llvm-project/llvm/lib/Target/ARM/MCTargetDesc/ARMTargetStreamer.cpp

294 lines
12 KiB
C++

//===- ARMTargetStreamer.cpp - ARMTargetStreamer class --*- C++ -*---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the ARMTargetStreamer class.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/ARMMCTargetDesc.h"
#include "llvm/MC/ConstantPools.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/ARMBuildAttributes.h"
#include "llvm/Support/TargetParser.h"
using namespace llvm;
//
// ARMTargetStreamer Implemenation
//
ARMTargetStreamer::ARMTargetStreamer(MCStreamer &S)
: MCTargetStreamer(S), ConstantPools(new AssemblerConstantPools()) {}
ARMTargetStreamer::~ARMTargetStreamer() = default;
// The constant pool handling is shared by all ARMTargetStreamer
// implementations.
const MCExpr *ARMTargetStreamer::addConstantPoolEntry(const MCExpr *Expr, SMLoc Loc) {
return ConstantPools->addEntry(Streamer, Expr, 4, Loc);
}
void ARMTargetStreamer::emitCurrentConstantPool() {
ConstantPools->emitForCurrentSection(Streamer);
ConstantPools->clearCacheForCurrentSection(Streamer);
}
// finish() - write out any non-empty assembler constant pools.
void ARMTargetStreamer::finish() { ConstantPools->emitAll(Streamer); }
// reset() - Reset any state
void ARMTargetStreamer::reset() {}
void ARMTargetStreamer::emitInst(uint32_t Inst, char Suffix) {
unsigned Size;
char Buffer[4];
const bool LittleEndian = getStreamer().getContext().getAsmInfo()->isLittleEndian();
switch (Suffix) {
case '\0':
Size = 4;
for (unsigned II = 0, IE = Size; II != IE; II++) {
const unsigned I = LittleEndian ? (Size - II - 1) : II;
Buffer[Size - II - 1] = uint8_t(Inst >> I * CHAR_BIT);
}
break;
case 'n':
case 'w':
Size = (Suffix == 'n' ? 2 : 4);
// Thumb wide instructions are emitted as a pair of 16-bit words of the
// appropriate endianness.
for (unsigned II = 0, IE = Size; II != IE; II = II + 2) {
const unsigned I0 = LittleEndian ? II + 0 : II + 1;
const unsigned I1 = LittleEndian ? II + 1 : II + 0;
Buffer[Size - II - 2] = uint8_t(Inst >> I0 * CHAR_BIT);
Buffer[Size - II - 1] = uint8_t(Inst >> I1 * CHAR_BIT);
}
break;
default:
llvm_unreachable("Invalid Suffix");
}
getStreamer().EmitBytes(StringRef(Buffer, Size));
}
// The remaining callbacks should be handled separately by each
// streamer.
void ARMTargetStreamer::emitFnStart() {}
void ARMTargetStreamer::emitFnEnd() {}
void ARMTargetStreamer::emitCantUnwind() {}
void ARMTargetStreamer::emitPersonality(const MCSymbol *Personality) {}
void ARMTargetStreamer::emitPersonalityIndex(unsigned Index) {}
void ARMTargetStreamer::emitHandlerData() {}
void ARMTargetStreamer::emitSetFP(unsigned FpReg, unsigned SpReg,
int64_t Offset) {}
void ARMTargetStreamer::emitMovSP(unsigned Reg, int64_t Offset) {}
void ARMTargetStreamer::emitPad(int64_t Offset) {}
void ARMTargetStreamer::emitRegSave(const SmallVectorImpl<unsigned> &RegList,
bool isVector) {}
void ARMTargetStreamer::emitUnwindRaw(int64_t StackOffset,
const SmallVectorImpl<uint8_t> &Opcodes) {
}
void ARMTargetStreamer::switchVendor(StringRef Vendor) {}
void ARMTargetStreamer::emitAttribute(unsigned Attribute, unsigned Value) {}
void ARMTargetStreamer::emitTextAttribute(unsigned Attribute,
StringRef String) {}
void ARMTargetStreamer::emitIntTextAttribute(unsigned Attribute,
unsigned IntValue,
StringRef StringValue) {}
void ARMTargetStreamer::emitArch(ARM::ArchKind Arch) {}
void ARMTargetStreamer::emitArchExtension(unsigned ArchExt) {}
void ARMTargetStreamer::emitObjectArch(ARM::ArchKind Arch) {}
void ARMTargetStreamer::emitFPU(unsigned FPU) {}
void ARMTargetStreamer::finishAttributeSection() {}
void
ARMTargetStreamer::AnnotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) {}
void ARMTargetStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) {}
static ARMBuildAttrs::CPUArch getArchForCPU(const MCSubtargetInfo &STI) {
if (STI.getCPU() == "xscale")
