llvm-project/clang/lib/Parse/ParseDecl.cpp

4272 lines
151 KiB
C++

//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Declaration portions of the Parser interfaces.
//
//===----------------------------------------------------------------------===//
#include "clang/Parse/Parser.h"
#include "clang/Parse/ParseDiagnostic.h"
#include "clang/Basic/OpenCL.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/ParsedTemplate.h"
#include "clang/Sema/PrettyDeclStackTrace.h"
#include "RAIIObjectsForParser.h"
#include "llvm/ADT/SmallSet.h"
using namespace clang;
//===----------------------------------------------------------------------===//
// C99 6.7: Declarations.
//===----------------------------------------------------------------------===//
/// ParseTypeName
/// type-name: [C99 6.7.6]
/// specifier-qualifier-list abstract-declarator[opt]
///
/// Called type-id in C++.
TypeResult Parser::ParseTypeName(SourceRange *Range,
Declarator::TheContext Context) {
// Parse the common declaration-specifiers piece.
DeclSpec DS(AttrFactory);
ParseSpecifierQualifierList(DS);
// Parse the abstract-declarator, if present.
Declarator DeclaratorInfo(DS, Context);
ParseDeclarator(DeclaratorInfo);
if (Range)
*Range = DeclaratorInfo.getSourceRange();
if (DeclaratorInfo.isInvalidType())
return true;
return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
}
/// ParseGNUAttributes - Parse a non-empty attributes list.
///
/// [GNU] attributes:
/// attribute
/// attributes attribute
///
/// [GNU] attribute:
/// '__attribute__' '(' '(' attribute-list ')' ')'
///
/// [GNU] attribute-list:
/// attrib
/// attribute_list ',' attrib
///
/// [GNU] attrib:
/// empty
/// attrib-name
/// attrib-name '(' identifier ')'
/// attrib-name '(' identifier ',' nonempty-expr-list ')'
/// attrib-name '(' argument-expression-list [C99 6.5.2] ')'
///
/// [GNU] attrib-name:
/// identifier
/// typespec
/// typequal
/// storageclass
///
/// FIXME: The GCC grammar/code for this construct implies we need two
/// token lookahead. Comment from gcc: "If they start with an identifier
/// which is followed by a comma or close parenthesis, then the arguments
/// start with that identifier; otherwise they are an expression list."
///
/// At the moment, I am not doing 2 token lookahead. I am also unaware of
/// any attributes that don't work (based on my limited testing). Most
/// attributes are very simple in practice. Until we find a bug, I don't see
/// a pressing need to implement the 2 token lookahead.
void Parser::ParseGNUAttributes(ParsedAttributes &attrs,
SourceLocation *endLoc) {
assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
while (Tok.is(tok::kw___attribute)) {
ConsumeToken();
if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
"attribute")) {
SkipUntil(tok::r_paren, true); // skip until ) or ;
return;
}
if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
SkipUntil(tok::r_paren, true); // skip until ) or ;
return;
}
// Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
Tok.is(tok::comma)) {
if (Tok.is(tok::comma)) {
// allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
ConsumeToken();
continue;
}
// we have an identifier or declaration specifier (const, int, etc.)
IdentifierInfo *AttrName = Tok.getIdentifierInfo();
SourceLocation AttrNameLoc = ConsumeToken();
// Availability attributes have their own grammar.
if (AttrName->isStr("availability"))
ParseAvailabilityAttribute(*AttrName, AttrNameLoc, attrs, endLoc);
// check if we have a "parameterized" attribute
else if (Tok.is(tok::l_paren)) {
ConsumeParen(); // ignore the left paren loc for now
if (Tok.is(tok::identifier)) {
IdentifierInfo *ParmName = Tok.getIdentifierInfo();
SourceLocation ParmLoc = ConsumeToken();
if (Tok.is(tok::r_paren)) {
// __attribute__(( mode(byte) ))
ConsumeParen(); // ignore the right paren loc for now
attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
ParmName, ParmLoc, 0, 0);
} else if (Tok.is(tok::comma)) {
ConsumeToken();
// __attribute__(( format(printf, 1, 2) ))
ExprVector ArgExprs(Actions);
bool ArgExprsOk = true;
// now parse the non-empty comma separated list of expressions
while (1) {
ExprResult ArgExpr(ParseAssignmentExpression());
if (ArgExpr.isInvalid()) {
ArgExprsOk = false;
SkipUntil(tok::r_paren);
break;
} else {
ArgExprs.push_back(ArgExpr.release());
}
if (Tok.isNot(tok::comma))
break;
ConsumeToken(); // Eat the comma, move to the next argument
}
if (ArgExprsOk && Tok.is(tok::r_paren)) {
ConsumeParen(); // ignore the right paren loc for now
attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
ParmName, ParmLoc, ArgExprs.take(), ArgExprs.size());
}
}
} else { // not an identifier
switch (Tok.getKind()) {
case tok::r_paren:
// parse a possibly empty comma separated list of expressions
// __attribute__(( nonnull() ))
ConsumeParen(); // ignore the right paren loc for now
attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
0, SourceLocation(), 0, 0);
break;
case tok::kw_char:
case tok::kw_wchar_t:
case tok::kw_char16_t:
case tok::kw_char32_t:
case tok::kw_bool:
case tok::kw_short:
case tok::kw_int:
case tok::kw_long:
case tok::kw___int64:
case tok::kw_signed:
case tok::kw_unsigned:
case tok::kw_float:
case tok::kw_double:
case tok::kw_void:
case tok::kw_typeof: {
AttributeList *attr
= attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
0, SourceLocation(), 0, 0);
if (attr->getKind() == AttributeList::AT_IBOutletCollection)
Diag(Tok, diag::err_iboutletcollection_builtintype);
// If it's a builtin type name, eat it and expect a rparen
// __attribute__(( vec_type_hint(char) ))
ConsumeToken();
if (Tok.is(tok::r_paren))
ConsumeParen();
break;
}
default:
// __attribute__(( aligned(16) ))
ExprVector ArgExprs(Actions);
bool ArgExprsOk = true;
// now parse the list of expressions
while (1) {
ExprResult ArgExpr(ParseAssignmentExpression());
if (ArgExpr.isInvalid()) {
ArgExprsOk = false;
SkipUntil(tok::r_paren);
break;
} else {
ArgExprs.push_back(ArgExpr.release());
}
if (Tok.isNot(tok::comma))
break;
ConsumeToken(); // Eat the comma, move to the next argument
}
// Match the ')'.
if (ArgExprsOk && Tok.is(tok::r_paren)) {
ConsumeParen(); // ignore the right paren loc for now
attrs.addNew(AttrName, AttrNameLoc, 0,
AttrNameLoc, 0, SourceLocation(),
ArgExprs.take(), ArgExprs.size());
}
break;
}
}
} else {
attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
0, SourceLocation(), 0, 0);
}
}
if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
SkipUntil(tok::r_paren, false);
SourceLocation Loc = Tok.getLocation();
if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
SkipUntil(tok::r_paren, false);
}
if (endLoc)
*endLoc = Loc;
}
}
/// ParseMicrosoftDeclSpec - Parse an __declspec construct
///
/// [MS] decl-specifier:
/// __declspec ( extended-decl-modifier-seq )
///
/// [MS] extended-decl-modifier-seq:
/// extended-decl-modifier[opt]
/// extended-decl-modifier extended-decl-modifier-seq
void Parser::ParseMicrosoftDeclSpec(ParsedAttributes &attrs) {
assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
ConsumeToken();
if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
"declspec")) {
SkipUntil(tok::r_paren, true); // skip until ) or ;
return;
}
while (Tok.getIdentifierInfo()) {
IdentifierInfo *AttrName = Tok.getIdentifierInfo();
SourceLocation AttrNameLoc = ConsumeToken();
// FIXME: Remove this when we have proper __declspec(property()) support.
// Just skip everything inside property().
if (AttrName->getName() == "property") {
ConsumeParen();
SkipUntil(tok::r_paren);
}
if (Tok.is(tok::l_paren)) {
ConsumeParen();
// FIXME: This doesn't parse __declspec(property(get=get_func_name))
// correctly.
ExprResult ArgExpr(ParseAssignmentExpression());
if (!ArgExpr.isInvalid()) {
Expr *ExprList = ArgExpr.take();
attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
SourceLocation(), &ExprList, 1, true);
}
if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
SkipUntil(tok::r_paren, false);
} else {
attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
0, SourceLocation(), 0, 0, true);
}
}
if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
SkipUntil(tok::r_paren, false);
return;
}
void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
// Treat these like attributes
// FIXME: Allow Sema to distinguish between these and real attributes!
while (Tok.is(tok::kw___fastcall) || Tok.is(tok::kw___stdcall) ||
Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___cdecl) ||
Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64)) {
IdentifierInfo *AttrName = Tok.getIdentifierInfo();
SourceLocation AttrNameLoc = ConsumeToken();
if (Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64))
// FIXME: Support these properly!
continue;
attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
SourceLocation(), 0, 0, true);
}
}
void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
// Treat these like attributes
while (Tok.is(tok::kw___pascal)) {
IdentifierInfo *AttrName = Tok.getIdentifierInfo();
SourceLocation AttrNameLoc = ConsumeToken();
attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
SourceLocation(), 0, 0, true);
}
}
void Parser::ParseOpenCLAttributes(ParsedAttributes &attrs) {
// Treat these like attributes
while (Tok.is(tok::kw___kernel)) {
SourceLocation AttrNameLoc = ConsumeToken();
attrs.addNew(PP.getIdentifierInfo("opencl_kernel_function"),
AttrNameLoc, 0, AttrNameLoc, 0,
SourceLocation(), 0, 0, false);
}
}
void Parser::ParseOpenCLQualifiers(DeclSpec &DS) {
SourceLocation Loc = Tok.getLocation();
switch(Tok.getKind()) {
// OpenCL qualifiers:
case tok::kw___private:
case tok::kw_private:
DS.getAttributes().addNewInteger(
Actions.getASTContext(),
PP.getIdentifierInfo("address_space"), Loc, 0);
break;
case tok::kw___global:
DS.getAttributes().addNewInteger(
Actions.getASTContext(),
PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_global);
break;
case tok::kw___local:
DS.getAttributes().addNewInteger(
Actions.getASTContext(),
PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_local);
break;
case tok::kw___constant:
DS.getAttributes().addNewInteger(
Actions.getASTContext(),
PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_constant);
break;
case tok::kw___read_only:
DS.getAttributes().addNewInteger(
Actions.getASTContext(),
PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_read_only);
break;
case tok::kw___write_only:
DS.getAttributes().addNewInteger(
Actions.getASTContext(),
PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_write_only);
break;
case tok::kw___read_write:
DS.getAttributes().addNewInteger(
Actions.getASTContext(),
PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_read_write);
break;
default: break;
}
}
/// \brief Parse a version number.
///
/// version:
/// simple-integer
/// simple-integer ',' simple-integer
/// simple-integer ',' simple-integer ',' simple-integer
VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
Range = Tok.getLocation();
if (!Tok.is(tok::numeric_constant)) {
Diag(Tok, diag::err_expected_version);
SkipUntil(tok::comma, tok::r_paren, true, true, true);
return VersionTuple();
}
// Parse the major (and possibly minor and subminor) versions, which
// are stored in the numeric constant. We utilize a quirk of the
// lexer, which is that it handles something like 1.2.3 as a single
// numeric constant, rather than two separate tokens.
llvm::SmallString<512> Buffer;
Buffer.resize(Tok.getLength()+1);
const char *ThisTokBegin = &Buffer[0];
// Get the spelling of the token, which eliminates trigraphs, etc.
bool Invalid = false;
unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
if (Invalid)
return VersionTuple();
// Parse the major version.
unsigned AfterMajor = 0;
unsigned Major = 0;
while (AfterMajor < ActualLength && isdigit(ThisTokBegin[AfterMajor])) {
Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
++AfterMajor;
}
if (AfterMajor == 0) {
Diag(Tok, diag::err_expected_version);
SkipUntil(tok::comma, tok::r_paren, true, true, true);
return VersionTuple();
}
if (AfterMajor == ActualLength) {
ConsumeToken();
// We only had a single version component.
if (Major == 0) {
Diag(Tok, diag::err_zero_version);
return VersionTuple();
}
return VersionTuple(Major);
}
if (ThisTokBegin[AfterMajor] != '.' || (AfterMajor + 1 == ActualLength)) {
Diag(Tok, diag::err_expected_version);
SkipUntil(tok::comma, tok::r_paren, true, true, true);
return VersionTuple();
}
// Parse the minor version.
unsigned AfterMinor = AfterMajor + 1;
unsigned Minor = 0;
while (AfterMinor < ActualLength && isdigit(ThisTokBegin[AfterMinor])) {
Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
++AfterMinor;
}
if (AfterMinor == ActualLength) {
ConsumeToken();
// We had major.minor.
if (Major == 0 && Minor == 0) {
Diag(Tok, diag::err_zero_version);
return VersionTuple();
}
return VersionTuple(Major, Minor);
}
// If what follows is not a '.', we have a problem.
if (ThisTokBegin[AfterMinor] != '.') {
Diag(Tok, diag::err_expected_version);
SkipUntil(tok::comma, tok::r_paren, true, true, true);
return VersionTuple();
}
// Parse the subminor version.
unsigned AfterSubminor = AfterMinor + 1;
unsigned Subminor = 0;
while (AfterSubminor < ActualLength && isdigit(ThisTokBegin[AfterSubminor])) {
Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
++AfterSubminor;
}
if (AfterSubminor != ActualLength) {
Diag(Tok, diag::err_expected_version);
SkipUntil(tok::comma, tok::r_paren, true, true, true);
return VersionTuple();
}
ConsumeToken();
return VersionTuple(Major, Minor, Subminor);
}
/// \brief Parse the contents of the "availability" attribute.
///
/// availability-attribute:
/// 'availability' '(' platform ',' version-arg-list ')'
///
/// platform:
/// identifier
///
/// version-arg-list:
/// version-arg
/// version-arg ',' version-arg-list
///
/// version-arg:
/// 'introduced' '=' version
/// 'deprecated' '=' version
/// 'removed' = version
/// 'unavailable'
void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability,
SourceLocation AvailabilityLoc,
ParsedAttributes &attrs,
SourceLocation *endLoc) {
SourceLocation PlatformLoc;
IdentifierInfo *Platform = 0;
enum { Introduced, Deprecated, Obsoleted, Unknown };
AvailabilityChange Changes[Unknown];
// Opening '('.
SourceLocation LParenLoc;
if (!Tok.is(tok::l_paren)) {
Diag(Tok, diag::err_expected_lparen);
return;
}
LParenLoc = ConsumeParen();
// Parse the platform name,
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_availability_expected_platform);
SkipUntil(tok::r_paren);
return;
}
Platform = Tok.getIdentifierInfo();
PlatformLoc = ConsumeToken();
// Parse the ',' following the platform name.
if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "", tok::r_paren))
return;
// If we haven't grabbed the pointers for the identifiers
// "introduced", "deprecated", and "obsoleted", do so now.
if (!Ident_introduced) {
Ident_introduced = PP.getIdentifierInfo("introduced");
Ident_deprecated = PP.getIdentifierInfo("deprecated");
Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
Ident_unavailable = PP.getIdentifierInfo("unavailable");
}
// Parse the set of introductions/deprecations/removals.
