llvm-project/llvm/lib/Target/ARM/ARMInstrThumb.td

1425 lines
48 KiB
TableGen

//===- ARMInstrThumb.td - Thumb support for ARM ------------*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the Thumb instruction set.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Thumb specific DAG Nodes.
//
def ARMtcall : SDNode<"ARMISD::tCALL", SDT_ARMcall,
[SDNPHasChain, SDNPOptInFlag, SDNPOutFlag,
SDNPVariadic]>;
def imm_neg_XFORM : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(-(int)N->getZExtValue(), MVT::i32);
}]>;
def imm_comp_XFORM : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(~((uint32_t)N->getZExtValue()), MVT::i32);
}]>;
/// imm0_7 predicate - True if the 32-bit immediate is in the range [0,7].
def imm0_7 : PatLeaf<(i32 imm), [{
return (uint32_t)N->getZExtValue() < 8;
}]>;
def imm0_7_neg : PatLeaf<(i32 imm), [{
return (uint32_t)-N->getZExtValue() < 8;
}], imm_neg_XFORM>;
def imm0_255 : PatLeaf<(i32 imm), [{
return (uint32_t)N->getZExtValue() < 256;
}]>;
def imm0_255_comp : PatLeaf<(i32 imm), [{
return ~((uint32_t)N->getZExtValue()) < 256;
}]>;
def imm8_255 : PatLeaf<(i32 imm), [{
return (uint32_t)N->getZExtValue() >= 8 && (uint32_t)N->getZExtValue() < 256;
}]>;
def imm8_255_neg : PatLeaf<(i32 imm), [{
unsigned Val = -N->getZExtValue();
return Val >= 8 && Val < 256;
}], imm_neg_XFORM>;
// Break imm's up into two pieces: an immediate + a left shift. This uses
// thumb_immshifted to match and thumb_immshifted_val and thumb_immshifted_shamt
// to get the val/shift pieces.
def thumb_immshifted : PatLeaf<(imm), [{
return ARM_AM::isThumbImmShiftedVal((unsigned)N->getZExtValue());
}]>;
def thumb_immshifted_val : SDNodeXForm<imm, [{
unsigned V = ARM_AM::getThumbImmNonShiftedVal((unsigned)N->getZExtValue());
return CurDAG->getTargetConstant(V, MVT::i32);
}]>;
def thumb_immshifted_shamt : SDNodeXForm<imm, [{
unsigned V = ARM_AM::getThumbImmValShift((unsigned)N->getZExtValue());
return CurDAG->getTargetConstant(V, MVT::i32);
}]>;
// Scaled 4 immediate.
def t_imm_s4 : Operand<i32> {
let PrintMethod = "printThumbS4ImmOperand";
}
// Define Thumb specific addressing modes.
def t_bcctarget : Operand<i32> {
let EncoderMethod = "getThumbBCCTargetOpValue";
}
def t_cbtarget : Operand<i32> {
let EncoderMethod = "getThumbCBTargetOpValue";
}
def t_bltarget : Operand<i32> {
let EncoderMethod = "getThumbBLTargetOpValue";
}
def t_blxtarget : Operand<i32> {
let EncoderMethod = "getThumbBLXTargetOpValue";
}
def MemModeThumbAsmOperand : AsmOperandClass {
let Name = "MemModeThumb";
let SuperClasses = [];
}
// t_addrmode_rr := reg + reg
//
def t_addrmode_rr : Operand<i32>,
ComplexPattern<i32, 2, "SelectThumbAddrModeRR", []> {
let PrintMethod = "printThumbAddrModeRROperand";
let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg);
}
// t_addrmode_s4 := reg + reg
// reg + imm5 * 4
//
def t_addrmode_s4 : Operand<i32>,
ComplexPattern<i32, 3, "SelectThumbAddrModeS4", []> {
let EncoderMethod = "getAddrModeSOpValue";
let PrintMethod = "printThumbAddrModeS4Operand";
let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm, tGPR:$offsreg);
let ParserMatchClass = MemModeThumbAsmOperand;
}
// t_addrmode_s2 := reg + reg
// reg + imm5 * 2
//
def t_addrmode_s2 : Operand<i32>,
ComplexPattern<i32, 3, "SelectThumbAddrModeS2", []> {
let EncoderMethod = "getAddrModeSOpValue";
let PrintMethod = "printThumbAddrModeS2Operand";
let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm, tGPR:$offsreg);
let ParserMatchClass = MemModeThumbAsmOperand;
}
// t_addrmode_s1 := reg + reg
// reg + imm5
//
def t_addrmode_s1 : Operand<i32>,
ComplexPattern<i32, 3, "SelectThumbAddrModeS1", []> {
let EncoderMethod = "getAddrModeSOpValue";
let PrintMethod = "printThumbAddrModeS1Operand";
let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm, tGPR:$offsreg);
let ParserMatchClass = MemModeThumbAsmOperand;
}
// t_addrmode_sp := sp + imm8 * 4
//
def t_addrmode_sp : Operand<i32>,
ComplexPattern<i32, 2, "SelectThumbAddrModeSP", []> {
let EncoderMethod = "getAddrModeThumbSPOpValue";
let PrintMethod = "printThumbAddrModeSPOperand";
let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm);
let ParserMatchClass = MemModeThumbAsmOperand;
}
// t_addrmode_pc := <label> => pc + imm8 * 4
//
def t_addrmode_pc : Operand<i32> {
let EncoderMethod = "getAddrModePCOpValue";
let ParserMatchClass = MemModeThumbAsmOperand;
}
//===----------------------------------------------------------------------===//
// Miscellaneous Instructions.
//
// FIXME: Marking these as hasSideEffects is necessary to prevent machine DCE
// from removing one half of the matched pairs. That breaks PEI, which assumes
// these will always be in pairs, and asserts if it finds otherwise. Better way?
let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
def tADJCALLSTACKUP :
PseudoInst<(outs), (ins i32imm:$amt1, i32imm:$amt2), NoItinerary,
[(ARMcallseq_end imm:$amt1, imm:$amt2)]>,
Requires<[IsThumb, IsThumb1Only]>;
def tADJCALLSTACKDOWN :
PseudoInst<(outs), (ins i32imm:$amt), NoItinerary,
[(ARMcallseq_start imm:$amt)]>,
Requires<[IsThumb, IsThumb1Only]>;
}
// T1Disassembly - A simple class to make encoding some disassembly patterns
// easier and less verbose.
class T1Disassembly<bits<2> op1, bits<8> op2>
: T1Encoding<0b101111> {
let Inst{9-8} = op1;
let Inst{7-0} = op2;
}
def tNOP : T1pI<(outs), (ins), NoItinerary, "nop", "",
[/* For disassembly only; pattern left blank */]>,
T1Disassembly<0b11, 0x00>; // A8.6.110
def tYIELD : T1pI<(outs), (ins), NoItinerary, "yield", "",
[/* For disassembly only; pattern left blank */]>,
T1Disassembly<0b11, 0x10>; // A8.6.410
def tWFE : T1pI<(outs), (ins), NoItinerary, "wfe", "",
[/* For disassembly only; pattern left blank */]>,
T1Disassembly<0b11, 0x20>; // A8.6.408
def tWFI : T1pI<(outs), (ins), NoItinerary, "wfi", "",
[/* For disassembly only; pattern left blank */]>,
T1Disassembly<0b11, 0x30>; // A8.6.409
def tSEV : T1pI<(outs), (ins), NoItinerary, "sev", "",
[/* For disassembly only; pattern left blank */]>,
T1Disassembly<0b11, 0x40>; // A8.6.157
// The i32imm operand $val can be used by a debugger to store more information
// about the breakpoint.
def tBKPT : T1I<(outs), (ins i32imm:$val), NoItinerary, "bkpt\t$val",
[/* For disassembly only; pattern left blank */]>,
T1Disassembly<0b10, {?,?,?,?,?,?,?,?}> {
// A8.6.22
bits<8> val;
let Inst{7-0} = val;
}
def tSETENDBE : T1I<(outs), (ins), NoItinerary, "setend\tbe",
[/* For disassembly only; pattern left blank */]>,
T1Encoding<0b101101> {
// A8.6.156
let Inst{9-5} = 0b10010;
let Inst{4} = 1;
let Inst{3} = 1; // Big-Endian
let Inst{2-0} = 0b000;
}
def tSETENDLE : T1I<(outs), (ins), NoItinerary, "setend\tle",
[/* For disassembly only; pattern left blank */]>,
T1Encoding<0b101101> {
// A8.6.156
let Inst{9-5} = 0b10010;
let Inst{4} = 1;
let Inst{3} = 0; // Little-Endian
let Inst{2-0} = 0b000;
}
// Change Processor State is a system instruction -- for disassembly only.
