forked from OSchip/llvm-project
361 lines
14 KiB
C++
361 lines
14 KiB
C++
//===----------------------- AlignmentFromAssumptions.cpp -----------------===//
|
|
// Set Load/Store Alignments From Assumptions
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a ScalarEvolution-based transformation to set
|
|
// the alignments of load, stores and memory intrinsics based on the truth
|
|
// expressions of assume intrinsics. The primary motivation is to handle
|
|
// complex alignment assumptions that apply to vector loads and stores that
|
|
// appear after vectorization and unrolling.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
|
|
#define AA_NAME "alignment-from-assumptions"
|
|
#define DEBUG_TYPE AA_NAME
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumLoadAlignChanged,
|
|
"Number of loads changed by alignment assumptions");
|
|
STATISTIC(NumStoreAlignChanged,
|
|
"Number of stores changed by alignment assumptions");
|
|
STATISTIC(NumMemIntAlignChanged,
|
|
"Number of memory intrinsics changed by alignment assumptions");
|
|
|
|
namespace {
|
|
struct AlignmentFromAssumptions : public FunctionPass {
|
|
static char ID; // Pass identification, replacement for typeid
|
|
AlignmentFromAssumptions() : FunctionPass(ID) {
|
|
initializeAlignmentFromAssumptionsPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addRequired<ScalarEvolutionWrapperPass>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
|
|
AU.setPreservesCFG();
|
|
AU.addPreserved<AAResultsWrapperPass>();
|
|
AU.addPreserved<GlobalsAAWrapperPass>();
|
|
AU.addPreserved<LoopInfoWrapperPass>();
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<ScalarEvolutionWrapperPass>();
|
|
}
|
|
|
|
AlignmentFromAssumptionsPass Impl;
|
|
};
|
|
}
|
|
|
|
char AlignmentFromAssumptions::ID = 0;
|
|
static const char aip_name[] = "Alignment from assumptions";
|
|
INITIALIZE_PASS_BEGIN(AlignmentFromAssumptions, AA_NAME,
|
|
aip_name, false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
|
|
INITIALIZE_PASS_END(AlignmentFromAssumptions, AA_NAME,
|
|
aip_name, false, false)
|
|
|
|
FunctionPass *llvm::createAlignmentFromAssumptionsPass() {
|
|
return new AlignmentFromAssumptions();
|
|
}
|
|
|
|
// Given an expression for the (constant) alignment, AlignSCEV, and an
|
|
// expression for the displacement between a pointer and the aligned address,
|
|
// DiffSCEV, compute the alignment of the displaced pointer if it can be reduced
|
|
// to a constant. Using SCEV to compute alignment handles the case where
|
|
// DiffSCEV is a recurrence with constant start such that the aligned offset
|
|
// is constant. e.g. {16,+,32} % 32 -> 16.
|
|
static MaybeAlign getNewAlignmentDiff(const SCEV *DiffSCEV,
|
|
const SCEV *AlignSCEV,
|
|
ScalarEvolution *SE) {
|
|
// DiffUnits = Diff % int64_t(Alignment)
|
|
const SCEV *DiffUnitsSCEV = SE->getURemExpr(DiffSCEV, AlignSCEV);
|
|
|
|
LLVM_DEBUG(dbgs() << "\talignment relative to " << *AlignSCEV << " is "
|
|
<< *DiffUnitsSCEV << " (diff: " << *DiffSCEV << ")\n");
|
|
|
|
if (const SCEVConstant *ConstDUSCEV =
|
|
dyn_cast<SCEVConstant>(DiffUnitsSCEV)) {
|
|
int64_t DiffUnits = ConstDUSCEV->getValue()->getSExtValue();
|
|
|
|
// If the displacement is an exact multiple of the alignment, then the
|
|
// displaced pointer has the same alignment as the aligned pointer, so
|
|
// return the alignment value.