SourceLocation UnavailableLoc;
do {
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_availability_expected_change);
SkipUntil(tok::r_paren);
return;
}
IdentifierInfo *Keyword = Tok.getIdentifierInfo();
SourceLocation KeywordLoc = ConsumeToken();
if (Keyword == Ident_unavailable) {
if (UnavailableLoc.isValid()) {
Diag(KeywordLoc, diag::err_availability_redundant)
<< Keyword << SourceRange(UnavailableLoc);
}
UnavailableLoc = KeywordLoc;
if (Tok.isNot(tok::comma))
break;
ConsumeToken();
continue;
}
if (Tok.isNot(tok::equal)) {
Diag(Tok, diag::err_expected_equal_after)
<< Keyword;
SkipUntil(tok::r_paren);
return;
}
ConsumeToken();
SourceRange VersionRange;
VersionTuple Version = ParseVersionTuple(VersionRange);
if (Version.empty()) {
SkipUntil(tok::r_paren);
return;
}
unsigned Index;
if (Keyword == Ident_introduced)
Index = Introduced;
else if (Keyword == Ident_deprecated)
Index = Deprecated;
else if (Keyword == Ident_obsoleted)
Index = Obsoleted;
else
Index = Unknown;
if (Index < Unknown) {
if (!Changes[Index].KeywordLoc.isInvalid()) {
Diag(KeywordLoc, diag::err_availability_redundant)
<< Keyword
<< SourceRange(Changes[Index].KeywordLoc,
Changes[Index].VersionRange.getEnd());
}
Changes[Index].KeywordLoc = KeywordLoc;
Changes[Index].Version = Version;
Changes[Index].VersionRange = VersionRange;
} else {
Diag(KeywordLoc, diag::err_availability_unknown_change)
<< Keyword << VersionRange;
}
if (Tok.isNot(tok::comma))
break;
ConsumeToken();
} while (true);
// Closing ')'.
SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
if (RParenLoc.isInvalid())
return;
if (endLoc)
*endLoc = RParenLoc;
// The 'unavailable' availability cannot be combined with any other
// availability changes. Make sure that hasn't happened.
if (UnavailableLoc.isValid()) {
bool Complained = false;
for (unsigned Index = Introduced; Index != Unknown; ++Index) {
if (Changes[Index].KeywordLoc.isValid()) {
if (!Complained) {
Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
<< SourceRange(Changes[Index].KeywordLoc,
Changes[Index].VersionRange.getEnd());
Complained = true;
}
// Clear out the availability.
Changes[Index] = AvailabilityChange();
}
}
}
// Record this attribute
attrs.addNew(&Availability, AvailabilityLoc,
0, SourceLocation(),
Platform, PlatformLoc,
Changes[Introduced],
Changes[Deprecated],
Changes[Obsoleted],
UnavailableLoc, false, false);
}
void Parser::DiagnoseProhibitedAttributes(ParsedAttributesWithRange &attrs) {
Diag(attrs.Range.getBegin(), diag::err_attributes_not_allowed)
<< attrs.Range;
}
/// ParseDeclaration - Parse a full 'declaration', which consists of
/// declaration-specifiers, some number of declarators, and a semicolon.
/// 'Context' should be a Declarator::TheContext value. This returns the
/// location of the semicolon in DeclEnd.
///
/// declaration: [C99 6.7]
/// block-declaration ->
/// simple-declaration
/// others [FIXME]
/// [C++] template-declaration
/// [C++] namespace-definition
/// [C++] using-directive
/// [C++] using-declaration
/// [C++0x/C1X] static_assert-declaration
/// others... [FIXME]
///
Parser::DeclGroupPtrTy Parser::ParseDeclaration(StmtVector &Stmts,
unsigned Context,
SourceLocation &DeclEnd,
ParsedAttributesWithRange &attrs) {
ParenBraceBracketBalancer BalancerRAIIObj(*this);
Decl *SingleDecl = 0;
switch (Tok.getKind()) {
case tok::kw_template:
case tok::kw_export:
ProhibitAttributes(attrs);
SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
break;
case tok::kw_inline:
// Could be the start of an inline namespace. Allowed as an ext in C++03.
if (getLang().CPlusPlus && NextToken().is(tok::kw_namespace)) {
ProhibitAttributes(attrs);
SourceLocation InlineLoc = ConsumeToken();
SingleDecl = ParseNamespace(Context, DeclEnd, InlineLoc);
break;
}
return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs,
true);
case tok::kw_namespace:
ProhibitAttributes(attrs);
SingleDecl = ParseNamespace(Context, DeclEnd);
break;
case tok::kw_using:
SingleDecl = ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
DeclEnd, attrs);
break;
case tok::kw_static_assert:
case tok::kw__Static_assert:
ProhibitAttributes(attrs);
SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
break;
default:
return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs, true);
}
// This routine returns a DeclGroup, if the thing we parsed only contains a
// single decl, convert it now.
return Actions.ConvertDeclToDeclGroup(SingleDecl);
}
/// simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
/// declaration-specifiers init-declarator-list[opt] ';'
///[C90/C++]init-declarator-list ';' [TODO]
/// [OMP] threadprivate-directive [TODO]
///
/// for-range-declaration: [C++0x 6.5p1: stmt.ranged]
/// attribute-specifier-seq[opt] type-specifier-seq declarator
///
/// If RequireSemi is false, this does not check for a ';' at the end of the
/// declaration. If it is true, it checks for and eats it.
///
/// If FRI is non-null, we might be parsing a for-range-declaration instead
/// of a simple-declaration. If we find that we are, we also parse the
/// for-range-initializer, and place it here.
Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(StmtVector &Stmts,
unsigned Context,
SourceLocation &DeclEnd,
ParsedAttributes &attrs,
bool RequireSemi,
ForRangeInit *FRI) {
// Parse the common declaration-specifiers piece.
ParsingDeclSpec DS(*this);
DS.takeAttributesFrom(attrs);
ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none,
getDeclSpecContextFromDeclaratorContext(Context));
StmtResult R = Actions.ActOnVlaStmt(DS);
if (R.isUsable())
Stmts.push_back(R.release());
// C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
// declaration-specifiers init-declarator-list[opt] ';'
if (Tok.is(tok::semi)) {
if (RequireSemi) ConsumeToken();
Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
DS);
DS.complete(TheDecl);
return Actions.ConvertDeclToDeclGroup(TheDecl);
}
return ParseDeclGroup(DS, Context, /*FunctionDefs=*/ false, &DeclEnd, FRI);
}
/// ParseDeclGroup - Having concluded that this is either a function
/// definition or a group of object declarations, actually parse the
/// result.
Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
unsigned Context,
bool AllowFunctionDefinitions,
SourceLocation *DeclEnd,
ForRangeInit *FRI) {
// Parse the first declarator.
ParsingDeclarator D(*this, DS, static_cast<Declarator::TheContext>(Context));
ParseDeclarator(D);
// Bail out if the first declarator didn't seem well-formed.
if (!D.hasName() && !D.mayOmitIdentifier()) {
// Skip until ; or }.
SkipUntil(tok::r_brace, true, true);
if (Tok.is(tok::semi))
ConsumeToken();
return DeclGroupPtrTy();
}
// Check to see if we have a function *definition* which must have a body.
if (AllowFunctionDefinitions && D.isFunctionDeclarator() &&
// Look at the next token to make sure that this isn't a function
// declaration. We have to check this because __attribute__ might be the
// start of a function definition in GCC-extended K&R C.
!isDeclarationAfterDeclarator()) {
if (isStartOfFunctionDefinition(D)) {
if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
Diag(Tok, diag::err_function_declared_typedef);
// Recover by treating the 'typedef' as spurious.
DS.ClearStorageClassSpecs();
}
Decl *TheDecl = ParseFunctionDefinition(D);
return Actions.ConvertDeclToDeclGroup(TheDecl);
}
if (isDeclarationSpecifier()) {
// If there is an invalid declaration specifier right after the function
// prototype, then we must be in a missing semicolon case where this isn't
// actually a body. Just fall through into the code that handles it as a
// prototype, and let the top-level code handle the erroneous declspec
// where it would otherwise expect a comma or semicolon.
} else {
Diag(Tok, diag::err_expected_fn_body);
SkipUntil(tok::semi);
return DeclGroupPtrTy();
}
}
if (ParseAttributesAfterDeclarator(D))
return DeclGroupPtrTy();
// C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
// must parse and analyze the for-range-initializer before the declaration is
// analyzed.
if (FRI && Tok.is(tok::colon)) {
FRI->ColonLoc = ConsumeToken();
// FIXME: handle braced-init-list here.
FRI->RangeExpr = ParseExpression();
Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
Actions.ActOnCXXForRangeDecl(ThisDecl);
Actions.FinalizeDeclaration(ThisDecl);
return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, &ThisDecl, 1);
}
llvm::SmallVector<Decl *, 8> DeclsInGroup;
Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(D);
D.complete(FirstDecl);
if (FirstDecl)
DeclsInGroup.push_back(FirstDecl);
// If we don't have a comma, it is either the end of the list (a ';') or an
// error, bail out.
while (Tok.is(tok::comma)) {
// Consume the comma.
ConsumeToken();
// Parse the next declarator.
D.clear();
// Accept attributes in an init-declarator. In the first declarator in a
// declaration, these would be part of the declspec. In subsequent
// declarators, they become part of the declarator itself, so that they
// don't apply to declarators after *this* one. Examples:
// short __attribute__((common)) var; -> declspec
// short var __attribute__((common)); -> declarator
// short x, __attribute__((common)) var; -> declarator
MaybeParseGNUAttributes(D);
ParseDeclarator(D);
Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
D.complete(ThisDecl);
if (ThisDecl)
DeclsInGroup.push_back(ThisDecl);
}
if (DeclEnd)
*DeclEnd = Tok.getLocation();
if (Context != Declarator::ForContext &&
ExpectAndConsume(tok::semi,
Context == Declarator::FileContext
? diag::err_invalid_token_after_toplevel_declarator
: diag::err_expected_semi_declaration)) {
// Okay, there was no semicolon and one was expected. If we see a
// declaration specifier, just assume it was missing and continue parsing.
// Otherwise things are very confused and we skip to recover.
if (!isDeclarationSpecifier()) {
SkipUntil(tok::r_brace, true, true);
if (Tok.is(tok::semi))
ConsumeToken();
}
}
return Actions.FinalizeDeclaratorGroup(getCurScope(), DS,
DeclsInGroup.data(),
DeclsInGroup.size());
}
/// Parse an optional simple-asm-expr and attributes, and attach them to a
/// declarator. Returns true on an error.
bool Parser::ParseAttributesAfterDeclarator(Declarator &D) {
// If a simple-asm-expr is present, parse it.
if (Tok.is(tok::kw_asm)) {
SourceLocation Loc;
ExprResult AsmLabel(ParseSimpleAsm(&Loc));
if (AsmLabel.isInvalid()) {
SkipUntil(tok::semi, true, true);
return true;
}
D.setAsmLabel(AsmLabel.release());
D.SetRangeEnd(Loc);
}
MaybeParseGNUAttributes(D);
return false;
}
/// \brief Parse 'declaration' after parsing 'declaration-specifiers
/// declarator'. This method parses the remainder of the declaration
/// (including any attributes or initializer, among other things) and
/// finalizes the declaration.
///
/// init-declarator: [C99 6.7]
/// declarator
/// declarator '=' initializer
/// [GNU] declarator simple-asm-expr[opt] attributes[opt]
/// [GNU] declarator simple-asm-expr[opt] attributes[opt] '=' initializer
/// [C++] declarator initializer[opt]
///
/// [C++] initializer:
/// [C++] '=' initializer-clause
/// [C++] '(' expression-list ')'
/// [C++0x] '=' 'default' [TODO]
/// [C++0x] '=' 'delete'
///
/// According to the standard grammar, =default and =delete are function
/// definitions, but that definitely doesn't fit with the parser here.
///
Decl *Parser::ParseDeclarationAfterDeclarator(Declarator &D,
const ParsedTemplateInfo &TemplateInfo) {
if (ParseAttributesAfterDeclarator(D))
return 0;
return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
}
Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(Declarator &D,
const ParsedTemplateInfo &TemplateInfo) {
// Inform the current actions module that we just parsed this declarator.
Decl *ThisDecl = 0;
switch (TemplateInfo.Kind) {
case ParsedTemplateInfo::NonTemplate:
ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
break;
case ParsedTemplateInfo::Template:
case ParsedTemplateInfo::ExplicitSpecialization:
ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
MultiTemplateParamsArg(Actions,
TemplateInfo.TemplateParams->data(),
TemplateInfo.TemplateParams->size()),
D);
break;
case ParsedTemplateInfo::ExplicitInstantiation: {
DeclResult ThisRes
= Actions.ActOnExplicitInstantiation(getCurScope(),
TemplateInfo.ExternLoc,
TemplateInfo.TemplateLoc,
D);
if (ThisRes.isInvalid()) {
SkipUntil(tok::semi, true, true);
return 0;
}
ThisDecl = ThisRes.get();
break;
}
}
bool TypeContainsAuto =
D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
// Parse declarator '=' initializer.
if (isTokenEqualOrMistypedEqualEqual(
diag::err_invalid_equalequal_after_declarator)) {
ConsumeToken();
if (Tok.is(tok::kw_delete)) {
if (D.isFunctionDeclarator())
Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
<< 1 /* delete */;
else
Diag(ConsumeToken(), diag::err_deleted_non_function);
} else if (Tok.is(tok::kw_default)) {
if (D.isFunctionDeclarator())
Diag(Tok, diag::err_default_delete_in_multiple_declaration)
<< 1 /* delete */;
else
Diag(ConsumeToken(), diag::err_default_special_members);
} else {
if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
EnterScope(0);
Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
}
if (Tok.is(tok::code_completion)) {
Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
ConsumeCodeCompletionToken();
SkipUntil(tok::comma, true, true);
return ThisDecl;
}
ExprResult Init(ParseInitializer());
if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
ExitScope();
}
if (Init.isInvalid()) {
SkipUntil(tok::comma, true, true);
Actions.ActOnInitializerError(ThisDecl);
} else
Actions.AddInitializerToDecl(ThisDecl, Init.take(),
/*DirectInit=*/false, TypeContainsAuto);
}
} else if (Tok.is(tok::l_paren)) {
// Parse C++ direct initializer: '(' expression-list ')'
SourceLocation LParenLoc = ConsumeParen();
ExprVector Exprs(Actions);
CommaLocsTy CommaLocs;
if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
EnterScope(0);
Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
}
if (ParseExpressionList(Exprs, CommaLocs)) {
SkipUntil(tok::r_paren);
if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
ExitScope();
}
} else {
// Match the ')'.
SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
"Unexpected number of commas!");
if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
ExitScope();
}
Actions.AddCXXDirectInitializerToDecl(ThisDecl, LParenLoc,
move_arg(Exprs),
RParenLoc,
TypeContainsAuto);
}
} else {
Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsAuto);
}
Actions.FinalizeDeclaration(ThisDecl);
return ThisDecl;
}
/// ParseSpecifierQualifierList
/// specifier-qualifier-list:
/// type-specifier specifier-qualifier-list[opt]
/// type-qualifier specifier-qualifier-list[opt]
/// [GNU] attributes specifier-qualifier-list[opt]
///
void Parser::ParseSpecifierQualifierList(DeclSpec &DS) {
/// specifier-qualifier-list is a subset of declaration-specifiers. Just
/// parse declaration-specifiers and complain about extra stuff.
