llvm-project/llvm/lib/ExecutionEngine/Orc/ObjectLinkingLayer.cpp

824 lines
27 KiB
C++

//===------- ObjectLinkingLayer.cpp - JITLink backed ORC ObjectLayer ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ExecutionEngine/JITLink/EHFrameSupport.h"
#include "llvm/ExecutionEngine/Orc/DebugObjectManagerPlugin.h"
#include "llvm/Support/MemoryBuffer.h"
#include <vector>
#define DEBUG_TYPE "orc"
using namespace llvm;
using namespace llvm::jitlink;
using namespace llvm::orc;
namespace {
class LinkGraphMaterializationUnit : public MaterializationUnit {
private:
struct LinkGraphInterface {
SymbolFlagsMap SymbolFlags;
SymbolStringPtr InitSymbol;
};
public:
static std::unique_ptr<LinkGraphMaterializationUnit>
Create(ObjectLinkingLayer &ObjLinkingLayer, std::unique_ptr<LinkGraph> G) {
auto LGI = scanLinkGraph(ObjLinkingLayer.getExecutionSession(), *G);
return std::unique_ptr<LinkGraphMaterializationUnit>(
new LinkGraphMaterializationUnit(ObjLinkingLayer, std::move(G),
std::move(LGI)));
}
StringRef getName() const override { return G->getName(); }
void materialize(std::unique_ptr<MaterializationResponsibility> MR) override {
ObjLinkingLayer.emit(std::move(MR), std::move(G));
}
private:
static LinkGraphInterface scanLinkGraph(ExecutionSession &ES, LinkGraph &G) {
LinkGraphInterface LGI;
for (auto *Sym : G.defined_symbols()) {
// Skip local symbols.
if (Sym->getScope() == Scope::Local)
continue;
assert(Sym->hasName() && "Anonymous non-local symbol?");
JITSymbolFlags Flags;
if (Sym->getScope() == Scope::Default)
Flags |= JITSymbolFlags::Exported;
if (Sym->isCallable())
Flags |= JITSymbolFlags::Callable;
LGI.SymbolFlags[ES.intern(Sym->getName())] = Flags;
}
if (G.getTargetTriple().isOSBinFormatMachO())
if (hasMachOInitSection(G))
LGI.InitSymbol = makeInitSymbol(ES, G);
return LGI;
}
static bool hasMachOInitSection(LinkGraph &G) {
for (auto &Sec : G.sections())
if (Sec.getName() == "__DATA,__obj_selrefs" ||
Sec.getName() == "__DATA,__objc_classlist" ||
Sec.getName() == "__TEXT,__swift5_protos" ||
Sec.getName() == "__TEXT,__swift5_proto" ||
Sec.getName() == "__DATA,__mod_init_func")
return true;
return false;
}
static SymbolStringPtr makeInitSymbol(ExecutionSession &ES, LinkGraph &G) {
std::string InitSymString;
raw_string_ostream(InitSymString)
<< "$." << G.getName() << ".__inits" << Counter++;
return ES.intern(InitSymString);
}
LinkGraphMaterializationUnit(ObjectLinkingLayer &ObjLinkingLayer,
std::unique_ptr<LinkGraph> G,
LinkGraphInterface LGI)
: MaterializationUnit(std::move(LGI.SymbolFlags),
std::move(LGI.InitSymbol)),
ObjLinkingLayer(ObjLinkingLayer), G(std::move(G)) {}
void discard(const JITDylib &JD, const SymbolStringPtr &Name) override {
for (auto *Sym : G->defined_symbols())
if (Sym->getName() == *Name) {
assert(Sym->getLinkage() == Linkage::Weak &&
"Discarding non-weak definition");
G->makeExternal(*Sym);
break;
}
}
ObjectLinkingLayer &ObjLinkingLayer;
std::unique_ptr<LinkGraph> G;
static std::atomic<uint64_t> Counter;
};
std::atomic<uint64_t> LinkGraphMaterializationUnit::Counter{0};
} // end anonymous namespace
namespace llvm {
namespace orc {
class ObjectLinkingLayerJITLinkContext final : public JITLinkContext {
public:
ObjectLinkingLayerJITLinkContext(
ObjectLinkingLayer &Layer,
std::unique_ptr<MaterializationResponsibility> MR,
std::unique_ptr<MemoryBuffer> ObjBuffer)
: JITLinkContext(&MR->getTargetJITDylib()), Layer(Layer),
MR(std::move(MR)), ObjBuffer(std::move(ObjBuffer)) {}
~ObjectLinkingLayerJITLinkContext() {
// If there is an object buffer return function then use it to
// return ownership of the buffer.
