llvm-project/clang/lib/Sema/SemaDeclAttr.cpp

2062 lines
69 KiB
C++

//===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements decl-related attribute processing.
//
//===----------------------------------------------------------------------===//
#include "Sema.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Parse/DeclSpec.h"
#include "llvm/ADT/StringExtras.h"
using namespace clang;
//===----------------------------------------------------------------------===//
// Helper functions
//===----------------------------------------------------------------------===//
static const FunctionType *getFunctionType(const Decl *d,
bool blocksToo = true) {
QualType Ty;
if (const ValueDecl *decl = dyn_cast<ValueDecl>(d))
Ty = decl->getType();
else if (const FieldDecl *decl = dyn_cast<FieldDecl>(d))
Ty = decl->getType();
else if (const TypedefDecl* decl = dyn_cast<TypedefDecl>(d))
Ty = decl->getUnderlyingType();
else
return 0;
if (Ty->isFunctionPointerType())
Ty = Ty->getAs<PointerType>()->getPointeeType();
else if (blocksToo && Ty->isBlockPointerType())
Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
return Ty->getAs<FunctionType>();
}
// FIXME: We should provide an abstraction around a method or function
// to provide the following bits of information.
/// isFunctionOrMethod - Return true if the given decl has function
/// type (function or function-typed variable).
static bool isFunction(const Decl *d) {
return getFunctionType(d, false) != NULL;
}
/// isFunctionOrMethod - Return true if the given decl has function
/// type (function or function-typed variable) or an Objective-C
/// method.
static bool isFunctionOrMethod(const Decl *d) {
return isFunction(d)|| isa<ObjCMethodDecl>(d);
}
/// isFunctionOrMethodOrBlock - Return true if the given decl has function
/// type (function or function-typed variable) or an Objective-C
/// method or a block.
static bool isFunctionOrMethodOrBlock(const Decl *d) {
if (isFunctionOrMethod(d))
return true;
// check for block is more involved.
if (const VarDecl *V = dyn_cast<VarDecl>(d)) {
QualType Ty = V->getType();
return Ty->isBlockPointerType();
}
return isa<BlockDecl>(d);
}
/// hasFunctionProto - Return true if the given decl has a argument
/// information. This decl should have already passed
/// isFunctionOrMethod or isFunctionOrMethodOrBlock.
static bool hasFunctionProto(const Decl *d) {
if (const FunctionType *FnTy = getFunctionType(d))
return isa<FunctionProtoType>(FnTy);
else {
assert(isa<ObjCMethodDecl>(d) || isa<BlockDecl>(d));
return true;
}
}
/// getFunctionOrMethodNumArgs - Return number of function or method
/// arguments. It is an error to call this on a K&R function (use
/// hasFunctionProto first).
static unsigned getFunctionOrMethodNumArgs(const Decl *d) {
if (const FunctionType *FnTy = getFunctionType(d))
return cast<FunctionProtoType>(FnTy)->getNumArgs();
if (const BlockDecl *BD = dyn_cast<BlockDecl>(d))
return BD->getNumParams();
return cast<ObjCMethodDecl>(d)->param_size();
}
static QualType getFunctionOrMethodArgType(const Decl *d, unsigned Idx) {
if (const FunctionType *FnTy = getFunctionType(d))
return cast<FunctionProtoType>(FnTy)->getArgType(Idx);
if (const BlockDecl *BD = dyn_cast<BlockDecl>(d))
return BD->getParamDecl(Idx)->getType();
return cast<ObjCMethodDecl>(d)->param_begin()[Idx]->getType();
}
static QualType getFunctionOrMethodResultType(const Decl *d) {
if (const FunctionType *FnTy = getFunctionType(d))
return cast<FunctionProtoType>(FnTy)->getResultType();
return cast<ObjCMethodDecl>(d)->getResultType();
}
static bool isFunctionOrMethodVariadic(const Decl *d) {
if (const FunctionType *FnTy = getFunctionType(d)) {
const FunctionProtoType *proto = cast<FunctionProtoType>(FnTy);
return proto->isVariadic();
} else if (const BlockDecl *BD = dyn_cast<BlockDecl>(d))
return BD->IsVariadic();
else {
return cast<ObjCMethodDecl>(d)->isVariadic();
}
}
static inline bool isNSStringType(QualType T, ASTContext &Ctx) {
const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>();
if (!PT)
return false;
const ObjCInterfaceType *ClsT =PT->getPointeeType()->getAs<ObjCInterfaceType>();
if (!ClsT)
return false;
IdentifierInfo* ClsName = ClsT->getDecl()->getIdentifier();
// FIXME: Should we walk the chain of classes?
return ClsName == &Ctx.Idents.get("NSString") ||
ClsName == &Ctx.Idents.get("NSMutableString");
}
static inline bool isCFStringType(QualType T, ASTContext &Ctx) {
const PointerType *PT = T->getAs<PointerType>();
if (!PT)
return false;
const RecordType *RT = PT->getPointeeType()->getAs<RecordType>();
if (!RT)
return false;
const RecordDecl *RD = RT->getDecl();
if (RD->getTagKind() != TagDecl::TK_struct)
return false;
return RD->getIdentifier() == &Ctx.Idents.get("__CFString");
}
//===----------------------------------------------------------------------===//
// Attribute Implementations
//===----------------------------------------------------------------------===//
// FIXME: All this manual attribute parsing code is gross. At the
// least add some helper functions to check most argument patterns (#
// and types of args).
static void HandleExtVectorTypeAttr(Scope *scope, Decl *d,
const AttributeList &Attr, Sema &S) {
TypedefDecl *tDecl = dyn_cast<TypedefDecl>(d);
if (tDecl == 0) {
S.Diag(Attr.getLoc(), diag::err_typecheck_ext_vector_not_typedef);
return;
}
QualType curType = tDecl->getUnderlyingType();
Expr *sizeExpr;
// Special case where the argument is a template id.
if (Attr.getParameterName()) {
sizeExpr = S.ActOnDeclarationNameExpr(scope, Attr.getLoc(),
Attr.getParameterName(),
false, 0, false).takeAs<Expr>();
} else {
// check the attribute arguments.
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
sizeExpr = static_cast<Expr *>(Attr.getArg(0));
}
// Instantiate/Install the vector type, and let Sema build the type for us.
// This will run the reguired checks.
QualType T = S.BuildExtVectorType(curType, S.Owned(sizeExpr), Attr.getLoc());
if (!T.isNull()) {
// FIXME: preserve the old source info.
tDecl->setTypeDeclaratorInfo(S.Context.getTrivialDeclaratorInfo(T));
// Remember this typedef decl, we will need it later for diagnostics.
S.ExtVectorDecls.push_back(tDecl);
}
}
/// HandleVectorSizeAttribute - this attribute is only applicable to integral
/// and float scalars, although arrays, pointers, and function return values are
/// allowed in conjunction with this construct. Aggregates with this attribute
/// are invalid, even if they are of the same size as a corresponding scalar.
/// The raw attribute should contain precisely 1 argument, the vector size for
/// the variable, measured in bytes. If curType and rawAttr are well formed,
/// this routine will return a new vector type.
static void HandleVectorSizeAttr(Decl *D, const AttributeList &Attr, Sema &S) {
QualType CurType;
if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
CurType = VD->getType();
else if (TypedefDecl *TD = dyn_cast<TypedefDecl>(D))
CurType = TD->getUnderlyingType();
else {
S.Diag(D->getLocation(), diag::err_attr_wrong_decl)
<< "vector_size" << SourceRange(Attr.getLoc(), Attr.getLoc());
return;
}
// Check the attribute arugments.