// The singleton $opt operand contains the following information:
//
// opt{4-0} = mode ==> don't care
// opt{5} = changemode ==> 0 (false for 16-bit Thumb instr)
// opt{8-6} = AIF from Inst{2-0}
// opt{10-9} = 1:imod from Inst{4} with 0b10 as enable and 0b11 as disable
//
// The opt{4-0} and opt{5} sub-fields are to accommodate 32-bit Thumb and ARM
// CPS which has more options.
def tCPS : T1I<(outs), (ins cps_opt:$opt), NoItinerary, "cps$opt",
[/* For disassembly only; pattern left blank */]>,
T1Misc<0b0110011> {
// A8.6.38 & B6.1.1
let Inst{3} = 0;
// FIXME: Finish encoding.
}
// For both thumb1 and thumb2.
let isNotDuplicable = 1, isCodeGenOnly = 1 in
def tPICADD : TIt<(outs GPR:$dst), (ins GPR:$lhs, pclabel:$cp), IIC_iALUr, "",
[(set GPR:$dst, (ARMpic_add GPR:$lhs, imm:$cp))]>,
T1Special<{0,0,?,?}> {
// A8.6.6
bits<3> dst;
let Inst{6-3} = 0b1111; // Rm = pc
let Inst{2-0} = dst;
}
// PC relative add (ADR).
def tADDrPCi : T1I<(outs tGPR:$dst), (ins t_imm_s4:$rhs), IIC_iALUi,
"add\t$dst, pc, $rhs", []>,
T1Encoding<{1,0,1,0,0,?}> {
// A6.2 & A8.6.10
bits<3> dst;
bits<8> rhs;
let Inst{10-8} = dst;
let Inst{7-0} = rhs;
}
// ADD <Rd>, sp, #<imm8>
// This is rematerializable, which is particularly useful for taking the
// address of locals.
let isReMaterializable = 1 in
def tADDrSPi : T1I<(outs tGPR:$dst), (ins GPR:$sp, t_imm_s4:$rhs), IIC_iALUi,
"add\t$dst, $sp, $rhs", []>,
T1Encoding<{1,0,1,0,1,?}> {
// A6.2 & A8.6.8
bits<3> dst;
bits<8> rhs;
let Inst{10-8} = dst;
let Inst{7-0} = rhs;
}
// ADD sp, sp, #<imm7>
def tADDspi : TIt<(outs GPR:$dst), (ins GPR:$lhs, t_imm_s4:$rhs), IIC_iALUi,
"add\t$dst, $rhs", []>,
T1Misc<{0,0,0,0,0,?,?}> {
// A6.2.5 & A8.6.8
bits<7> rhs;
let Inst{6-0} = rhs;
}
// SUB sp, sp, #<imm7>
// FIXME: The encoding and the ASM string don't match up.
def tSUBspi : TIt<(outs GPR:$dst), (ins GPR:$lhs, t_imm_s4:$rhs), IIC_iALUi,
"sub\t$dst, $rhs", []>,
T1Misc<{0,0,0,0,1,?,?}> {
// A6.2.5 & A8.6.214
bits<7> rhs;
let Inst{6-0} = rhs;
}
// ADD <Rm>, sp
def tADDrSP : TIt<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), IIC_iALUr,
"add\t$dst, $rhs", []>,
T1Special<{0,0,?,?}> {
// A8.6.9 Encoding T1
bits<4> dst;
let Inst{7} = dst{3};
let Inst{6-3} = 0b1101;
let Inst{2-0} = dst{2-0};
}
// ADD sp, <Rm>
def tADDspr : TIt<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), IIC_iALUr,
"add\t$dst, $rhs", []>,
T1Special<{0,0,?,?}> {
// A8.6.9 Encoding T2
bits<4> dst;
let Inst{7} = 1;
let Inst{6-3} = dst;
let Inst{2-0} = 0b101;
}
//===----------------------------------------------------------------------===//
// Control Flow Instructions.
//
let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
def tBX_RET : TI<(outs), (ins), IIC_Br, "bx\tlr",
[(ARMretflag)]>,
T1Special<{1,1,0,?}> {
// A6.2.3 & A8.6.25
let Inst{6-3} = 0b1110; // Rm = lr
let Inst{2-0} = 0b000;
}
// Alternative return instruction used by vararg functions.
def tBX_RET_vararg : TI<(outs), (ins tGPR:$Rm),
IIC_Br, "bx\t$Rm",
[]>,
T1Special<{1,1,0,?}> {
// A6.2.3 & A8.6.25
bits<4> Rm;
let Inst{6-3} = Rm;
let Inst{2-0} = 0b000;
}
}
// Indirect branches
let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
def tBRIND : TI<(outs), (ins GPR:$Rm),
IIC_Br,
"mov\tpc, $Rm",
[(brind GPR:$Rm)]>,
T1Special<{1,0,?,?}> {
// A8.6.97
bits<4> Rm;
let Inst{7} = 1; // <Rd> = Inst{7:2-0} = pc
let Inst{6-3} = Rm;
let Inst{2-0} = 0b111;
}
}
// FIXME: remove when we have a way to marking a MI with these properties.
let isReturn = 1, isTerminator = 1, isBarrier = 1, mayLoad = 1,
hasExtraDefRegAllocReq = 1 in
def tPOP_RET : T1I<(outs), (ins pred:$p, reglist:$regs, variable_ops),
IIC_iPop_Br,
"pop${p}\t$regs", []>,
T1Misc<{1,1,0,?,?,?,?}> {
// A8.6.121
bits<16> regs;
let Inst{8} = regs{15}; // registers = P:'0000000':register_list
let Inst{7-0} = regs{7-0};
}
// All calls clobber the non-callee saved registers. SP is marked as a use to
// prevent stack-pointer assignments that appear immediately before calls from
// potentially appearing dead.
let isCall = 1,
// On non-Darwin platforms R9 is callee-saved.