|
|
if (!DiffUnits)
|
|
return cast<SCEVConstant>(AlignSCEV)->getValue()->getAlignValue();
|
|
|
|
// If the displacement is not an exact multiple, but the remainder is a
|
|
// constant, then return this remainder (but only if it is a power of 2).
|
|
uint64_t DiffUnitsAbs = std::abs(DiffUnits);
|
|
if (isPowerOf2_64(DiffUnitsAbs))
|
|
return Align(DiffUnitsAbs);
|
|
}
|
|
|
|
return None;
|
|
}
|
|
|
|
// There is an address given by an offset OffSCEV from AASCEV which has an
|
|
// alignment AlignSCEV. Use that information, if possible, to compute a new
|
|
// alignment for Ptr.
|
|
static Align getNewAlignment(const SCEV *AASCEV, const SCEV *AlignSCEV,
|
|
const SCEV *OffSCEV, Value *Ptr,
|
|
ScalarEvolution *SE) {
|
|
const SCEV *PtrSCEV = SE->getSCEV(Ptr);
|
|
// On a platform with 32-bit allocas, but 64-bit flat/global pointer sizes
|
|
// (*cough* AMDGPU), the effective SCEV type of AASCEV and PtrSCEV
|
|
// may disagree. Trunc/extend so they agree.
|
|
PtrSCEV = SE->getTruncateOrZeroExtend(
|
|
PtrSCEV, SE->getEffectiveSCEVType(AASCEV->getType()));
|
|
const SCEV *DiffSCEV = SE->getMinusSCEV(PtrSCEV, AASCEV);
|
|
if (isa<SCEVCouldNotCompute>(DiffSCEV))
|
|
return Align(1);
|
|
|
|
// On 32-bit platforms, DiffSCEV might now have type i32 -- we've always
|
|
// sign-extended OffSCEV to i64, so make sure they agree again.
|
|
DiffSCEV = SE->getNoopOrSignExtend(DiffSCEV, OffSCEV->getType());
|
|
|
|
// What we really want to know is the overall offset to the aligned
|
|
// address. This address is displaced by the provided offset.
|
|
DiffSCEV = SE->getAddExpr(DiffSCEV, OffSCEV);
|
|
|
|
LLVM_DEBUG(dbgs() << "AFI: alignment of " << *Ptr << " relative to "
|
|
<< *AlignSCEV << " and offset " << *OffSCEV
|
|
<< " using diff " << *DiffSCEV << "\n");
|
|
|
|
if (MaybeAlign NewAlignment = getNewAlignmentDiff(DiffSCEV, AlignSCEV, SE)) {
|
|
LLVM_DEBUG(dbgs() << "\tnew alignment: " << DebugStr(NewAlignment) << "\n");
|
|
return *NewAlignment;
|
|
}
|
|
|
|
if (const SCEVAddRecExpr *DiffARSCEV = dyn_cast<SCEVAddRecExpr>(DiffSCEV)) {
|
|
// The relative offset to the alignment assumption did not yield a constant,
|
|
// but we should try harder: if we assume that a is 32-byte aligned, then in
|
|
// for (i = 0; i < 1024; i += 4) r += a[i]; not all of the loads from a are
|
|
// 32-byte aligned, but instead alternate between 32 and 16-byte alignment.
|
|
// As a result, the new alignment will not be a constant, but can still
|
|
// be improved over the default (of 4) to 16.
|
|
|
|
const SCEV *DiffStartSCEV = DiffARSCEV->getStart();
|
|
const SCEV *DiffIncSCEV = DiffARSCEV->getStepRecurrence(*SE);
|
|
|
|
LLVM_DEBUG(dbgs() << "\ttrying start/inc alignment using start "
|
|
<< *DiffStartSCEV << " and inc " << *DiffIncSCEV << "\n");
|
|
|
|
// Now compute the new alignment using the displacement to the value in the
|
|
// first iteration, and also the alignment using the per-iteration delta.
|
|
// If these are the same, then use that answer. Otherwise, use the smaller
|
|
// one, but only if it divides the larger one.