ParseDeclarationSpecifiers(DS);
// Validate declspec for type-name.
unsigned Specs = DS.getParsedSpecifiers();
if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() &&
!DS.hasAttributes())
Diag(Tok, diag::err_typename_requires_specqual);
// Issue diagnostic and remove storage class if present.
if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
if (DS.getStorageClassSpecLoc().isValid())
Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
else
Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
DS.ClearStorageClassSpecs();
}
// Issue diagnostic and remove function specfier if present.
if (Specs & DeclSpec::PQ_FunctionSpecifier) {
if (DS.isInlineSpecified())
Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
if (DS.isVirtualSpecified())
Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
if (DS.isExplicitSpecified())
Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
DS.ClearFunctionSpecs();
}
}
/// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
/// specified token is valid after the identifier in a declarator which
/// immediately follows the declspec. For example, these things are valid:
///
/// int x [ 4]; // direct-declarator
/// int x ( int y); // direct-declarator
/// int(int x ) // direct-declarator
/// int x ; // simple-declaration
/// int x = 17; // init-declarator-list
/// int x , y; // init-declarator-list
/// int x __asm__ ("foo"); // init-declarator-list
/// int x : 4; // struct-declarator
/// int x { 5}; // C++'0x unified initializers
///
/// This is not, because 'x' does not immediately follow the declspec (though
/// ')' happens to be valid anyway).
/// int (x)
///
static bool isValidAfterIdentifierInDeclarator(const Token &T) {
return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon);
}
/// ParseImplicitInt - This method is called when we have an non-typename
/// identifier in a declspec (which normally terminates the decl spec) when
/// the declspec has no type specifier. In this case, the declspec is either
/// malformed or is "implicit int" (in K&R and C89).
///
/// This method handles diagnosing this prettily and returns false if the
/// declspec is done being processed. If it recovers and thinks there may be
/// other pieces of declspec after it, it returns true.
///
bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
const ParsedTemplateInfo &TemplateInfo,
AccessSpecifier AS) {
assert(Tok.is(tok::identifier) && "should have identifier");
SourceLocation Loc = Tok.getLocation();
// If we see an identifier that is not a type name, we normally would
// parse it as the identifer being declared. However, when a typename
// is typo'd or the definition is not included, this will incorrectly
// parse the typename as the identifier name and fall over misparsing
// later parts of the diagnostic.
//
// As such, we try to do some look-ahead in cases where this would
// otherwise be an "implicit-int" case to see if this is invalid. For
// example: "static foo_t x = 4;" In this case, if we parsed foo_t as
// an identifier with implicit int, we'd get a parse error because the
// next token is obviously invalid for a type. Parse these as a case
// with an invalid type specifier.
assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
// Since we know that this either implicit int (which is rare) or an
// error, we'd do lookahead to try to do better recovery.
if (isValidAfterIdentifierInDeclarator(NextToken())) {
// If this token is valid for implicit int, e.g. "static x = 4", then
// we just avoid eating the identifier, so it will be parsed as the
// identifier in the declarator.
return false;
}
// Otherwise, if we don't consume this token, we are going to emit an
// error anyway. Try to recover from various common problems. Check
// to see if this was a reference to a tag name without a tag specified.
// This is a common problem in C (saying 'foo' instead of 'struct foo').
//
// C++ doesn't need this, and isTagName doesn't take SS.
if (SS == 0) {
const char *TagName = 0, *FixitTagName = 0;
tok::TokenKind TagKind = tok::unknown;
switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
default: break;
case DeclSpec::TST_enum:
TagName="enum" ; FixitTagName = "enum " ; TagKind=tok::kw_enum ;break;
case DeclSpec::TST_union:
TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
case DeclSpec::TST_struct:
TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
case DeclSpec::TST_class:
TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
}
if (TagName) {
Diag(Loc, diag::err_use_of_tag_name_without_tag)
<< Tok.getIdentifierInfo() << TagName << getLang().CPlusPlus
<< FixItHint::CreateInsertion(Tok.getLocation(),FixitTagName);
// Parse this as a tag as if the missing tag were present.
if (TagKind == tok::kw_enum)
ParseEnumSpecifier(Loc, DS, TemplateInfo, AS);
else
ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS);
return true;
}
}
// This is almost certainly an invalid type name. Let the action emit a
// diagnostic and attempt to recover.
ParsedType T;
if (Actions.DiagnoseUnknownTypeName(*Tok.getIdentifierInfo(), Loc,
getCurScope(), SS, T)) {
// The action emitted a diagnostic, so we don't have to.
if (T) {
// The action has suggested that the type T could be used. Set that as
// the type in the declaration specifiers, consume the would-be type
// name token, and we're done.
const char *PrevSpec;
unsigned DiagID;
DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T);
DS.SetRangeEnd(Tok.getLocation());
ConsumeToken();
// There may be other declaration specifiers after this.
return true;
}
// Fall through; the action had no suggestion for us.
} else {
// The action did not emit a diagnostic, so emit one now.
SourceRange R;
if (SS) R = SS->getRange();
Diag(Loc, diag::err_unknown_typename) << Tok.getIdentifierInfo() << R;
}
// Mark this as an error.
const char *PrevSpec;
unsigned DiagID;
DS.SetTypeSpecType(DeclSpec::TST_error, Loc, PrevSpec, DiagID);
DS.SetRangeEnd(Tok.getLocation());
ConsumeToken();
// TODO: Could inject an invalid typedef decl in an enclosing scope to
// avoid rippling error messages on subsequent uses of the same type,
// could be useful if #include was forgotten.
return false;
}
/// \brief Determine the declaration specifier context from the declarator
/// context.
///
/// \param Context the declarator context, which is one of the
/// Declarator::TheContext enumerator values.
Parser::DeclSpecContext
Parser::getDeclSpecContextFromDeclaratorContext(unsigned Context) {
if (Context == Declarator::MemberContext)
return DSC_class;
if (Context == Declarator::FileContext)
return DSC_top_level;
return DSC_normal;
}
/// ParseDeclarationSpecifiers
/// declaration-specifiers: [C99 6.7]
/// storage-class-specifier declaration-specifiers[opt]
/// type-specifier declaration-specifiers[opt]
/// [C99] function-specifier declaration-specifiers[opt]
/// [GNU] attributes declaration-specifiers[opt]
///
/// storage-class-specifier: [C99 6.7.1]
/// 'typedef'
/// 'extern'
/// 'static'
/// 'auto'
/// 'register'
/// [C++] 'mutable'
/// [GNU] '__thread'
/// function-specifier: [C99 6.7.4]
/// [C99] 'inline'
/// [C++] 'virtual'
/// [C++] 'explicit'
/// [OpenCL] '__kernel'
/// 'friend': [C++ dcl.friend]
/// 'constexpr': [C++0x dcl.constexpr]
///
void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
const ParsedTemplateInfo &TemplateInfo,
AccessSpecifier AS,
DeclSpecContext DSContext) {
if (DS.getSourceRange().isInvalid()) {
DS.SetRangeStart(Tok.getLocation());
DS.SetRangeEnd(Tok.getLocation());
}
while (1) {
bool isInvalid = false;
const char *PrevSpec = 0;
unsigned DiagID = 0;
SourceLocation Loc = Tok.getLocation();
switch (Tok.getKind()) {
default:
DoneWithDeclSpec:
// If this is not a declaration specifier token, we're done reading decl
// specifiers. First verify that DeclSpec's are consistent.
DS.Finish(Diags, PP);
return;
case tok::code_completion: {
Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
if (DS.hasTypeSpecifier()) {
bool AllowNonIdentifiers
= (getCurScope()->getFlags() & (Scope::ControlScope |
Scope::BlockScope |
Scope::TemplateParamScope |
Scope::FunctionPrototypeScope |
Scope::AtCatchScope)) == 0;
bool AllowNestedNameSpecifiers
= DSContext == DSC_top_level ||
(DSContext == DSC_class && DS.isFriendSpecified());
Actions.CodeCompleteDeclSpec(getCurScope(), DS,
AllowNonIdentifiers,
AllowNestedNameSpecifiers);
ConsumeCodeCompletionToken();
return;
}
if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
CCC = Sema::PCC_LocalDeclarationSpecifiers;
else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
CCC = DSContext == DSC_class? Sema::PCC_MemberTemplate
: Sema::PCC_Template;
else if (DSContext == DSC_class)
CCC = Sema::PCC_Class;
else if (ObjCImpDecl)
CCC = Sema::PCC_ObjCImplementation;
Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
ConsumeCodeCompletionToken();
return;
}
case tok::coloncolon: // ::foo::bar
// C++ scope specifier. Annotate and loop, or bail out on error.
if (TryAnnotateCXXScopeToken(true)) {
if (!DS.hasTypeSpecifier())
DS.SetTypeSpecError();
goto DoneWithDeclSpec;
}
if (Tok.is(tok::coloncolon)) // ::new or ::delete
goto DoneWithDeclSpec;
continue;
case tok::annot_cxxscope: {
if (DS.hasTypeSpecifier())
goto DoneWithDeclSpec;
CXXScopeSpec SS;
Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
Tok.getAnnotationRange(),
SS);
// We are looking for a qualified typename.
Token Next = NextToken();
if (Next.is(tok::annot_template_id) &&
static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
->Kind == TNK_Type_template) {
// We have a qualified template-id, e.g., N::A<int>
// C++ [class.qual]p2:
// In a lookup in which the constructor is an acceptable lookup
// result and the nested-name-specifier nominates a class C:
//
// - if the name specified after the
// nested-name-specifier, when looked up in C, is the
// injected-class-name of C (Clause 9), or
//
// - if the name specified after the nested-name-specifier
// is the same as the identifier or the
// simple-template-id's template-name in the last
// component of the nested-name-specifier,
//
// the name is instead considered to name the constructor of
// class C.
//
// Thus, if the template-name is actually the constructor
// name, then the code is ill-formed; this interpretation is
// reinforced by the NAD status of core issue 635.
TemplateIdAnnotation *TemplateId
= static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue());
if ((DSContext == DSC_top_level ||
(DSContext == DSC_class && DS.isFriendSpecified())) &&
TemplateId->Name &&
Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
if (isConstructorDeclarator()) {
// The user meant this to be an out-of-line constructor
// definition, but template arguments are not allowed
// there. Just allow this as a constructor; we'll
// complain about it later.
goto DoneWithDeclSpec;
}
// The user meant this to name a type, but it actually names
// a constructor with some extraneous template
// arguments. Complain, then parse it as a type as the user
// intended.
Diag(TemplateId->TemplateNameLoc,
diag::err_out_of_line_template_id_names_constructor)
<< TemplateId->Name;
}
DS.getTypeSpecScope() = SS;
ConsumeToken(); // The C++ scope.
assert(Tok.is(tok::annot_template_id) &&
"ParseOptionalCXXScopeSpecifier not working");
AnnotateTemplateIdTokenAsType();
continue;
}
if (Next.is(tok::annot_typename)) {
DS.getTypeSpecScope() = SS;
ConsumeToken(); // The C++ scope.
if (Tok.getAnnotationValue()) {
ParsedType T = getTypeAnnotation(Tok);
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
Tok.getAnnotationEndLoc(),
PrevSpec, DiagID, T);
}
else
DS.SetTypeSpecError();
DS.SetRangeEnd(Tok.getAnnotationEndLoc());
ConsumeToken(); // The typename
}
if (Next.isNot(tok::identifier))
goto DoneWithDeclSpec;
// If we're in a context where the identifier could be a class name,
// check whether this is a constructor declaration.
if ((DSContext == DSC_top_level ||
(DSContext == DSC_class && DS.isFriendSpecified())) &&
Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
&SS)) {
if (isConstructorDeclarator())
goto DoneWithDeclSpec;
// As noted in C++ [class.qual]p2 (cited above), when the name
// of the class is qualified in a context where it could name
// a constructor, its a constructor name. However, we've
// looked at the declarator, and the user probably meant this
// to be a type. Complain that it isn't supposed to be treated
// as a type, then proceed to parse it as a type.
Diag(Next.getLocation(), diag::err_out_of_line_type_names_constructor)
<< Next.getIdentifierInfo();
}
ParsedType TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
Next.getLocation(),
getCurScope(), &SS,
false, false, ParsedType(),
/*NonTrivialSourceInfo=*/true);
// If the referenced identifier is not a type, then this declspec is
// erroneous: We already checked about that it has no type specifier, and
// C++ doesn't have implicit int. Diagnose it as a typo w.r.t. to the
// typename.
if (TypeRep == 0) {
ConsumeToken(); // Eat the scope spec so the identifier is current.
if (ParseImplicitInt(DS, &SS, TemplateInfo, AS)) continue;
goto DoneWithDeclSpec;
}
DS.getTypeSpecScope() = SS;
ConsumeToken(); // The C++ scope.
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
DiagID, TypeRep);
if (isInvalid)
break;
DS.SetRangeEnd(Tok.getLocation());
ConsumeToken(); // The typename.
continue;
}
case tok::annot_typename: {
if (Tok.getAnnotationValue()) {
ParsedType T = getTypeAnnotation(Tok);
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
DiagID, T);
} else
DS.SetTypeSpecError();
if (isInvalid)
break;
DS.SetRangeEnd(Tok.getAnnotationEndLoc());
ConsumeToken(); // The typename
// Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
// is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
// Objective-C interface.
if (Tok.is(tok::less) && getLang().ObjC1)
ParseObjCProtocolQualifiers(DS);
continue;
}
case tok::kw___is_signed:
// GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang
// typically treats it as a trait. If we see __is_signed as it appears
// in libstdc++, e.g.,
//
// static const bool __is_signed;
//
// then treat __is_signed as an identifier rather than as a keyword.
if (DS.getTypeSpecType() == TST_bool &&
DS.getTypeQualifiers() == DeclSpec::TQ_const &&
DS.getStorageClassSpec() == DeclSpec::SCS_static) {
Tok.getIdentifierInfo()->RevertTokenIDToIdentifier();
Tok.setKind(tok::identifier);
}
// We're done with the declaration-specifiers.
goto DoneWithDeclSpec;
// typedef-name
case tok::identifier: {
// In C++, check to see if this is a scope specifier like foo::bar::, if
// so handle it as such. This is important for ctor parsing.
if (getLang().CPlusPlus) {
if (TryAnnotateCXXScopeToken(true)) {
if (!DS.hasTypeSpecifier())
DS.SetTypeSpecError();
goto DoneWithDeclSpec;
}
if (!Tok.is(tok::identifier))
continue;
}
// This identifier can only be a typedef name if we haven't already seen
// a type-specifier. Without this check we misparse:
// typedef int X; struct Y { short X; }; as 'short int'.
if (DS.hasTypeSpecifier())
goto DoneWithDeclSpec;
// Check for need to substitute AltiVec keyword tokens.
if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
break;
// It has to be available as a typedef too!
ParsedType TypeRep =
Actions.getTypeName(*Tok.getIdentifierInfo(),
Tok.getLocation(), getCurScope());
// If this is not a typedef name, don't parse it as part of the declspec,
// it must be an implicit int or an error.
if (!TypeRep) {
if (ParseImplicitInt(DS, 0, TemplateInfo, AS)) continue;
goto DoneWithDeclSpec;
}
// If we're in a context where the identifier could be a class name,
// check whether this is a constructor declaration.
if (getLang().CPlusPlus && DSContext == DSC_class &&
Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
isConstructorDeclarator())
goto DoneWithDeclSpec;
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
DiagID, TypeRep);
if (isInvalid)
break;
DS.SetRangeEnd(Tok.getLocation());
ConsumeToken(); // The identifier
// Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
// is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
// Objective-C interface.
if (Tok.is(tok::less) && getLang().ObjC1)
ParseObjCProtocolQualifiers(DS);
// Need to support trailing type qualifiers (e.g. "id<p> const").
// If a type specifier follows, it will be diagnosed elsewhere.
continue;
}
// type-name
case tok::annot_template_id: {
TemplateIdAnnotation *TemplateId
= static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
if (TemplateId->Kind != TNK_Type_template) {
// This template-id does not refer to a type name, so we're
// done with the type-specifiers.
goto DoneWithDeclSpec;
}
// If we're in a context where the template-id could be a
// constructor name or specialization, check whether this is a
// constructor declaration.
if (getLang().CPlusPlus && DSContext == DSC_class &&
Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
isConstructorDeclarator())
goto DoneWithDeclSpec;
// Turn the template-id annotation token into a type annotation
// token, then try again to parse it as a type-specifier.