Defs = [R0, R1, R2, R3, R12, LR,
D0, D1, D2, D3, D4, D5, D6, D7,
D16, D17, D18, D19, D20, D21, D22, D23,
D24, D25, D26, D27, D28, D29, D30, D31, CPSR, FPSCR],
Uses = [SP] in {
// Also used for Thumb2
def tBL : TIx2<0b11110, 0b11, 1,
(outs), (ins t_bltarget:$func, variable_ops), IIC_Br,
"bl\t$func",
[(ARMtcall tglobaladdr:$func)]>,
Requires<[IsThumb, IsNotDarwin]> {
bits<21> func;
let Inst{25-16} = func{20-11};
let Inst{13} = 1;
let Inst{11} = 1;
let Inst{10-0} = func{10-0};
}
// ARMv5T and above, also used for Thumb2
def tBLXi : TIx2<0b11110, 0b11, 0,
(outs), (ins t_blxtarget:$func, variable_ops), IIC_Br,
"blx\t$func",
[(ARMcall tglobaladdr:$func)]>,
Requires<[IsThumb, HasV5T, IsNotDarwin]> {
bits<21> func;
let Inst{25-16} = func{20-11};
let Inst{13} = 1;
let Inst{11} = 1;
let Inst{10-1} = func{10-1};
let Inst{0} = 0; // func{0} is assumed zero
}
// Also used for Thumb2
def tBLXr : TI<(outs), (ins GPR:$func, variable_ops), IIC_Br,
"blx\t$func",
[(ARMtcall GPR:$func)]>,
Requires<[IsThumb, HasV5T, IsNotDarwin]>,
T1Special<{1,1,1,?}>; // A6.2.3 & A8.6.24;
// ARMv4T
// FIXME: Should be a pseudo.
let isCodeGenOnly = 1 in
def tBX : TIx2<{?,?,?,?,?}, {?,?}, ?,
(outs), (ins tGPR:$func, variable_ops), IIC_Br,
"mov\tlr, pc\n\tbx\t$func",
[(ARMcall_nolink tGPR:$func)]>,
Requires<[IsThumb, IsThumb1Only, IsNotDarwin]>;
}
let isCall = 1,
// On Darwin R9 is call-clobbered.
// R7 is marked as a use to prevent frame-pointer assignments from being
// moved above / below calls.
Defs = [R0, R1, R2, R3, R9, R12, LR,
D0, D1, D2, D3, D4, D5, D6, D7,
D16, D17, D18, D19, D20, D21, D22, D23,
D24, D25, D26, D27, D28, D29, D30, D31, CPSR, FPSCR],
Uses = [R7, SP] in {
// Also used for Thumb2
def tBLr9 : TIx2<0b11110, 0b11, 1,
(outs), (ins pred:$p, t_bltarget:$func, variable_ops),
IIC_Br, "bl${p}\t$func",
[(ARMtcall tglobaladdr:$func)]>,
Requires<[IsThumb, IsDarwin]> {
bits<21> func;
let Inst{25-16} = func{20-11};
let Inst{13} = 1;
let Inst{11} = 1;
let Inst{10-0} = func{10-0};
}
// ARMv5T and above, also used for Thumb2
def tBLXi_r9 : TIx2<0b11110, 0b11, 0,
(outs), (ins pred:$p, t_blxtarget:$func, variable_ops),
IIC_Br, "blx${p}\t$func",
[(ARMcall tglobaladdr:$func)]>,
Requires<[IsThumb, HasV5T, IsDarwin]> {
bits<21> func;
let Inst{25-16} = func{20-11};
let Inst{13} = 1;
let Inst{11} = 1;
let Inst{10-1} = func{10-1};
let Inst{0} = 0; // func{0} is assumed zero
}
// Also used for Thumb2
def tBLXr_r9 : TI<(outs), (ins pred:$p, GPR:$func, variable_ops), IIC_Br,
"blx${p}\t$func",
[(ARMtcall GPR:$func)]>,
Requires<[IsThumb, HasV5T, IsDarwin]>,
T1Special<{1,1,1,?}> {
// A6.2.3 & A8.6.24
bits<4> func;
let Inst{6-3} = func;
let Inst{2-0} = 0b000;
}
// ARMv4T
let isCodeGenOnly = 1 in
// FIXME: Should be a pseudo.
def tBXr9 : TIx2<{?,?,?,?,?}, {?,?}, ?,
(outs), (ins tGPR:$func, variable_ops), IIC_Br,
"mov\tlr, pc\n\tbx\t$func",
[(ARMcall_nolink tGPR:$func)]>,
Requires<[IsThumb, IsThumb1Only, IsDarwin]>;
}
let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
let isPredicable = 1 in
def tB : T1I<(outs), (ins brtarget:$target), IIC_Br,
"b\t$target", [(br bb:$target)]>,
T1Encoding<{1,1,1,0,0,?}>;
// Far jump
let Defs = [LR] in
def tBfar : TIx2<0b11110, 0b11, 1, (outs), (ins brtarget:$target), IIC_Br,
"bl\t$target",[]>;
def tBR_JTr : tPseudoInst<(outs),
(ins tGPR:$target, i32imm:$jt, i32imm:$id),
Size2Bytes, IIC_Br,
[(ARMbrjt tGPR:$target, tjumptable:$jt, imm:$id)]> {
list<Predicate> Predicates = [IsThumb, IsThumb1Only];
}
}
// FIXME: should be able to write a pattern for ARMBrcond, but can't use
// a two-value operand where a dag node expects two operands. :(
let isBranch = 1, isTerminator = 1 in
def tBcc : T1I<(outs), (ins t_bcctarget:$target, pred:$p), IIC_Br,
"b${p}\t$target",
[/*(ARMbrcond bb:$target, imm:$cc)*/]>,
T1Encoding<{1,1,0,1,?,?}> {
bits<4> p;
bits<8> target;
let Inst{11-8} = p;
let Inst{7-0} = target;
}
// Compare and branch on zero / non-zero
let isBranch = 1, isTerminator = 1 in {
def tCBZ : T1I<(outs), (ins tGPR:$Rn, t_cbtarget:$target), IIC_Br,
"cbz\t$Rn, $target", []>,
T1Misc<{0,0,?,1,?,?,?}> {
// A8.6.27
bits<6> target;
bits<3> Rn;
let Inst{9} = target{5};
let Inst{7-3} = target{4-0};
let Inst{2-0} = Rn;
}
def tCBNZ : T1I<(outs), (ins tGPR:$cmp, t_cbtarget:$target), IIC_Br,
"cbnz\t$cmp, $target", []>,
T1Misc<{1,0,?,1,?,?,?}> {
// A8.6.27
bits<6> target;
bits<3> Rn;
let Inst{9} = target{5};
let Inst{7-3} = target{4-0};
let Inst{2-0} = Rn;
}
}
// A8.6.218 Supervisor Call (Software Interrupt) -- for disassembly only
// A8.6.16 B: Encoding T1
// If Inst{11-8} == 0b1111 then SEE SVC
let isCall = 1, Uses = [SP] in
def tSVC : T1pI<(outs), (ins i32imm:$imm), IIC_Br,
"svc", "\t$imm", []>, Encoding16 {
bits<8> imm;
let Inst{15-12} = 0b1101;
let Inst{11-8} = 0b1111;
let Inst{7-0} = imm;
}
// The assembler uses 0xDEFE for a trap instruction.
let isBarrier = 1, isTerminator = 1 in
def tTRAP : TI<(outs), (ins), IIC_Br,
"trap", [(trap)]>, Encoding16 {
let Inst = 0xdefe;
}
//===----------------------------------------------------------------------===//
// Load Store Instructions.