if (Layer.ReturnObjectBuffer && ObjBuffer)
Layer.ReturnObjectBuffer(std::move(ObjBuffer));
}
JITLinkMemoryManager &getMemoryManager() override { return Layer.MemMgr; }
void notifyMaterializing(LinkGraph &G) {
for (auto &P : Layer.Plugins)
P->notifyMaterializing(*MR, G, *this,
ObjBuffer ? ObjBuffer->getMemBufferRef()
: MemoryBufferRef());
}
void notifyFailed(Error Err) override {
for (auto &P : Layer.Plugins)
Err = joinErrors(std::move(Err), P->notifyFailed(*MR));
Layer.getExecutionSession().reportError(std::move(Err));
MR->failMaterialization();
}
void lookup(const LookupMap &Symbols,
std::unique_ptr<JITLinkAsyncLookupContinuation> LC) override {
JITDylibSearchOrder LinkOrder;
MR->getTargetJITDylib().withLinkOrderDo(
[&](const JITDylibSearchOrder &LO) { LinkOrder = LO; });
auto &ES = Layer.getExecutionSession();
SymbolLookupSet LookupSet;
for (auto &KV : Symbols) {
orc::SymbolLookupFlags LookupFlags;
switch (KV.second) {
case jitlink::SymbolLookupFlags::RequiredSymbol:
LookupFlags = orc::SymbolLookupFlags::RequiredSymbol;
break;
case jitlink::SymbolLookupFlags::WeaklyReferencedSymbol:
LookupFlags = orc::SymbolLookupFlags::WeaklyReferencedSymbol;
break;
}
LookupSet.add(ES.intern(KV.first), LookupFlags);
}
// OnResolve -- De-intern the symbols and pass the result to the linker.
auto OnResolve = [LookupContinuation =
std::move(LC)](Expected<SymbolMap> Result) mutable {
if (!Result)
LookupContinuation->run(Result.takeError());
else {
AsyncLookupResult LR;
for (auto &KV : *Result)
LR[*KV.first] = KV.second;
LookupContinuation->run(std::move(LR));
}
};
for (auto &KV : InternalNamedSymbolDeps) {
SymbolDependenceMap InternalDeps;
InternalDeps[&MR->getTargetJITDylib()] = std::move(KV.second);
MR->addDependencies(KV.first, InternalDeps);
}
ES.lookup(LookupKind::Static, LinkOrder, std::move(LookupSet),
SymbolState::Resolved, std::move(OnResolve),
[this](const SymbolDependenceMap &Deps) {
registerDependencies(Deps);
});
}
Error notifyResolved(LinkGraph &G) override {
auto &ES = Layer.getExecutionSession();
SymbolFlagsMap ExtraSymbolsToClaim;
bool AutoClaim = Layer.AutoClaimObjectSymbols;
SymbolMap InternedResult;
for (auto *Sym : G.defined_symbols())
if (Sym->hasName() && Sym->getScope() != Scope::Local) {
auto InternedName = ES.intern(Sym->getName());
JITSymbolFlags Flags;
if (Sym->isCallable())
Flags |= JITSymbolFlags::Callable;
if (Sym->getScope() == Scope::Default)
Flags |= JITSymbolFlags::Exported;
InternedResult[InternedName] =
JITEvaluatedSymbol(Sym->getAddress(), Flags);
if (AutoClaim && !MR->getSymbols().count(InternedName)) {
assert(!ExtraSymbolsToClaim.count(InternedName) &&
"Duplicate symbol to claim?");
ExtraSymbolsToClaim[InternedName] = Flags;
}
}
for (auto *Sym : G.absolute_symbols())
if (Sym->hasName()) {
auto InternedName = ES.intern(Sym->getName());
JITSymbolFlags Flags;
Flags |= JITSymbolFlags::Absolute;
if (Sym->isCallable())
Flags |= JITSymbolFlags::Callable;
if (Sym->getLinkage() == Linkage::Weak)
Flags |= JITSymbolFlags::Weak;
InternedResult[InternedName] =
JITEvaluatedSymbol(Sym->getAddress(), Flags);
if (AutoClaim && !MR->getSymbols().count(InternedName)) {
assert(!ExtraSymbolsToClaim.count(InternedName) &&
"Duplicate symbol to claim?");
ExtraSymbolsToClaim[InternedName] = Flags;
}
}
if (!ExtraSymbolsToClaim.empty())
if (auto Err = MR->defineMaterializing(ExtraSymbolsToClaim))
return Err;
{
// Check that InternedResult matches up with MR->getSymbols().