AnnotateTemplateIdTokenAsType();
continue;
}
// GNU attributes support.
case tok::kw___attribute:
ParseGNUAttributes(DS.getAttributes());
continue;
// Microsoft declspec support.
case tok::kw___declspec:
ParseMicrosoftDeclSpec(DS.getAttributes());
continue;
// Microsoft single token adornments.
case tok::kw___forceinline:
// FIXME: Add handling here!
break;
case tok::kw___ptr64:
case tok::kw___w64:
case tok::kw___cdecl:
case tok::kw___stdcall:
case tok::kw___fastcall:
case tok::kw___thiscall:
ParseMicrosoftTypeAttributes(DS.getAttributes());
continue;
// Borland single token adornments.
case tok::kw___pascal:
ParseBorlandTypeAttributes(DS.getAttributes());
continue;
// OpenCL single token adornments.
case tok::kw___kernel:
ParseOpenCLAttributes(DS.getAttributes());
continue;
// storage-class-specifier
case tok::kw_typedef:
isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_typedef, Loc, PrevSpec,
DiagID, getLang());
break;
case tok::kw_extern:
if (DS.isThreadSpecified())
Diag(Tok, diag::ext_thread_before) << "extern";
isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_extern, Loc, PrevSpec,
DiagID, getLang());
break;
case tok::kw___private_extern__:
isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_private_extern, Loc,
PrevSpec, DiagID, getLang());
break;
case tok::kw_static:
if (DS.isThreadSpecified())
Diag(Tok, diag::ext_thread_before) << "static";
isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_static, Loc, PrevSpec,
DiagID, getLang());
break;
case tok::kw_auto:
if (getLang().CPlusPlus0x) {
if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec,
DiagID, getLang());
if (!isInvalid)
Diag(Tok, diag::auto_storage_class)
<< FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
}
else
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
DiagID);
}
else
isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec,
DiagID, getLang());
break;
case tok::kw_register:
isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_register, Loc, PrevSpec,
DiagID, getLang());
break;
case tok::kw_mutable:
isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_mutable, Loc, PrevSpec,
DiagID, getLang());
break;
case tok::kw___thread:
isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec, DiagID);
break;
// function-specifier
case tok::kw_inline:
isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec, DiagID);
break;
case tok::kw_virtual:
isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec, DiagID);
break;
case tok::kw_explicit:
isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec, DiagID);
break;
// friend
case tok::kw_friend:
if (DSContext == DSC_class)
isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
else {
PrevSpec = ""; // not actually used by the diagnostic
DiagID = diag::err_friend_invalid_in_context;
isInvalid = true;
}
break;
// constexpr
case tok::kw_constexpr:
isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID);
break;
// type-specifier
case tok::kw_short:
isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
DiagID);
break;
case tok::kw_long:
if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
DiagID);
else
isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
DiagID);
break;
case tok::kw___int64:
isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
DiagID);
break;
case tok::kw_signed:
isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
DiagID);
break;
case tok::kw_unsigned:
isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
DiagID);
break;
case tok::kw__Complex:
isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
DiagID);
break;
case tok::kw__Imaginary:
isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
DiagID);
break;
case tok::kw_void:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
DiagID);
break;
case tok::kw_char:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
DiagID);
break;
case tok::kw_int:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
DiagID);
break;
case tok::kw_float:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
DiagID);
break;
case tok::kw_double:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
DiagID);
break;
case tok::kw_wchar_t:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
DiagID);
break;
case tok::kw_char16_t:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
DiagID);
break;
case tok::kw_char32_t:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
DiagID);
break;
case tok::kw_bool:
case tok::kw__Bool:
if (Tok.is(tok::kw_bool) &&
DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
PrevSpec = ""; // Not used by the diagnostic.
DiagID = diag::err_bool_redeclaration;
// For better error recovery.
Tok.setKind(tok::identifier);
isInvalid = true;
} else {
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
DiagID);
}
break;
case tok::kw__Decimal32:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
DiagID);
break;
case tok::kw__Decimal64:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
DiagID);
break;
case tok::kw__Decimal128:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
DiagID);
break;
case tok::kw___vector:
isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
break;
case tok::kw___pixel:
isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
break;
case tok::kw___unknown_anytype:
isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc,
PrevSpec, DiagID);
break;
// class-specifier:
case tok::kw_class:
case tok::kw_struct:
case tok::kw_union: {
tok::TokenKind Kind = Tok.getKind();
ConsumeToken();
ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS);
continue;
}
// enum-specifier:
case tok::kw_enum:
ConsumeToken();
ParseEnumSpecifier(Loc, DS, TemplateInfo, AS);
continue;
// cv-qualifier:
case tok::kw_const:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
getLang());
break;
case tok::kw_volatile:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
getLang());
break;
case tok::kw_restrict:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
getLang());
break;
// C++ typename-specifier:
case tok::kw_typename:
if (TryAnnotateTypeOrScopeToken()) {
DS.SetTypeSpecError();
goto DoneWithDeclSpec;
}
if (!Tok.is(tok::kw_typename))
continue;
break;
// GNU typeof support.
case tok::kw_typeof:
ParseTypeofSpecifier(DS);
continue;
case tok::kw_decltype:
ParseDecltypeSpecifier(DS);
continue;
// OpenCL qualifiers:
case tok::kw_private:
if (!getLang().OpenCL)
goto DoneWithDeclSpec;
case tok::kw___private:
case tok::kw___global:
case tok::kw___local:
case tok::kw___constant:
case tok::kw___read_only:
case tok::kw___write_only:
case tok::kw___read_write:
ParseOpenCLQualifiers(DS);
break;
case tok::less:
// GCC ObjC supports types like "<SomeProtocol>" as a synonym for
// "id<SomeProtocol>". This is hopelessly old fashioned and dangerous,
// but we support it.
if (DS.hasTypeSpecifier() || !getLang().ObjC1)
goto DoneWithDeclSpec;
if (!ParseObjCProtocolQualifiers(DS))
Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
<< FixItHint::CreateInsertion(Loc, "id")
<< SourceRange(Loc, DS.getSourceRange().getEnd());
// Need to support trailing type qualifiers (e.g. "id<p> const").
// If a type specifier follows, it will be diagnosed elsewhere.
continue;
}
// If the specifier wasn't legal, issue a diagnostic.
if (isInvalid) {
assert(PrevSpec && "Method did not return previous specifier!");
assert(DiagID);
if (DiagID == diag::ext_duplicate_declspec)
Diag(Tok, DiagID)
<< PrevSpec << FixItHint::CreateRemoval(Tok.getLocation());
else
Diag(Tok, DiagID) << PrevSpec;
}
DS.SetRangeEnd(Tok.getLocation());
if (DiagID != diag::err_bool_redeclaration)
ConsumeToken();
}
}
/// ParseOptionalTypeSpecifier - Try to parse a single type-specifier. We
/// primarily follow the C++ grammar with additions for C99 and GNU,
/// which together subsume the C grammar. Note that the C++
/// type-specifier also includes the C type-qualifier (for const,
/// volatile, and C99 restrict). Returns true if a type-specifier was
/// found (and parsed), false otherwise.
///
/// type-specifier: [C++ 7.1.5]
/// simple-type-specifier
/// class-specifier
/// enum-specifier
/// elaborated-type-specifier [TODO]
/// cv-qualifier
///
/// cv-qualifier: [C++ 7.1.5.1]
/// 'const'
/// 'volatile'
/// [C99] 'restrict'
///
/// simple-type-specifier: [ C++ 7.1.5.2]
/// '::'[opt] nested-name-specifier[opt] type-name [TODO]
/// '::'[opt] nested-name-specifier 'template' template-id [TODO]
/// 'char'
/// 'wchar_t'
/// 'bool'
/// 'short'
/// 'int'
/// 'long'
/// 'signed'
/// 'unsigned'
/// 'float'
/// 'double'
/// 'void'
/// [C99] '_Bool'
/// [C99] '_Complex'
/// [C99] '_Imaginary' // Removed in TC2?
/// [GNU] '_Decimal32'
/// [GNU] '_Decimal64'
/// [GNU] '_Decimal128'
/// [GNU] typeof-specifier
/// [OBJC] class-name objc-protocol-refs[opt] [TODO]
/// [OBJC] typedef-name objc-protocol-refs[opt] [TODO]
/// [C++0x] 'decltype' ( expression )
/// [AltiVec] '__vector'
bool Parser::ParseOptionalTypeSpecifier(DeclSpec &DS, bool& isInvalid,
const char *&PrevSpec,
unsigned &DiagID,
const ParsedTemplateInfo &TemplateInfo,
bool SuppressDeclarations) {
SourceLocation Loc = Tok.getLocation();
switch (Tok.getKind()) {
case tok::identifier: // foo::bar
// If we already have a type specifier, this identifier is not a type.
if (DS.getTypeSpecType() != DeclSpec::TST_unspecified ||
DS.getTypeSpecWidth() != DeclSpec::TSW_unspecified ||
DS.getTypeSpecSign() != DeclSpec::TSS_unspecified)
return false;
// Check for need to substitute AltiVec keyword tokens.
if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
break;
// Fall through.
case tok::kw_typename: // typename foo::bar
// Annotate typenames and C++ scope specifiers. If we get one, just
// recurse to handle whatever we get.
if (TryAnnotateTypeOrScopeToken())
return true;
if (Tok.is(tok::identifier))
return false;
return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
TemplateInfo, SuppressDeclarations);
case tok::coloncolon: // ::foo::bar
if (NextToken().is(tok::kw_new) || // ::new
NextToken().is(tok::kw_delete)) // ::delete
return false;
// Annotate typenames and C++ scope specifiers. If we get one, just
// recurse to handle whatever we get.
if (TryAnnotateTypeOrScopeToken())
return true;
return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
TemplateInfo, SuppressDeclarations);
// simple-type-specifier:
case tok::annot_typename: {
if (ParsedType T = getTypeAnnotation(Tok)) {
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
Tok.getAnnotationEndLoc(), PrevSpec,
DiagID, T);
} else
DS.SetTypeSpecError();
DS.SetRangeEnd(Tok.getAnnotationEndLoc());
ConsumeToken(); // The typename
// Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
// is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
// Objective-C interface. If we don't have Objective-C or a '<', this is
// just a normal reference to a typedef name.
if (Tok.is(tok::less) && getLang().ObjC1)
ParseObjCProtocolQualifiers(DS);
return true;
}
case tok::kw_short:
isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID);
break;
case tok::kw_long:
if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
DiagID);
else
isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
DiagID);
break;
case tok::kw___int64:
isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
DiagID);
break;
case tok::kw_signed:
isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
break;
case tok::kw_unsigned:
isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
DiagID);
break;
case tok::kw__Complex:
isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
DiagID);
break;
case tok::kw__Imaginary:
isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
DiagID);
break;
case tok::kw_void:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID);
break;
case tok::kw_char:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID);
break;
case tok::kw_int:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID);
break;
case tok::kw_float:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID);
break;
case tok::kw_double:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID);
break;
case tok::kw_wchar_t:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID);
break;
case tok::kw_char16_t:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID);
break;
case tok::kw_char32_t:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID);
break;
case tok::kw_bool:
case tok::kw__Bool:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID);
break;
case tok::kw__Decimal32:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
DiagID);
break;
case tok::kw__Decimal64:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
DiagID);
break;
case tok::kw__Decimal128:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
DiagID);
break;
case tok::kw___vector:
isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
break;
case tok::kw___pixel:
isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
break;
// class-specifier:
case tok::kw_class:
case tok::kw_struct:
case tok::kw_union: {
tok::TokenKind Kind = Tok.getKind();
ConsumeToken();
ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS_none,
SuppressDeclarations);
return true;
}
// enum-specifier:
case tok::kw_enum:
ConsumeToken();
ParseEnumSpecifier(Loc, DS, TemplateInfo, AS_none);
return true;
// cv-qualifier:
case tok::kw_const:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_const , Loc, PrevSpec,
DiagID, getLang());
break;
case tok::kw_volatile:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
DiagID, getLang());
break;
case tok::kw_restrict:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
DiagID, getLang());
break;
// GNU typeof support.
case tok::kw_typeof:
ParseTypeofSpecifier(DS);
return true;
// C++0x decltype support.
case tok::kw_decltype:
ParseDecltypeSpecifier(DS);
return true;
// OpenCL qualifiers:
case tok::kw_private:
if (!getLang().OpenCL)
return false;
case tok::kw___private:
case tok::kw___global:
case tok::kw___local:
case tok::kw___constant:
case tok::kw___read_only:
case tok::kw___write_only:
case tok::kw___read_write:
ParseOpenCLQualifiers(DS);
break;
// C++0x auto support.
case tok::kw_auto:
if (!getLang().CPlusPlus0x)
return false;
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec, DiagID);
break;
case tok::kw___ptr64:
case tok::kw___w64:
case tok::kw___cdecl:
case tok::kw___stdcall:
case tok::kw___fastcall:
case tok::kw___thiscall:
ParseMicrosoftTypeAttributes(DS.getAttributes());
return true;
case tok::kw___pascal:
ParseBorlandTypeAttributes(DS.getAttributes());
return true;
default:
// Not a type-specifier; do nothing.
return false;
}
// If the specifier combination wasn't legal, issue a diagnostic.
if (isInvalid) {
assert(PrevSpec && "Method did not return previous specifier!");
// Pick between error or extwarn.
Diag(Tok, DiagID) << PrevSpec;
}
DS.SetRangeEnd(Tok.getLocation());
ConsumeToken(); // whatever we parsed above.
return true;
}
/// ParseStructDeclaration - Parse a struct declaration without the terminating
/// semicolon.
///
/// struct-declaration:
/// specifier-qualifier-list struct-declarator-list
/// [GNU] __extension__ struct-declaration
/// [GNU] specifier-qualifier-list
/// struct-declarator-list:
/// struct-declarator
/// struct-declarator-list ',' struct-declarator
/// [GNU] struct-declarator-list ',' attributes[opt] struct-declarator
/// struct-declarator:
/// declarator
/// [GNU] declarator attributes[opt]
/// declarator[opt] ':' constant-expression
/// [GNU] declarator[opt] ':' constant-expression attributes[opt]
///
void Parser::
ParseStructDeclaration(DeclSpec &DS, FieldCallback &Fields) {
if (Tok.is(tok::kw___extension__)) {
// __extension__ silences extension warnings in the subexpression.
ExtensionRAIIObject O(Diags); // Use RAII to do this.
ConsumeToken();
return ParseStructDeclaration(DS, Fields);
}
// Parse the common specifier-qualifiers-list piece.
ParseSpecifierQualifierList(DS);
// If there are no declarators, this is a free-standing declaration
// specifier. Let the actions module cope with it.
if (Tok.is(tok::semi)) {
Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none, DS);
return;
}
// Read struct-declarators until we find the semicolon.
bool FirstDeclarator = true;
while (1) {
ParsingDeclRAIIObject PD(*this);
FieldDeclarator DeclaratorInfo(DS);
// Attributes are only allowed here on successive declarators.
if (!FirstDeclarator)
MaybeParseGNUAttributes(DeclaratorInfo.D);
/// struct-declarator: declarator
/// struct-declarator: declarator[opt] ':' constant-expression
if (Tok.isNot(tok::colon)) {
// Don't parse FOO:BAR as if it were a typo for FOO::BAR.