//
let canFoldAsLoad = 1, isReMaterializable = 1 in
def tLDR : // A8.6.60
T1pILdStEncode<0b100, (outs tGPR:$Rt), (ins t_addrmode_s4:$addr),
AddrModeT1_4, IIC_iLoad_r,
"ldr", "\t$Rt, $addr",
[(set tGPR:$Rt, (load t_addrmode_s4:$addr))]>;
def tLDRi : // A8.6.57
T1pILdStEncodeImm<0b0110, 1, (outs tGPR:$Rt), (ins t_addrmode_s4:$addr),
AddrModeT1_4, IIC_iLoad_r,
"ldr", "\t$Rt, $addr",
[]>;
def tLDRB : // A8.6.64
T1pILdStEncode<0b110, (outs tGPR:$Rt), (ins t_addrmode_s1:$addr),
AddrModeT1_1, IIC_iLoad_bh_r,
"ldrb", "\t$Rt, $addr",
[(set tGPR:$Rt, (zextloadi8 t_addrmode_s1:$addr))]>;
def tLDRBi : // A8.6.61
T1pILdStEncodeImm<0b0111, 1, (outs tGPR:$Rt), (ins t_addrmode_s1:$addr),
AddrModeT1_1, IIC_iLoad_bh_r,
"ldrb", "\t$Rt, $addr",
[]>;
def tLDRH : // A8.6.76
T1pILdStEncode<0b101, (outs tGPR:$dst), (ins t_addrmode_s2:$addr),
AddrModeT1_2, IIC_iLoad_bh_r,
"ldrh", "\t$dst, $addr",
[(set tGPR:$dst, (zextloadi16 t_addrmode_s2:$addr))]>;
def tLDRHi : // A8.6.73
T1pILdStEncodeImm<0b1000, 1, (outs tGPR:$Rt), (ins t_addrmode_s2:$addr),
AddrModeT1_2, IIC_iLoad_bh_r,
"ldrh", "\t$Rt, $addr",
[]>;
let AddedComplexity = 10 in
def tLDRSB : // A8.6.80
T1pILdStEncode<0b011, (outs tGPR:$dst), (ins t_addrmode_rr:$addr),
AddrModeT1_1, IIC_iLoad_bh_r,
"ldrsb", "\t$dst, $addr",
[(set tGPR:$dst, (sextloadi8 t_addrmode_rr:$addr))]>;
let AddedComplexity = 10 in
def tLDRSH : // A8.6.84
T1pILdStEncode<0b111, (outs tGPR:$dst), (ins t_addrmode_rr:$addr),
AddrModeT1_2, IIC_iLoad_bh_r,
"ldrsh", "\t$dst, $addr",
[(set tGPR:$dst, (sextloadi16 t_addrmode_rr:$addr))]>;
let canFoldAsLoad = 1 in
def tLDRspi : T1pIs<(outs tGPR:$Rt), (ins t_addrmode_sp:$addr), IIC_iLoad_i,
"ldr", "\t$Rt, $addr",
[(set tGPR:$Rt, (load t_addrmode_sp:$addr))]>,
T1LdStSP<{1,?,?}> {
bits<3> Rt;
bits<8> addr;
let Inst{10-8} = Rt;
let Inst{7-0} = addr;
}
// Special instruction for restore. It cannot clobber condition register
// when it's expanded by eliminateCallFramePseudoInstr().
let canFoldAsLoad = 1, mayLoad = 1, neverHasSideEffects = 1 in
// FIXME: Pseudo for tLDRspi
def tRestore : T1pIs<(outs tGPR:$dst), (ins t_addrmode_sp:$addr), IIC_iLoad_i,
"ldr", "\t$dst, $addr", []>,
T1LdStSP<{1,?,?}>;
// Load tconstpool
// FIXME: Use ldr.n to work around a Darwin assembler bug.
let canFoldAsLoad = 1, isReMaterializable = 1 in
def tLDRpci : T1pIs<(outs tGPR:$Rt), (ins t_addrmode_pc:$addr), IIC_iLoad_i,
"ldr", ".n\t$Rt, $addr",
[(set tGPR:$Rt, (load (ARMWrapper tconstpool:$addr)))]>,
T1Encoding<{0,1,0,0,1,?}> {
// A6.2 & A8.6.59
bits<3> Rt;
bits<8> addr;
let Inst{10-8} = Rt;
let Inst{7-0} = addr;
}
// Special LDR for loads from non-pc-relative constpools.
let canFoldAsLoad = 1, mayLoad = 1, neverHasSideEffects = 1,
isReMaterializable = 1 in
def tLDRcp : T1pIs<(outs tGPR:$Rt), (ins i32imm:$addr), IIC_iLoad_i,
"ldr", "\t$Rt, $addr", []>,
T1LdStSP<{1,?,?}> {
// A6.2 & A8.6.57 T2
bits<3> Rt;
bits<8> addr;
let Inst{10-8} = Rt;
let Inst{7-0} = addr;
}
def tSTR : // A8.6.194
T1pILdStEncode<0b000, (outs), (ins tGPR:$src, t_addrmode_s4:$addr),
AddrModeT1_4, IIC_iStore_r,
"str", "\t$src, $addr",
[(store tGPR:$src, t_addrmode_s4:$addr)]>;
def tSTRi : // A8.6.192
T1pILdStEncodeImm<0b0110, 0, (outs), (ins tGPR:$Rt, t_addrmode_s4:$addr),
AddrModeT1_4, IIC_iStore_r,
"str", "\t$Rt, $addr",
[]>;
def tSTRB : // A8.6.197
T1pILdStEncode<0b010, (outs), (ins tGPR:$src, t_addrmode_s1:$addr),
AddrModeT1_1, IIC_iStore_bh_r,
"strb", "\t$src, $addr",
[(truncstorei8 tGPR:$src, t_addrmode_s1:$addr)]>;
def tSTRBi : // A8.6.195
T1pILdStEncodeImm<0b0111, 0, (outs), (ins tGPR:$Rt, t_addrmode_s1:$addr),
AddrModeT1_1, IIC_iStore_bh_r,
"strb", "\t$Rt, $addr",
[]>;
def tSTRH : // A8.6.207
T1pILdStEncode<0b001, (outs), (ins tGPR:$src, t_addrmode_s2:$addr),
AddrModeT1_2, IIC_iStore_bh_r,
"strh", "\t$src, $addr",
[(truncstorei16 tGPR:$src, t_addrmode_s2:$addr)]>;
def tSTRHi : // A8.6.205
T1pILdStEncodeImm<0b1000, 0, (outs), (ins tGPR:$Rt, t_addrmode_s2:$addr),
AddrModeT1_2, IIC_iStore_bh_r,
"strh", "\t$Rt, $addr",
[]>;
def tSTRspi : T1pIs<(outs), (ins tGPR:$Rt, t_addrmode_sp:$addr), IIC_iStore_i,
"str", "\t$Rt, $addr",
[(store tGPR:$Rt, t_addrmode_sp:$addr)]>,
T1LdStSP<{0,?,?}> {
bits<3> Rt;
bits<8> addr;
let Inst{10-8} = Rt;
let Inst{7-0} = addr;
}
let mayStore = 1, neverHasSideEffects = 1 in
// Special instruction for spill. It cannot clobber condition register when it's
// expanded by eliminateCallFramePseudoInstr().
// FIXME: Pseudo for tSTRspi
def tSpill : T1pIs<(outs), (ins tGPR:$src, t_addrmode_sp:$addr), IIC_iStore_i,
"str", "\t$src, $addr", []>,
T1LdStSP<{0,?,?}>;
//===----------------------------------------------------------------------===//
// Load / store multiple Instructions.