// This guards against faulty transformations / compilers / object caches.
// First check that there aren't any missing symbols.
size_t NumMaterializationSideEffectsOnlySymbols = 0;
SymbolNameVector ExtraSymbols;
SymbolNameVector MissingSymbols;
for (auto &KV : MR->getSymbols()) {
// If this is a materialization-side-effects only symbol then bump
// the counter and make sure it's *not* defined, otherwise make
// sure that it is defined.
if (KV.second.hasMaterializationSideEffectsOnly()) {
++NumMaterializationSideEffectsOnlySymbols;
if (InternedResult.count(KV.first))
ExtraSymbols.push_back(KV.first);
continue;
} else if (!InternedResult.count(KV.first))
MissingSymbols.push_back(KV.first);
}
// If there were missing symbols then report the error.
if (!MissingSymbols.empty())
return make_error<MissingSymbolDefinitions>(G.getName(),
std::move(MissingSymbols));
// If there are more definitions than expected, add them to the
// ExtraSymbols vector.
if (InternedResult.size() >
MR->getSymbols().size() - NumMaterializationSideEffectsOnlySymbols) {
for (auto &KV : InternedResult)
if (!MR->getSymbols().count(KV.first))
ExtraSymbols.push_back(KV.first);
}
// If there were extra definitions then report the error.
if (!ExtraSymbols.empty())
return make_error<UnexpectedSymbolDefinitions>(G.getName(),
std::move(ExtraSymbols));
}
if (auto Err = MR->notifyResolved(InternedResult))
return Err;
Layer.notifyLoaded(*MR);
return Error::success();
}
void notifyFinalized(
std::unique_ptr<JITLinkMemoryManager::Allocation> A) override {
if (auto Err = Layer.notifyEmitted(*MR, std::move(A))) {
Layer.getExecutionSession().reportError(std::move(Err));
MR->failMaterialization();
return;
}
if (auto Err = MR->notifyEmitted()) {
Layer.getExecutionSession().reportError(std::move(Err));
MR->failMaterialization();
}
}
LinkGraphPassFunction getMarkLivePass(const Triple &TT) const override {
return [this](LinkGraph &G) { return markResponsibilitySymbolsLive(G); };
}
Error modifyPassConfig(LinkGraph &LG, PassConfiguration &Config) override {
// Add passes to mark duplicate defs as should-discard, and to walk the
// link graph to build the symbol dependence graph.
Config.PrePrunePasses.push_back([this](LinkGraph &G) {
return claimOrExternalizeWeakAndCommonSymbols(G);
});
Layer.modifyPassConfig(*MR, LG, Config);
Config.PostPrunePasses.push_back(
[this](LinkGraph &G) { return computeNamedSymbolDependencies(G); });
return Error::success();
}
private:
// Symbol name dependencies:
// Internal: Defined in this graph.
// External: Defined externally.
struct BlockSymbolDependencies {
SymbolNameSet Internal, External;
};
// Lazily populated map of blocks to BlockSymbolDependencies values.
class BlockDependenciesMap {
public:
BlockDependenciesMap(ExecutionSession &ES,
DenseMap<const Block *, DenseSet<Block *>> BlockDeps)
: ES(ES), BlockDeps(std::move(BlockDeps)) {}
const BlockSymbolDependencies &operator[](const Block &B) {
// Check the cache first.
auto I = BlockTransitiveDepsCache.find(&B);
if (I != BlockTransitiveDepsCache.end())
return I->second;
// No value. Populate the cache.