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
llvm::APSInt vecSize(32);
if (!sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
<< "vector_size" << sizeExpr->getSourceRange();
return;
}
// navigate to the base type - we need to provide for vector pointers, vector
// arrays, and functions returning vectors.
if (CurType->isPointerType() || CurType->isArrayType() ||
CurType->isFunctionType()) {
S.Diag(Attr.getLoc(), diag::err_unsupported_vector_size) << CurType;
return;
/* FIXME: rebuild the type from the inside out, vectorizing the inner type.
do {
if (PointerType *PT = dyn_cast<PointerType>(canonType))
canonType = PT->getPointeeType().getTypePtr();
else if (ArrayType *AT = dyn_cast<ArrayType>(canonType))
canonType = AT->getElementType().getTypePtr();
else if (FunctionType *FT = dyn_cast<FunctionType>(canonType))
canonType = FT->getResultType().getTypePtr();
} while (canonType->isPointerType() || canonType->isArrayType() ||
canonType->isFunctionType());
*/
}
// the base type must be integer or float, and can't already be a vector.
if (CurType->isVectorType() ||
(!CurType->isIntegerType() && !CurType->isRealFloatingType())) {
S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
return;
}
unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
// vecSize is specified in bytes - convert to bits.
unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
// the vector size needs to be an integral multiple of the type size.
if (vectorSize % typeSize) {
S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
<< sizeExpr->getSourceRange();
return;
}
if (vectorSize == 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
<< sizeExpr->getSourceRange();
return;
}
// Success! Instantiate the vector type, the number of elements is > 0, and
// not required to be a power of 2, unlike GCC.
CurType = S.Context.getVectorType(CurType, vectorSize/typeSize);
if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
VD->setType(CurType);
else {
// FIXME: preserve existing source info.
DeclaratorInfo *DInfo = S.Context.getTrivialDeclaratorInfo(CurType);
cast<TypedefDecl>(D)->setTypeDeclaratorInfo(DInfo);
}
}
static void HandlePackedAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() > 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
if (TagDecl *TD = dyn_cast<TagDecl>(d))
TD->addAttr(::new (S.Context) PackedAttr);
else if (FieldDecl *FD = dyn_cast<FieldDecl>(d)) {
// If the alignment is less than or equal to 8 bits, the packed attribute
// has no effect.
if (!FD->getType()->isIncompleteType() &&
S.Context.getTypeAlign(FD->getType()) <= 8)
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored_for_field_of_type)
<< Attr.getName() << FD->getType();
else
FD->addAttr(::new (S.Context) PackedAttr);
} else
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
}
static void HandleIBOutletAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() > 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
// The IBOutlet attribute only applies to instance variables of Objective-C
// classes.
if (isa<ObjCIvarDecl>(d) || isa<ObjCPropertyDecl>(d))
d->addAttr(::new (S.Context) IBOutletAttr());
else
S.Diag(Attr.getLoc(), diag::err_attribute_iboutlet);
}
static void HandleNonNullAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// GCC ignores the nonnull attribute on K&R style function prototypes, so we
// ignore it as well
if (!isFunctionOrMethod(d) || !hasFunctionProto(d)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << 0 /*function*/;
return;
}
unsigned NumArgs = getFunctionOrMethodNumArgs(d);
// The nonnull attribute only applies to pointers.
llvm::SmallVector<unsigned, 10> NonNullArgs;
for (AttributeList::arg_iterator I=Attr.arg_begin(),
E=Attr.arg_end(); I!=E; ++I) {
// The argument must be an integer constant expression.
Expr *Ex = static_cast<Expr *>(*I);
llvm::APSInt ArgNum(32);
if (!Ex->isIntegerConstantExpr(ArgNum, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
<< "nonnull" << Ex->getSourceRange();
return;
}
unsigned x = (unsigned) ArgNum.getZExtValue();
if (x < 1 || x > NumArgs) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
<< "nonnull" << I.getArgNum() << Ex->getSourceRange();
return;
}
--x;
// Is the function argument a pointer type?
QualType T = getFunctionOrMethodArgType(d, x);
if (!T->isAnyPointerType() && !T->isBlockPointerType()) {
// FIXME: Should also highlight argument in decl.
S.Diag(Attr.getLoc(), diag::err_nonnull_pointers_only)
<< "nonnull" << Ex->getSourceRange();
continue;
}
NonNullArgs.push_back(x);
}
// If no arguments were specified to __attribute__((nonnull)) then all pointer
// arguments have a nonnull attribute.
if (NonNullArgs.empty()) {
for (unsigned I = 0, E = getFunctionOrMethodNumArgs(d); I != E; ++I) {
QualType T = getFunctionOrMethodArgType(d, I);
if (T->isAnyPointerType() || T->isBlockPointerType())
NonNullArgs.push_back(I);
}
if (NonNullArgs.empty()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_nonnull_no_pointers);
return;
}
}
unsigned* start = &NonNullArgs[0];
unsigned size = NonNullArgs.size();
std::sort(start, start + size);
d->addAttr(::new (S.Context) NonNullAttr(start, size));
}
static void HandleAliasAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
Expr *Arg = static_cast<Expr*>(Attr.getArg(0));
Arg = Arg->IgnoreParenCasts();
StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
if (Str == 0 || Str->isWide()) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
<< "alias" << 1;
return;
}
const char *Alias = Str->getStrData();
unsigned AliasLen = Str->getByteLength();
// FIXME: check if target symbol exists in current file
d->addAttr(::new (S.Context) AliasAttr(std::string(Alias, AliasLen)));
}
static void HandleAlwaysInlineAttr(Decl *d, const AttributeList &Attr,
Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
if (!isa<FunctionDecl>(d)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << 0 /*function*/;
return;
}
d->addAttr(::new (S.Context) AlwaysInlineAttr());
}
static void HandleMallocAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(d)) {
QualType RetTy = FD->getResultType();
if (RetTy->isAnyPointerType() || RetTy->isBlockPointerType()) {
d->addAttr(::new (S.Context) MallocAttr());
return;
}
}
S.Diag(Attr.getLoc(), diag::warn_attribute_malloc_pointer_only);
}
static bool HandleCommonNoReturnAttr(Decl *d, const AttributeList &Attr,
Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return false;
}
if (!isFunctionOrMethod(d) && !isa<BlockDecl>(d)) {
ValueDecl *VD = dyn_cast<ValueDecl>(d);
if (VD == 0 || !VD->getType()->isBlockPointerType()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << 0 /*function*/;
return false;
}
}
return true;
}
static void HandleNoReturnAttr(Decl *d, const AttributeList &Attr, Sema &S) {
if (HandleCommonNoReturnAttr(d, Attr, S))
d->addAttr(::new (S.Context) NoReturnAttr());
}
static void HandleAnalyzerNoReturnAttr(Decl *d, const AttributeList &Attr,
Sema &S) {
if (HandleCommonNoReturnAttr(d, Attr, S))
d->addAttr(::new (S.Context) AnalyzerNoReturnAttr());
}
static void HandleUnusedAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
if (!isa<VarDecl>(d) && !isFunctionOrMethod(d)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << 2 /*variable and function*/;
return;
}
d->addAttr(::new (S.Context) UnusedAttr());
}
static void HandleUsedAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
if (const VarDecl *VD = dyn_cast<VarDecl>(d)) {
if (VD->hasLocalStorage() || VD->hasExternalStorage()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "used";
return;
}
} else if (!isFunctionOrMethod(d)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << 2 /*variable and function*/;
return;
}
d->addAttr(::new (S.Context) UsedAttr());
}
static void HandleConstructorAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0 && Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
<< "0 or 1";
return;
}
int priority = 65535; // FIXME: Do not hardcode such constants.