ColonProtectionRAIIObject X(*this);
ParseDeclarator(DeclaratorInfo.D);
}
if (Tok.is(tok::colon)) {
ConsumeToken();
ExprResult Res(ParseConstantExpression());
if (Res.isInvalid())
SkipUntil(tok::semi, true, true);
else
DeclaratorInfo.BitfieldSize = Res.release();
}
// If attributes exist after the declarator, parse them.
MaybeParseGNUAttributes(DeclaratorInfo.D);
// We're done with this declarator; invoke the callback.
Decl *D = Fields.invoke(DeclaratorInfo);
PD.complete(D);
// If we don't have a comma, it is either the end of the list (a ';')
// or an error, bail out.
if (Tok.isNot(tok::comma))
return;
// Consume the comma.
ConsumeToken();
FirstDeclarator = false;
}
}
/// ParseStructUnionBody
/// struct-contents:
/// struct-declaration-list
/// [EXT] empty
/// [GNU] "struct-declaration-list" without terminatoring ';'
/// struct-declaration-list:
/// struct-declaration
/// struct-declaration-list struct-declaration
/// [OBC] '@' 'defs' '(' class-name ')'
///
void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
unsigned TagType, Decl *TagDecl) {
PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
"parsing struct/union body");
SourceLocation LBraceLoc = ConsumeBrace();
ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
// Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
// C++.
if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
Diag(Tok, diag::ext_empty_struct_union)
<< (TagType == TST_union);
llvm::SmallVector<Decl *, 32> FieldDecls;
// While we still have something to read, read the declarations in the struct.
while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
// Each iteration of this loop reads one struct-declaration.
// Check for extraneous top-level semicolon.
if (Tok.is(tok::semi)) {
Diag(Tok, diag::ext_extra_struct_semi)
<< DeclSpec::getSpecifierName((DeclSpec::TST)TagType)
<< FixItHint::CreateRemoval(Tok.getLocation());
ConsumeToken();
continue;
}
// Parse all the comma separated declarators.
DeclSpec DS(AttrFactory);
if (!Tok.is(tok::at)) {
struct CFieldCallback : FieldCallback {
Parser &P;
Decl *TagDecl;
llvm::SmallVectorImpl<Decl *> &FieldDecls;
CFieldCallback(Parser &P, Decl *TagDecl,
llvm::SmallVectorImpl<Decl *> &FieldDecls) :
P(P), TagDecl(TagDecl), FieldDecls(FieldDecls) {}
virtual Decl *invoke(FieldDeclarator &FD) {
// Install the declarator into the current TagDecl.
Decl *Field = P.Actions.ActOnField(P.getCurScope(), TagDecl,
FD.D.getDeclSpec().getSourceRange().getBegin(),
FD.D, FD.BitfieldSize);
FieldDecls.push_back(Field);
return Field;
}
} Callback(*this, TagDecl, FieldDecls);
ParseStructDeclaration(DS, Callback);
} else { // Handle @defs
ConsumeToken();
if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
Diag(Tok, diag::err_unexpected_at);
SkipUntil(tok::semi, true);
continue;
}
ConsumeToken();
ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
if (!Tok.is(tok::identifier)) {
Diag(Tok, diag::err_expected_ident);
SkipUntil(tok::semi, true);
continue;
}
llvm::SmallVector<Decl *, 16> Fields;
Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
Tok.getIdentifierInfo(), Fields);
FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
ConsumeToken();
ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
}
if (Tok.is(tok::semi)) {
ConsumeToken();
} else if (Tok.is(tok::r_brace)) {
ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
break;
} else {
ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
// Skip to end of block or statement to avoid ext-warning on extra ';'.
SkipUntil(tok::r_brace, true, true);
// If we stopped at a ';', eat it.
if (Tok.is(tok::semi)) ConsumeToken();
}
}
SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
ParsedAttributes attrs(AttrFactory);
// If attributes exist after struct contents, parse them.
MaybeParseGNUAttributes(attrs);
Actions.ActOnFields(getCurScope(),
RecordLoc, TagDecl, FieldDecls.data(), FieldDecls.size(),
LBraceLoc, RBraceLoc,
attrs.getList());
StructScope.Exit();
Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl, RBraceLoc);
}
/// ParseEnumSpecifier
/// enum-specifier: [C99 6.7.2.2]
/// 'enum' identifier[opt] '{' enumerator-list '}'
///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
/// [GNU] 'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
/// '}' attributes[opt]
/// 'enum' identifier
/// [GNU] 'enum' attributes[opt] identifier
///
/// [C++0x] enum-head '{' enumerator-list[opt] '}'
/// [C++0x] enum-head '{' enumerator-list ',' '}'
///
/// enum-head: [C++0x]
/// enum-key attributes[opt] identifier[opt] enum-base[opt]
/// enum-key attributes[opt] nested-name-specifier identifier enum-base[opt]
///
/// enum-key: [C++0x]
/// 'enum'
/// 'enum' 'class'
/// 'enum' 'struct'
///
/// enum-base: [C++0x]
/// ':' type-specifier-seq
///
/// [C++] elaborated-type-specifier:
/// [C++] 'enum' '::'[opt] nested-name-specifier[opt] identifier
///
void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
const ParsedTemplateInfo &TemplateInfo,
AccessSpecifier AS) {
// Parse the tag portion of this.
if (Tok.is(tok::code_completion)) {
// Code completion for an enum name.
Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
ConsumeCodeCompletionToken();
}
// If attributes exist after tag, parse them.
ParsedAttributes attrs(AttrFactory);
MaybeParseGNUAttributes(attrs);
CXXScopeSpec &SS = DS.getTypeSpecScope();
if (getLang().CPlusPlus) {
if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(), false))
return;
if (SS.isSet() && Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_expected_ident);
if (Tok.isNot(tok::l_brace)) {
// Has no name and is not a definition.
// Skip the rest of this declarator, up until the comma or semicolon.
SkipUntil(tok::comma, true);
return;
}
}
}
bool AllowFixedUnderlyingType = getLang().CPlusPlus0x || getLang().Microsoft;
bool IsScopedEnum = false;
bool IsScopedUsingClassTag = false;
if (getLang().CPlusPlus0x &&
(Tok.is(tok::kw_class) || Tok.is(tok::kw_struct))) {
IsScopedEnum = true;
IsScopedUsingClassTag = Tok.is(tok::kw_class);
ConsumeToken();
}
// Must have either 'enum name' or 'enum {...}'.
if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
(AllowFixedUnderlyingType && Tok.isNot(tok::colon))) {
Diag(Tok, diag::err_expected_ident_lbrace);
// Skip the rest of this declarator, up until the comma or semicolon.
SkipUntil(tok::comma, true);
return;
}
// If an identifier is present, consume and remember it.
IdentifierInfo *Name = 0;
SourceLocation NameLoc;
if (Tok.is(tok::identifier)) {
Name = Tok.getIdentifierInfo();
NameLoc = ConsumeToken();
}
if (!Name && IsScopedEnum) {
// C++0x 7.2p2: The optional identifier shall not be omitted in the
// declaration of a scoped enumeration.
Diag(Tok, diag::err_scoped_enum_missing_identifier);
IsScopedEnum = false;
IsScopedUsingClassTag = false;
}
TypeResult BaseType;
// Parse the fixed underlying type.
if (AllowFixedUnderlyingType && Tok.is(tok::colon)) {
bool PossibleBitfield = false;
if (getCurScope()->getFlags() & Scope::ClassScope) {
// If we're in class scope, this can either be an enum declaration with
// an underlying type, or a declaration of a bitfield member. We try to
// use a simple disambiguation scheme first to catch the common cases
// (integer literal, sizeof); if it's still ambiguous, we then consider
// anything that's a simple-type-specifier followed by '(' as an
// expression. This suffices because function types are not valid
// underlying types anyway.
TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind());
// If the next token starts an expression, we know we're parsing a
// bit-field. This is the common case.
if (TPR == TPResult::True())
PossibleBitfield = true;
// If the next token starts a type-specifier-seq, it may be either a
// a fixed underlying type or the start of a function-style cast in C++;
// lookahead one more token to see if it's obvious that we have a
// fixed underlying type.
else if (TPR == TPResult::False() &&
GetLookAheadToken(2).getKind() == tok::semi) {
// Consume the ':'.
ConsumeToken();
} else {
// We have the start of a type-specifier-seq, so we have to perform
// tentative parsing to determine whether we have an expression or a
// type.
TentativeParsingAction TPA(*this);
// Consume the ':'.
ConsumeToken();
if ((getLang().CPlusPlus &&
isCXXDeclarationSpecifier() != TPResult::True()) ||
(!getLang().CPlusPlus && !isDeclarationSpecifier(true))) {
// We'll parse this as a bitfield later.
PossibleBitfield = true;
TPA.Revert();
} else {
// We have a type-specifier-seq.
TPA.Commit();
}
}
} else {
// Consume the ':'.
ConsumeToken();
}
if (!PossibleBitfield) {
SourceRange Range;
BaseType = ParseTypeName(&Range);
if (!getLang().CPlusPlus0x)
Diag(StartLoc, diag::ext_ms_enum_fixed_underlying_type)
<< Range;
}
}
// There are three options here. If we have 'enum foo;', then this is a
// forward declaration. If we have 'enum foo {...' then this is a
// definition. Otherwise we have something like 'enum foo xyz', a reference.
//
// This is needed to handle stuff like this right (C99 6.7.2.3p11):
// enum foo {..}; void bar() { enum foo; } <- new foo in bar.
// enum foo {..}; void bar() { enum foo x; } <- use of old foo.
//
Sema::TagUseKind TUK;
if (Tok.is(tok::l_brace))
TUK = Sema::TUK_Definition;
else if (Tok.is(tok::semi))
TUK = Sema::TUK_Declaration;
else
TUK = Sema::TUK_Reference;
// enums cannot be templates, although they can be referenced from a
// template.
if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
TUK != Sema::TUK_Reference) {
Diag(Tok, diag::err_enum_template);
// Skip the rest of this declarator, up until the comma or semicolon.
SkipUntil(tok::comma, true);
return;
}
if (!Name && TUK != Sema::TUK_Definition) {
Diag(Tok, diag::err_enumerator_unnamed_no_def);
// Skip the rest of this declarator, up until the comma or semicolon.
SkipUntil(tok::comma, true);
return;
}
bool Owned = false;
bool IsDependent = false;
const char *PrevSpec = 0;
unsigned DiagID;
Decl *TagDecl = Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK,
StartLoc, SS, Name, NameLoc, attrs.getList(),
AS,
MultiTemplateParamsArg(Actions),
Owned, IsDependent, IsScopedEnum,
IsScopedUsingClassTag, BaseType);
if (IsDependent) {
// This enum has a dependent nested-name-specifier. Handle it as a
// dependent tag.
if (!Name) {
DS.SetTypeSpecError();
Diag(Tok, diag::err_expected_type_name_after_typename);
return;
}
TypeResult Type = Actions.ActOnDependentTag(getCurScope(), DeclSpec::TST_enum,
TUK, SS, Name, StartLoc,
NameLoc);
if (Type.isInvalid()) {
DS.SetTypeSpecError();
return;
}
if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
NameLoc.isValid() ? NameLoc : StartLoc,
PrevSpec, DiagID, Type.get()))
Diag(StartLoc, DiagID) << PrevSpec;
return;
}
if (!TagDecl) {
// The action failed to produce an enumeration tag. If this is a
// definition, consume the entire definition.
if (Tok.is(tok::l_brace)) {
ConsumeBrace();
SkipUntil(tok::r_brace);
}
DS.SetTypeSpecError();
return;
}
if (Tok.is(tok::l_brace))
ParseEnumBody(StartLoc, TagDecl);
if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
NameLoc.isValid() ? NameLoc : StartLoc,
PrevSpec, DiagID, TagDecl, Owned))
Diag(StartLoc, DiagID) << PrevSpec;
}
/// ParseEnumBody - Parse a {} enclosed enumerator-list.
/// enumerator-list:
/// enumerator
/// enumerator-list ',' enumerator
/// enumerator:
/// enumeration-constant
/// enumeration-constant '=' constant-expression
/// enumeration-constant:
/// identifier
///
void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
// Enter the scope of the enum body and start the definition.
ParseScope EnumScope(this, Scope::DeclScope);
Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
SourceLocation LBraceLoc = ConsumeBrace();
// C does not allow an empty enumerator-list, C++ does [dcl.enum].
if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
Diag(Tok, diag::error_empty_enum);
llvm::SmallVector<Decl *, 32> EnumConstantDecls;
Decl *LastEnumConstDecl = 0;
// Parse the enumerator-list.
while (Tok.is(tok::identifier)) {
IdentifierInfo *Ident = Tok.getIdentifierInfo();
SourceLocation IdentLoc = ConsumeToken();
// If attributes exist after the enumerator, parse them.
ParsedAttributes attrs(AttrFactory);
MaybeParseGNUAttributes(attrs);
SourceLocation EqualLoc;
ExprResult AssignedVal;
if (Tok.is(tok::equal)) {
EqualLoc = ConsumeToken();
AssignedVal = ParseConstantExpression();
if (AssignedVal.isInvalid())
SkipUntil(tok::comma, tok::r_brace, true, true);
}
// Install the enumerator constant into EnumDecl.
Decl *EnumConstDecl = Actions.ActOnEnumConstant(getCurScope(), EnumDecl,
LastEnumConstDecl,
IdentLoc, Ident,
attrs.getList(), EqualLoc,
AssignedVal.release());
EnumConstantDecls.push_back(EnumConstDecl);
LastEnumConstDecl = EnumConstDecl;
if (Tok.is(tok::identifier)) {
// We're missing a comma between enumerators.
SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
Diag(Loc, diag::err_enumerator_list_missing_comma)
<< FixItHint::CreateInsertion(Loc, ", ");
continue;
}
if (Tok.isNot(tok::comma))
break;
SourceLocation CommaLoc = ConsumeToken();
if (Tok.isNot(tok::identifier) &&
!(getLang().C99 || getLang().CPlusPlus0x))
Diag(CommaLoc, diag::ext_enumerator_list_comma)
<< getLang().CPlusPlus
<< FixItHint::CreateRemoval(CommaLoc);
}
// Eat the }.
SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
// If attributes exist after the identifier list, parse them.
