llvm-project/llvm/lib/Target/Mips/AsmParser/MipsAsmParser.cpp

2564 lines
80 KiB
C++

//===-- MipsAsmParser.cpp - Parse Mips assembly to MCInst instructions ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/MipsMCTargetDesc.h"
#include "MipsRegisterInfo.h"
#include "MipsTargetStreamer.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCTargetAsmParser.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
namespace llvm {
class MCInstrInfo;
}
namespace {
class MipsAssemblerOptions {
public:
MipsAssemblerOptions() : aTReg(1), reorder(true), macro(true) {}
unsigned getATRegNum() { return aTReg; }
bool setATReg(unsigned Reg);
bool isReorder() { return reorder; }
void setReorder() { reorder = true; }
void setNoreorder() { reorder = false; }
bool isMacro() { return macro; }
void setMacro() { macro = true; }
void setNomacro() { macro = false; }
private:
unsigned aTReg;
bool reorder;
bool macro;
};
}
namespace {
class MipsAsmParser : public MCTargetAsmParser {
MipsTargetStreamer &getTargetStreamer() {
MCTargetStreamer &TS = *Parser.getStreamer().getTargetStreamer();
return static_cast<MipsTargetStreamer &>(TS);
}
MCSubtargetInfo &STI;
MCAsmParser &Parser;
MipsAssemblerOptions Options;
bool hasConsumedDollar;
#define GET_ASSEMBLER_HEADER
#include "MipsGenAsmMatcher.inc"
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
SmallVectorImpl<MCParsedAsmOperand *> &Operands,
MCStreamer &Out, unsigned &ErrorInfo,
bool MatchingInlineAsm);
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc,
SmallVectorImpl<MCParsedAsmOperand *> &Operands);
bool ParseDirective(AsmToken DirectiveID);
MipsAsmParser::OperandMatchResultTy
parseRegs(SmallVectorImpl<MCParsedAsmOperand *> &Operands, int RegKind);
MipsAsmParser::OperandMatchResultTy
parseMSARegs(SmallVectorImpl<MCParsedAsmOperand *> &Operands, int RegKind);
MipsAsmParser::OperandMatchResultTy
parseMSACtrlRegs(SmallVectorImpl<MCParsedAsmOperand *> &Operands,
int RegKind);
MipsAsmParser::OperandMatchResultTy
parseMemOperand(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
bool parsePtrReg(SmallVectorImpl<MCParsedAsmOperand *> &Operands,
int RegKind);
MipsAsmParser::OperandMatchResultTy
parsePtrReg(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseGPR32(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseGPR64(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseHWRegs(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseCCRRegs(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseAFGR64Regs(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseFGR64Regs(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseFGR32Regs(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseFGRH32Regs(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseFCCRegs(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseACC64DSP(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseLO32DSP(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseHI32DSP(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseCOP2(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseMSA128BRegs(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseMSA128HRegs(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseMSA128WRegs(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseMSA128DRegs(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseMSA128CtrlRegs(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseInvNum(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
MipsAsmParser::OperandMatchResultTy
parseLSAImm(SmallVectorImpl<MCParsedAsmOperand *> &Operands);
bool searchSymbolAlias(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
unsigned RegKind);
bool ParseOperand(SmallVectorImpl<MCParsedAsmOperand *> &,
StringRef Mnemonic);
int tryParseRegister(bool is64BitReg);
bool tryParseRegisterOperand(SmallVectorImpl<MCParsedAsmOperand *> &Operands,
bool is64BitReg);
bool needsExpansion(MCInst &Inst);
void expandInstruction(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
void expandLoadImm(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
void expandLoadAddressImm(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
void expandLoadAddressReg(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
void expandMemInst(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions, bool isLoad,
bool isImmOpnd);
bool reportParseError(StringRef ErrorMsg);
bool parseMemOffset(const MCExpr *&Res, bool isParenExpr);
bool parseRelocOperand(const MCExpr *&Res);
const MCExpr *evaluateRelocExpr(const MCExpr *Expr, StringRef RelocStr);
bool isEvaluated(const MCExpr *Expr);
bool parseDirectiveSet();
bool parseDirectiveMipsHackELFFlags();
bool parseDirectiveOption();
bool parseSetAtDirective();
bool parseSetNoAtDirective();
bool parseSetMacroDirective();
bool parseSetNoMacroDirective();
bool parseSetReorderDirective();
bool parseSetNoReorderDirective();
bool parseSetAssignment();
bool parseDirectiveWord(unsigned Size, SMLoc L);
bool parseDirectiveGpWord();
MCSymbolRefExpr::VariantKind getVariantKind(StringRef Symbol);
bool isMips64() const {
return (STI.getFeatureBits() & Mips::FeatureMips64) != 0;
}
bool isFP64() const {
return (STI.getFeatureBits() & Mips::FeatureFP64Bit) != 0;
}
bool isN64() const { return STI.getFeatureBits() & Mips::FeatureN64; }
bool isMicroMips() const {
return STI.getFeatureBits() & Mips::FeatureMicroMips;
}
int matchRegisterName(StringRef Symbol, bool is64BitReg);
int matchCPURegisterName(StringRef Symbol);
int matchRegisterByNumber(unsigned RegNum, unsigned RegClass);
int matchFPURegisterName(StringRef Name);
int matchFCCRegisterName(StringRef Name);
int matchACRegisterName(StringRef Name);
int matchMSA128RegisterName(StringRef Name);
int matchMSA128CtrlRegisterName(StringRef Name);
int regKindToRegClass(int RegKind);
unsigned getReg(int RC, int RegNo);
int getATReg();
bool processInstruction(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions);
// Helper function that checks if the value of a vector index is within the
// boundaries of accepted values for each RegisterKind
// Example: INSERT.B $w0[n], $1 => 16 > n >= 0
bool validateMSAIndex(int Val, int RegKind);
public:
MipsAsmParser(MCSubtargetInfo &sti, MCAsmParser &parser,
const MCInstrInfo &MII)
: MCTargetAsmParser(), STI(sti), Parser(parser),
hasConsumedDollar(false) {
// Initialize the set of available features.