if (Attr.getNumArgs() > 0) {
Expr *E = static_cast<Expr *>(Attr.getArg(0));
llvm::APSInt Idx(32);
if (!E->isIntegerConstantExpr(Idx, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
<< "constructor" << 1 << E->getSourceRange();
return;
}
priority = Idx.getZExtValue();
}
if (!isa<FunctionDecl>(d)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << 0 /*function*/;
return;
}
d->addAttr(::new (S.Context) ConstructorAttr(priority));
}
static void HandleDestructorAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0 && Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
<< "0 or 1";
return;
}
int priority = 65535; // FIXME: Do not hardcode such constants.
if (Attr.getNumArgs() > 0) {
Expr *E = static_cast<Expr *>(Attr.getArg(0));
llvm::APSInt Idx(32);
if (!E->isIntegerConstantExpr(Idx, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
<< "destructor" << 1 << E->getSourceRange();
return;
}
priority = Idx.getZExtValue();
}
if (!isa<FunctionDecl>(d)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << 0 /*function*/;
return;
}
d->addAttr(::new (S.Context) DestructorAttr(priority));
}
static void HandleDeprecatedAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
d->addAttr(::new (S.Context) DeprecatedAttr());
}
static void HandleUnavailableAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
d->addAttr(::new (S.Context) UnavailableAttr());
}
static void HandleVisibilityAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
Expr *Arg = static_cast<Expr*>(Attr.getArg(0));
Arg = Arg->IgnoreParenCasts();
StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
if (Str == 0 || Str->isWide()) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
<< "visibility" << 1;
return;
}
const char *TypeStr = Str->getStrData();
unsigned TypeLen = Str->getByteLength();
VisibilityAttr::VisibilityTypes type;
if (TypeLen == 7 && !memcmp(TypeStr, "default", 7))
type = VisibilityAttr::DefaultVisibility;
else if (TypeLen == 6 && !memcmp(TypeStr, "hidden", 6))
type = VisibilityAttr::HiddenVisibility;
else if (TypeLen == 8 && !memcmp(TypeStr, "internal", 8))
type = VisibilityAttr::HiddenVisibility; // FIXME
else if (TypeLen == 9 && !memcmp(TypeStr, "protected", 9))
type = VisibilityAttr::ProtectedVisibility;
else {
S.Diag(Attr.getLoc(), diag::warn_attribute_unknown_visibility) << TypeStr;
return;
}
d->addAttr(::new (S.Context) VisibilityAttr(type));
}
static void HandleObjCExceptionAttr(Decl *D, const AttributeList &Attr,
Sema &S) {
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
ObjCInterfaceDecl *OCI = dyn_cast<ObjCInterfaceDecl>(D);
if (OCI == 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_requires_objc_interface);
return;
}
D->addAttr(::new (S.Context) ObjCExceptionAttr());
}
static void HandleObjCNSObject(Decl *D, const AttributeList &Attr, Sema &S) {
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
if (TypedefDecl *TD = dyn_cast<TypedefDecl>(D)) {
QualType T = TD->getUnderlyingType();
if (!T->isPointerType() ||
!T->getAs<PointerType>()->getPointeeType()->isRecordType()) {
S.Diag(TD->getLocation(), diag::err_nsobject_attribute);
return;
}
}
D->addAttr(::new (S.Context) ObjCNSObjectAttr());
}
static void
HandleOverloadableAttr(Decl *D, const AttributeList &Attr, Sema &S) {
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
if (!isa<FunctionDecl>(D)) {
S.Diag(Attr.getLoc(), diag::err_attribute_overloadable_not_function);
return;
}
D->addAttr(::new (S.Context) OverloadableAttr());
}
static void HandleBlocksAttr(Decl *d, const AttributeList &Attr, Sema &S) {
if (!Attr.getParameterName()) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
<< "blocks" << 1;
return;
}
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
BlocksAttr::BlocksAttrTypes type;
if (Attr.getParameterName()->isStr("byref"))
type = BlocksAttr::ByRef;
else {
S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
<< "blocks" << Attr.getParameterName();
return;
}
d->addAttr(::new (S.Context) BlocksAttr(type));
}
static void HandleSentinelAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() > 2) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
<< "0, 1 or 2";
return;
}
int sentinel = 0;
if (Attr.getNumArgs() > 0) {
Expr *E = static_cast<Expr *>(Attr.getArg(0));
llvm::APSInt Idx(32);
if (!E->isIntegerConstantExpr(Idx, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
<< "sentinel" << 1 << E->getSourceRange();
return;
}
sentinel = Idx.getZExtValue();
if (sentinel < 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_less_than_zero)
<< E->getSourceRange();
return;
}
}
int nullPos = 0;
if (Attr.getNumArgs() > 1) {
Expr *E = static_cast<Expr *>(Attr.getArg(1));
llvm::APSInt Idx(32);
if (!E->isIntegerConstantExpr(Idx, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
<< "sentinel" << 2 << E->getSourceRange();
return;
}
nullPos = Idx.getZExtValue();
if (nullPos > 1 || nullPos < 0) {
// FIXME: This error message could be improved, it would be nice
// to say what the bounds actually are.
S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_not_zero_or_one)
<< E->getSourceRange();
return;
}
}
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(d)) {
const FunctionType *FT = FD->getType()->getAs<FunctionType>();
assert(FT && "FunctionDecl has non-function type?");
if (isa<FunctionNoProtoType>(FT)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_named_arguments);
return;
}
if (!cast<FunctionProtoType>(FT)->isVariadic()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
return;
}
} else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(d)) {
if (!MD->isVariadic()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
return;
}
} else if (isa<BlockDecl>(d)) {
// Note! BlockDecl is typeless. Variadic diagnostics will be issued by the
// caller.
;
} else if (const VarDecl *V = dyn_cast<VarDecl>(d)) {
QualType Ty = V->getType();
if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
const FunctionType *FT = Ty->isFunctionPointerType() ? getFunctionType(d)
: Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
if (!cast<FunctionProtoType>(FT)->isVariadic()) {
int m = Ty->isFunctionPointerType() ? 0 : 1;
S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m;
return;
}
} else {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << 6 /*function, method or block */;
return;
}
} else {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << 6 /*function, method or block */;
return;
}
d->addAttr(::new (S.Context) SentinelAttr(sentinel, nullPos));
}
static void HandleWarnUnusedResult(Decl *D, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
// TODO: could also be applied to methods?