BlockSymbolDependencies BTDCacheVal;
auto BDI = BlockDeps.find(&B);
assert(BDI != BlockDeps.end() && "No block dependencies");
for (auto *BDep : BDI->second) {
auto &BID = getBlockImmediateDeps(*BDep);
for (auto &ExternalDep : BID.External)
BTDCacheVal.External.insert(ExternalDep);
for (auto &InternalDep : BID.Internal)
BTDCacheVal.Internal.insert(InternalDep);
}
return BlockTransitiveDepsCache
.insert(std::make_pair(&B, std::move(BTDCacheVal)))
.first->second;
}
SymbolStringPtr &getInternedName(Symbol &Sym) {
auto I = NameCache.find(&Sym);
if (I != NameCache.end())
return I->second;
return NameCache.insert(std::make_pair(&Sym, ES.intern(Sym.getName())))
.first->second;
}
private:
BlockSymbolDependencies &getBlockImmediateDeps(Block &B) {
// Check the cache first.
auto I = BlockImmediateDepsCache.find(&B);
if (I != BlockImmediateDepsCache.end())
return I->second;
BlockSymbolDependencies BIDCacheVal;
for (auto &E : B.edges()) {
auto &Tgt = E.getTarget();
if (Tgt.getScope() != Scope::Local) {
if (Tgt.isExternal())
BIDCacheVal.External.insert(getInternedName(Tgt));
else
BIDCacheVal.Internal.insert(getInternedName(Tgt));
}
}
return BlockImmediateDepsCache
.insert(std::make_pair(&B, std::move(BIDCacheVal)))
.first->second;
}
ExecutionSession &ES;
DenseMap<const Block *, DenseSet<Block *>> BlockDeps;
DenseMap<const Symbol *, SymbolStringPtr> NameCache;
DenseMap<const Block *, BlockSymbolDependencies> BlockImmediateDepsCache;
DenseMap<const Block *, BlockSymbolDependencies> BlockTransitiveDepsCache;
};
Error claimOrExternalizeWeakAndCommonSymbols(LinkGraph &G) {
auto &ES = Layer.getExecutionSession();
SymbolFlagsMap NewSymbolsToClaim;
std::vector<std::pair<SymbolStringPtr, Symbol *>> NameToSym;
auto ProcessSymbol = [&](Symbol *Sym) {
if (Sym->hasName() && Sym->getLinkage() == Linkage::Weak) {
auto Name = ES.intern(Sym->getName());
if (!MR->getSymbols().count(ES.intern(Sym->getName()))) {
JITSymbolFlags SF = JITSymbolFlags::Weak;
if (Sym->getScope() == Scope::Default)
SF |= JITSymbolFlags::Exported;
NewSymbolsToClaim[Name] = SF;
NameToSym.push_back(std::make_pair(std::move(Name), Sym));
}
}
};
for (auto *Sym : G.defined_symbols())
ProcessSymbol(Sym);
for (auto *Sym : G.absolute_symbols())
ProcessSymbol(Sym);
// Attempt to claim all weak defs that we're not already responsible for.
// This cannot fail -- any clashes will just result in rejection of our
// claim, at which point we'll externalize that symbol.
cantFail(MR->defineMaterializing(std::move(NewSymbolsToClaim)));
for (auto &KV : NameToSym)
if (!MR->getSymbols().count(KV.first))
G.makeExternal(*KV.second);
return Error::success();
}
Error markResponsibilitySymbolsLive(LinkGraph &G) const {
auto &ES = Layer.getExecutionSession();
for (auto *Sym : G.defined_symbols())
if (Sym->hasName() && MR->getSymbols().count(ES.intern(Sym->getName())))
Sym->setLive(true);
return Error::success();
}
Error computeNamedSymbolDependencies(LinkGraph &G) {
auto &ES = MR->getTargetJITDylib().getExecutionSession();
auto BlockDeps = computeBlockNonLocalDeps(G);
// Compute dependencies for symbols defined in the JITLink graph.
for (auto *Sym : G.defined_symbols()) {
// Skip local symbols: we do not track dependencies for these.