//
multiclass thumb_ldst_mult<string asm, InstrItinClass itin,
InstrItinClass itin_upd, bits<6> T1Enc,
bit L_bit> {
def IA :
T1I<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
itin, !strconcat(asm, "ia${p}\t$Rn, $regs"), []>,
T1Encoding<T1Enc> {
bits<3> Rn;
bits<8> regs;
let Inst{10-8} = Rn;
let Inst{7-0} = regs;
}
def IA_UPD :
T1It<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
itin_upd, !strconcat(asm, "ia${p}\t$Rn!, $regs"), "$Rn = $wb", []>,
T1Encoding<T1Enc> {
bits<3> Rn;
bits<8> regs;
let Inst{10-8} = Rn;
let Inst{7-0} = regs;
}
}
// These require base address to be written back or one of the loaded regs.
let neverHasSideEffects = 1 in {
let mayLoad = 1, hasExtraDefRegAllocReq = 1 in
defm tLDM : thumb_ldst_mult<"ldm", IIC_iLoad_m, IIC_iLoad_mu,
{1,1,0,0,1,?}, 1>;
let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
defm tSTM : thumb_ldst_mult<"stm", IIC_iStore_m, IIC_iStore_mu,
{1,1,0,0,0,?}, 0>;
} // neverHasSideEffects
let mayLoad = 1, Uses = [SP], Defs = [SP], hasExtraDefRegAllocReq = 1 in
def tPOP : T1I<(outs), (ins pred:$p, reglist:$regs, variable_ops),
IIC_iPop,
"pop${p}\t$regs", []>,
T1Misc<{1,1,0,?,?,?,?}> {
bits<16> regs;
let Inst{8} = regs{15};
let Inst{7-0} = regs{7-0};
}
let mayStore = 1, Uses = [SP], Defs = [SP], hasExtraSrcRegAllocReq = 1 in
def tPUSH : T1I<(outs), (ins pred:$p, reglist:$regs, variable_ops),
IIC_iStore_m,
"push${p}\t$regs", []>,
T1Misc<{0,1,0,?,?,?,?}> {
bits<16> regs;
let Inst{8} = regs{14};
let Inst{7-0} = regs{7-0};
}
//===----------------------------------------------------------------------===//
// Arithmetic Instructions.
//
// Helper classes for encoding T1pI patterns:
class T1pIDPEncode<bits<4> opA, dag oops, dag iops, InstrItinClass itin,
string opc, string asm, list<dag> pattern>
: T1pI<oops, iops, itin, opc, asm, pattern>,
T1DataProcessing<opA> {
bits<3> Rm;
bits<3> Rn;
let Inst{5-3} = Rm;
let Inst{2-0} = Rn;
}
class T1pIMiscEncode<bits<7> opA, dag oops, dag iops, InstrItinClass itin,
string opc, string asm, list<dag> pattern>
: T1pI<oops, iops, itin, opc, asm, pattern>,
T1Misc<opA> {
bits<3> Rm;
bits<3> Rd;
let Inst{5-3} = Rm;
let Inst{2-0} = Rd;
}
// Helper classes for encoding T1sI patterns:
class T1sIDPEncode<bits<4> opA, dag oops, dag iops, InstrItinClass itin,
string opc, string asm, list<dag> pattern>
: T1sI<oops, iops, itin, opc, asm, pattern>,
T1DataProcessing<opA> {
bits<3> Rd;
bits<3> Rn;
let Inst{5-3} = Rn;
let Inst{2-0} = Rd;
}
class T1sIGenEncode<bits<5> opA, dag oops, dag iops, InstrItinClass itin,
string opc, string asm, list<dag> pattern>
: T1sI<oops, iops, itin, opc, asm, pattern>,
T1General<opA> {
bits<3> Rm;
bits<3> Rn;
bits<3> Rd;
let Inst{8-6} = Rm;
let Inst{5-3} = Rn;
let Inst{2-0} = Rd;
}
class T1sIGenEncodeImm<bits<5> opA, dag oops, dag iops, InstrItinClass itin,
string opc, string asm, list<dag> pattern>
: T1sI<oops, iops, itin, opc, asm, pattern>,
T1General<opA> {
bits<3> Rd;
bits<3> Rm;
let Inst{5-3} = Rm;
let Inst{2-0} = Rd;
}
// Helper classes for encoding T1sIt patterns:
class T1sItDPEncode<bits<4> opA, dag oops, dag iops, InstrItinClass itin,
string opc, string asm, list<dag> pattern>
: T1sIt<oops, iops, itin, opc, asm, pattern>,
T1DataProcessing<opA> {
bits<3> Rdn;
bits<3> Rm;
let Inst{5-3} = Rm;
let Inst{2-0} = Rdn;
}
class T1sItGenEncodeImm<bits<5> opA, dag oops, dag iops, InstrItinClass itin,
string opc, string asm, list<dag> pattern>
: T1sIt<oops, iops, itin, opc, asm, pattern>,
T1General<opA> {
bits<3> Rdn;
bits<8> imm8;
let Inst{10-8} = Rdn;
let Inst{7-0} = imm8;
}
// Add with carry register
let isCommutable = 1, Uses = [CPSR] in
def tADC : // A8.6.2
T1sItDPEncode<0b0101, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm), IIC_iALUr,
"adc", "\t$Rdn, $Rm",
[(set tGPR:$Rdn, (adde tGPR:$Rn, tGPR:$Rm))]>;
// Add immediate
def tADDi3 : // A8.6.4 T1
T1sIGenEncodeImm<0b01110, (outs tGPR:$Rd), (ins tGPR:$Rm, i32imm:$imm3), IIC_iALUi,
"add", "\t$Rd, $Rm, $imm3",
[(set tGPR:$Rd, (add tGPR:$Rm, imm0_7:$imm3))]> {
bits<3> imm3;
let Inst{8-6} = imm3;
}
def tADDi8 : // A8.6.4 T2
T1sItGenEncodeImm<{1,1,0,?,?}, (outs tGPR:$Rdn), (ins tGPR:$Rn, i32imm:$imm8),
IIC_iALUi,
"add", "\t$Rdn, $imm8",
[(set tGPR:$Rdn, (add tGPR:$Rn, imm8_255:$imm8))]>;
// Add register
let isCommutable = 1 in
def tADDrr : // A8.6.6 T1
T1sIGenEncode<0b01100, (outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm),
IIC_iALUr,
"add", "\t$Rd, $Rn, $Rm",
[(set tGPR:$Rd, (add tGPR:$Rn, tGPR:$Rm))]>;
let neverHasSideEffects = 1 in
def tADDhirr : T1pIt<(outs GPR:$Rdn), (ins GPR:$Rn, GPR:$Rm), IIC_iALUr,
"add", "\t$Rdn, $Rm", []>,
T1Special<{0,0,?,?}> {
// A8.6.6 T2