FunctionDecl *Fn = dyn_cast<FunctionDecl>(D);
if (!Fn) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << 0 /*function*/;
return;
}
Fn->addAttr(::new (S.Context) WarnUnusedResultAttr());
}
static void HandleWeakAttr(Decl *D, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
/* weak only applies to non-static declarations */
bool isStatic = false;
if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
isStatic = VD->getStorageClass() == VarDecl::Static;
} else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
isStatic = FD->getStorageClass() == FunctionDecl::Static;
}
if (isStatic) {
S.Diag(Attr.getLoc(), diag::err_attribute_weak_static) <<
dyn_cast<NamedDecl>(D)->getNameAsString();
return;
}
// TODO: could also be applied to methods?
if (!isa<FunctionDecl>(D) && !isa<VarDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << 2 /*variable and function*/;
return;
}
D->addAttr(::new (S.Context) WeakAttr());
}
static void HandleWeakImportAttr(Decl *D, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
// weak_import only applies to variable & function declarations.
bool isDef = false;
if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
isDef = (!VD->hasExternalStorage() || VD->getInit());
} else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
isDef = FD->getBody();
} else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D)) {
// We ignore weak import on properties and methods
return;
} else {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << 2 /*variable and function*/;
return;
}
// Merge should handle any subsequent violations.
if (isDef) {
S.Diag(Attr.getLoc(),
diag::warn_attribute_weak_import_invalid_on_definition)
<< "weak_import" << 2 /*variable and function*/;
return;
}
D->addAttr(::new (S.Context) WeakImportAttr());
}
static void HandleDLLImportAttr(Decl *D, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
// Attribute can be applied only to functions or variables.
if (isa<VarDecl>(D)) {
D->addAttr(::new (S.Context) DLLImportAttr());
return;
}
FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
if (!FD) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << 2 /*variable and function*/;
return;
}
// Currently, the dllimport attribute is ignored for inlined functions.
// Warning is emitted.
if (FD->isInlineSpecified()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "dllimport";
return;
}
// The attribute is also overridden by a subsequent declaration as dllexport.
// Warning is emitted.
for (AttributeList *nextAttr = Attr.getNext(); nextAttr;
nextAttr = nextAttr->getNext()) {
if (nextAttr->getKind() == AttributeList::AT_dllexport) {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "dllimport";
return;
}
}
if (D->getAttr<DLLExportAttr>()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "dllimport";
return;
}
D->addAttr(::new (S.Context) DLLImportAttr());
}
static void HandleDLLExportAttr(Decl *D, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
// Attribute can be applied only to functions or variables.
if (isa<VarDecl>(D)) {
D->addAttr(::new (S.Context) DLLExportAttr());
return;
}
FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
if (!FD) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << 2 /*variable and function*/;
return;
}
// Currently, the dllexport attribute is ignored for inlined functions, unless
// the -fkeep-inline-functions flag has been used. Warning is emitted;
if (FD->isInlineSpecified()) {
// FIXME: ... unless the -fkeep-inline-functions flag has been used.
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "dllexport";
return;
}
D->addAttr(::new (S.Context) DLLExportAttr());
}
static void HandleReqdWorkGroupSize(Decl *D, const AttributeList &Attr,
Sema &S) {
// Attribute has 3 arguments.
if (Attr.getNumArgs() != 3) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
unsigned WGSize[3];
for (unsigned i = 0; i < 3; ++i) {
Expr *E = static_cast<Expr *>(Attr.getArg(i));
llvm::APSInt ArgNum(32);
if (!E->isIntegerConstantExpr(ArgNum, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
<< "reqd_work_group_size" << E->getSourceRange();
return;
}
WGSize[i] = (unsigned) ArgNum.getZExtValue();
}
D->addAttr(::new (S.Context) ReqdWorkGroupSizeAttr(WGSize[0], WGSize[1],
WGSize[2]));
}
static void HandleSectionAttr(Decl *D, const AttributeList &Attr, Sema &S) {
// Attribute has no arguments.
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
// Make sure that there is a string literal as the sections's single
// argument.
Expr *ArgExpr = static_cast<Expr *>(Attr.getArg(0));
StringLiteral *SE = dyn_cast<StringLiteral>(ArgExpr);
if (!SE) {
S.Diag(ArgExpr->getLocStart(), diag::err_attribute_not_string) << "section";
return;
}
std::string SectionStr(SE->getStrData(), SE->getByteLength());
// If the target wants to validate the section specifier, make it happen.
std::string Error = S.Context.Target.isValidSectionSpecifier(SectionStr);
if (Error.empty()) {
D->addAttr(::new (S.Context) SectionAttr(SectionStr));
return;
}
S.Diag(SE->getLocStart(), diag::err_attribute_section_invalid_for_target)
<< Error;
}
static void HandleCDeclAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// Attribute has no arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
// Attribute can be applied only to functions.
if (!isa<FunctionDecl>(d)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << 0 /*function*/;
return;
}
// cdecl and fastcall attributes are mutually incompatible.
if (d->getAttr<FastCallAttr>()) {
S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
<< "cdecl" << "fastcall";
return;
}
// cdecl and stdcall attributes are mutually incompatible.
if (d->getAttr<StdCallAttr>()) {
S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
<< "cdecl" << "stdcall";
return;
}
d->addAttr(::new (S.Context) CDeclAttr());
}
static void HandleStdCallAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// Attribute has no arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
// Attribute can be applied only to functions.
if (!isa<FunctionDecl>(d)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << 0 /*function*/;
return;
}
// stdcall and fastcall attributes are mutually incompatible.
if (d->getAttr<FastCallAttr>()) {
S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
<< "stdcall" << "fastcall";
return;
}
d->addAttr(::new (S.Context) StdCallAttr());
}
/// Diagnose the use of a non-standard calling convention on the given
/// function.
static void DiagnoseCConv(FunctionDecl *D, const char *CConv,
SourceLocation Loc, Sema &S) {
if (!D->hasPrototype()) {
S.Diag(Loc, diag::err_cconv_knr) << CConv;
return;
}
const FunctionProtoType *T = D->getType()->getAs<FunctionProtoType>();
if (T->isVariadic()) {
S.Diag(Loc, diag::err_cconv_varargs) << CConv;
return;
}
}
static void HandleFastCallAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// Attribute has no arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
if (!isa<FunctionDecl>(d)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << 0 /*function*/;
return;
}
DiagnoseCConv(cast<FunctionDecl>(d), "fastcall", Attr.getLoc(), S);
// stdcall and fastcall attributes are mutually incompatible.
if (d->getAttr<StdCallAttr>()) {
S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
<< "fastcall" << "stdcall";
return;
}
d->addAttr(::new (S.Context) FastCallAttr());
}
static void HandleNothrowAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
d->addAttr(::new (S.Context) NoThrowAttr());
}
static void HandleConstAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
d->addAttr(::new (S.Context) ConstAttr());
}
static void HandlePureAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
d->addAttr(::new (S.Context) PureAttr());
}
static void HandleCleanupAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// Match gcc which ignores cleanup attrs when compiling C++.
if (S.getLangOptions().CPlusPlus)
return;
if (!Attr.getParameterName()) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
VarDecl *VD = dyn_cast<VarDecl>(d);
if (!VD || !VD->hasLocalStorage()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "cleanup";
return;
}
// Look up the function
NamedDecl *CleanupDecl
= S.LookupSingleName(S.TUScope, Attr.getParameterName(),
Sema::LookupOrdinaryName);
if (!CleanupDecl) {
S.Diag(Attr.getLoc(), diag::err_attribute_cleanup_arg_not_found) <<
Attr.getParameterName();
return;
}
FunctionDecl *FD = dyn_cast<FunctionDecl>(CleanupDecl);
if (!FD) {
S.Diag(Attr.getLoc(), diag::err_attribute_cleanup_arg_not_function) <<
Attr.getParameterName();
return;
}
if (FD->getNumParams() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_cleanup_func_must_take_one_arg) <<
Attr.getParameterName();
return;
}
// We're currently more strict than GCC about what function types we accept.