return ARMBuildAttrs::v5TEJ;
if (STI.hasFeature(ARM::HasV8Ops)) {
if (STI.hasFeature(ARM::FeatureRClass))
return ARMBuildAttrs::v8_R;
return ARMBuildAttrs::v8_A;
} else if (STI.hasFeature(ARM::HasV8MMainlineOps))
return ARMBuildAttrs::v8_M_Main;
else if (STI.hasFeature(ARM::HasV7Ops)) {
if (STI.hasFeature(ARM::FeatureMClass) && STI.hasFeature(ARM::FeatureDSP))
return ARMBuildAttrs::v7E_M;
return ARMBuildAttrs::v7;
} else if (STI.hasFeature(ARM::HasV6T2Ops))
return ARMBuildAttrs::v6T2;
else if (STI.hasFeature(ARM::HasV8MBaselineOps))
return ARMBuildAttrs::v8_M_Base;
else if (STI.hasFeature(ARM::HasV6MOps))
return ARMBuildAttrs::v6S_M;
else if (STI.hasFeature(ARM::HasV6Ops))
return ARMBuildAttrs::v6;
else if (STI.hasFeature(ARM::HasV5TEOps))
return ARMBuildAttrs::v5TE;
else if (STI.hasFeature(ARM::HasV5TOps))
return ARMBuildAttrs::v5T;
else if (STI.hasFeature(ARM::HasV4TOps))
return ARMBuildAttrs::v4T;
else
return ARMBuildAttrs::v4;
}
static bool isV8M(const MCSubtargetInfo &STI) {
// Note that v8M Baseline is a subset of v6T2!
return (STI.hasFeature(ARM::HasV8MBaselineOps) &&
!STI.hasFeature(ARM::HasV6T2Ops)) ||
STI.hasFeature(ARM::HasV8MMainlineOps);
}
/// Emit the build attributes that only depend on the hardware that we expect
// /to be available, and not on the ABI, or any source-language choices.
void ARMTargetStreamer::emitTargetAttributes(const MCSubtargetInfo &STI) {
switchVendor("aeabi");
const StringRef CPUString = STI.getCPU();
if (!CPUString.empty() && !CPUString.startswith("generic")) {
// FIXME: remove krait check when GNU tools support krait cpu
if (STI.hasFeature(ARM::ProcKrait)) {
emitTextAttribute(ARMBuildAttrs::CPU_name, "cortex-a9");
// We consider krait as a "cortex-a9" + hwdiv CPU
// Enable hwdiv through ".arch_extension idiv"
if (STI.hasFeature(ARM::FeatureHWDivThumb) ||
STI.hasFeature(ARM::FeatureHWDivARM))
emitArchExtension(ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM);
} else {
emitTextAttribute(ARMBuildAttrs::CPU_name, CPUString);
}
}
emitAttribute(ARMBuildAttrs::CPU_arch, getArchForCPU(STI));
if (STI.hasFeature(ARM::FeatureAClass)) {
emitAttribute(ARMBuildAttrs::CPU_arch_profile,
ARMBuildAttrs::ApplicationProfile);
} else if (STI.hasFeature(ARM::FeatureRClass)) {
emitAttribute(ARMBuildAttrs::CPU_arch_profile,
ARMBuildAttrs::RealTimeProfile);
} else if (STI.hasFeature(ARM::FeatureMClass)) {
emitAttribute(ARMBuildAttrs::CPU_arch_profile,
ARMBuildAttrs::MicroControllerProfile);
}
emitAttribute(ARMBuildAttrs::ARM_ISA_use, STI.hasFeature(ARM::FeatureNoARM)
? ARMBuildAttrs::Not_Allowed
: ARMBuildAttrs::Allowed);
if (isV8M(STI)) {
emitAttribute(ARMBuildAttrs::THUMB_ISA_use,
ARMBuildAttrs::AllowThumbDerived);
} else if (STI.hasFeature(ARM::FeatureThumb2)) {
emitAttribute(ARMBuildAttrs::THUMB_ISA_use,
ARMBuildAttrs::AllowThumb32);
} else if (STI.hasFeature(ARM::HasV4TOps)) {
emitAttribute(ARMBuildAttrs::THUMB_ISA_use, ARMBuildAttrs::Allowed);
}
if (STI.hasFeature(ARM::FeatureNEON)) {
/* NEON is not exactly a VFP architecture, but GAS emit one of
* neon/neon-fp-armv8/neon-vfpv4/vfpv3/vfpv2 for .fpu parameters */
if (STI.hasFeature(ARM::FeatureFPARMv8)) {
if (STI.hasFeature(ARM::FeatureCrypto))
emitFPU(ARM::FK_CRYPTO_NEON_FP_ARMV8);
else
emitFPU(ARM::FK_NEON_FP_ARMV8);
} else if (STI.hasFeature(ARM::FeatureVFP4))
emitFPU(ARM::FK_NEON_VFPV4);
else
emitFPU(STI.hasFeature(ARM::FeatureFP16) ? ARM::FK_NEON_FP16
: ARM::FK_NEON);
// Emit Tag_Advanced_SIMD_arch for ARMv8 architecture
if (STI.hasFeature(ARM::HasV8Ops))
emitAttribute(ARMBuildAttrs::Advanced_SIMD_arch,
STI.hasFeature(ARM::HasV8_1aOps)
? ARMBuildAttrs::AllowNeonARMv8_1a
: ARMBuildAttrs::AllowNeonARMv8);
} else {
if (STI.hasFeature(ARM::FeatureFPARMv8))
// FPv5 and FP-ARMv8 have the same instructions, so are modeled as one
// FPU, but there are two different names for it depending on the CPU.
