsPointerType (void *clang_type, void **target_type)
{
if (clang_type)
{
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
switch (qual_type->getTypeClass())
{
case Type::ObjCObjectPointer:
if (target_type)
*target_type = cast<ObjCObjectPointerType>(qual_type)->getPointeeType().getAsOpaquePtr();
return true;
case Type::BlockPointer:
if (target_type)
*target_type = cast<BlockPointerType>(qual_type)->getPointeeType().getAsOpaquePtr();
return true;
case Type::Pointer:
if (target_type)
*target_type = cast<PointerType>(qual_type)->getPointeeType().getAsOpaquePtr();
return true;
case Type::MemberPointer:
if (target_type)
*target_type = cast<MemberPointerType>(qual_type)->getPointeeType().getAsOpaquePtr();
return true;
case Type::Typedef:
return ClangASTContext::IsPointerOrReferenceType (cast<TypedefType>(qual_type)->LookThroughTypedefs().getAsOpaquePtr(), target_type);
default:
break;
}
}
return false;
}
bool
ClangASTContext::IsFloatingPointType (void *clang_type, uint32_t &count, bool &is_complex)
{
if (clang_type)
{
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
if (const BuiltinType *BT = dyn_cast<BuiltinType>(qual_type->getCanonicalTypeInternal()))
{
clang::BuiltinType::Kind kind = BT->getKind();
if (kind >= BuiltinType::Float && kind <= BuiltinType::LongDouble)
{
count = 1;
is_complex = false;
return true;
}
}
else if (const ComplexType *CT = dyn_cast<ComplexType>(qual_type->getCanonicalTypeInternal()))
{
if (IsFloatingPointType(CT->getElementType().getAsOpaquePtr(), count, is_complex))
{
count = 2;
is_complex = true;
return true;
}
}
else if (const VectorType *VT = dyn_cast<VectorType>(qual_type->getCanonicalTypeInternal()))
{
if (IsFloatingPointType(VT->getElementType().getAsOpaquePtr(), count, is_complex))
{
count = VT->getNumElements();
is_complex = false;
return true;
}
}
}
return false;
}
bool
ClangASTContext::IsCStringType (void *clang_type, uint32_t &length)
{
if (clang_type)
{
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
switch (qual_type->getTypeClass())
{
case Type::ConstantArray:
{
ConstantArrayType *array = cast<ConstantArrayType>(qual_type.getTypePtr());
QualType element_qual_type = array->getElementType();
Type *canonical_type = element_qual_type->getCanonicalTypeInternal().getTypePtr();
if (canonical_type && canonical_type->isCharType())
{
// We know the size of the array and it could be a C string
// since it is an array of characters
length = array->getSize().getLimitedValue();
return true;
}
}
break;
case Type::Pointer:
{
PointerType *pointer_type = cast<PointerType>(qual_type.getTypePtr());
Type *pointee_type_ptr = pointer_type->getPointeeType().getTypePtr();
if (pointee_type_ptr)
{
Type *canonical_type_ptr = pointee_type_ptr->getCanonicalTypeInternal().getTypePtr();
length = 0; // No length info, read until a NULL terminator is received
if (canonical_type_ptr)
return canonical_type_ptr->isCharType();
else
return pointee_type_ptr->isCharType();
}
}
break;
case Type::Typedef:
return ClangASTContext::IsCStringType (cast<TypedefType>(qual_type)->LookThroughTypedefs().getAsOpaquePtr(), length);
case Type::LValueReference:
case Type::RValueReference:
{
ReferenceType *reference_type = cast<ReferenceType>(qual_type.getTypePtr());
Type *pointee_type_ptr = reference_type->getPointeeType().getTypePtr();
if (pointee_type_ptr)
{
Type *canonical_type_ptr = pointee_type_ptr->getCanonicalTypeInternal().getTypePtr();
length = 0; // No length info, read until a NULL terminator is received
if (canonical_type_ptr)
return canonical_type_ptr->isCharType();
else
return pointee_type_ptr->isCharType();
}
}
break;
}
}
return false;
}
bool
ClangASTContext::IsArrayType (void * clang_type, void **member_type, uint64_t *size)
{
if (!clang_type)
return false;
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
switch (qual_type->getTypeClass())
{
case Type::ConstantArray:
if (member_type)
*member_type = cast<ConstantArrayType>(qual_type)->getElementType().getAsOpaquePtr();
if (size)
*size = cast<ConstantArrayType>(qual_type)->getSize().getLimitedValue(ULONG_LONG_MAX);
return true;
case Type::IncompleteArray:
if (member_type)
*member_type = cast<IncompleteArrayType>(qual_type)->getElementType().getAsOpaquePtr();
if (size)
*size = 0;
return true;
case Type::VariableArray:
if (member_type)
*member_type = cast<VariableArrayType>(qual_type)->getElementType().getAsOpaquePtr();
if (size)
*size = 0;
case Type::DependentSizedArray:
if (member_type)
*member_type = cast<DependentSizedArrayType>(qual_type)->getElementType().getAsOpaquePtr();
if (size)
*size = 0;
return true;
}
return false;
}
#pragma mark Typedefs
void *
ClangASTContext::CreateTypedefType (const char *name, void *clang_type, DeclContext *decl_ctx)
{
if (clang_type)
{
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
ASTContext *ast_context = getASTContext();
IdentifierTable *identifier_table = getIdentifierTable();
assert (ast_context != NULL);
assert (identifier_table != NULL);
if (decl_ctx == NULL)
decl_ctx = ast_context->getTranslationUnitDecl();
TypedefDecl *decl = TypedefDecl::Create(*ast_context,
decl_ctx,
SourceLocation(),
name ? &identifier_table->get(name) : NULL, // Identifier
ast_context->CreateTypeSourceInfo(qual_type));
// Get a uniqued QualType for the typedef decl type
return ast_context->getTypedefType (decl).getAsOpaquePtr();
}
return NULL;
}
std::string
ClangASTContext::GetTypeName (void *opaque_qual_type)
{
std::string return_name;
clang::QualType qual_type(clang::QualType::getFromOpaquePtr(opaque_qual_type));
const clang::TypedefType *typedef_type = qual_type->getAs<clang::TypedefType>();
if (typedef_type)
{
const clang::TypedefDecl *typedef_decl = typedef_type->getDecl();
return_name = typedef_decl->getQualifiedNameAsString();
}
else
{
return_name = qual_type.getAsString();
}
return return_name;
}
// Disable this for now since I can't seem to get a nicely formatted float
// out of the APFloat class without just getting the float, double or quad
// and then using a formatted print on it which defeats the purpose. We ideally
// would like to get perfect string values for any kind of float semantics
// so we can support remote targets. The code below also requires a patch to
// llvm::APInt.
//bool
//ClangASTContext::ConvertFloatValueToString (ASTContext *ast_context, void *clang_type, const uint8_t* bytes, size_t byte_size, int apint_byte_order, std::string &float_str)
//{
// uint32_t count = 0;
// bool is_complex = false;
// if (ClangASTContext::IsFloatingPointType (clang_type, count, is_complex))
// {
// unsigned num_bytes_per_float = byte_size / count;
// unsigned num_bits_per_float = num_bytes_per_float * 8;
//
// float_str.clear();
// uint32_t i;
// for (i=0; i<count; i++)
// {
// APInt ap_int(num_bits_per_float, bytes + i * num_bytes_per_float, (APInt::ByteOrder)apint_byte_order);
// bool is_ieee = false;
// APFloat ap_float(ap_int, is_ieee);
// char s[1024];
// unsigned int hex_digits = 0;
// bool upper_case = false;
//
// if (ap_float.convertToHexString(s, hex_digits, upper_case, APFloat::rmNearestTiesToEven) > 0)
// {
// if (i > 0)
// float_str.append(", ");
// float_str.append(s);
// if (i == 1 && is_complex)
// float_str.append(1, 'i');
// }
// }
// return !float_str.empty();
// }
// return false;
//}
size_t
ClangASTContext::ConvertStringToFloatValue (ASTContext *ast_context, void *clang_type, const char *s, uint8_t *dst, size_t dst_size)
{
if (clang_type)
{
QualType qual_type (QualType::getFromOpaquePtr(clang_type));
uint32_t count = 0;
bool is_complex = false;
if (ClangASTContext::IsFloatingPointType (clang_type, count, is_complex))
{
// TODO: handle complex and vector types
if (count != 1)
return false;
StringRef s_sref(s);
APFloat ap_float(ast_context->getFloatTypeSemantics(qual_type), s_sref);
const uint64_t bit_size = ast_context->getTypeSize (qual_type);
const uint64_t byte_size = bit_size / 8;
if (dst_size >= byte_size)
{
if (bit_size == sizeof(float)*8)
{
float float32 = ap_float.convertToFloat();
::memcpy (dst, &float32, byte_size);
return byte_size;
}
else if (bit_size >= 64)
{
llvm::APInt ap_int(ap_float.bitcastToAPInt());
::memcpy (dst, ap_int.getRawData(), byte_size);
return byte_size;
}
}
}
}
return 0;
}