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
}
MCAsmParser &getParser() const { return Parser; }
MCAsmLexer &getLexer() const { return Parser.getLexer(); }
};
}
namespace {
/// MipsOperand - Instances of this class represent a parsed Mips machine
/// instruction.
class MipsOperand : public MCParsedAsmOperand {
public:
enum RegisterKind {
Kind_None,
Kind_GPR32,
Kind_GPR64,
Kind_HWRegs,
Kind_FGR32Regs,
Kind_FGRH32Regs,
Kind_FGR64Regs,
Kind_AFGR64Regs,
Kind_CCRRegs,
Kind_FCCRegs,
Kind_ACC64DSP,
Kind_LO32DSP,
Kind_HI32DSP,
Kind_COP2,
Kind_MSA128BRegs,
Kind_MSA128HRegs,
Kind_MSA128WRegs,
Kind_MSA128DRegs,
Kind_MSA128CtrlRegs
};
private:
enum KindTy {
k_CondCode,
k_CoprocNum,
k_Immediate,
k_Memory,
k_PostIndexRegister,
k_Register,
k_PtrReg,
k_Token,
k_LSAImm
} Kind;
MipsOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
struct Token {
const char *Data;
unsigned Length;
};
struct RegOp {
unsigned RegNum;
RegisterKind Kind;
};
struct ImmOp {
const MCExpr *Val;
};
struct MemOp {
unsigned Base;
const MCExpr *Off;
};
union {
struct Token Tok;
struct RegOp Reg;
struct ImmOp Imm;
struct MemOp Mem;
};
SMLoc StartLoc, EndLoc;
public:
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(getReg()));
}
void addPtrRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(getPtrReg()));
}
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
// Add as immediate when possible. Null MCExpr = 0.
if (Expr == 0)
Inst.addOperand(MCOperand::CreateImm(0));
else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
else
Inst.addOperand(MCOperand::CreateExpr(Expr));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCExpr *Expr = getImm();
addExpr(Inst, Expr);
}
void addMemOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
Inst.addOperand(MCOperand::CreateReg(getMemBase()));
const MCExpr *Expr = getMemOff();
addExpr(Inst, Expr);
}
bool isReg() const { return Kind == k_Register; }
bool isImm() const { return Kind == k_Immediate; }
bool isToken() const { return Kind == k_Token; }
bool isMem() const { return Kind == k_Memory; }
bool isPtrReg() const { return Kind == k_PtrReg; }
bool isInvNum() const { return Kind == k_Immediate; }
bool isLSAImm() const { return Kind == k_LSAImm; }
StringRef getToken() const {
assert(Kind == k_Token && "Invalid access!");
return StringRef(Tok.Data, Tok.Length);
}
unsigned getReg() const {
assert((Kind == k_Register) && "Invalid access!");
return Reg.RegNum;
}
unsigned getPtrReg() const {
assert((Kind == k_PtrReg) && "Invalid access!");
return Reg.RegNum;
}
void setRegKind(RegisterKind RegKind) {
assert((Kind == k_Register || Kind == k_PtrReg) && "Invalid access!");
Reg.Kind = RegKind;
}
const MCExpr *getImm() const {
assert((Kind == k_Immediate || Kind == k_LSAImm) && "Invalid access!");
return Imm.Val;
}
unsigned getMemBase() const {
assert((Kind == k_Memory) && "Invalid access!");
return Mem.Base;
}
const MCExpr *getMemOff() const {
assert((Kind == k_Memory) && "Invalid access!");
return Mem.Off;
}
static MipsOperand *CreateToken(StringRef Str, SMLoc S) {
MipsOperand *Op = new MipsOperand(k_Token);
Op->Tok.Data = Str.data();
Op->Tok.Length = Str.size();
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static MipsOperand *CreateReg(unsigned RegNum, SMLoc S, SMLoc E) {
MipsOperand *Op = new MipsOperand(k_Register);
Op->Reg.RegNum = RegNum;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static MipsOperand *CreatePtrReg(unsigned RegNum, SMLoc S, SMLoc E) {
MipsOperand *Op = new MipsOperand(k_PtrReg);
Op->Reg.RegNum = RegNum;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static MipsOperand *CreateImm(const MCExpr *Val, SMLoc S, SMLoc E) {
MipsOperand *Op = new MipsOperand(k_Immediate);
Op->Imm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static MipsOperand *CreateLSAImm(const MCExpr *Val, SMLoc S, SMLoc E) {
MipsOperand *Op = new MipsOperand(k_LSAImm);