// If this ever proves to be a problem it should be easy to fix.
QualType Ty = S.Context.getPointerType(VD->getType());
QualType ParamTy = FD->getParamDecl(0)->getType();
if (S.CheckAssignmentConstraints(ParamTy, Ty) != Sema::Compatible) {
S.Diag(Attr.getLoc(),
diag::err_attribute_cleanup_func_arg_incompatible_type) <<
Attr.getParameterName() << ParamTy << Ty;
return;
}
d->addAttr(::new (S.Context) CleanupAttr(FD));
}
/// Handle __attribute__((format_arg((idx)))) attribute based on
/// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
static void HandleFormatArgAttr(Decl *d, const AttributeList &Attr, Sema &S) {
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
if (!isFunctionOrMethod(d) || !hasFunctionProto(d)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << 0 /*function*/;
return;
}
// FIXME: in C++ the implicit 'this' function parameter also counts. this is
// needed in order to be compatible with GCC the index must start with 1.
unsigned NumArgs = getFunctionOrMethodNumArgs(d);
unsigned FirstIdx = 1;
// checks for the 2nd argument
Expr *IdxExpr = static_cast<Expr *>(Attr.getArg(0));
llvm::APSInt Idx(32);
if (!IdxExpr->isIntegerConstantExpr(Idx, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
<< "format" << 2 << IdxExpr->getSourceRange();
return;
}
if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
<< "format" << 2 << IdxExpr->getSourceRange();
return;
}
unsigned ArgIdx = Idx.getZExtValue() - 1;
// make sure the format string is really a string
QualType Ty = getFunctionOrMethodArgType(d, ArgIdx);
bool not_nsstring_type = !isNSStringType(Ty, S.Context);
if (not_nsstring_type &&
!isCFStringType(Ty, S.Context) &&
(!Ty->isPointerType() ||
!Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
// FIXME: Should highlight the actual expression that has the wrong type.
S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
<< (not_nsstring_type ? "a string type" : "an NSString")
<< IdxExpr->getSourceRange();
return;
}
Ty = getFunctionOrMethodResultType(d);
if (!isNSStringType(Ty, S.Context) &&
!isCFStringType(Ty, S.Context) &&
(!Ty->isPointerType() ||
!Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
// FIXME: Should highlight the actual expression that has the wrong type.
S.Diag(Attr.getLoc(), diag::err_format_attribute_result_not)
<< (not_nsstring_type ? "string type" : "NSString")
<< IdxExpr->getSourceRange();
return;
}
d->addAttr(::new (S.Context) FormatArgAttr(Idx.getZExtValue()));
}
enum FormatAttrKind {
CFStringFormat,
NSStringFormat,
StrftimeFormat,
SupportedFormat,
InvalidFormat
};
/// getFormatAttrKind - Map from format attribute names to supported format
/// types.
static FormatAttrKind getFormatAttrKind(llvm::StringRef Format) {
// Check for formats that get handled specially.
if (Format == "NSString")
return NSStringFormat;
if (Format == "CFString")
return CFStringFormat;
if (Format == "strftime")
return StrftimeFormat;
// Otherwise, check for supported formats.
if (Format == "scanf" || Format == "printf" || Format == "printf0" ||
Format == "strfmon" || Format == "cmn_err" || Format == "strftime" ||
Format == "NSString" || Format == "CFString" || Format == "vcmn_err" ||
Format == "zcmn_err")
return SupportedFormat;
return InvalidFormat;
}
/// Handle __attribute__((format(type,idx,firstarg))) attributes based on
/// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
static void HandleFormatAttr(Decl *d, const AttributeList &Attr, Sema &S) {
if (!Attr.getParameterName()) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
<< "format" << 1;
return;
}
if (Attr.getNumArgs() != 2) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 3;
return;
}
if (!isFunctionOrMethodOrBlock(d) || !hasFunctionProto(d)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << 0 /*function*/;
return;
}
unsigned NumArgs = getFunctionOrMethodNumArgs(d);
unsigned FirstIdx = 1;
llvm::StringRef Format = Attr.getParameterName()->getName();
// Normalize the argument, __foo__ becomes foo.
if (Format.startswith("__") && Format.endswith("__"))
Format = Format.substr(2, Format.size() - 4);
// Check for supported formats.
FormatAttrKind Kind = getFormatAttrKind(Format);
if (Kind == InvalidFormat) {
S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
<< "format" << Attr.getParameterName()->getName();
return;
}
// checks for the 2nd argument
Expr *IdxExpr = static_cast<Expr *>(Attr.getArg(0));
llvm::APSInt Idx(32);
if (!IdxExpr->isIntegerConstantExpr(Idx, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
<< "format" << 2 << IdxExpr->getSourceRange();
return;
}
// FIXME: We should handle the implicit 'this' parameter in a more generic
// way that can be used for other arguments.
bool HasImplicitThisParam = false;
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(d)) {
if (MD->isInstance()) {
HasImplicitThisParam = true;
NumArgs++;
}
}
if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
<< "format" << 2 << IdxExpr->getSourceRange();
return;
}
// FIXME: Do we need to bounds check?
unsigned ArgIdx = Idx.getZExtValue() - 1;
if (HasImplicitThisParam) ArgIdx--;
// make sure the format string is really a string
QualType Ty = getFunctionOrMethodArgType(d, ArgIdx);
if (Kind == CFStringFormat) {
if (!isCFStringType(Ty, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
<< "a CFString" << IdxExpr->getSourceRange();
return;
}
} else if (Kind == NSStringFormat) {
// FIXME: do we need to check if the type is NSString*? What are the
// semantics?
if (!isNSStringType(Ty, S.Context)) {
// FIXME: Should highlight the actual expression that has the wrong type.
S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
<< "an NSString" << IdxExpr->getSourceRange();
return;
}
} else if (!Ty->isPointerType() ||
!Ty->getAs<PointerType>()->getPointeeType()->isCharType()) {
// FIXME: Should highlight the actual expression that has the wrong type.
S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
<< "a string type" << IdxExpr->getSourceRange();
return;
}
// check the 3rd argument
Expr *FirstArgExpr = static_cast<Expr *>(Attr.getArg(1));
llvm::APSInt FirstArg(32);
if (!FirstArgExpr->isIntegerConstantExpr(FirstArg, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int)
<< "format" << 3 << FirstArgExpr->getSourceRange();
return;
}
// check if the function is variadic if the 3rd argument non-zero
if (FirstArg != 0) {
if (isFunctionOrMethodVariadic(d)) {
++NumArgs; // +1 for ...
} else {
S.Diag(d->getLocation(), diag::err_format_attribute_requires_variadic);
return;
}
}
// strftime requires FirstArg to be 0 because it doesn't read from any
// variable the input is just the current time + the format string.
if (Kind == StrftimeFormat) {
if (FirstArg != 0) {
S.Diag(Attr.getLoc(), diag::err_format_strftime_third_parameter)
<< FirstArgExpr->getSourceRange();
return;
}
// if 0 it disables parameter checking (to use with e.g. va_list)
} else if (FirstArg != 0 && FirstArg != NumArgs) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
<< "format" << 3 << FirstArgExpr->getSourceRange();
return;
}
d->addAttr(::new (S.Context) FormatAttr(Format, Idx.getZExtValue(),
FirstArg.getZExtValue()));
}
static void HandleTransparentUnionAttr(Decl *d, const AttributeList &Attr,
Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
// Try to find the underlying union declaration.