ParsedAttributes attrs(AttrFactory);
MaybeParseGNUAttributes(attrs);
Actions.ActOnEnumBody(StartLoc, LBraceLoc, RBraceLoc, EnumDecl,
EnumConstantDecls.data(), EnumConstantDecls.size(),
getCurScope(), attrs.getList());
EnumScope.Exit();
Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl, RBraceLoc);
}
/// isTypeSpecifierQualifier - Return true if the current token could be the
/// start of a type-qualifier-list.
bool Parser::isTypeQualifier() const {
switch (Tok.getKind()) {
default: return false;
// type-qualifier only in OpenCL
case tok::kw_private:
return getLang().OpenCL;
// type-qualifier
case tok::kw_const:
case tok::kw_volatile:
case tok::kw_restrict:
case tok::kw___private:
case tok::kw___local:
case tok::kw___global:
case tok::kw___constant:
case tok::kw___read_only:
case tok::kw___read_write:
case tok::kw___write_only:
return true;
}
}
/// isKnownToBeTypeSpecifier - Return true if we know that the specified token
/// is definitely a type-specifier. Return false if it isn't part of a type
/// specifier or if we're not sure.
bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
switch (Tok.getKind()) {
default: return false;
// type-specifiers
case tok::kw_short:
case tok::kw_long:
case tok::kw___int64:
case tok::kw_signed:
case tok::kw_unsigned:
case tok::kw__Complex:
case tok::kw__Imaginary:
case tok::kw_void:
case tok::kw_char:
case tok::kw_wchar_t:
case tok::kw_char16_t:
case tok::kw_char32_t:
case tok::kw_int:
case tok::kw_float:
case tok::kw_double:
case tok::kw_bool:
case tok::kw__Bool:
case tok::kw__Decimal32:
case tok::kw__Decimal64:
case tok::kw__Decimal128:
case tok::kw___vector:
// struct-or-union-specifier (C99) or class-specifier (C++)
case tok::kw_class:
case tok::kw_struct:
case tok::kw_union:
// enum-specifier
case tok::kw_enum:
// typedef-name
case tok::annot_typename:
return true;
}
}
/// isTypeSpecifierQualifier - Return true if the current token could be the
/// start of a specifier-qualifier-list.
bool Parser::isTypeSpecifierQualifier() {
switch (Tok.getKind()) {
default: return false;
case tok::identifier: // foo::bar
if (TryAltiVecVectorToken())
return true;
// Fall through.
case tok::kw_typename: // typename T::type
// Annotate typenames and C++ scope specifiers. If we get one, just
// recurse to handle whatever we get.
if (TryAnnotateTypeOrScopeToken())
return true;
if (Tok.is(tok::identifier))
return false;
return isTypeSpecifierQualifier();
case tok::coloncolon: // ::foo::bar
if (NextToken().is(tok::kw_new) || // ::new
NextToken().is(tok::kw_delete)) // ::delete
return false;
if (TryAnnotateTypeOrScopeToken())
return true;
return isTypeSpecifierQualifier();
// GNU attributes support.
case tok::kw___attribute:
// GNU typeof support.
case tok::kw_typeof:
// type-specifiers
case tok::kw_short:
case tok::kw_long:
case tok::kw___int64:
case tok::kw_signed:
case tok::kw_unsigned:
case tok::kw__Complex:
case tok::kw__Imaginary:
case tok::kw_void:
case tok::kw_char:
case tok::kw_wchar_t:
case tok::kw_char16_t:
case tok::kw_char32_t:
case tok::kw_int:
case tok::kw_float:
case tok::kw_double:
case tok::kw_bool:
case tok::kw__Bool:
case tok::kw__Decimal32:
case tok::kw__Decimal64:
case tok::kw__Decimal128:
case tok::kw___vector:
// struct-or-union-specifier (C99) or class-specifier (C++)
case tok::kw_class:
case tok::kw_struct:
case tok::kw_union:
// enum-specifier
case tok::kw_enum:
// type-qualifier
case tok::kw_const:
case tok::kw_volatile:
case tok::kw_restrict:
// typedef-name
case tok::annot_typename:
return true;
// GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
case tok::less:
return getLang().ObjC1;
case tok::kw___cdecl:
case tok::kw___stdcall:
case tok::kw___fastcall:
case tok::kw___thiscall:
case tok::kw___w64:
case tok::kw___ptr64:
case tok::kw___pascal:
case tok::kw___private:
case tok::kw___local:
case tok::kw___global:
case tok::kw___constant:
case tok::kw___read_only:
case tok::kw___read_write:
case tok::kw___write_only:
return true;
case tok::kw_private:
return getLang().OpenCL;
}
}
/// isDeclarationSpecifier() - Return true if the current token is part of a
/// declaration specifier.
///
/// \param DisambiguatingWithExpression True to indicate that the purpose of
/// this check is to disambiguate between an expression and a declaration.
bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) {
switch (Tok.getKind()) {
default: return false;
case tok::kw_private:
return getLang().OpenCL;
case tok::identifier: // foo::bar
// Unfortunate hack to support "Class.factoryMethod" notation.
if (getLang().ObjC1 && NextToken().is(tok::period))
return false;
if (TryAltiVecVectorToken())
return true;
// Fall through.
case tok::kw_typename: // typename T::type
// Annotate typenames and C++ scope specifiers. If we get one, just
// recurse to handle whatever we get.
if (TryAnnotateTypeOrScopeToken())
return true;
if (Tok.is(tok::identifier))
return false;
// If we're in Objective-C and we have an Objective-C class type followed
// by an identifier and then either ':' or ']', in a place where an
// expression is permitted, then this is probably a class message send
// missing the initial '['. In this case, we won't consider this to be
// the start of a declaration.
if (DisambiguatingWithExpression &&
isStartOfObjCClassMessageMissingOpenBracket())
return false;
return isDeclarationSpecifier();
case tok::coloncolon: // ::foo::bar
if (NextToken().is(tok::kw_new) || // ::new
NextToken().is(tok::kw_delete)) // ::delete
return false;
// Annotate typenames and C++ scope specifiers. If we get one, just
// recurse to handle whatever we get.
if (TryAnnotateTypeOrScopeToken())
return true;
return isDeclarationSpecifier();
// storage-class-specifier
case tok::kw_typedef:
case tok::kw_extern:
case tok::kw___private_extern__:
case tok::kw_static:
case tok::kw_auto:
case tok::kw_register:
case tok::kw___thread:
// type-specifiers
case tok::kw_short:
case tok::kw_long:
case tok::kw___int64:
case tok::kw_signed:
case tok::kw_unsigned:
case tok::kw__Complex:
case tok::kw__Imaginary:
case tok::kw_void:
case tok::kw_char:
case tok::kw_wchar_t:
case tok::kw_char16_t:
case tok::kw_char32_t:
case tok::kw_int:
case tok::kw_float:
case tok::kw_double:
case tok::kw_bool:
case tok::kw__Bool:
case tok::kw__Decimal32:
case tok::kw__Decimal64:
case tok::kw__Decimal128:
case tok::kw___vector:
// struct-or-union-specifier (C99) or class-specifier (C++)
case tok::kw_class:
case tok::kw_struct:
case tok::kw_union:
// enum-specifier
case tok::kw_enum:
// type-qualifier
case tok::kw_const:
case tok::kw_volatile:
case tok::kw_restrict:
// function-specifier
case tok::kw_inline:
case tok::kw_virtual:
case tok::kw_explicit:
// static_assert-declaration
case tok::kw__Static_assert:
// GNU typeof support.
case tok::kw_typeof:
// GNU attributes.
case tok::kw___attribute:
return true;
// GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
case tok::less:
return getLang().ObjC1;
// typedef-name
case tok::annot_typename:
return !DisambiguatingWithExpression ||
!isStartOfObjCClassMessageMissingOpenBracket();
case tok::kw___declspec:
case tok::kw___cdecl:
case tok::kw___stdcall:
case tok::kw___fastcall:
case tok::kw___thiscall:
case tok::kw___w64:
case tok::kw___ptr64:
case tok::kw___forceinline:
case tok::kw___pascal:
case tok::kw___private:
case tok::kw___local:
case tok::kw___global:
case tok::kw___constant:
case tok::kw___read_only:
case tok::kw___read_write:
case tok::kw___write_only:
return true;
}
}
bool Parser::isConstructorDeclarator() {
TentativeParsingAction TPA(*this);
// Parse the C++ scope specifier.
CXXScopeSpec SS;
if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(), true)) {
TPA.Revert();
return false;
}
// Parse the constructor name.
if (Tok.is(tok::identifier) || Tok.is(tok::annot_template_id)) {
// We already know that we have a constructor name; just consume
// the token.
ConsumeToken();
} else {
TPA.Revert();
return false;
}
// Current class name must be followed by a left parentheses.
if (Tok.isNot(tok::l_paren)) {
TPA.Revert();
return false;
}
ConsumeParen();
// A right parentheses or ellipsis signals that we have a constructor.
if (Tok.is(tok::r_paren) || Tok.is(tok::ellipsis)) {
TPA.Revert();
return true;
}
// If we need to, enter the specified scope.
DeclaratorScopeObj DeclScopeObj(*this, SS);
if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
DeclScopeObj.EnterDeclaratorScope();
// Optionally skip Microsoft attributes.
ParsedAttributes Attrs(AttrFactory);
MaybeParseMicrosoftAttributes(Attrs);
// Check whether the next token(s) are part of a declaration
// specifier, in which case we have the start of a parameter and,
// therefore, we know that this is a constructor.
bool IsConstructor = isDeclarationSpecifier();
TPA.Revert();
return IsConstructor;
}
/// ParseTypeQualifierListOpt
/// type-qualifier-list: [C99 6.7.5]
/// type-qualifier
/// [vendor] attributes
/// [ only if VendorAttributesAllowed=true ]
/// type-qualifier-list type-qualifier
/// [vendor] type-qualifier-list attributes
/// [ only if VendorAttributesAllowed=true ]
/// [C++0x] attribute-specifier[opt] is allowed before cv-qualifier-seq
/// [ only if CXX0XAttributesAllowed=true ]
/// Note: vendor can be GNU, MS, etc.
///
void Parser::ParseTypeQualifierListOpt(DeclSpec &DS,
bool VendorAttributesAllowed,
bool CXX0XAttributesAllowed) {
if (getLang().CPlusPlus0x && isCXX0XAttributeSpecifier()) {
SourceLocation Loc = Tok.getLocation();
ParsedAttributesWithRange attrs(AttrFactory);
ParseCXX0XAttributes(attrs);
if (CXX0XAttributesAllowed)
DS.takeAttributesFrom(attrs);
else
Diag(Loc, diag::err_attributes_not_allowed);
}
SourceLocation EndLoc;
while (1) {
bool isInvalid = false;
const char *PrevSpec = 0;
unsigned DiagID = 0;
SourceLocation Loc = Tok.getLocation();
switch (Tok.getKind()) {
case tok::code_completion:
Actions.CodeCompleteTypeQualifiers(DS);
ConsumeCodeCompletionToken();
break;
case tok::kw_const:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_const , Loc, PrevSpec, DiagID,
getLang());
break;
case tok::kw_volatile:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
getLang());
break;
case tok::kw_restrict:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
getLang());
break;
// OpenCL qualifiers:
case tok::kw_private:
if (!getLang().OpenCL)
goto DoneWithTypeQuals;
case tok::kw___private:
case tok::kw___global:
case tok::kw___local:
case tok::kw___constant:
case tok::kw___read_only:
case tok::kw___write_only:
case tok::kw___read_write:
ParseOpenCLQualifiers(DS);
break;
case tok::kw___w64:
case tok::kw___ptr64:
case tok::kw___cdecl:
case tok::kw___stdcall:
case tok::kw___fastcall:
case tok::kw___thiscall:
if (VendorAttributesAllowed) {
ParseMicrosoftTypeAttributes(DS.getAttributes());
continue;
}
goto DoneWithTypeQuals;
case tok::kw___pascal:
if (VendorAttributesAllowed) {
ParseBorlandTypeAttributes(DS.getAttributes());
continue;
}
goto DoneWithTypeQuals;
case tok::kw___attribute:
if (VendorAttributesAllowed) {
ParseGNUAttributes(DS.getAttributes());
continue; // do *not* consume the next token!
}
// otherwise, FALL THROUGH!
default:
DoneWithTypeQuals:
// If this is not a type-qualifier token, we're done reading type
// qualifiers. First verify that DeclSpec's are consistent.
DS.Finish(Diags, PP);
if (EndLoc.isValid())
DS.SetRangeEnd(EndLoc);
return;
}
// If the specifier combination wasn't legal, issue a diagnostic.
if (isInvalid) {
assert(PrevSpec && "Method did not return previous specifier!");
Diag(Tok, DiagID) << PrevSpec;
}
EndLoc = ConsumeToken();
}
}
/// ParseDeclarator - Parse and verify a newly-initialized declarator.
///
void Parser::ParseDeclarator(Declarator &D) {
/// This implements the 'declarator' production in the C grammar, then checks
/// for well-formedness and issues diagnostics.
ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
}
/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
/// is parsed by the function passed to it. Pass null, and the direct-declarator
/// isn't parsed at all, making this function effectively parse the C++
/// ptr-operator production.
///
/// declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
/// [C] pointer[opt] direct-declarator
/// [C++] direct-declarator
/// [C++] ptr-operator declarator
///
/// pointer: [C99 6.7.5]
/// '*' type-qualifier-list[opt]
/// '*' type-qualifier-list[opt] pointer
///
/// ptr-operator:
/// '*' cv-qualifier-seq[opt]
/// '&'
/// [C++0x] '&&'
/// [GNU] '&' restrict[opt] attributes[opt]
/// [GNU?] '&&' restrict[opt] attributes[opt]
/// '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
void Parser::ParseDeclaratorInternal(Declarator &D,
DirectDeclParseFunction DirectDeclParser) {
if (Diags.hasAllExtensionsSilenced())
D.setExtension();
// C++ member pointers start with a '::' or a nested-name.
// Member pointers get special handling, since there's no place for the
// scope spec in the generic path below.
if (getLang().CPlusPlus &&
(Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
Tok.is(tok::annot_cxxscope))) {
CXXScopeSpec SS;
ParseOptionalCXXScopeSpecifier(SS, ParsedType(), true); // ignore fail
if (SS.isNotEmpty()) {
if (Tok.isNot(tok::star)) {
// The scope spec really belongs to the direct-declarator.
D.getCXXScopeSpec() = SS;
if (DirectDeclParser)
(this->*DirectDeclParser)(D);
return;
}
SourceLocation Loc = ConsumeToken();
D.SetRangeEnd(Loc);
DeclSpec DS(AttrFactory);
ParseTypeQualifierListOpt(DS);
D.ExtendWithDeclSpec(DS);
// Recurse to parse whatever is left.
ParseDeclaratorInternal(D, DirectDeclParser);
// Sema will have to catch (syntactically invalid) pointers into global
// scope. It has to catch pointers into namespace scope anyway.
D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
Loc),
DS.getAttributes(),
/* Don't replace range end. */SourceLocation());
return;
}
}
tok::TokenKind Kind = Tok.getKind();
// Not a pointer, C++ reference, or block.
if (Kind != tok::star && Kind != tok::caret &&
(Kind != tok::amp || !getLang().CPlusPlus) &&
// We parse rvalue refs in C++03, because otherwise the errors are scary.
(Kind != tok::ampamp || !getLang().CPlusPlus)) {
if (DirectDeclParser)
(this->*DirectDeclParser)(D);
return;
}
// Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
// '&&' -> rvalue reference
SourceLocation Loc = ConsumeToken(); // Eat the *, ^, & or &&.
D.SetRangeEnd(Loc);
if (Kind == tok::star || Kind == tok::caret) {
// Is a pointer.
DeclSpec DS(AttrFactory);
ParseTypeQualifierListOpt(DS);
D.ExtendWithDeclSpec(DS);
// Recursively parse the declarator.
ParseDeclaratorInternal(D, DirectDeclParser);
if (Kind == tok::star)
// Remember that we parsed a pointer type, and remember the type-quals.
D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
DS.getConstSpecLoc(),
DS.getVolatileSpecLoc(),
DS.getRestrictSpecLoc()),
DS.getAttributes(),
SourceLocation());
else
// Remember that we parsed a Block type, and remember the type-quals.
D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
Loc),
DS.getAttributes(),
SourceLocation());
} else {
// Is a reference
DeclSpec DS(AttrFactory);
// Complain about rvalue references in C++03, but then go on and build
// the declarator.
if (Kind == tok::ampamp && !getLang().CPlusPlus0x)
Diag(Loc, diag::ext_rvalue_reference);
// C++ 8.3.2p1: cv-qualified references are ill-formed except when the
// cv-qualifiers are introduced through the use of a typedef or of a
// template type argument, in which case the cv-qualifiers are ignored.
//
// [GNU] Retricted references are allowed.
// [GNU] Attributes on references are allowed.
// [C++0x] Attributes on references are not allowed.
ParseTypeQualifierListOpt(DS, true, false);
D.ExtendWithDeclSpec(DS);
if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
Diag(DS.getConstSpecLoc(),
diag::err_invalid_reference_qualifier_application) << "const";
if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
Diag(DS.getVolatileSpecLoc(),
diag::err_invalid_reference_qualifier_application) << "volatile";
}
// Recursively parse the declarator.