bits<4> Rdn;
bits<4> Rm;
let Inst{7} = Rdn{3};
let Inst{6-3} = Rm;
let Inst{2-0} = Rdn{2-0};
}
// AND register
let isCommutable = 1 in
def tAND : // A8.6.12
T1sItDPEncode<0b0000, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
IIC_iBITr,
"and", "\t$Rdn, $Rm",
[(set tGPR:$Rdn, (and tGPR:$Rn, tGPR:$Rm))]>;
// ASR immediate
def tASRri : // A8.6.14
T1sIGenEncodeImm<{0,1,0,?,?}, (outs tGPR:$Rd), (ins tGPR:$Rm, i32imm:$imm5),
IIC_iMOVsi,
"asr", "\t$Rd, $Rm, $imm5",
[(set tGPR:$Rd, (sra tGPR:$Rm, (i32 imm:$imm5)))]> {
bits<5> imm5;
let Inst{10-6} = imm5;
}
// ASR register
def tASRrr : // A8.6.15
T1sItDPEncode<0b0100, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
IIC_iMOVsr,
"asr", "\t$Rdn, $Rm",
[(set tGPR:$Rdn, (sra tGPR:$Rn, tGPR:$Rm))]>;
// BIC register
def tBIC : // A8.6.20
T1sItDPEncode<0b1110, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
IIC_iBITr,
"bic", "\t$Rdn, $Rm",
[(set tGPR:$Rdn, (and tGPR:$Rn, (not tGPR:$Rm)))]>;
// CMN register
let isCompare = 1, Defs = [CPSR] in {
//FIXME: Disable CMN, as CCodes are backwards from compare expectations
// Compare-to-zero still works out, just not the relationals
//def tCMN : // A8.6.33
// T1pIDPEncode<0b1011, (outs), (ins tGPR:$lhs, tGPR:$rhs),
// IIC_iCMPr,
// "cmn", "\t$lhs, $rhs",
// [(ARMcmp tGPR:$lhs, (ineg tGPR:$rhs))]>;
def tCMNz : // A8.6.33
T1pIDPEncode<0b1011, (outs), (ins tGPR:$Rn, tGPR:$Rm),
IIC_iCMPr,
"cmn", "\t$Rn, $Rm",
[(ARMcmpZ tGPR:$Rn, (ineg tGPR:$Rm))]>;
} // isCompare = 1, Defs = [CPSR]
// CMP immediate
let isCompare = 1, Defs = [CPSR] in {
def tCMPi8 : T1pI<(outs), (ins tGPR:$Rn, i32imm:$imm8), IIC_iCMPi,
"cmp", "\t$Rn, $imm8",
[(ARMcmp tGPR:$Rn, imm0_255:$imm8)]>,
T1General<{1,0,1,?,?}> {
// A8.6.35
bits<3> Rn;
bits<8> imm8;
let Inst{10-8} = Rn;
let Inst{7-0} = imm8;
}
// CMP register
def tCMPr : // A8.6.36 T1
T1pIDPEncode<0b1010, (outs), (ins tGPR:$Rn, tGPR:$Rm),
IIC_iCMPr,
"cmp", "\t$Rn, $Rm",
[(ARMcmp tGPR:$Rn, tGPR:$Rm)]>;
def tCMPhir : T1pI<(outs), (ins GPR:$Rn, GPR:$Rm), IIC_iCMPr,
"cmp", "\t$Rn, $Rm", []>,
T1Special<{0,1,?,?}> {
// A8.6.36 T2
bits<4> Rm;
bits<4> Rn;
let Inst{7} = Rn{3};
let Inst{6-3} = Rm;
let Inst{2-0} = Rn{2-0};
}
} // isCompare = 1, Defs = [CPSR]
// XOR register
let isCommutable = 1 in
def tEOR : // A8.6.45
T1sItDPEncode<0b0001, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
IIC_iBITr,
"eor", "\t$Rdn, $Rm",
[(set tGPR:$Rdn, (xor tGPR:$Rn, tGPR:$Rm))]>;
// LSL immediate
def tLSLri : // A8.6.88
T1sIGenEncodeImm<{0,0,0,?,?}, (outs tGPR:$Rd), (ins tGPR:$Rm, i32imm:$imm5),
IIC_iMOVsi,
"lsl", "\t$Rd, $Rm, $imm5",
[(set tGPR:$Rd, (shl tGPR:$Rm, (i32 imm:$imm5)))]> {
bits<5> imm5;
let Inst{10-6} = imm5;
}
// LSL register
def tLSLrr : // A8.6.89
T1sItDPEncode<0b0010, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
IIC_iMOVsr,
"lsl", "\t$Rdn, $Rm",
[(set tGPR:$Rdn, (shl tGPR:$Rn, tGPR:$Rm))]>;
// LSR immediate
def tLSRri : // A8.6.90
T1sIGenEncodeImm<{0,0,1,?,?}, (outs tGPR:$Rd), (ins tGPR:$Rm, i32imm:$imm5),
IIC_iMOVsi,
"lsr", "\t$Rd, $Rm, $imm5",
[(set tGPR:$Rd, (srl tGPR:$Rm, (i32 imm:$imm5)))]> {
bits<5> imm5;
let Inst{10-6} = imm5;
}
// LSR register
def tLSRrr : // A8.6.91
T1sItDPEncode<0b0011, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
IIC_iMOVsr,
"lsr", "\t$Rdn, $Rm",
[(set tGPR:$Rdn, (srl tGPR:$Rn, tGPR:$Rm))]>;
// Move register
let isMoveImm = 1 in
def tMOVi8 : T1sI<(outs tGPR:$Rd), (ins i32imm:$imm8), IIC_iMOVi,
"mov", "\t$Rd, $imm8",
[(set tGPR:$Rd, imm0_255:$imm8)]>,
T1General<{1,0,0,?,?}> {
// A8.6.96
bits<3> Rd;
bits<8> imm8;
let Inst{10-8} = Rd;
let Inst{7-0} = imm8;
}
// TODO: A7-73: MOV(2) - mov setting flag.
let neverHasSideEffects = 1 in {
// FIXME: Make this predicable.
def tMOVr : T1I<(outs tGPR:$Rd), (ins tGPR:$Rm), IIC_iMOVr,
"mov\t$Rd, $Rm", []>,
T1Special<0b1000> {
// A8.6.97
bits<4> Rd;
bits<4> Rm;
// Bits {7-6} are encoded by the T1Special value.
let Inst{5-3} = Rm{2-0};
let Inst{2-0} = Rd{2-0};
}
let Defs = [CPSR] in
def tMOVSr : T1I<(outs tGPR:$Rd), (ins tGPR:$Rm), IIC_iMOVr,
"movs\t$Rd, $Rm", []>, Encoding16 {
// A8.6.97
bits<3> Rd;
bits<3> Rm;
let Inst{15-6} = 0b0000000000;
let Inst{5-3} = Rm;
let Inst{2-0} = Rd;
}
// FIXME: Make these predicable.
def tMOVgpr2tgpr : T1I<(outs tGPR:$Rd), (ins GPR:$Rm), IIC_iMOVr,
"mov\t$Rd, $Rm", []>,
T1Special<{1,0,0,?}> {
// A8.6.97
bits<4> Rd;
bits<4> Rm;
// Bit {7} is encoded by the T1Special value.
let Inst{6-3} = Rm;
let Inst{2-0} = Rd{2-0};
}
def tMOVtgpr2gpr : T1I<(outs GPR:$Rd), (ins tGPR:$Rm), IIC_iMOVr,
"mov\t$Rd, $Rm", []>,
T1Special<{1,0,?,0}> {
// A8.6.97
bits<4> Rd;
bits<4> Rm;
// Bit {6} is encoded by the T1Special value.