if (Sym->getScope() == Scope::Local)
continue;
assert(Sym->hasName() &&
"Defined non-local jitlink::Symbol should have a name");
auto &SymDeps = BlockDeps[Sym->getBlock()];
if (SymDeps.External.empty() && SymDeps.Internal.empty())
continue;
auto SymName = ES.intern(Sym->getName());
if (!SymDeps.External.empty())
ExternalNamedSymbolDeps[SymName] = SymDeps.External;
if (!SymDeps.Internal.empty())
InternalNamedSymbolDeps[SymName] = SymDeps.Internal;
}
for (auto &P : Layer.Plugins) {
auto SynthDeps = P->getSyntheticSymbolDependencies(*MR);
if (SynthDeps.empty())
continue;
DenseSet<Block *> BlockVisited;
for (auto &KV : SynthDeps) {
auto &Name = KV.first;
auto &DepsForName = KV.second;
for (auto *Sym : DepsForName) {
if (Sym->getScope() == Scope::Local) {
auto &BDeps = BlockDeps[Sym->getBlock()];
for (auto &S : BDeps.Internal)
InternalNamedSymbolDeps[Name].insert(S);
for (auto &S : BDeps.External)
ExternalNamedSymbolDeps[Name].insert(S);
} else {
if (Sym->isExternal())
ExternalNamedSymbolDeps[Name].insert(
BlockDeps.getInternedName(*Sym));
else
InternalNamedSymbolDeps[Name].insert(
BlockDeps.getInternedName(*Sym));
}
}
}
}
return Error::success();
}
BlockDependenciesMap computeBlockNonLocalDeps(LinkGraph &G) {
// First calculate the reachable-via-non-local-symbol blocks for each block.
struct BlockInfo {
DenseSet<Block *> Dependencies;
DenseSet<Block *> Dependants;
bool DependenciesChanged = true;
};
DenseMap<Block *, BlockInfo> BlockInfos;
SmallVector<Block *> WorkList;
// Pre-allocate map entries. This prevents any iterator/reference
// invalidation in the next loop.
for (auto *B : G.blocks())
(void)BlockInfos[B];
// Build initial worklist, record block dependencies/dependants and
// non-local symbol dependencies.
for (auto *B : G.blocks()) {
auto &BI = BlockInfos[B];
for (auto &E : B->edges()) {
if (E.getTarget().getScope() == Scope::Local) {
auto &TgtB = E.getTarget().getBlock();
if (&TgtB != B) {
BI.Dependencies.insert(&TgtB);
BlockInfos[&TgtB].Dependants.insert(B);
}
}
}
// If this node has both dependants and dependencies then add it to the
// worklist to propagate the dependencies to the dependants.
if (!BI.Dependants.empty() && !BI.Dependencies.empty())
WorkList.push_back(B);
}
// Propagate block-level dependencies through the block-dependence graph.
while (!WorkList.empty()) {
auto *B = WorkList.back();
WorkList.pop_back();
auto &BI = BlockInfos[B];
assert(BI.DependenciesChanged &&
"Block in worklist has unchanged dependencies");
BI.DependenciesChanged = false;
for (auto *Dependant : BI.Dependants) {
auto &DependantBI = BlockInfos[Dependant];
for (auto *Dependency : BI.Dependencies) {
if (Dependant != Dependency &&
DependantBI.Dependencies.insert(Dependency).second)
if (!DependantBI.DependenciesChanged) {
DependantBI.DependenciesChanged = true;
WorkList.push_back(Dependant);
}
}
}
}
DenseMap<const Block *, DenseSet<Block *>> BlockDeps;
for (auto &KV : BlockInfos)
BlockDeps[KV.first] = std::move(KV.second.Dependencies);
return BlockDependenciesMap(Layer.getExecutionSession(),
std::move(BlockDeps));
}
void registerDependencies(const SymbolDependenceMap &QueryDeps) {
for (auto &NamedDepsEntry : ExternalNamedSymbolDeps) {
auto &Name = NamedDepsEntry.first;
auto &NameDeps = NamedDepsEntry.second;
SymbolDependenceMap SymbolDeps;
for (const auto &QueryDepsEntry : QueryDeps) {
JITDylib &SourceJD = *QueryDepsEntry.first;
const SymbolNameSet &Symbols = QueryDepsEntry.second;
auto &DepsForJD = SymbolDeps[&SourceJD];
for (const auto &S : Symbols)
if (NameDeps.count(S))
DepsForJD.insert(S);
if (DepsForJD.empty())