RecordDecl *RD = 0;
TypedefDecl *TD = dyn_cast<TypedefDecl>(d);
if (TD && TD->getUnderlyingType()->isUnionType())
RD = TD->getUnderlyingType()->getAsUnionType()->getDecl();
else
RD = dyn_cast<RecordDecl>(d);
if (!RD || !RD->isUnion()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << 1 /*union*/;
return;
}
if (!RD->isDefinition()) {
S.Diag(Attr.getLoc(),
diag::warn_transparent_union_attribute_not_definition);
return;
}
RecordDecl::field_iterator Field = RD->field_begin(),
FieldEnd = RD->field_end();
if (Field == FieldEnd) {
S.Diag(Attr.getLoc(), diag::warn_transparent_union_attribute_zero_fields);
return;
}
FieldDecl *FirstField = *Field;
QualType FirstType = FirstField->getType();
if (FirstType->isFloatingType() || FirstType->isVectorType()) {
S.Diag(FirstField->getLocation(),
diag::warn_transparent_union_attribute_floating);
return;
}
uint64_t FirstSize = S.Context.getTypeSize(FirstType);
uint64_t FirstAlign = S.Context.getTypeAlign(FirstType);
for (; Field != FieldEnd; ++Field) {
QualType FieldType = Field->getType();
if (S.Context.getTypeSize(FieldType) != FirstSize ||
S.Context.getTypeAlign(FieldType) != FirstAlign) {
// Warn if we drop the attribute.
bool isSize = S.Context.getTypeSize(FieldType) != FirstSize;
unsigned FieldBits = isSize? S.Context.getTypeSize(FieldType)
: S.Context.getTypeAlign(FieldType);
S.Diag(Field->getLocation(),
diag::warn_transparent_union_attribute_field_size_align)
<< isSize << Field->getDeclName() << FieldBits;
unsigned FirstBits = isSize? FirstSize : FirstAlign;
S.Diag(FirstField->getLocation(),
diag::note_transparent_union_first_field_size_align)
<< isSize << FirstBits;
return;
}
}
RD->addAttr(::new (S.Context) TransparentUnionAttr());
}
static void HandleAnnotateAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
Expr *ArgExpr = static_cast<Expr *>(Attr.getArg(0));
StringLiteral *SE = dyn_cast<StringLiteral>(ArgExpr);
// Make sure that there is a string literal as the annotation's single
// argument.
if (!SE) {
S.Diag(ArgExpr->getLocStart(), diag::err_attribute_not_string) <<"annotate";
return;
}
d->addAttr(::new (S.Context) AnnotateAttr(std::string(SE->getStrData(),
SE->getByteLength())));
}
static void HandleAlignedAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() > 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
unsigned Align = 0;
if (Attr.getNumArgs() == 0) {
// FIXME: This should be the target specific maximum alignment.
// (For now we just use 128 bits which is the maximum on X86).
Align = 128;
d->addAttr(::new (S.Context) AlignedAttr(Align));
return;
}
Expr *alignmentExpr = static_cast<Expr *>(Attr.getArg(0));
llvm::APSInt Alignment(32);
if (!alignmentExpr->isIntegerConstantExpr(Alignment, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
<< "aligned" << alignmentExpr->getSourceRange();
return;
}
if (!llvm::isPowerOf2_64(Alignment.getZExtValue())) {
S.Diag(Attr.getLoc(), diag::err_attribute_aligned_not_power_of_two)
<< alignmentExpr->getSourceRange();
return;
}
d->addAttr(::new (S.Context) AlignedAttr(Alignment.getZExtValue() * 8));
}
/// HandleModeAttr - This attribute modifies the width of a decl with primitive
/// type.
///
/// Despite what would be logical, the mode attribute is a decl attribute, not a
/// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be
/// HImode, not an intermediate pointer.
static void HandleModeAttr(Decl *D, const AttributeList &Attr, Sema &S) {
// This attribute isn't documented, but glibc uses it. It changes
// the width of an int or unsigned int to the specified size.
// Check that there aren't any arguments
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
IdentifierInfo *Name = Attr.getParameterName();
if (!Name) {
S.Diag(Attr.getLoc(), diag::err_attribute_missing_parameter_name);
return;
}
llvm::StringRef Str = Attr.getParameterName()->getName();
// Normalize the attribute name, __foo__ becomes foo.
if (Str.startswith("__") && Str.endswith("__"))
Str = Str.substr(2, Str.size() - 4);
unsigned DestWidth = 0;
bool IntegerMode = true;
bool ComplexMode = false;
switch (Str.size()) {
case 2:
switch (Str[0]) {
case 'Q': DestWidth = 8; break;
case 'H': DestWidth = 16; break;
case 'S': DestWidth = 32; break;
case 'D': DestWidth = 64; break;
case 'X': DestWidth = 96; break;
case 'T': DestWidth = 128; break;
}
if (Str[1] == 'F') {
IntegerMode = false;
} else if (Str[1] == 'C') {
IntegerMode = false;
ComplexMode = true;
} else if (Str[1] != 'I') {
DestWidth = 0;
}
break;
case 4:
// FIXME: glibc uses 'word' to define register_t; this is narrower than a
// pointer on PIC16 and other embedded platforms.
if (Str == "word")
DestWidth = S.Context.Target.getPointerWidth(0);
else if (Str == "byte")
DestWidth = S.Context.Target.getCharWidth();
break;
case 7:
if (Str == "pointer")
DestWidth = S.Context.Target.getPointerWidth(0);
break;
}
QualType OldTy;
if (TypedefDecl *TD = dyn_cast<TypedefDecl>(D))
OldTy = TD->getUnderlyingType();
else if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
OldTy = VD->getType();
else {
S.Diag(D->getLocation(), diag::err_attr_wrong_decl)
<< "mode" << SourceRange(Attr.getLoc(), Attr.getLoc());
return;
}
if (!OldTy->getAs<BuiltinType>() && !OldTy->isComplexType())
S.Diag(Attr.getLoc(), diag::err_mode_not_primitive);
else if (IntegerMode) {
if (!OldTy->isIntegralType())
S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
} else if (ComplexMode) {
if (!OldTy->isComplexType())
S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
} else {
if (!OldTy->isFloatingType())
S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
}
// FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t
// and friends, at least with glibc.
// FIXME: Make sure 32/64-bit integers don't get defined to types of the wrong
// width on unusual platforms.