let Inst{7} = Rd{3};
let Inst{5-3} = Rm{2-0};
let Inst{2-0} = Rd{2-0};
}
def tMOVgpr2gpr : T1I<(outs GPR:$Rd), (ins GPR:$Rm), IIC_iMOVr,
"mov\t$Rd, $Rm", []>,
T1Special<{1,0,?,?}> {
// A8.6.97
bits<4> Rd;
bits<4> Rm;
let Inst{7} = Rd{3};
let Inst{6-3} = Rm;
let Inst{2-0} = Rd{2-0};
}
} // neverHasSideEffects
// Multiply register
let isCommutable = 1 in
def tMUL : // A8.6.105 T1
T1sItDPEncode<0b1101, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
IIC_iMUL32,
"mul", "\t$Rdn, $Rm, $Rdn",
[(set tGPR:$Rdn, (mul tGPR:$Rn, tGPR:$Rm))]>;
// Move inverse register
def tMVN : // A8.6.107
T1sIDPEncode<0b1111, (outs tGPR:$Rd), (ins tGPR:$Rn), IIC_iMVNr,
"mvn", "\t$Rd, $Rn",
[(set tGPR:$Rd, (not tGPR:$Rn))]>;
// Bitwise or register
let isCommutable = 1 in
def tORR : // A8.6.114
T1sItDPEncode<0b1100, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
IIC_iBITr,
"orr", "\t$Rdn, $Rm",
[(set tGPR:$Rdn, (or tGPR:$Rn, tGPR:$Rm))]>;
// Swaps
def tREV : // A8.6.134
T1pIMiscEncode<{1,0,1,0,0,0,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
IIC_iUNAr,
"rev", "\t$Rd, $Rm",
[(set tGPR:$Rd, (bswap tGPR:$Rm))]>,
Requires<[IsThumb, IsThumb1Only, HasV6]>;
def tREV16 : // A8.6.135
T1pIMiscEncode<{1,0,1,0,0,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
IIC_iUNAr,
"rev16", "\t$Rd, $Rm",
[(set tGPR:$Rd,
(or (and (srl tGPR:$Rm, (i32 8)), 0xFF),
(or (and (shl tGPR:$Rm, (i32 8)), 0xFF00),
(or (and (srl tGPR:$Rm, (i32 8)), 0xFF0000),
(and (shl tGPR:$Rm, (i32 8)), 0xFF000000)))))]>,
Requires<[IsThumb, IsThumb1Only, HasV6]>;
def tREVSH : // A8.6.136
T1pIMiscEncode<{1,0,1,0,1,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
IIC_iUNAr,
"revsh", "\t$Rd, $Rm",
[(set tGPR:$Rd,
(sext_inreg
(or (srl (and tGPR:$Rm, 0xFF00), (i32 8)),
(shl tGPR:$Rm, (i32 8))), i16))]>,
Requires<[IsThumb, IsThumb1Only, HasV6]>;
// Rotate right register
def tROR : // A8.6.139
T1sItDPEncode<0b0111, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
IIC_iMOVsr,
"ror", "\t$Rdn, $Rm",
[(set tGPR:$Rdn, (rotr tGPR:$Rn, tGPR:$Rm))]>;
// Negate register
def tRSB : // A8.6.141
T1sIDPEncode<0b1001, (outs tGPR:$Rd), (ins tGPR:$Rn),
IIC_iALUi,
"rsb", "\t$Rd, $Rn, #0",
[(set tGPR:$Rd, (ineg tGPR:$Rn))]>;
// Subtract with carry register
let Uses = [CPSR] in
def tSBC : // A8.6.151
T1sItDPEncode<0b0110, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:$Rm),
IIC_iALUr,
"sbc", "\t$Rdn, $Rm",
[(set tGPR:$Rdn, (sube tGPR:$Rn, tGPR:$Rm))]>;
// Subtract immediate
def tSUBi3 : // A8.6.210 T1
T1sIGenEncodeImm<0b01111, (outs tGPR:$Rd), (ins tGPR:$Rm, i32imm:$imm3),
IIC_iALUi,
"sub", "\t$Rd, $Rm, $imm3",
[(set tGPR:$Rd, (add tGPR:$Rm, imm0_7_neg:$imm3))]> {
bits<3> imm3;
let Inst{8-6} = imm3;
}
def tSUBi8 : // A8.6.210 T2
T1sItGenEncodeImm<{1,1,1,?,?}, (outs tGPR:$Rdn), (ins tGPR:$Rn, i32imm:$imm8),
IIC_iALUi,
"sub", "\t$Rdn, $imm8",
[(set tGPR:$Rdn, (add tGPR:$Rn, imm8_255_neg:$imm8))]>;
// Subtract register
def tSUBrr : // A8.6.212
T1sIGenEncode<0b01101, (outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm),
IIC_iALUr,
"sub", "\t$Rd, $Rn, $Rm",
[(set tGPR:$Rd, (sub tGPR:$Rn, tGPR:$Rm))]>;
// TODO: A7-96: STMIA - store multiple.
// Sign-extend byte
def tSXTB : // A8.6.222
T1pIMiscEncode<{0,0,1,0,0,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
IIC_iUNAr,
"sxtb", "\t$Rd, $Rm",
[(set tGPR:$Rd, (sext_inreg tGPR:$Rm, i8))]>,
Requires<[IsThumb, IsThumb1Only, HasV6]>;
// Sign-extend short
def tSXTH : // A8.6.224
T1pIMiscEncode<{0,0,1,0,0,0,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
IIC_iUNAr,
"sxth", "\t$Rd, $Rm",
[(set tGPR:$Rd, (sext_inreg tGPR:$Rm, i16))]>,
Requires<[IsThumb, IsThumb1Only, HasV6]>;
// Test
let isCompare = 1, isCommutable = 1, Defs = [CPSR] in
def tTST : // A8.6.230
T1pIDPEncode<0b1000, (outs), (ins tGPR:$Rn, tGPR:$Rm), IIC_iTSTr,
"tst", "\t$Rn, $Rm",
[(ARMcmpZ (and_su tGPR:$Rn, tGPR:$Rm), 0)]>;
// Zero-extend byte
def tUXTB : // A8.6.262
T1pIMiscEncode<{0,0,1,0,1,1,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
IIC_iUNAr,
"uxtb", "\t$Rd, $Rm",
[(set tGPR:$Rd, (and tGPR:$Rm, 0xFF))]>,
Requires<[IsThumb, IsThumb1Only, HasV6]>;
// Zero-extend short
def tUXTH : // A8.6.264
T1pIMiscEncode<{0,0,1,0,1,0,?}, (outs tGPR:$Rd), (ins tGPR:$Rm),
IIC_iUNAr,
"uxth", "\t$Rd, $Rm",
[(set tGPR:$Rd, (and tGPR:$Rm, 0xFFFF))]>,
Requires<[IsThumb, IsThumb1Only, HasV6]>;
// Conditional move tMOVCCr - Used to implement the Thumb SELECT_CC operation.
// Expanded after instruction selection into a branch sequence.
let usesCustomInserter = 1 in // Expanded after instruction selection.
def tMOVCCr_pseudo :
PseudoInst<(outs tGPR:$dst), (ins tGPR:$false, tGPR:$true, pred:$cc),
NoItinerary,
[/*(set tGPR:$dst, (ARMcmov tGPR:$false, tGPR:$true, imm:$cc))*/]>;
// 16-bit movcc in IT blocks for Thumb2.
let neverHasSideEffects = 1 in {
def tMOVCCr : T1pIt<(outs GPR:$Rdn), (ins GPR:$Rn, GPR:$Rm), IIC_iCMOVr,
"mov", "\t$Rdn, $Rm", []>,
T1Special<{1,0,?,?}> {
bits<4> Rdn;
bits<4> Rm;
let Inst{7} = Rdn{3};
let Inst{6-3} = Rm;
let Inst{2-0} = Rdn{2-0};
}
let isMoveImm = 1 in
def tMOVCCi : T1pIt<(outs tGPR:$Rdn), (ins tGPR:$Rn, i32imm:$Rm), IIC_iCMOVi,
"mov", "\t$Rdn, $Rm", []>,
T1General<{1,0,0,?,?}> {
bits<3> Rdn;
bits<8> Rm;
let Inst{10-8} = Rdn;
let Inst{7-0} = Rm;
}
} // neverHasSideEffects
// tLEApcrel - Load a pc-relative address into a register without offending the
// assembler.
let neverHasSideEffects = 1, isReMaterializable = 1 in
def tLEApcrel : T1I<(outs tGPR:$Rd), (ins i32imm:$label, pred:$p), IIC_iALUi,
"adr${p}\t$Rd, #$label", []>,
T1Encoding<{1,0,1,0,0,?}> {
// A6.2 & A8.6.10
bits<3> Rd;
let Inst{10-8} = Rd;
// FIXME: Add label encoding/fixup
}
def tLEApcrelJT : T1I<(outs tGPR:$Rd),
(ins i32imm:$label, nohash_imm:$id, pred:$p),
IIC_iALUi, "adr${p}\t$Rd, #${label}_${id}", []>,
T1Encoding<{1,0,1,0,0,?}> {
// A6.2 & A8.6.10
bits<3> Rd;
let Inst{10-8} = Rd;
// FIXME: Add label encoding/fixup
}
//===----------------------------------------------------------------------===//
// TLS Instructions
//
// __aeabi_read_tp preserves the registers r1-r3.