SymbolDeps.erase(&SourceJD);
}
MR->addDependencies(Name, SymbolDeps);
}
}
ObjectLinkingLayer &Layer;
std::unique_ptr<MaterializationResponsibility> MR;
std::unique_ptr<MemoryBuffer> ObjBuffer;
DenseMap<SymbolStringPtr, SymbolNameSet> ExternalNamedSymbolDeps;
DenseMap<SymbolStringPtr, SymbolNameSet> InternalNamedSymbolDeps;
};
ObjectLinkingLayer::Plugin::~Plugin() {}
char ObjectLinkingLayer::ID;
using BaseT = RTTIExtends<ObjectLinkingLayer, ObjectLayer>;
ObjectLinkingLayer::ObjectLinkingLayer(ExecutionSession &ES,
JITLinkMemoryManager &MemMgr)
: BaseT(ES), MemMgr(MemMgr) {
ES.registerResourceManager(*this);
}
ObjectLinkingLayer::ObjectLinkingLayer(
ExecutionSession &ES, std::unique_ptr<JITLinkMemoryManager> MemMgr)
: BaseT(ES), MemMgr(*MemMgr), MemMgrOwnership(std::move(MemMgr)) {
ES.registerResourceManager(*this);
}
ObjectLinkingLayer::~ObjectLinkingLayer() {
assert(Allocs.empty() && "Layer destroyed with resources still attached");
getExecutionSession().deregisterResourceManager(*this);
}
Error ObjectLinkingLayer::add(ResourceTrackerSP RT,
std::unique_ptr<LinkGraph> G) {
auto &JD = RT->getJITDylib();
return JD.define(LinkGraphMaterializationUnit::Create(*this, std::move(G)),
std::move(RT));
}
void ObjectLinkingLayer::emit(std::unique_ptr<MaterializationResponsibility> R,
std::unique_ptr<MemoryBuffer> O) {
assert(O && "Object must not be null");
MemoryBufferRef ObjBuffer = O->getMemBufferRef();
auto Ctx = std::make_unique<ObjectLinkingLayerJITLinkContext>(
*this, std::move(R), std::move(O));
if (auto G = createLinkGraphFromObject(ObjBuffer)) {
Ctx->notifyMaterializing(**G);
link(std::move(*G), std::move(Ctx));
} else {
Ctx->notifyFailed(G.takeError());
}
}
void ObjectLinkingLayer::emit(std::unique_ptr<MaterializationResponsibility> R,
std::unique_ptr<LinkGraph> G) {
auto Ctx = std::make_unique<ObjectLinkingLayerJITLinkContext>(
*this, std::move(R), nullptr);
Ctx->notifyMaterializing(*G);
link(std::move(G), std::move(Ctx));
}
void ObjectLinkingLayer::modifyPassConfig(MaterializationResponsibility &MR,
LinkGraph &G,
PassConfiguration &PassConfig) {
for (auto &P : Plugins)
P->modifyPassConfig(MR, G, PassConfig);
}
void ObjectLinkingLayer::notifyLoaded(MaterializationResponsibility &MR) {
for (auto &P : Plugins)
P->notifyLoaded(MR);
}
Error ObjectLinkingLayer::notifyEmitted(MaterializationResponsibility &MR,
AllocPtr Alloc) {
Error Err = Error::success();
for (auto &P : Plugins)
Err = joinErrors(std::move(Err), P->notifyEmitted(MR));
if (Err)
return Err;
return MR.withResourceKeyDo(
[&](ResourceKey K) { Allocs[K].push_back(std::move(Alloc)); });
}
Error ObjectLinkingLayer::handleRemoveResources(ResourceKey K) {
Error Err = Error::success();
for (auto &P : Plugins)
Err = joinErrors(std::move(Err), P->notifyRemovingResources(K));
std::vector<AllocPtr> AllocsToRemove;
getExecutionSession().runSessionLocked([&] {
auto I = Allocs.find(K);
if (I != Allocs.end()) {
std::swap(AllocsToRemove, I->second);
Allocs.erase(I);
}
});
while (!AllocsToRemove.empty()) {
Err = joinErrors(std::move(Err), AllocsToRemove.back()->deallocate());
AllocsToRemove.pop_back();
}
return Err;
}
void ObjectLinkingLayer::handleTransferResources(ResourceKey DstKey,
ResourceKey SrcKey) {
auto I = Allocs.find(SrcKey);
if (I != Allocs.end()) {
auto &SrcAllocs = I->second;
auto &DstAllocs = Allocs[DstKey];
DstAllocs.reserve(DstAllocs.size() + SrcAllocs.size());
for (auto &Alloc : SrcAllocs)
DstAllocs.push_back(std::move(Alloc));
// Erase SrcKey entry using value rather than iterator I: I may have been
// invalidated when we looked up DstKey.