emitFPU(STI.hasFeature(ARM::FeatureD16)
? (STI.hasFeature(ARM::FeatureVFPOnlySP) ? ARM::FK_FPV5_SP_D16
: ARM::FK_FPV5_D16)
: ARM::FK_FP_ARMV8);
else if (STI.hasFeature(ARM::FeatureVFP4))
emitFPU(STI.hasFeature(ARM::FeatureD16)
? (STI.hasFeature(ARM::FeatureVFPOnlySP) ? ARM::FK_FPV4_SP_D16
: ARM::FK_VFPV4_D16)
: ARM::FK_VFPV4);
else if (STI.hasFeature(ARM::FeatureVFP3))
emitFPU(
STI.hasFeature(ARM::FeatureD16)
// +d16
? (STI.hasFeature(ARM::FeatureVFPOnlySP)
? (STI.hasFeature(ARM::FeatureFP16) ? ARM::FK_VFPV3XD_FP16
: ARM::FK_VFPV3XD)
: (STI.hasFeature(ARM::FeatureFP16)
? ARM::FK_VFPV3_D16_FP16
: ARM::FK_VFPV3_D16))
// -d16
: (STI.hasFeature(ARM::FeatureFP16) ? ARM::FK_VFPV3_FP16
: ARM::FK_VFPV3));
else if (STI.hasFeature(ARM::FeatureVFP2))
emitFPU(ARM::FK_VFPV2);
}
// ABI_HardFP_use attribute to indicate single precision FP.
if (STI.hasFeature(ARM::FeatureVFPOnlySP))
emitAttribute(ARMBuildAttrs::ABI_HardFP_use,
ARMBuildAttrs::HardFPSinglePrecision);
if (STI.hasFeature(ARM::FeatureFP16))
emitAttribute(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP);
if (STI.hasFeature(ARM::FeatureMP))
emitAttribute(ARMBuildAttrs::MPextension_use, ARMBuildAttrs::AllowMP);
// Hardware divide in ARM mode is part of base arch, starting from ARMv8.
// If only Thumb hwdiv is present, it must also be in base arch (ARMv7-R/M).
// It is not possible to produce DisallowDIV: if hwdiv is present in the base
// arch, supplying -hwdiv downgrades the effective arch, via ClearImpliedBits.
// AllowDIVExt is only emitted if hwdiv isn't available in the base arch;
// otherwise, the default value (AllowDIVIfExists) applies.
if (STI.hasFeature(ARM::FeatureHWDivARM) && !STI.hasFeature(ARM::HasV8Ops))
emitAttribute(ARMBuildAttrs::DIV_use, ARMBuildAttrs::AllowDIVExt);
if (STI.hasFeature(ARM::FeatureDSP) && isV8M(STI))
emitAttribute(ARMBuildAttrs::DSP_extension, ARMBuildAttrs::Allowed);
if (STI.hasFeature(ARM::FeatureStrictAlign))
emitAttribute(ARMBuildAttrs::CPU_unaligned_access,
ARMBuildAttrs::Not_Allowed);
else
emitAttribute(ARMBuildAttrs::CPU_unaligned_access,
ARMBuildAttrs::Allowed);
if (STI.hasFeature(ARM::FeatureTrustZone) &&
STI.hasFeature(ARM::FeatureVirtualization))
emitAttribute(ARMBuildAttrs::Virtualization_use,
ARMBuildAttrs::AllowTZVirtualization);
else if (STI.hasFeature(ARM::FeatureTrustZone))
emitAttribute(ARMBuildAttrs::Virtualization_use, ARMBuildAttrs::AllowTZ);
else if (STI.hasFeature(ARM::FeatureVirtualization))
emitAttribute(ARMBuildAttrs::Virtualization_use,
ARMBuildAttrs::AllowVirtualization);
}