Op->Imm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static MipsOperand *CreateMem(unsigned Base, const MCExpr *Off,
SMLoc S, SMLoc E) {
MipsOperand *Op = new MipsOperand(k_Memory);
Op->Mem.Base = Base;
Op->Mem.Off = Off;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
bool isGPR32Asm() const {
return Kind == k_Register && Reg.Kind == Kind_GPR32;
}
void addRegAsmOperands(MCInst &Inst, unsigned N) const {
Inst.addOperand(MCOperand::CreateReg(Reg.RegNum));
}
bool isGPR64Asm() const {
return Kind == k_Register && Reg.Kind == Kind_GPR64;
}
bool isHWRegsAsm() const {
assert((Kind == k_Register) && "Invalid access!");
return Reg.Kind == Kind_HWRegs;
}
bool isCCRAsm() const {
assert((Kind == k_Register) && "Invalid access!");
return Reg.Kind == Kind_CCRRegs;
}
bool isAFGR64Asm() const {
return Kind == k_Register && Reg.Kind == Kind_AFGR64Regs;
}
bool isFGR64Asm() const {
return Kind == k_Register && Reg.Kind == Kind_FGR64Regs;
}
bool isFGR32Asm() const {
return (Kind == k_Register) && Reg.Kind == Kind_FGR32Regs;
}
bool isFGRH32Asm() const {
return (Kind == k_Register) && Reg.Kind == Kind_FGRH32Regs;
}
bool isFCCRegsAsm() const {
return (Kind == k_Register) && Reg.Kind == Kind_FCCRegs;
}
bool isACC64DSPAsm() const {
return Kind == k_Register && Reg.Kind == Kind_ACC64DSP;
}
bool isLO32DSPAsm() const {
return Kind == k_Register && Reg.Kind == Kind_LO32DSP;
}
bool isHI32DSPAsm() const {
return Kind == k_Register && Reg.Kind == Kind_HI32DSP;
}
bool isCOP2Asm() const { return Kind == k_Register && Reg.Kind == Kind_COP2; }
bool isMSA128BAsm() const {
return Kind == k_Register && Reg.Kind == Kind_MSA128BRegs;
}
bool isMSA128HAsm() const {
return Kind == k_Register && Reg.Kind == Kind_MSA128HRegs;
}
bool isMSA128WAsm() const {
return Kind == k_Register && Reg.Kind == Kind_MSA128WRegs;
}
bool isMSA128DAsm() const {
return Kind == k_Register && Reg.Kind == Kind_MSA128DRegs;
}
bool isMSA128CRAsm() const {
return Kind == k_Register && Reg.Kind == Kind_MSA128CtrlRegs;
}
/// getStartLoc - Get the location of the first token of this operand.
SMLoc getStartLoc() const { return StartLoc; }
/// getEndLoc - Get the location of the last token of this operand.
SMLoc getEndLoc() const { return EndLoc; }
virtual void print(raw_ostream &OS) const {
llvm_unreachable("unimplemented!");
}
}; // class MipsOperand
} // namespace
namespace llvm {
extern const MCInstrDesc MipsInsts[];
}
static const MCInstrDesc &getInstDesc(unsigned Opcode) {
return MipsInsts[Opcode];
}
bool MipsAsmParser::processInstruction(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
const MCInstrDesc &MCID = getInstDesc(Inst.getOpcode());
Inst.setLoc(IDLoc);
if (MCID.isBranch() || MCID.isCall()) {
const unsigned Opcode = Inst.getOpcode();
MCOperand Offset;
switch (Opcode) {
default:
break;
case Mips::BEQ:
case Mips::BNE:
assert (MCID.getNumOperands() == 3 && "unexpected number of operands");
Offset = Inst.getOperand(2);
if (!Offset.isImm())
break; // We'll deal with this situation later on when applying fixups.
if (!isIntN(isMicroMips() ? 17 : 18, Offset.getImm()))
return Error(IDLoc, "branch target out of range");
if (OffsetToAlignment (Offset.getImm(), 1LL << (isMicroMips() ? 1 : 2)))
return Error(IDLoc, "branch to misaligned address");
break;
case Mips::BGEZ:
case Mips::BGTZ:
case Mips::BLEZ:
case Mips::BLTZ:
case Mips::BGEZAL:
case Mips::BLTZAL:
case Mips::BC1F:
case Mips::BC1T:
assert (MCID.getNumOperands() == 2 && "unexpected number of operands");
Offset = Inst.getOperand(1);
if (!Offset.isImm())
break; // We'll deal with this situation later on when applying fixups.
if (!isIntN(isMicroMips() ? 17 : 18, Offset.getImm()))
return Error(IDLoc, "branch target out of range");
if (OffsetToAlignment (Offset.getImm(), 1LL << (isMicroMips() ? 1 : 2)))
return Error(IDLoc, "branch to misaligned address");
break;
}
}
if (MCID.hasDelaySlot() && Options.isReorder()) {
// If this instruction has a delay slot and .set reorder is active,
// emit a NOP after it.