|
|
MaybeAlign NewAlignment = getNewAlignmentDiff(DiffStartSCEV, AlignSCEV, SE);
|
|
MaybeAlign NewIncAlignment =
|
|
getNewAlignmentDiff(DiffIncSCEV, AlignSCEV, SE);
|
|
|
|
LLVM_DEBUG(dbgs() << "\tnew start alignment: " << DebugStr(NewAlignment)
|
|
<< "\n");
|
|
LLVM_DEBUG(dbgs() << "\tnew inc alignment: " << DebugStr(NewIncAlignment)
|
|
<< "\n");
|
|
|
|
if (!NewAlignment || !NewIncAlignment)
|
|
return Align(1);
|
|
|
|
const Align NewAlign = *NewAlignment;
|
|
const Align NewIncAlign = *NewIncAlignment;
|
|
if (NewAlign > NewIncAlign) {
|
|
LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: "
|
|
<< DebugStr(NewIncAlign) << "\n");
|
|
return NewIncAlign;
|
|
}
|
|
if (NewIncAlign > NewAlign) {
|
|
LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << DebugStr(NewAlign)
|
|
<< "\n");
|
|
return NewAlign;
|
|
}
|
|
assert(NewIncAlign == NewAlign);
|
|
LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << DebugStr(NewAlign)
|
|
<< "\n");
|
|
return NewAlign;
|
|
}
|
|
|
|
return Align(1);
|
|
}
|
|
|
|
bool AlignmentFromAssumptionsPass::extractAlignmentInfo(CallInst *I,
|
|
unsigned Idx,
|
|
Value *&AAPtr,
|
|
const SCEV *&AlignSCEV,
|
|
const SCEV *&OffSCEV) {
|
|
Type *Int64Ty = Type::getInt64Ty(I->getContext());
|
|
OperandBundleUse AlignOB = I->getOperandBundleAt(Idx);
|
|
if (AlignOB.getTagName() != "align")
|
|
return false;
|
|
assert(AlignOB.Inputs.size() >= 2);
|
|
AAPtr = AlignOB.Inputs[0].get();
|
|
// TODO: Consider accumulating the offset to the base.
|
|
AAPtr = AAPtr->stripPointerCastsSameRepresentation();
|
|
AlignSCEV = SE->getSCEV(AlignOB.Inputs[1].get());
|
|
AlignSCEV = SE->getTruncateOrZeroExtend(AlignSCEV, Int64Ty);
|
|
if (AlignOB.Inputs.size() == 3)
|
|
OffSCEV = SE->getSCEV(AlignOB.Inputs[2].get());
|
|
else
|
|
OffSCEV = SE->getZero(Int64Ty);
|
|
OffSCEV = SE->getTruncateOrZeroExtend(OffSCEV, Int64Ty);
|
|
return true;
|
|
}
|
|
|
|
bool AlignmentFromAssumptionsPass::processAssumption(CallInst *ACall,
|
|
unsigned Idx) {
|
|
Value *AAPtr;
|
|
const SCEV *AlignSCEV, *OffSCEV;
|
|
if (!extractAlignmentInfo(ACall, Idx, AAPtr, AlignSCEV, OffSCEV))
|
|
return false;
|
|
|
|
// Skip ConstantPointerNull and UndefValue. Assumptions on these shouldn't
|
|
// affect other users.
|
|
if (isa<ConstantData>(AAPtr))
|
|
return false;
|
|
|
|
const SCEV *AASCEV = SE->getSCEV(AAPtr);
|
|
|
|
// Apply the assumption to all other users of the specified pointer.