// FIXME: Make sure floating-point mappings are accurate
// FIXME: Support XF and TF types
QualType NewTy;
switch (DestWidth) {
case 0:
S.Diag(Attr.getLoc(), diag::err_unknown_machine_mode) << Name;
return;
default:
S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
return;
case 8:
if (!IntegerMode) {
S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
return;
}
if (OldTy->isSignedIntegerType())
NewTy = S.Context.SignedCharTy;
else
NewTy = S.Context.UnsignedCharTy;
break;
case 16:
if (!IntegerMode) {
S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
return;
}
if (OldTy->isSignedIntegerType())
NewTy = S.Context.ShortTy;
else
NewTy = S.Context.UnsignedShortTy;
break;
case 32:
if (!IntegerMode)
NewTy = S.Context.FloatTy;
else if (OldTy->isSignedIntegerType())
NewTy = S.Context.IntTy;
else
NewTy = S.Context.UnsignedIntTy;
break;
case 64:
if (!IntegerMode)
NewTy = S.Context.DoubleTy;
else if (OldTy->isSignedIntegerType())
NewTy = S.Context.LongLongTy;
else
NewTy = S.Context.UnsignedLongLongTy;
break;
case 96:
NewTy = S.Context.LongDoubleTy;
break;
case 128:
if (!IntegerMode) {
S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
return;
}
NewTy = S.Context.getFixedWidthIntType(128, OldTy->isSignedIntegerType());
break;
}
if (ComplexMode) {
NewTy = S.Context.getComplexType(NewTy);
}
// Install the new type.
if (TypedefDecl *TD = dyn_cast<TypedefDecl>(D)) {
// FIXME: preserve existing source info.
TD->setTypeDeclaratorInfo(S.Context.getTrivialDeclaratorInfo(NewTy));
} else
cast<ValueDecl>(D)->setType(NewTy);
}
static void HandleNoDebugAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() > 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
if (!isFunctionOrMethod(d)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << 0 /*function*/;
return;
}
d->addAttr(::new (S.Context) NoDebugAttr());
}
static void HandleNoInlineAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
if (!isa<FunctionDecl>(d)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << 0 /*function*/;
return;
}
d->addAttr(::new (S.Context) NoInlineAttr());
}
static void HandleGNUInlineAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
return;
}
FunctionDecl *Fn = dyn_cast<FunctionDecl>(d);
if (Fn == 0) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << 0 /*function*/;
return;
}
if (!Fn->isInlineSpecified()) {
S.Diag(Attr.getLoc(), diag::warn_gnu_inline_attribute_requires_inline);
return;
}
d->addAttr(::new (S.Context) GNUInlineAttr());
}
static void HandleRegparmAttr(Decl *d, const AttributeList &Attr, Sema &S) {
// check the attribute arguments.
if (Attr.getNumArgs() != 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
return;
}
if (!isFunctionOrMethod(d)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << 0 /*function*/;
return;
}
Expr *NumParamsExpr = static_cast<Expr *>(Attr.getArg(0));
llvm::APSInt NumParams(32);
if (!NumParamsExpr->isIntegerConstantExpr(NumParams, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
<< "regparm" << NumParamsExpr->getSourceRange();
return;
}
if (S.Context.Target.getRegParmMax() == 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_regparm_wrong_platform)
<< NumParamsExpr->getSourceRange();
return;
}
if (NumParams.getLimitedValue(255) > S.Context.Target.getRegParmMax()) {
S.Diag(Attr.getLoc(), diag::err_attribute_regparm_invalid_number)
<< S.Context.Target.getRegParmMax() << NumParamsExpr->getSourceRange();
return;
}
d->addAttr(::new (S.Context) RegparmAttr(NumParams.getZExtValue()));
}
//===----------------------------------------------------------------------===//
// Checker-specific attribute handlers.
//===----------------------------------------------------------------------===//
static void HandleNSReturnsRetainedAttr(Decl *d, const AttributeList &Attr,
Sema &S) {
QualType RetTy;
if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(d))
RetTy = MD->getResultType();
else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(d))
RetTy = FD->getResultType();
else {
SourceLocation L = Attr.getLoc();
S.Diag(d->getLocStart(), diag::warn_attribute_wrong_decl_type)
<< SourceRange(L, L) << Attr.getName() << 3 /* function or method */;
return;
}
if (!(S.Context.isObjCNSObjectType(RetTy) || RetTy->getAs<PointerType>()
|| RetTy->getAs<ObjCObjectPointerType>())) {
SourceLocation L = Attr.getLoc();
S.Diag(d->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
<< SourceRange(L, L) << Attr.getName();
return;
}
switch (Attr.getKind()) {
default:
assert(0 && "invalid ownership attribute");
return;
case AttributeList::AT_cf_returns_retained:
d->addAttr(::new (S.Context) CFReturnsRetainedAttr());
return;
case AttributeList::AT_ns_returns_retained:
d->addAttr(::new (S.Context) NSReturnsRetainedAttr());
return;
};
}
//===----------------------------------------------------------------------===//
// Top Level Sema Entry Points
//===----------------------------------------------------------------------===//
/// ProcessDeclAttribute - Apply the specific attribute to the specified decl if
/// the attribute applies to decls. If the attribute is a type attribute, just
/// silently ignore it.
static void ProcessDeclAttribute(Scope *scope, Decl *D,
const AttributeList &Attr, Sema &S) {
if (Attr.isDeclspecAttribute())
// FIXME: Try to deal with __declspec attributes!
return;
switch (Attr.getKind()) {
case AttributeList::AT_IBOutlet: HandleIBOutletAttr (D, Attr, S); break;
case AttributeList::AT_address_space:
case AttributeList::AT_objc_gc:
// Ignore these, these are type attributes, handled by
// ProcessTypeAttributes.
break;
case AttributeList::AT_alias: HandleAliasAttr (D, Attr, S); break;
case AttributeList::AT_aligned: HandleAlignedAttr (D, Attr, S); break;
case AttributeList::AT_always_inline:
HandleAlwaysInlineAttr (D, Attr, S); break;
case AttributeList::AT_analyzer_noreturn:
HandleAnalyzerNoReturnAttr (D, Attr, S); break;
case AttributeList::AT_annotate: HandleAnnotateAttr (D, Attr, S); break;
case AttributeList::AT_cdecl: HandleCDeclAttr (D, Attr, S); break;
case AttributeList::AT_constructor: HandleConstructorAttr(D, Attr, S); break;
case AttributeList::AT_deprecated: HandleDeprecatedAttr(D, Attr, S); break;
case AttributeList::AT_destructor: HandleDestructorAttr(D, Attr, S); break;
case AttributeList::AT_dllexport: HandleDLLExportAttr (D, Attr, S); break;
case AttributeList::AT_dllimport: HandleDLLImportAttr (D, Attr, S); break;
case AttributeList::AT_ext_vector_type:
HandleExtVectorTypeAttr(scope, D, Attr, S);
break;
case AttributeList::AT_fastcall: HandleFastCallAttr (D, Attr, S); break;
case AttributeList::AT_format: HandleFormatAttr (D, Attr, S); break;
case AttributeList::AT_format_arg: HandleFormatArgAttr (D, Attr, S); break;
case AttributeList::AT_gnu_inline: HandleGNUInlineAttr(D, Attr, S); break;
case AttributeList::AT_mode: HandleModeAttr (D, Attr, S); break;
case AttributeList::AT_malloc: HandleMallocAttr (D, Attr, S); break;
case AttributeList::AT_nonnull: HandleNonNullAttr (D, Attr, S); break;
case AttributeList::AT_noreturn: HandleNoReturnAttr (D, Attr, S); break;
case AttributeList::AT_nothrow: HandleNothrowAttr (D, Attr, S); break;
// Checker-specific.