Instructions.push_back(Inst);
MCInst NopInst;
NopInst.setOpcode(Mips::SLL);
NopInst.addOperand(MCOperand::CreateReg(Mips::ZERO));
NopInst.addOperand(MCOperand::CreateReg(Mips::ZERO));
NopInst.addOperand(MCOperand::CreateImm(0));
Instructions.push_back(NopInst);
return false;
}
if (MCID.mayLoad() || MCID.mayStore()) {
// Check the offset of memory operand, if it is a symbol
// reference or immediate we may have to expand instructions.
for (unsigned i = 0; i < MCID.getNumOperands(); i++) {
const MCOperandInfo &OpInfo = MCID.OpInfo[i];
if ((OpInfo.OperandType == MCOI::OPERAND_MEMORY) ||
(OpInfo.OperandType == MCOI::OPERAND_UNKNOWN)) {
MCOperand &Op = Inst.getOperand(i);
if (Op.isImm()) {
int MemOffset = Op.getImm();
if (MemOffset < -32768 || MemOffset > 32767) {
// Offset can't exceed 16bit value.
expandMemInst(Inst, IDLoc, Instructions, MCID.mayLoad(), true);
return false;
}
} else if (Op.isExpr()) {
const MCExpr *Expr = Op.getExpr();
if (Expr->getKind() == MCExpr::SymbolRef) {
const MCSymbolRefExpr *SR =
static_cast<const MCSymbolRefExpr *>(Expr);
if (SR->getKind() == MCSymbolRefExpr::VK_None) {
// Expand symbol.
expandMemInst(Inst, IDLoc, Instructions, MCID.mayLoad(), false);
return false;
}
} else if (!isEvaluated(Expr)) {
expandMemInst(Inst, IDLoc, Instructions, MCID.mayLoad(), false);
return false;
}
}
}
} // for
} // if load/store
if (needsExpansion(Inst))
expandInstruction(Inst, IDLoc, Instructions);
else
Instructions.push_back(Inst);
return false;
}
bool MipsAsmParser::needsExpansion(MCInst &Inst) {
switch (Inst.getOpcode()) {
case Mips::LoadImm32Reg:
case Mips::LoadAddr32Imm:
case Mips::LoadAddr32Reg:
return true;
default:
return false;
}
}
void MipsAsmParser::expandInstruction(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
switch (Inst.getOpcode()) {
case Mips::LoadImm32Reg:
return expandLoadImm(Inst, IDLoc, Instructions);
case Mips::LoadAddr32Imm:
return expandLoadAddressImm(Inst, IDLoc, Instructions);
case Mips::LoadAddr32Reg:
return expandLoadAddressReg(Inst, IDLoc, Instructions);
}
}
void MipsAsmParser::expandLoadImm(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
MCInst tmpInst;
const MCOperand &ImmOp = Inst.getOperand(1);
assert(ImmOp.isImm() && "expected immediate operand kind");
const MCOperand &RegOp = Inst.getOperand(0);
assert(RegOp.isReg() && "expected register operand kind");
int ImmValue = ImmOp.getImm();
tmpInst.setLoc(IDLoc);
if (0 <= ImmValue && ImmValue <= 65535) {
// For 0 <= j <= 65535.
// li d,j => ori d,$zero,j
tmpInst.setOpcode(Mips::ORi);
tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateReg(Mips::ZERO));
tmpInst.addOperand(MCOperand::CreateImm(ImmValue));
Instructions.push_back(tmpInst);
} else if (ImmValue < 0 && ImmValue >= -32768) {
// For -32768 <= j < 0.
// li d,j => addiu d,$zero,j
tmpInst.setOpcode(Mips::ADDiu);
tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateReg(Mips::ZERO));
tmpInst.addOperand(MCOperand::CreateImm(ImmValue));
Instructions.push_back(tmpInst);
} else {
// For any other value of j that is representable as a 32-bit integer.
// li d,j => lui d,hi16(j)
// ori d,d,lo16(j)
tmpInst.setOpcode(Mips::LUi);
tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateImm((ImmValue & 0xffff0000) >> 16));
Instructions.push_back(tmpInst);
tmpInst.clear();
tmpInst.setOpcode(Mips::ORi);
tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateImm(ImmValue & 0xffff));
tmpInst.setLoc(IDLoc);
Instructions.push_back(tmpInst);
}
}
void
MipsAsmParser::expandLoadAddressReg(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
MCInst tmpInst;
const MCOperand &ImmOp = Inst.getOperand(2);
assert(ImmOp.isImm() && "expected immediate operand kind");
const MCOperand &SrcRegOp = Inst.getOperand(1);
assert(SrcRegOp.isReg() && "expected register operand kind");
const MCOperand &DstRegOp = Inst.getOperand(0);
assert(DstRegOp.isReg() && "expected register operand kind");
int ImmValue = ImmOp.getImm();
if (-32768 <= ImmValue && ImmValue <= 65535) {
// For -32768 <= j <= 65535.
// la d,j(s) => addiu d,s,j
tmpInst.setOpcode(Mips::ADDiu);
tmpInst.addOperand(MCOperand::CreateReg(DstRegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateReg(SrcRegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateImm(ImmValue));
Instructions.push_back(tmpInst);
} else {
// For any other value of j that is representable as a 32-bit integer.