Allocs.erase(SrcKey);
}
for (auto &P : Plugins)
P->notifyTransferringResources(DstKey, SrcKey);
}
EHFrameRegistrationPlugin::EHFrameRegistrationPlugin(
ExecutionSession &ES, std::unique_ptr<EHFrameRegistrar> Registrar)
: ES(ES), Registrar(std::move(Registrar)) {}
void EHFrameRegistrationPlugin::modifyPassConfig(
MaterializationResponsibility &MR, LinkGraph &G,
PassConfiguration &PassConfig) {
PassConfig.PostFixupPasses.push_back(createEHFrameRecorderPass(
G.getTargetTriple(), [this, &MR](JITTargetAddress Addr, size_t Size) {
if (Addr) {
std::lock_guard<std::mutex> Lock(EHFramePluginMutex);
assert(!InProcessLinks.count(&MR) &&
"Link for MR already being tracked?");
InProcessLinks[&MR] = {Addr, Size};
}
}));
}
Error EHFrameRegistrationPlugin::notifyEmitted(
MaterializationResponsibility &MR) {
EHFrameRange EmittedRange;
{
std::lock_guard<std::mutex> Lock(EHFramePluginMutex);
auto EHFrameRangeItr = InProcessLinks.find(&MR);
if (EHFrameRangeItr == InProcessLinks.end())
return Error::success();
EmittedRange = EHFrameRangeItr->second;
assert(EmittedRange.Addr && "eh-frame addr to register can not be null");
InProcessLinks.erase(EHFrameRangeItr);
}
if (auto Err = MR.withResourceKeyDo(
[&](ResourceKey K) { EHFrameRanges[K].push_back(EmittedRange); }))
return Err;
return Registrar->registerEHFrames(EmittedRange.Addr, EmittedRange.Size);
}
Error EHFrameRegistrationPlugin::notifyFailed(
MaterializationResponsibility &MR) {
std::lock_guard<std::mutex> Lock(EHFramePluginMutex);
InProcessLinks.erase(&MR);
return Error::success();
}
Error EHFrameRegistrationPlugin::notifyRemovingResources(ResourceKey K) {
std::vector<EHFrameRange> RangesToRemove;
ES.runSessionLocked([&] {
auto I = EHFrameRanges.find(K);
if (I != EHFrameRanges.end()) {
RangesToRemove = std::move(I->second);
EHFrameRanges.erase(I);
}
});
Error Err = Error::success();
while (!RangesToRemove.empty()) {
auto RangeToRemove = RangesToRemove.back();
RangesToRemove.pop_back();
assert(RangeToRemove.Addr && "Untracked eh-frame range must not be null");
Err = joinErrors(
std::move(Err),
Registrar->deregisterEHFrames(RangeToRemove.Addr, RangeToRemove.Size));
}
return Err;
}
void EHFrameRegistrationPlugin::notifyTransferringResources(
ResourceKey DstKey, ResourceKey SrcKey) {
auto SI = EHFrameRanges.find(SrcKey);
if (SI == EHFrameRanges.end())
return;
auto DI = EHFrameRanges.find(DstKey);
if (DI != EHFrameRanges.end()) {
auto &SrcRanges = SI->second;
auto &DstRanges = DI->second;
DstRanges.reserve(DstRanges.size() + SrcRanges.size());
for (auto &SrcRange : SrcRanges)
DstRanges.push_back(std::move(SrcRange));
EHFrameRanges.erase(SI);
} else {
// We need to move SrcKey's ranges over without invalidating the SI
// iterator.
auto Tmp = std::move(SI->second);
EHFrameRanges.erase(SI);
EHFrameRanges[DstKey] = std::move(Tmp);
}
}
} // End namespace orc.
} // End namespace llvm.