case AttributeList::AT_ns_returns_retained:
case AttributeList::AT_cf_returns_retained:
HandleNSReturnsRetainedAttr(D, Attr, S); break;
case AttributeList::AT_reqd_wg_size:
HandleReqdWorkGroupSize(D, Attr, S); break;
case AttributeList::AT_packed: HandlePackedAttr (D, Attr, S); break;
case AttributeList::AT_section: HandleSectionAttr (D, Attr, S); break;
case AttributeList::AT_stdcall: HandleStdCallAttr (D, Attr, S); break;
case AttributeList::AT_unavailable: HandleUnavailableAttr(D, Attr, S); break;
case AttributeList::AT_unused: HandleUnusedAttr (D, Attr, S); break;
case AttributeList::AT_used: HandleUsedAttr (D, Attr, S); break;
case AttributeList::AT_vector_size: HandleVectorSizeAttr(D, Attr, S); break;
case AttributeList::AT_visibility: HandleVisibilityAttr(D, Attr, S); break;
case AttributeList::AT_warn_unused_result: HandleWarnUnusedResult(D,Attr,S);
break;
case AttributeList::AT_weak: HandleWeakAttr (D, Attr, S); break;
case AttributeList::AT_weak_import: HandleWeakImportAttr(D, Attr, S); break;
case AttributeList::AT_transparent_union:
HandleTransparentUnionAttr(D, Attr, S);
break;
case AttributeList::AT_objc_exception:
HandleObjCExceptionAttr(D, Attr, S);
break;
case AttributeList::AT_overloadable:HandleOverloadableAttr(D, Attr, S); break;
case AttributeList::AT_nsobject: HandleObjCNSObject (D, Attr, S); break;
case AttributeList::AT_blocks: HandleBlocksAttr (D, Attr, S); break;
case AttributeList::AT_sentinel: HandleSentinelAttr (D, Attr, S); break;
case AttributeList::AT_const: HandleConstAttr (D, Attr, S); break;
case AttributeList::AT_pure: HandlePureAttr (D, Attr, S); break;
case AttributeList::AT_cleanup: HandleCleanupAttr (D, Attr, S); break;
case AttributeList::AT_nodebug: HandleNoDebugAttr (D, Attr, S); break;
case AttributeList::AT_noinline: HandleNoInlineAttr (D, Attr, S); break;
case AttributeList::AT_regparm: HandleRegparmAttr (D, Attr, S); break;
case AttributeList::IgnoredAttribute:
case AttributeList::AT_no_instrument_function: // Interacts with -pg.
// Just ignore
break;
default:
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
break;
}
}
/// ProcessDeclAttributeList - Apply all the decl attributes in the specified
/// attribute list to the specified decl, ignoring any type attributes.
void Sema::ProcessDeclAttributeList(Scope *S, Decl *D, const AttributeList *AttrList) {
while (AttrList) {
ProcessDeclAttribute(S, D, *AttrList, *this);
AttrList = AttrList->getNext();
}
}
/// DeclClonePragmaWeak - clone existing decl (maybe definition),
/// #pragma weak needs a non-definition decl and source may not have one
NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II) {
assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND));
NamedDecl *NewD = 0;
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
NewD = FunctionDecl::Create(FD->getASTContext(), FD->getDeclContext(),
FD->getLocation(), DeclarationName(II),
FD->getType(), FD->getDeclaratorInfo());
} else if (VarDecl *VD = dyn_cast<VarDecl>(ND)) {
NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(),
VD->getLocation(), II,
VD->getType(), VD->getDeclaratorInfo(),
VD->getStorageClass());
}
return NewD;
}
/// DeclApplyPragmaWeak - A declaration (maybe definition) needs #pragma weak
/// applied to it, possibly with an alias.
void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) {
if (W.getUsed()) return; // only do this once
W.setUsed(true);
if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...))
IdentifierInfo *NDId = ND->getIdentifier();
NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias());
NewD->addAttr(::new (Context) AliasAttr(NDId->getName()));
NewD->addAttr(::new (Context) WeakAttr());
WeakTopLevelDecl.push_back(NewD);
// FIXME: "hideous" code from Sema::LazilyCreateBuiltin
// to insert Decl at TU scope, sorry.
DeclContext *SavedContext = CurContext;
CurContext = Context.getTranslationUnitDecl();
PushOnScopeChains(NewD, S);
CurContext = SavedContext;
} else { // just add weak to existing
ND->addAttr(::new (Context) WeakAttr());
}
}
/// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in
/// it, apply them to D. This is a bit tricky because PD can have attributes
/// specified in many different places, and we need to find and apply them all.
void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD) {
// Handle #pragma weak
if (NamedDecl *ND = dyn_cast<NamedDecl>(D)) {
if (ND->hasLinkage()) {
WeakInfo W = WeakUndeclaredIdentifiers.lookup(ND->getIdentifier());
if (W != WeakInfo()) {
// Identifier referenced by #pragma weak before it was declared
DeclApplyPragmaWeak(S, ND, W);
WeakUndeclaredIdentifiers[ND->getIdentifier()] = W;
}
}
}
// Apply decl attributes from the DeclSpec if present.
if (const AttributeList *Attrs = PD.getDeclSpec().getAttributes())
ProcessDeclAttributeList(S, D, Attrs);
// Walk the declarator structure, applying decl attributes that were in a type
// position to the decl itself. This handles cases like:
// int *__attr__(x)** D;
// when X is a decl attribute.
for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i)
if (const AttributeList *Attrs = PD.getTypeObject(i).getAttrs())
ProcessDeclAttributeList(S, D, Attrs);
// Finally, apply any attributes on the decl itself.
if (const AttributeList *Attrs = PD.getAttributes())
ProcessDeclAttributeList(S, D, Attrs);
}
/// PushParsingDeclaration - Enter a new "scope" of deprecation
/// warnings.
///
/// The state token we use is the start index of this scope
/// on the warning stack.
Action::ParsingDeclStackState Sema::PushParsingDeclaration() {
ParsingDeclDepth++;
return (ParsingDeclStackState) DelayedDeprecationWarnings.size();
}
static bool isDeclDeprecated(Decl *D) {
do {
if (D->hasAttr<DeprecatedAttr>())
return true;
} while ((D = cast_or_null<Decl>(D->getDeclContext())));
return false;
}
void Sema::PopParsingDeclaration(ParsingDeclStackState S, DeclPtrTy Ctx) {
assert(ParsingDeclDepth > 0 && "empty ParsingDeclaration stack");
ParsingDeclDepth--;
if (DelayedDeprecationWarnings.empty())
return;
unsigned SavedIndex = (unsigned) S;
assert(SavedIndex <= DelayedDeprecationWarnings.size() &&
"saved index is out of bounds");
if (Ctx && !isDeclDeprecated(Ctx.getAs<Decl>())) {
for (unsigned I = 0, E = DelayedDeprecationWarnings.size(); I != E; ++I) {
SourceLocation Loc = DelayedDeprecationWarnings[I].first;
NamedDecl *&ND = DelayedDeprecationWarnings[I].second;
if (ND) {
Diag(Loc, diag::warn_deprecated) << ND->getDeclName();
// Prevent this from triggering multiple times.
ND = 0;
}
}
}
DelayedDeprecationWarnings.set_size(SavedIndex);
}
void Sema::EmitDeprecationWarning(NamedDecl *D, SourceLocation Loc) {
// Delay if we're currently parsing a declaration.
if (ParsingDeclDepth) {
DelayedDeprecationWarnings.push_back(std::make_pair(Loc, D));
return;
}
// Otherwise, don't warn if our current context is deprecated.
if (isDeclDeprecated(cast<Decl>(CurContext)))
return;
Diag(Loc, diag::warn_deprecated) << D->getDeclName();
}