|
|
SmallPtrSet<Instruction *, 32> Visited;
|
|
SmallVector<Instruction*, 16> WorkList;
|
|
for (User *J : AAPtr->users()) {
|
|
if (J == ACall)
|
|
continue;
|
|
|
|
if (Instruction *K = dyn_cast<Instruction>(J))
|
|
WorkList.push_back(K);
|
|
}
|
|
|
|
while (!WorkList.empty()) {
|
|
Instruction *J = WorkList.pop_back_val();
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(J)) {
|
|
if (!isValidAssumeForContext(ACall, J, DT))
|
|
continue;
|
|
Align NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
|
|
LI->getPointerOperand(), SE);
|
|
if (NewAlignment > LI->getAlign()) {
|
|
LI->setAlignment(NewAlignment);
|
|
++NumLoadAlignChanged;
|
|
}
|
|
} else if (StoreInst *SI = dyn_cast<StoreInst>(J)) {
|
|
if (!isValidAssumeForContext(ACall, J, DT))
|
|
continue;
|
|
Align NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
|
|
SI->getPointerOperand(), SE);
|
|
if (NewAlignment > SI->getAlign()) {
|
|
SI->setAlignment(NewAlignment);
|
|
++NumStoreAlignChanged;
|
|
}
|
|
} else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(J)) {
|
|
if (!isValidAssumeForContext(ACall, J, DT))
|
|
continue;
|
|
Align NewDestAlignment =
|
|
getNewAlignment(AASCEV, AlignSCEV, OffSCEV, MI->getDest(), SE);
|
|
|
|
LLVM_DEBUG(dbgs() << "\tmem inst: " << DebugStr(NewDestAlignment)
|
|
<< "\n";);
|
|
if (NewDestAlignment > *MI->getDestAlign()) {
|
|
MI->setDestAlignment(NewDestAlignment);
|
|
++NumMemIntAlignChanged;
|
|
}
|
|
|
|
// For memory transfers, there is also a source alignment that
|
|
// can be set.
|
|
if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
|
|
Align NewSrcAlignment =
|
|
getNewAlignment(AASCEV, AlignSCEV, OffSCEV, MTI->getSource(), SE);
|
|
|
|
LLVM_DEBUG(dbgs() << "\tmem trans: " << DebugStr(NewSrcAlignment)
|
|
<< "\n";);
|
|
|
|
if (NewSrcAlignment > *MTI->getSourceAlign()) {
|
|
MTI->setSourceAlignment(NewSrcAlignment);
|
|
++NumMemIntAlignChanged;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now that we've updated that use of the pointer, look for other uses of
|
|
// the pointer to update.
|
|
Visited.insert(J);
|
|
for (User *UJ : J->users()) {
|
|
Instruction *K = cast<Instruction>(UJ);
|
|
if (!Visited.count(K))
|
|
WorkList.push_back(K);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AlignmentFromAssumptions::runOnFunction(Function &F) {
|
|
if (skipFunction(F))
|
|
return false;
|
|
|
|
auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
|
|
ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
|
DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
|
|
return Impl.runImpl(F, AC, SE, DT);
|
|
}
|
|
|
|
bool AlignmentFromAssumptionsPass::runImpl(Function &F, AssumptionCache &AC,
|
|
ScalarEvolution *SE_,
|
|
DominatorTree *DT_) {
|
|
SE = SE_;
|
|
DT = DT_;
|
|
|
|
bool Changed = false;
|
|
for (auto &AssumeVH : AC.assumptions())
|
|
if (AssumeVH) {
|
|
CallInst *Call = cast<CallInst>(AssumeVH);
|
|
for (unsigned Idx = 0; Idx < Call->getNumOperandBundles(); Idx++)
|
|
Changed |= processAssumption(Call, Idx);
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
PreservedAnalyses
|
|
AlignmentFromAssumptionsPass::run(Function &F, FunctionAnalysisManager &AM) {
|
|
|
|
AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
|
|
ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
|
|
DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
|
|
if (!runImpl(F, AC, &SE, &DT))
|
|
return PreservedAnalyses::all();
|
|
|
|
PreservedAnalyses PA;
|
|
PA.preserveSet<CFGAnalyses>();
|
|
PA.preserve<ScalarEvolutionAnalysis>();
|
|
return PA;
|
|
}
|