ParseDeclaratorInternal(D, DirectDeclParser);
if (D.getNumTypeObjects() > 0) {
// C++ [dcl.ref]p4: There shall be no references to references.
DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
if (InnerChunk.Kind == DeclaratorChunk::Reference) {
if (const IdentifierInfo *II = D.getIdentifier())
Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
<< II;
else
Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
<< "type name";
// Once we've complained about the reference-to-reference, we
// can go ahead and build the (technically ill-formed)
// declarator: reference collapsing will take care of it.
}
}
// Remember that we parsed a reference type. It doesn't have type-quals.
D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
Kind == tok::amp),
DS.getAttributes(),
SourceLocation());
}
}
/// ParseDirectDeclarator
/// direct-declarator: [C99 6.7.5]
/// [C99] identifier
/// '(' declarator ')'
/// [GNU] '(' attributes declarator ')'
/// [C90] direct-declarator '[' constant-expression[opt] ']'
/// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
/// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
/// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']'
/// [C99] direct-declarator '[' type-qual-list[opt] '*' ']'
/// direct-declarator '(' parameter-type-list ')'
/// direct-declarator '(' identifier-list[opt] ')'
/// [GNU] direct-declarator '(' parameter-forward-declarations
/// parameter-type-list[opt] ')'
/// [C++] direct-declarator '(' parameter-declaration-clause ')'
/// cv-qualifier-seq[opt] exception-specification[opt]
/// [C++] declarator-id
///
/// declarator-id: [C++ 8]
/// '...'[opt] id-expression
/// '::'[opt] nested-name-specifier[opt] type-name
///
/// id-expression: [C++ 5.1]
/// unqualified-id
/// qualified-id
///
/// unqualified-id: [C++ 5.1]
/// identifier
/// operator-function-id
/// conversion-function-id
/// '~' class-name
/// template-id
///
void Parser::ParseDirectDeclarator(Declarator &D) {
DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
if (getLang().CPlusPlus && D.mayHaveIdentifier()) {
// ParseDeclaratorInternal might already have parsed the scope.
if (D.getCXXScopeSpec().isEmpty()) {
ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), ParsedType(), true);
}
if (D.getCXXScopeSpec().isValid()) {
if (Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
// Change the declaration context for name lookup, until this function
// is exited (and the declarator has been parsed).
DeclScopeObj.EnterDeclaratorScope();
}
// C++0x [dcl.fct]p14:
// There is a syntactic ambiguity when an ellipsis occurs at the end
// of a parameter-declaration-clause without a preceding comma. In
// this case, the ellipsis is parsed as part of the
// abstract-declarator if the type of the parameter names a template
// parameter pack that has not been expanded; otherwise, it is parsed
// as part of the parameter-declaration-clause.
if (Tok.is(tok::ellipsis) &&
!((D.getContext() == Declarator::PrototypeContext ||
D.getContext() == Declarator::BlockLiteralContext) &&
NextToken().is(tok::r_paren) &&
!Actions.containsUnexpandedParameterPacks(D)))
D.setEllipsisLoc(ConsumeToken());
if (Tok.is(tok::identifier) || Tok.is(tok::kw_operator) ||
Tok.is(tok::annot_template_id) || Tok.is(tok::tilde)) {
// We found something that indicates the start of an unqualified-id.
// Parse that unqualified-id.
bool AllowConstructorName;
if (D.getDeclSpec().hasTypeSpecifier())
AllowConstructorName = false;
else if (D.getCXXScopeSpec().isSet())
AllowConstructorName =
(D.getContext() == Declarator::FileContext ||
(D.getContext() == Declarator::MemberContext &&
D.getDeclSpec().isFriendSpecified()));
else
AllowConstructorName = (D.getContext() == Declarator::MemberContext);
if (ParseUnqualifiedId(D.getCXXScopeSpec(),
/*EnteringContext=*/true,
/*AllowDestructorName=*/true,
AllowConstructorName,
ParsedType(),
D.getName()) ||
// Once we're past the identifier, if the scope was bad, mark the
// whole declarator bad.
D.getCXXScopeSpec().isInvalid()) {
D.SetIdentifier(0, Tok.getLocation());
D.setInvalidType(true);
} else {
// Parsed the unqualified-id; update range information and move along.
if (D.getSourceRange().getBegin().isInvalid())
D.SetRangeBegin(D.getName().getSourceRange().getBegin());
D.SetRangeEnd(D.getName().getSourceRange().getEnd());
}
goto PastIdentifier;
}
} else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
assert(!getLang().CPlusPlus &&
"There's a C++-specific check for tok::identifier above");
assert(Tok.getIdentifierInfo() && "Not an identifier?");
D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
ConsumeToken();
goto PastIdentifier;
}
if (Tok.is(tok::l_paren)) {
// direct-declarator: '(' declarator ')'
// direct-declarator: '(' attributes declarator ')'
// Example: 'char (*X)' or 'int (*XX)(void)'
ParseParenDeclarator(D);
// If the declarator was parenthesized, we entered the declarator
// scope when parsing the parenthesized declarator, then exited
// the scope already. Re-enter the scope, if we need to.
if (D.getCXXScopeSpec().isSet()) {
// If there was an error parsing parenthesized declarator, declarator
// scope may have been enterred before. Don't do it again.
if (!D.isInvalidType() &&
Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
// Change the declaration context for name lookup, until this function
// is exited (and the declarator has been parsed).
DeclScopeObj.EnterDeclaratorScope();
}
} else if (D.mayOmitIdentifier()) {
// This could be something simple like "int" (in which case the declarator
// portion is empty), if an abstract-declarator is allowed.
D.SetIdentifier(0, Tok.getLocation());
} else {
if (D.getContext() == Declarator::MemberContext)
Diag(Tok, diag::err_expected_member_name_or_semi)
<< D.getDeclSpec().getSourceRange();
else if (getLang().CPlusPlus)
Diag(Tok, diag::err_expected_unqualified_id) << getLang().CPlusPlus;
else
Diag(Tok, diag::err_expected_ident_lparen);
D.SetIdentifier(0, Tok.getLocation());
D.setInvalidType(true);
}
PastIdentifier:
assert(D.isPastIdentifier() &&
"Haven't past the location of the identifier yet?");
// Don't parse attributes unless we have an identifier.
if (D.getIdentifier())
MaybeParseCXX0XAttributes(D);
while (1) {
if (Tok.is(tok::l_paren)) {
// The paren may be part of a C++ direct initializer, eg. "int x(1);".
// In such a case, check if we actually have a function declarator; if it
// is not, the declarator has been fully parsed.
if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
// When not in file scope, warn for ambiguous function declarators, just
// in case the author intended it as a variable definition.
bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
if (!isCXXFunctionDeclarator(warnIfAmbiguous))
break;
}
ParsedAttributes attrs(AttrFactory);
ParseFunctionDeclarator(ConsumeParen(), D, attrs);
} else if (Tok.is(tok::l_square)) {
ParseBracketDeclarator(D);
} else {
break;
}
}
}
/// ParseParenDeclarator - We parsed the declarator D up to a paren. This is
/// only called before the identifier, so these are most likely just grouping
/// parens for precedence. If we find that these are actually function
/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
///
/// direct-declarator:
/// '(' declarator ')'
/// [GNU] '(' attributes declarator ')'
/// direct-declarator '(' parameter-type-list ')'
/// direct-declarator '(' identifier-list[opt] ')'
/// [GNU] direct-declarator '(' parameter-forward-declarations
/// parameter-type-list[opt] ')'
///
void Parser::ParseParenDeclarator(Declarator &D) {
SourceLocation StartLoc = ConsumeParen();
assert(!D.isPastIdentifier() && "Should be called before passing identifier");
// Eat any attributes before we look at whether this is a grouping or function
// declarator paren. If this is a grouping paren, the attribute applies to
// the type being built up, for example:
// int (__attribute__(()) *x)(long y)
// If this ends up not being a grouping paren, the attribute applies to the
// first argument, for example:
// int (__attribute__(()) int x)
// In either case, we need to eat any attributes to be able to determine what
// sort of paren this is.
//
ParsedAttributes attrs(AttrFactory);
bool RequiresArg = false;
if (Tok.is(tok::kw___attribute)) {
ParseGNUAttributes(attrs);
// We require that the argument list (if this is a non-grouping paren) be
// present even if the attribute list was empty.
RequiresArg = true;
}
// Eat any Microsoft extensions.
if (Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___fastcall) ||
Tok.is(tok::kw___w64) || Tok.is(tok::kw___ptr64)) {
ParseMicrosoftTypeAttributes(attrs);
}
// Eat any Borland extensions.
if (Tok.is(tok::kw___pascal))
ParseBorlandTypeAttributes(attrs);
// If we haven't past the identifier yet (or where the identifier would be
// stored, if this is an abstract declarator), then this is probably just
// grouping parens. However, if this could be an abstract-declarator, then
// this could also be the start of function arguments (consider 'void()').
bool isGrouping;
if (!D.mayOmitIdentifier()) {
// If this can't be an abstract-declarator, this *must* be a grouping
// paren, because we haven't seen the identifier yet.
isGrouping = true;
} else if (Tok.is(tok::r_paren) || // 'int()' is a function.
(getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
isDeclarationSpecifier()) { // 'int(int)' is a function.
// This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
// considered to be a type, not a K&R identifier-list.
isGrouping = false;
} else {
// Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
isGrouping = true;
}
// If this is a grouping paren, handle:
// direct-declarator: '(' declarator ')'
// direct-declarator: '(' attributes declarator ')'
if (isGrouping) {
bool hadGroupingParens = D.hasGroupingParens();
D.setGroupingParens(true);
ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
// Match the ')'.
SourceLocation EndLoc = MatchRHSPunctuation(tok::r_paren, StartLoc);
D.AddTypeInfo(DeclaratorChunk::getParen(StartLoc, EndLoc),
attrs, EndLoc);
D.setGroupingParens(hadGroupingParens);
return;
}
// Okay, if this wasn't a grouping paren, it must be the start of a function
// argument list. Recognize that this declarator will never have an
// identifier (and remember where it would have been), then call into
// ParseFunctionDeclarator to handle of argument list.
D.SetIdentifier(0, Tok.getLocation());
ParseFunctionDeclarator(StartLoc, D, attrs, RequiresArg);
}
/// ParseFunctionDeclarator - We are after the identifier and have parsed the
/// declarator D up to a paren, which indicates that we are parsing function
/// arguments.
///
/// If AttrList is non-null, then the caller parsed those arguments immediately
/// after the open paren - they should be considered to be the first argument of
/// a parameter. If RequiresArg is true, then the first argument of the
/// function is required to be present and required to not be an identifier
/// list.
///
/// This method also handles this portion of the grammar:
/// parameter-type-list: [C99 6.7.5]
/// parameter-list
/// parameter-list ',' '...'
/// [C++] parameter-list '...'
///
/// parameter-list: [C99 6.7.5]
/// parameter-declaration
/// parameter-list ',' parameter-declaration
///
/// parameter-declaration: [C99 6.7.5]
/// declaration-specifiers declarator
/// [C++] declaration-specifiers declarator '=' assignment-expression
/// [GNU] declaration-specifiers declarator attributes
/// declaration-specifiers abstract-declarator[opt]
/// [C++] declaration-specifiers abstract-declarator[opt]
/// '=' assignment-expression
/// [GNU] declaration-specifiers abstract-declarator[opt] attributes
///
/// For C++, after the parameter-list, it also parses "cv-qualifier-seq[opt]",
/// C++0x "ref-qualifier[opt]" and "exception-specification[opt]".
///
/// [C++0x] exception-specification:
/// dynamic-exception-specification
/// noexcept-specification
///
void Parser::ParseFunctionDeclarator(SourceLocation LParenLoc, Declarator &D,
ParsedAttributes &attrs,
bool RequiresArg) {
// lparen is already consumed!
assert(D.isPastIdentifier() && "Should not call before identifier!");
ParsedType TrailingReturnType;
// This parameter list may be empty.
if (Tok.is(tok::r_paren)) {
if (RequiresArg)
Diag(Tok, diag::err_argument_required_after_attribute);
SourceLocation EndLoc = ConsumeParen(); // Eat the closing ')'.
// cv-qualifier-seq[opt].
DeclSpec DS(AttrFactory);
SourceLocation RefQualifierLoc;
bool RefQualifierIsLValueRef = true;
ExceptionSpecificationType ESpecType = EST_None;
SourceRange ESpecRange;
llvm::SmallVector<ParsedType, 2> DynamicExceptions;
llvm::SmallVector<SourceRange, 2> DynamicExceptionRanges;
ExprResult NoexceptExpr;
if (getLang().CPlusPlus) {
MaybeParseCXX0XAttributes(attrs);
ParseTypeQualifierListOpt(DS, false /*no attributes*/);
if (!DS.getSourceRange().getEnd().isInvalid())
EndLoc = DS.getSourceRange().getEnd();
// Parse ref-qualifier[opt]
if (Tok.is(tok::amp) || Tok.is(tok::ampamp)) {
if (!getLang().CPlusPlus0x)
Diag(Tok, diag::ext_ref_qualifier);
RefQualifierIsLValueRef = Tok.is(tok::amp);
RefQualifierLoc = ConsumeToken();
EndLoc = RefQualifierLoc;
}
// Parse exception-specification[opt].
ESpecType = MaybeParseExceptionSpecification(ESpecRange,
DynamicExceptions,
DynamicExceptionRanges,
NoexceptExpr);
if (ESpecType != EST_None)
EndLoc = ESpecRange.getEnd();
// Parse trailing-return-type.
if (getLang().CPlusPlus0x && Tok.is(tok::arrow)) {
TrailingReturnType = ParseTrailingReturnType().get();
}
}
// Remember that we parsed a function type, and remember the attributes.
// int() -> no prototype, no '...'.
D.AddTypeInfo(DeclaratorChunk::getFunction(/*prototype*/getLang().CPlusPlus,
/*variadic*/ false,
SourceLocation(),
/*arglist*/ 0, 0,
DS.getTypeQualifiers(),
RefQualifierIsLValueRef,
RefQualifierLoc,
ESpecType, ESpecRange.getBegin(),
DynamicExceptions.data(),
DynamicExceptionRanges.data(),
DynamicExceptions.size(),
NoexceptExpr.isUsable() ?
NoexceptExpr.get() : 0,
LParenLoc, EndLoc, D,
TrailingReturnType),
attrs, EndLoc);
return;
}
// Alternatively, this parameter list may be an identifier list form for a
// K&R-style function: void foo(a,b,c)
if (!getLang().CPlusPlus && Tok.is(tok::identifier)
&& !TryAltiVecVectorToken()) {
if (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename)) {
// K&R identifier lists can't have typedefs as identifiers, per
// C99 6.7.5.3p11.
if (RequiresArg)
Diag(Tok, diag::err_argument_required_after_attribute);
// Identifier list. Note that '(' identifier-list ')' is only allowed for
// normal declarators, not for abstract-declarators. Get the first
// identifier.
Token FirstTok = Tok;
ConsumeToken(); // eat the first identifier.
// Identifier lists follow a really simple grammar: the identifiers can
// be followed *only* by a ", moreidentifiers" or ")". However, K&R
// identifier lists are really rare in the brave new modern world, and it
// is very common for someone to typo a type in a non-k&r style list. If
// we are presented with something like: "void foo(intptr x, float y)",
// we don't want to start parsing the function declarator as though it is
// a K&R style declarator just because intptr is an invalid type.