// la d,j(s) => lui d,hi16(j)
// ori d,d,lo16(j)
// addu d,d,s
tmpInst.setOpcode(Mips::LUi);
tmpInst.addOperand(MCOperand::CreateReg(DstRegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateImm((ImmValue & 0xffff0000) >> 16));
Instructions.push_back(tmpInst);
tmpInst.clear();
tmpInst.setOpcode(Mips::ORi);
tmpInst.addOperand(MCOperand::CreateReg(DstRegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateReg(DstRegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateImm(ImmValue & 0xffff));
Instructions.push_back(tmpInst);
tmpInst.clear();
tmpInst.setOpcode(Mips::ADDu);
tmpInst.addOperand(MCOperand::CreateReg(DstRegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateReg(DstRegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateReg(SrcRegOp.getReg()));
Instructions.push_back(tmpInst);
}
}
void
MipsAsmParser::expandLoadAddressImm(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions) {
MCInst tmpInst;
const MCOperand &ImmOp = Inst.getOperand(1);
assert(ImmOp.isImm() && "expected immediate operand kind");
const MCOperand &RegOp = Inst.getOperand(0);
assert(RegOp.isReg() && "expected register operand kind");
int ImmValue = ImmOp.getImm();
if (-32768 <= ImmValue && ImmValue <= 65535) {
// For -32768 <= j <= 65535.
// la d,j => addiu d,$zero,j
tmpInst.setOpcode(Mips::ADDiu);
tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateReg(Mips::ZERO));
tmpInst.addOperand(MCOperand::CreateImm(ImmValue));
Instructions.push_back(tmpInst);
} else {
// For any other value of j that is representable as a 32-bit integer.
// la d,j => lui d,hi16(j)
// ori d,d,lo16(j)
tmpInst.setOpcode(Mips::LUi);
tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateImm((ImmValue & 0xffff0000) >> 16));
Instructions.push_back(tmpInst);
tmpInst.clear();
tmpInst.setOpcode(Mips::ORi);
tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateReg(RegOp.getReg()));
tmpInst.addOperand(MCOperand::CreateImm(ImmValue & 0xffff));
Instructions.push_back(tmpInst);
}
}
void MipsAsmParser::expandMemInst(MCInst &Inst, SMLoc IDLoc,
SmallVectorImpl<MCInst> &Instructions,
bool isLoad, bool isImmOpnd) {
const MCSymbolRefExpr *SR;
MCInst TempInst;
unsigned ImmOffset, HiOffset, LoOffset;
const MCExpr *ExprOffset;
unsigned TmpRegNum;
unsigned AtRegNum = getReg(
(isMips64()) ? Mips::GPR64RegClassID : Mips::GPR32RegClassID, getATReg());
// 1st operand is either the source or destination register.
assert(Inst.getOperand(0).isReg() && "expected register operand kind");
unsigned RegOpNum = Inst.getOperand(0).getReg();
// 2nd operand is the base register.
assert(Inst.getOperand(1).isReg() && "expected register operand kind");
unsigned BaseRegNum = Inst.getOperand(1).getReg();
// 3rd operand is either an immediate or expression.
if (isImmOpnd) {
assert(Inst.getOperand(2).isImm() && "expected immediate operand kind");
ImmOffset = Inst.getOperand(2).getImm();
LoOffset = ImmOffset & 0x0000ffff;
HiOffset = (ImmOffset & 0xffff0000) >> 16;
// If msb of LoOffset is 1(negative number) we must increment HiOffset.
if (LoOffset & 0x8000)
HiOffset++;
} else
ExprOffset = Inst.getOperand(2).getExpr();
// All instructions will have the same location.
TempInst.setLoc(IDLoc);
// 1st instruction in expansion is LUi. For load instruction we can use
// the dst register as a temporary if base and dst are different,
// but for stores we must use $at.
TmpRegNum = (isLoad && (BaseRegNum != RegOpNum)) ? RegOpNum : AtRegNum;
TempInst.setOpcode(Mips::LUi);
TempInst.addOperand(MCOperand::CreateReg(TmpRegNum));
if (isImmOpnd)
TempInst.addOperand(MCOperand::CreateImm(HiOffset));
else {
if (ExprOffset->getKind() == MCExpr::SymbolRef) {
SR = static_cast<const MCSymbolRefExpr *>(ExprOffset);
const MCSymbolRefExpr *HiExpr = MCSymbolRefExpr::Create(
SR->getSymbol().getName(), MCSymbolRefExpr::VK_Mips_ABS_HI,
getContext());
TempInst.addOperand(MCOperand::CreateExpr(HiExpr));
} else {
const MCExpr *HiExpr = evaluateRelocExpr(ExprOffset, "hi");
TempInst.addOperand(MCOperand::CreateExpr(HiExpr));
}
}
// Add the instruction to the list.
Instructions.push_back(TempInst);
// Prepare TempInst for next instruction.
TempInst.clear();
// Add temp register to base.