let isCall = 1, Defs = [R0, LR], Uses = [SP] in
def tTPsoft : TIx2<0b11110, 0b11, 1, (outs), (ins), IIC_Br,
"bl\t__aeabi_read_tp",
[(set R0, ARMthread_pointer)]> {
// Encoding is 0xf7fffffe.
let Inst = 0xf7fffffe;
}
//===----------------------------------------------------------------------===//
// SJLJ Exception handling intrinsics
//
// eh_sjlj_setjmp() is an instruction sequence to store the return address and
// save #0 in R0 for the non-longjmp case. Since by its nature we may be coming
// from some other function to get here, and we're using the stack frame for the
// containing function to save/restore registers, we can't keep anything live in
// regs across the eh_sjlj_setjmp(), else it will almost certainly have been
// tromped upon when we get here from a longjmp(). We force everthing out of
// registers except for our own input by listing the relevant registers in
// Defs. By doing so, we also cause the prologue/epilogue code to actively
// preserve all of the callee-saved resgisters, which is exactly what we want.
// $val is a scratch register for our use.
let Defs = [ R0, R1, R2, R3, R4, R5, R6, R7, R12 ],
hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1 in
def tInt_eh_sjlj_setjmp : ThumbXI<(outs),(ins tGPR:$src, tGPR:$val),
AddrModeNone, SizeSpecial, NoItinerary, "","",
[(set R0, (ARMeh_sjlj_setjmp tGPR:$src, tGPR:$val))]>;
// FIXME: Non-Darwin version(s)
let isBarrier = 1, hasSideEffects = 1, isTerminator = 1, isCodeGenOnly = 1,
Defs = [ R7, LR, SP ] in
def tInt_eh_sjlj_longjmp : XI<(outs), (ins GPR:$src, GPR:$scratch),
AddrModeNone, SizeSpecial, IndexModeNone,
Pseudo, NoItinerary, "", "",
[(ARMeh_sjlj_longjmp GPR:$src, GPR:$scratch)]>,
Requires<[IsThumb, IsDarwin]>;
//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//
// Comparisons
def : T1Pat<(ARMcmpZ tGPR:$Rn, imm0_255:$imm8),
(tCMPi8 tGPR:$Rn, imm0_255:$imm8)>;
def : T1Pat<(ARMcmpZ tGPR:$Rn, tGPR:$Rm),
(tCMPr tGPR:$Rn, tGPR:$Rm)>;
// Add with carry
def : T1Pat<(addc tGPR:$lhs, imm0_7:$rhs),
(tADDi3 tGPR:$lhs, imm0_7:$rhs)>;
def : T1Pat<(addc tGPR:$lhs, imm8_255:$rhs),
(tADDi8 tGPR:$lhs, imm8_255:$rhs)>;
def : T1Pat<(addc tGPR:$lhs, tGPR:$rhs),
(tADDrr tGPR:$lhs, tGPR:$rhs)>;
// Subtract with carry
def : T1Pat<(addc tGPR:$lhs, imm0_7_neg:$rhs),
(tSUBi3 tGPR:$lhs, imm0_7_neg:$rhs)>;
def : T1Pat<(addc tGPR:$lhs, imm8_255_neg:$rhs),
(tSUBi8 tGPR:$lhs, imm8_255_neg:$rhs)>;
def : T1Pat<(subc tGPR:$lhs, tGPR:$rhs),
(tSUBrr tGPR:$lhs, tGPR:$rhs)>;
// ConstantPool, GlobalAddress
def : T1Pat<(ARMWrapper tglobaladdr :$dst), (tLEApcrel tglobaladdr :$dst)>;
def : T1Pat<(ARMWrapper tconstpool :$dst), (tLEApcrel tconstpool :$dst)>;
// JumpTable
def : T1Pat<(ARMWrapperJT tjumptable:$dst, imm:$id),
(tLEApcrelJT tjumptable:$dst, imm:$id)>;
// Direct calls
def : T1Pat<(ARMtcall texternalsym:$func), (tBL texternalsym:$func)>,
Requires<[IsThumb, IsNotDarwin]>;
def : T1Pat<(ARMtcall texternalsym:$func), (tBLr9 texternalsym:$func)>,
Requires<[IsThumb, IsDarwin]>;
def : Tv5Pat<(ARMcall texternalsym:$func), (tBLXi texternalsym:$func)>,
Requires<[IsThumb, HasV5T, IsNotDarwin]>;
def : Tv5Pat<(ARMcall texternalsym:$func), (tBLXi_r9 texternalsym:$func)>,
Requires<[IsThumb, HasV5T, IsDarwin]>;
// Indirect calls to ARM routines
def : Tv5Pat<(ARMcall GPR:$dst), (tBLXr GPR:$dst)>,
Requires<[IsThumb, HasV5T, IsNotDarwin]>;
def : Tv5Pat<(ARMcall GPR:$dst), (tBLXr_r9 GPR:$dst)>,
Requires<[IsThumb, HasV5T, IsDarwin]>;
// zextload i1 -> zextload i8
def : T1Pat<(zextloadi1 t_addrmode_s1:$addr),
(tLDRB t_addrmode_s1:$addr)>;
// extload -> zextload
def : T1Pat<(extloadi1 t_addrmode_s1:$addr), (tLDRB t_addrmode_s1:$addr)>;
def : T1Pat<(extloadi8 t_addrmode_s1:$addr), (tLDRB t_addrmode_s1:$addr)>;
def : T1Pat<(extloadi16 t_addrmode_s2:$addr), (tLDRH t_addrmode_s2:$addr)>;
// If it's impossible to use [r,r] address mode for sextload, select to
// ldr{b|h} + sxt{b|h} instead.
def : T1Pat<(sextloadi8 t_addrmode_s1:$addr),
(tSXTB (tLDRB t_addrmode_s1:$addr))>,
Requires<[IsThumb, IsThumb1Only, HasV6]>;
def : T1Pat<(sextloadi16 t_addrmode_s2:$addr),
(tSXTH (tLDRH t_addrmode_s2:$addr))>,
Requires<[IsThumb, IsThumb1Only, HasV6]>;
def : T1Pat<(sextloadi8 t_addrmode_s1:$addr),
(tASRri (tLSLri (tLDRB t_addrmode_s1:$addr), 24), 24)>;
def : T1Pat<(sextloadi16 t_addrmode_s1:$addr),
(tASRri (tLSLri (tLDRH t_addrmode_s1:$addr), 16), 16)>;
// Large immediate handling.
// Two piece imms.
def : T1Pat<(i32 thumb_immshifted:$src),
(tLSLri (tMOVi8 (thumb_immshifted_val imm:$src)),
(thumb_immshifted_shamt imm:$src))>;
def : T1Pat<(i32 imm0_255_comp:$src),
(tMVN (tMOVi8 (imm_comp_XFORM imm:$src)))>;
// Pseudo instruction that combines ldr from constpool and add pc. This should
// be expanded into two instructions late to allow if-conversion and
// scheduling.
let isReMaterializable = 1 in
def tLDRpci_pic : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr, pclabel:$cp),
NoItinerary,
[(set GPR:$dst, (ARMpic_add (load (ARMWrapper tconstpool:$addr)),
imm:$cp))]>,
Requires<[IsThumb, IsThumb1Only]>;