//
// To handle this, we check to see if the token after the first identifier
// is a "," or ")". Only if so, do we parse it as an identifier list.
if (Tok.is(tok::comma) || Tok.is(tok::r_paren))
return ParseFunctionDeclaratorIdentifierList(LParenLoc,
FirstTok.getIdentifierInfo(),
FirstTok.getLocation(), D);
// If we get here, the code is invalid. Push the first identifier back
// into the token stream and parse the first argument as an (invalid)
// normal argument declarator.
PP.EnterToken(Tok);
Tok = FirstTok;
}
}
// Finally, a normal, non-empty parameter type list.
// Build up an array of information about the parsed arguments.
llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
// Enter function-declaration scope, limiting any declarators to the
// function prototype scope, including parameter declarators.
ParseScope PrototypeScope(this,
Scope::FunctionPrototypeScope|Scope::DeclScope);
bool IsVariadic = false;
SourceLocation EllipsisLoc;
while (1) {
if (Tok.is(tok::ellipsis)) {
IsVariadic = true;
EllipsisLoc = ConsumeToken(); // Consume the ellipsis.
break;
}
// Parse the declaration-specifiers.
// Just use the ParsingDeclaration "scope" of the declarator.
DeclSpec DS(AttrFactory);
// Skip any Microsoft attributes before a param.
if (getLang().Microsoft && Tok.is(tok::l_square))
ParseMicrosoftAttributes(DS.getAttributes());
SourceLocation DSStart = Tok.getLocation();
// If the caller parsed attributes for the first argument, add them now.
// Take them so that we only apply the attributes to the first parameter.
DS.takeAttributesFrom(attrs);
ParseDeclarationSpecifiers(DS);
// Parse the declarator. This is "PrototypeContext", because we must
// accept either 'declarator' or 'abstract-declarator' here.
Declarator ParmDecl(DS, Declarator::PrototypeContext);
ParseDeclarator(ParmDecl);
// Parse GNU attributes, if present.
MaybeParseGNUAttributes(ParmDecl);
// Remember this parsed parameter in ParamInfo.
IdentifierInfo *ParmII = ParmDecl.getIdentifier();
// DefArgToks is used when the parsing of default arguments needs
// to be delayed.
CachedTokens *DefArgToks = 0;
// If no parameter was specified, verify that *something* was specified,
// otherwise we have a missing type and identifier.
if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 &&
ParmDecl.getNumTypeObjects() == 0) {
// Completely missing, emit error.
Diag(DSStart, diag::err_missing_param);
} else {
// Otherwise, we have something. Add it and let semantic analysis try
// to grok it and add the result to the ParamInfo we are building.
// Inform the actions module about the parameter declarator, so it gets
// added to the current scope.
Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDecl);
// Parse the default argument, if any. We parse the default
// arguments in all dialects; the semantic analysis in
// ActOnParamDefaultArgument will reject the default argument in
// C.
if (Tok.is(tok::equal)) {
SourceLocation EqualLoc = Tok.getLocation();
// Parse the default argument
if (D.getContext() == Declarator::MemberContext) {
// If we're inside a class definition, cache the tokens
// corresponding to the default argument. We'll actually parse
// them when we see the end of the class definition.
// FIXME: Templates will require something similar.
// FIXME: Can we use a smart pointer for Toks?
DefArgToks = new CachedTokens;
if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
/*StopAtSemi=*/true,
/*ConsumeFinalToken=*/false)) {
delete DefArgToks;
DefArgToks = 0;
Actions.ActOnParamDefaultArgumentError(Param);
} else {
// Mark the end of the default argument so that we know when to
// stop when we parse it later on.
Token DefArgEnd;
DefArgEnd.startToken();
DefArgEnd.setKind(tok::cxx_defaultarg_end);
DefArgEnd.setLocation(Tok.getLocation());
DefArgToks->push_back(DefArgEnd);
Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
(*DefArgToks)[1].getLocation());
}
} else {
// Consume the '='.
ConsumeToken();
// The argument isn't actually potentially evaluated unless it is
// used.
EnterExpressionEvaluationContext Eval(Actions,
Sema::PotentiallyEvaluatedIfUsed);
ExprResult DefArgResult(ParseAssignmentExpression());
if (DefArgResult.isInvalid()) {
Actions.ActOnParamDefaultArgumentError(Param);
SkipUntil(tok::comma, tok::r_paren, true, true);
} else {
// Inform the actions module about the default argument
Actions.ActOnParamDefaultArgument(Param, EqualLoc,
DefArgResult.take());
}
}
}
ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
ParmDecl.getIdentifierLoc(), Param,
DefArgToks));
}
// If the next token is a comma, consume it and keep reading arguments.
if (Tok.isNot(tok::comma)) {
if (Tok.is(tok::ellipsis)) {
IsVariadic = true;
EllipsisLoc = ConsumeToken(); // Consume the ellipsis.
if (!getLang().CPlusPlus) {
// We have ellipsis without a preceding ',', which is ill-formed
// in C. Complain and provide the fix.
Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
<< FixItHint::CreateInsertion(EllipsisLoc, ", ");
}
}
break;
}
// Consume the comma.
ConsumeToken();
}
// If we have the closing ')', eat it.
SourceLocation EndLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
DeclSpec DS(AttrFactory);
SourceLocation RefQualifierLoc;
bool RefQualifierIsLValueRef = true;
ExceptionSpecificationType ESpecType = EST_None;
SourceRange ESpecRange;
llvm::SmallVector<ParsedType, 2> DynamicExceptions;
llvm::SmallVector<SourceRange, 2> DynamicExceptionRanges;
ExprResult NoexceptExpr;
if (getLang().CPlusPlus) {
MaybeParseCXX0XAttributes(attrs);
// Parse cv-qualifier-seq[opt].
ParseTypeQualifierListOpt(DS, false /*no attributes*/);
if (!DS.getSourceRange().getEnd().isInvalid())
EndLoc = DS.getSourceRange().getEnd();
// Parse ref-qualifier[opt]
if (Tok.is(tok::amp) || Tok.is(tok::ampamp)) {
if (!getLang().CPlusPlus0x)
Diag(Tok, diag::ext_ref_qualifier);
RefQualifierIsLValueRef = Tok.is(tok::amp);
RefQualifierLoc = ConsumeToken();
EndLoc = RefQualifierLoc;
}
// FIXME: We should leave the prototype scope before parsing the exception
// specification, and then reenter it when parsing the trailing return type.
// FIXMEFIXME: Why? That wouldn't be right for the noexcept clause.
// Parse exception-specification[opt].
ESpecType = MaybeParseExceptionSpecification(ESpecRange,
DynamicExceptions,
DynamicExceptionRanges,
NoexceptExpr);
if (ESpecType != EST_None)
EndLoc = ESpecRange.getEnd();
// Parse trailing-return-type.
if (getLang().CPlusPlus0x && Tok.is(tok::arrow)) {
TrailingReturnType = ParseTrailingReturnType().get();
}
}
// Leave prototype scope.
PrototypeScope.Exit();
// Remember that we parsed a function type, and remember the attributes.
D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/true, IsVariadic,
EllipsisLoc,
ParamInfo.data(), ParamInfo.size(),
DS.getTypeQualifiers(),
RefQualifierIsLValueRef,
RefQualifierLoc,
ESpecType, ESpecRange.getBegin(),
DynamicExceptions.data(),
DynamicExceptionRanges.data(),
DynamicExceptions.size(),
NoexceptExpr.isUsable() ?
NoexceptExpr.get() : 0,
LParenLoc, EndLoc, D,
TrailingReturnType),
attrs, EndLoc);
}
/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
/// we found a K&R-style identifier list instead of a type argument list. The
/// first identifier has already been consumed, and the current token is the
/// token right after it.
///
/// identifier-list: [C99 6.7.5]
/// identifier
/// identifier-list ',' identifier
///
void Parser::ParseFunctionDeclaratorIdentifierList(SourceLocation LParenLoc,
IdentifierInfo *FirstIdent,
SourceLocation FirstIdentLoc,
Declarator &D) {
// Build up an array of information about the parsed arguments.
llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
// If there was no identifier specified for the declarator, either we are in
// an abstract-declarator, or we are in a parameter declarator which was found
// to be abstract. In abstract-declarators, identifier lists are not valid:
// diagnose this.
if (!D.getIdentifier())
Diag(FirstIdentLoc, diag::ext_ident_list_in_param);
// The first identifier was already read, and is known to be the first
// identifier in the list. Remember this identifier in ParamInfo.
ParamsSoFar.insert(FirstIdent);
ParamInfo.push_back(DeclaratorChunk::ParamInfo(FirstIdent, FirstIdentLoc, 0));
while (Tok.is(tok::comma)) {
// Eat the comma.
ConsumeToken();
// If this isn't an identifier, report the error and skip until ')'.
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_expected_ident);
SkipUntil(tok::r_paren);
return;
}
IdentifierInfo *ParmII = Tok.getIdentifierInfo();
// Reject 'typedef int y; int test(x, y)', but continue parsing.
if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
// Verify that the argument identifier has not already been mentioned.
if (!ParamsSoFar.insert(ParmII)) {
Diag(Tok, diag::err_param_redefinition) << ParmII;
} else {
// Remember this identifier in ParamInfo.
ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
Tok.getLocation(),
0));
}
// Eat the identifier.
ConsumeToken();
}
// If we have the closing ')', eat it and we're done.
SourceLocation RLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
// Remember that we parsed a function type, and remember the attributes. This
// function type is always a K&R style function type, which is not varargs and
// has no prototype.
ParsedAttributes attrs(AttrFactory);
D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/false, /*varargs*/false,
SourceLocation(),
&ParamInfo[0], ParamInfo.size(),
/*TypeQuals*/0,
true, SourceLocation(),
EST_None, SourceLocation(), 0, 0,
0, 0, LParenLoc, RLoc, D),
attrs, RLoc);
}
/// [C90] direct-declarator '[' constant-expression[opt] ']'
/// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
/// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
/// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']'
/// [C99] direct-declarator '[' type-qual-list[opt] '*' ']'
void Parser::ParseBracketDeclarator(Declarator &D) {
SourceLocation StartLoc = ConsumeBracket();
// C array syntax has many features, but by-far the most common is [] and [4].
// This code does a fast path to handle some of the most obvious cases.
if (Tok.getKind() == tok::r_square) {
SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
ParsedAttributes attrs(AttrFactory);
MaybeParseCXX0XAttributes(attrs);
// Remember that we parsed the empty array type.
ExprResult NumElements;
D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0,
StartLoc, EndLoc),
attrs, EndLoc);
return;
} else if (Tok.getKind() == tok::numeric_constant &&
GetLookAheadToken(1).is(tok::r_square)) {
// [4] is very common. Parse the numeric constant expression.
ExprResult ExprRes(Actions.ActOnNumericConstant(Tok));
ConsumeToken();
SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
ParsedAttributes attrs(AttrFactory);
MaybeParseCXX0XAttributes(attrs);
// Remember that we parsed a array type, and remember its features.
D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0,
ExprRes.release(),
StartLoc, EndLoc),
attrs, EndLoc);
return;
}
// If valid, this location is the position where we read the 'static' keyword.
SourceLocation StaticLoc;
if (Tok.is(tok::kw_static))
StaticLoc = ConsumeToken();
// If there is a type-qualifier-list, read it now.
// Type qualifiers in an array subscript are a C99 feature.
DeclSpec DS(AttrFactory);
ParseTypeQualifierListOpt(DS, false /*no attributes*/);
// If we haven't already read 'static', check to see if there is one after the
// type-qualifier-list.
if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
StaticLoc = ConsumeToken();
// Handle "direct-declarator [ type-qual-list[opt] * ]".
bool isStar = false;
ExprResult NumElements;
// Handle the case where we have '[*]' as the array size. However, a leading
// star could be the start of an expression, for example 'X[*p + 4]'. Verify
// the the token after the star is a ']'. Since stars in arrays are
// infrequent, use of lookahead is not costly here.
if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
ConsumeToken(); // Eat the '*'.
if (StaticLoc.isValid()) {
Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
StaticLoc = SourceLocation(); // Drop the static.
}
isStar = true;
} else if (Tok.isNot(tok::r_square)) {
// Note, in C89, this production uses the constant-expr production instead
// of assignment-expr. The only difference is that assignment-expr allows
// things like '=' and '*='. Sema rejects these in C89 mode because they
// are not i-c-e's, so we don't need to distinguish between the two here.
// Parse the constant-expression or assignment-expression now (depending
// on dialect).
if (getLang().CPlusPlus)
NumElements = ParseConstantExpression();
else
NumElements = ParseAssignmentExpression();
}
// If there was an error parsing the assignment-expression, recover.
if (NumElements.isInvalid()) {
D.setInvalidType(true);
// If the expression was invalid, skip it.
SkipUntil(tok::r_square);
return;
}
SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
ParsedAttributes attrs(AttrFactory);
MaybeParseCXX0XAttributes(attrs);
// Remember that we parsed a array type, and remember its features.
D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
StaticLoc.isValid(), isStar,
NumElements.release(),
StartLoc, EndLoc),
attrs, EndLoc);
}
/// [GNU] typeof-specifier:
/// typeof ( expressions )
/// typeof ( type-name )
/// [GNU/C++] typeof unary-expression
///
void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
Token OpTok = Tok;
SourceLocation StartLoc = ConsumeToken();
const bool hasParens = Tok.is(tok::l_paren);
bool isCastExpr;
ParsedType CastTy;
SourceRange CastRange;
ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr,
CastTy, CastRange);
if (hasParens)
DS.setTypeofParensRange(CastRange);
if (CastRange.getEnd().isInvalid())
// FIXME: Not accurate, the range gets one token more than it should.
DS.SetRangeEnd(Tok.getLocation());
else
DS.SetRangeEnd(CastRange.getEnd());
if (isCastExpr) {
if (!CastTy) {
DS.SetTypeSpecError();
return;
}
const char *PrevSpec = 0;
unsigned DiagID;
// Check for duplicate type specifiers (e.g. "int typeof(int)").
if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
DiagID, CastTy))
Diag(StartLoc, DiagID) << PrevSpec;
return;
}
// If we get here, the operand to the typeof was an expresion.
if (Operand.isInvalid()) {
DS.SetTypeSpecError();
return;
}
const char *PrevSpec = 0;
unsigned DiagID;
// Check for duplicate type specifiers (e.g. "int typeof(int)").
if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
DiagID, Operand.get()))
Diag(StartLoc, DiagID) << PrevSpec;
}
/// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
/// from TryAltiVecVectorToken.
bool Parser::TryAltiVecVectorTokenOutOfLine() {
Token Next = NextToken();
switch (Next.getKind()) {
default: return false;
case tok::kw_short:
case tok::kw_long:
case tok::kw_signed:
case tok::kw_unsigned:
case tok::kw_void:
case tok::kw_char:
case tok::kw_int:
case tok::kw_float:
case tok::kw_double:
case tok::kw_bool:
case tok::kw___pixel:
Tok.setKind(tok::kw___vector);
return true;
case tok::identifier:
if (Next.getIdentifierInfo() == Ident_pixel) {
Tok.setKind(tok::kw___vector);
return true;
}
return false;
}
}
bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
const char *&PrevSpec, unsigned &DiagID,
bool &isInvalid) {
if (Tok.getIdentifierInfo() == Ident_vector) {
Token Next = NextToken();
switch (Next.getKind()) {
case tok::kw_short:
case tok::kw_long:
case tok::kw_signed:
case tok::kw_unsigned:
case tok::kw_void:
case tok::kw_char:
case tok::kw_int:
case tok::kw_float:
case tok::kw_double:
case tok::kw_bool:
case tok::kw___pixel:
isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
return true;
case tok::identifier:
if (Next.getIdentifierInfo() == Ident_pixel) {
isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
return true;
}
break;
default:
break;
}
} else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
DS.isTypeAltiVecVector()) {
isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
return true;
}
return false;
}