TempInst.setOpcode(Mips::ADDu);
TempInst.addOperand(MCOperand::CreateReg(TmpRegNum));
TempInst.addOperand(MCOperand::CreateReg(TmpRegNum));
TempInst.addOperand(MCOperand::CreateReg(BaseRegNum));
Instructions.push_back(TempInst);
TempInst.clear();
// And finaly, create original instruction with low part
// of offset and new base.
TempInst.setOpcode(Inst.getOpcode());
TempInst.addOperand(MCOperand::CreateReg(RegOpNum));
TempInst.addOperand(MCOperand::CreateReg(TmpRegNum));
if (isImmOpnd)
TempInst.addOperand(MCOperand::CreateImm(LoOffset));
else {
if (ExprOffset->getKind() == MCExpr::SymbolRef) {
const MCSymbolRefExpr *LoExpr = MCSymbolRefExpr::Create(
SR->getSymbol().getName(), MCSymbolRefExpr::VK_Mips_ABS_LO,
getContext());
TempInst.addOperand(MCOperand::CreateExpr(LoExpr));
} else {
const MCExpr *LoExpr = evaluateRelocExpr(ExprOffset, "lo");
TempInst.addOperand(MCOperand::CreateExpr(LoExpr));
}
}
Instructions.push_back(TempInst);
TempInst.clear();
}
bool MipsAsmParser::MatchAndEmitInstruction(
SMLoc IDLoc, unsigned &Opcode,
SmallVectorImpl<MCParsedAsmOperand *> &Operands, MCStreamer &Out,
unsigned &ErrorInfo, bool MatchingInlineAsm) {
MCInst Inst;
SmallVector<MCInst, 8> Instructions;
unsigned MatchResult =
MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm);
switch (MatchResult) {
default:
break;
case Match_Success: {
if (processInstruction(Inst, IDLoc, Instructions))
return true;
for (unsigned i = 0; i < Instructions.size(); i++)
Out.EmitInstruction(Instructions[i]);
return false;
}
case Match_MissingFeature:
Error(IDLoc, "instruction requires a CPU feature not currently enabled");
return true;
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0U) {
if (ErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction");
ErrorLoc = ((MipsOperand *)Operands[ErrorInfo])->getStartLoc();
if (ErrorLoc == SMLoc())
ErrorLoc = IDLoc;
}
return Error(ErrorLoc, "invalid operand for instruction");
}
case Match_MnemonicFail:
return Error(IDLoc, "invalid instruction");
}
return true;
}
int MipsAsmParser::matchCPURegisterName(StringRef Name) {
int CC;
if (Name == "at")
return getATReg();
CC = StringSwitch<unsigned>(Name)
.Case("zero", 0)
.Case("a0", 4)
.Case("a1", 5)
.Case("a2", 6)
.Case("a3", 7)
.Case("v0", 2)
.Case("v1", 3)
.Case("s0", 16)
.Case("s1", 17)
.Case("s2", 18)
.Case("s3", 19)
.Case("s4", 20)
.Case("s5", 21)
.Case("s6", 22)
.Case("s7", 23)
.Case("k0", 26)
.Case("k1", 27)
.Case("sp", 29)
.Case("fp", 30)
.Case("gp", 28)
.Case("ra", 31)
.Case("t0", 8)
.Case("t1", 9)
.Case("t2", 10)
.Case("t3", 11)
.Case("t4", 12)
.Case("t5", 13)
.Case("t6", 14)
.Case("t7", 15)
.Case("t8", 24)
.Case("t9", 25)
.Default(-1);
// Although SGI documentation just cuts out t0-t3 for n32/n64,
// GNU pushes the values of t0-t3 to override the o32/o64 values for t4-t7
// We are supporting both cases, so for t0-t3 we'll just push them to t4-t7.
if (isMips64() && 8 <= CC && CC <= 11)
CC += 4;
if (CC == -1 && isMips64())
CC = StringSwitch<unsigned>(Name)
.Case("a4", 8)
.Case("a5", 9)
.Case("a6", 10)
.Case("a7", 11)
.Case("kt0", 26)
.Case("kt1", 27)
.Case("s8", 30)
.Default(-1);
return CC;
}
int MipsAsmParser::matchFPURegisterName(StringRef Name) {
if (Name[0] == 'f') {
StringRef NumString = Name.substr(1);
unsigned IntVal;
if (NumString.getAsInteger(10, IntVal))
return -1; // This is not an integer.
if (IntVal > 31) // Maximum index for fpu register.
return -1;
return IntVal;
}
return -1;
}
int MipsAsmParser::matchFCCRegisterName(StringRef Name) {
if (Name.startswith("fcc")) {
StringRef NumString = Name.substr(3);
unsigned IntVal;
if (NumString.getAsInteger(10, IntVal))
return -1; // This is not an integer.
if (IntVal > 7) // There are only 8 fcc registers.
return -1;
return IntVal;
}
return -1;
}
int MipsAsmParser::matchACRegisterName(StringRef Name) {
if (Name.startswith("ac")) {
StringRef NumString = Name.substr(2);
unsigned IntVal;
if (NumString.getAsInteger(10, IntVal))
return -1; // This is not an integer.
if (IntVal > 3) // There are only 3 acc registers.
return -1;
return IntVal;
}
return -1;
}
int MipsAsmParser::matchMSA128RegisterName(StringRef Name) {
unsigned IntVal;
if (Name.front() != 'w' || Name.drop_front(1).getAsInteger(10, IntVal))
return -1;
if (IntVal > 31)
return -1;
return IntVal;
}
int MipsAsmParser::matchMSA128CtrlRegisterName(StringRef Name) {
int CC;
CC = StringSwitch<unsigned>(Name)
.Case("msair", 0)
.Case("msacsr", 1)
.Case("msaaccess", 2)
.Case("msasave", 3)
.Case("msamodify", 4)
.Case("msarequest", 5)
.Case("msamap", 6)
.Case("msaunmap", 7)
.Default(-1);
return CC;
}
int MipsAsmParser::matchRegisterName(StringRef Name, bool is64BitReg) {
int CC;
CC = matchCPURegisterName(Name);
if (CC != -1)
return matchRegisterByNumber(CC, is64BitReg ? Mips::GPR64RegClassID
: Mips::GPR32RegClassID);
CC = matchFPURegisterName(Name);
// TODO: decide about fpu register class
if (CC != -1)
return matchRegisterByNumber(CC, isFP64() ? Mips::FGR64RegClassID
: Mips::FGR32RegClassID);
return matchMSA128RegisterName(Name);
}
int MipsAsmParser::regKindToRegClass(int RegKind) {
switch (RegKind) {
case MipsOperand::Kind_GPR32:
return Mips::GPR32RegClassID;
case MipsOperand::Kind_GPR64:
return Mips::GPR64RegClassID;
case MipsOperand::Kind_HWRegs:
return Mips::HWRegsRegClassID;
case MipsOperand::Kind_FGR32Regs:
return Mips::FGR32RegClassID;
case MipsOperand::Kind_FGRH32Regs:
return Mips::FGRH32RegClassID;
case MipsOperand::Kind_FGR64Regs:
return Mips::FGR64RegClassID;
case MipsOperand::Kind_AFGR64Regs:
return Mips::AFGR64RegClassID;
case MipsOperand::Kind_CCRRegs:
return Mips::CCRRegClassID;
case MipsOperand::Kind_ACC64DSP:
return Mips::ACC64DSPRegClassID;
case MipsOperand::Kind_FCCRegs:
return Mips::FCCRegClassID;
case MipsOperand::Kind_MSA128BRegs:
return Mips::MSA128BRegClassID;
case MipsOperand::Kind_MSA128HRegs:
return Mips::MSA128HRegClassID;
case MipsOperand::Kind_MSA128WRegs:
return Mips::MSA128WRegClassID;
case MipsOperand::Kind_MSA128DRegs:
return Mips::MSA128DRegClassID;
case MipsOperand::Kind_MSA128CtrlRegs:
return Mips::MSACtrlRegClassID;
default:
return -1;
}
}
bool MipsAssemblerOptions::setATReg(unsigned Reg) {
if (Reg > 31)
return false;
aTReg = Reg;
return true;
}
int MipsAsmParser::getATReg() { return Options.getATRegNum(); }
unsigned MipsAsmParser::getReg(int RC, int RegNo) {
return *(getContext().getRegisterInfo()->getRegClass(RC).begin() + RegNo);
}
int MipsAsmParser::matchRegisterByNumber(unsigned RegNum, unsigned RegClass) {
if (RegNum >
getContext().getRegisterInfo()->getRegClass(RegClass).getNumRegs())
return -1;
return getReg(RegClass, RegNum);
}
int MipsAsmParser::tryParseRegister(bool is64BitReg) {
const AsmToken &Tok = Parser.getTok();
int RegNum = -1;
if (Tok.is(AsmToken::Identifier)) {
std::string lowerCase = Tok.getString().lower();
RegNum = matchRegisterName(lowerCase, is64BitReg);
} else if (Tok.is(AsmToken::Integer))
RegNum = matchRegisterByNumber(static_cast<unsigned>(Tok.getIntVal()),
is64BitReg ? Mips::GPR64RegClassID
: Mips::GPR32RegClassID);
return RegNum;
}
bool MipsAsmParser::tryParseRegisterOperand(
SmallVectorImpl<MCParsedAsmOperand *> &Operands, bool is64BitReg) {
SMLoc S = Parser.getTok().getLoc();
int RegNo = -1;
RegNo = tryParseRegister(is64BitReg);
if (RegNo == -1)
return true;
Operands.push_back(
MipsOperand::CreateReg(RegNo, S, Parser.getTok().getLoc()));
Parser.Lex(); // Eat register token.
return false;
}
bool
MipsAsmParser::ParseOperand(SmallVectorImpl<MCParsedAsmOperand *> &Operands,
StringRef Mnemonic) {
// Check if the current operand has a custom associated parser, if so, try to
// custom parse the operand, or fallback to the general approach.
OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
if (ResTy == MatchOperand_Success)
return false;
// If there wasn't a custom match, try the generic matcher below. Otherwise,
// there was a match, but an error occurred, in which case, just return that
// the operand parsing failed.
if (ResTy == MatchOperand_ParseFail)
return true;
switch (getLexer().getKind()) {
default:
Error(Parser.getTok().getLoc(), "unexpected token in operand");
return true;
case AsmToken::Dollar: {
// Parse the register.
SMLoc S = Parser.getTok().getLoc();
Parser.Lex(); // Eat dollar token.
// Parse the register operand.
if (!tryParseRegisterOperand(Operands, isMips64())) {
if (getLexer().is(AsmToken::LParen)) {
// Check if it is indexed addressing operand.
Operands.push_back(MipsOperand::CreateToken("(", S));
Parser.Lex(); // Eat the parenthesis.
if (getLexer().isNot(AsmToken::Dollar))
return true;
Parser.Lex(); // Eat the dollar
if (tryParseRegisterOperand(Operands, isMips64()))
return true;
if (!getLexer().is(AsmToken::RParen))
return true;
S = Parser.getTok().getLoc();
Operands.push_back(MipsOperand::CreateToken(")", S));
Parser.Lex();
}
return false;
}
// Maybe it is a symbol reference.
StringRef Identifier;
if (Parser.parseIdentifier(Identifier))
return true;
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
MCSymbol *Sym = getContext().GetOrCreateSymbol("$" + Identifier);
// Otherwise create a symbol reference.
const MCExpr *Res =
MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_None, getContext());
Operands.push_back(MipsOperand::CreateImm(Res, S, E));
return false;
}
case AsmToken::Identifier:
// For instruction aliases like "bc1f $Label" dedicated parser will
// eat the '$' sign before failing. So in order to look for appropriate
// label we must check first if we have already consumed '$'.
if (hasConsumedDollar) {
hasConsumedDollar = false;
SMLoc S = Parser.getTok().getLoc();
StringRef Identifier;
if (Parser.parseIdentifier(Identifier))
return true;
SMLoc E =
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
MCSymbol *Sym = getContext().GetOrCreateSymbol("$" + Identifier);
// Create a symbol reference.
const MCExpr *Res =
MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_None, getContext());
Operands.push_back(MipsOperand::CreateImm(Res, S, E));
return false;
}
// Look for the existing symbol, we should check if
// we need to assigne the propper RegisterKind.
if (searchSymbolAlias(Operands, MipsOperand::Kind_None))
return false;
// Else drop to expression parsing.
case AsmToken::LParen:
case AsmToken::Minus:
case AsmToken::Plus:
case AsmToken::Integer:
case AsmToken::String: {
// Quoted label names.
const MCExpr *IdVal;
SMLoc S = Parser.getTok().getLoc();
if (getParser().parseExpression(IdVal))
return true;
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(MipsOperand::CreateImm(IdVal, S, E));
return false;
}
case AsmToken::Percent: {
// It is a symbol reference or constant expression.
const MCExpr *IdVal;
SMLoc S = Parser.getTok().getLoc(); // Start location of the operand.
if (parseRelocOperand(IdVal))
return true;
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(MipsOperand::CreateImm(IdVal, S, E));
return false;
} // case AsmToken::Percent
} // switch(getLexer().getKind())
return true;
}
const MCExpr *MipsAsmParser::evaluateRelocExpr(const MCExpr *Expr,
StringRef RelocStr) {
const MCExpr *Res;
// Check the type of the expression.
if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Expr)) {
// It's a constant, evaluate lo or hi value.
if (RelocStr == "lo") {
short Val = MCE->getValue();
Res = MCConstantExpr::Create(Val, getContext());
} else if (RelocStr == "hi") {
int Val = MCE->getValue();
int LoSign = Val & 0x8000;
Val = (Val & 0xffff0000) >> 16;
// Lower part is treated as a signed int, so if it is negative
// we must add 1 to the hi part to compensate.
if (LoSign)
Val++;
Res = MCConstantExpr::Create(Val, getContext());
} else {
llvm_unreachable("Invalid RelocStr value");
}
return Res;
}
if (const MCSymbolRefExpr *MSRE = dyn_cast<MCSymbolRefExpr>(Expr)) {
// It's a symbol, create a symbolic expression from the symbol.
StringRef Symbol = MSRE->getSymbol().getName();
MCSymbolRefExpr::VariantKind VK = getVariantKind(RelocStr);
Res = MCSymbolRefExpr::Create(Symbol, VK, getContext());
return Res;
}
if (const MCBinaryExpr *BE = dyn_cast<MCBinaryExpr>(Expr)) {
const MCExpr *LExp = evaluateRelocExpr(BE->getLHS(), RelocStr);
const MCExpr *RExp = evaluateRelocExpr(BE->getRHS(), RelocStr);
Res = MCBinaryExpr::Create(BE->getOpcode(), LExp, RExp, getContext());
return Res;
}
if (const MCUnaryExpr *UN = dyn_cast<MCUnaryExpr>(Expr)) {
const MCExpr *UnExp = evaluateRelocExpr(UN->getSubExpr(), RelocStr);
Res = MCUnaryExpr::Create(UN->getOpcode(), UnExp, getContext());
return Res;
}
// Just return the original expression.
return Expr;
}
bool MipsAsmParser::isEvaluated(const MCExpr *Expr) {
switch (Expr->getKind()) {
case MCExpr::Constant:
return true;
case MCExpr::SymbolRef:
return (cast<MCSymbolRefExpr>(Expr)->getKind() != MCSymbolRefExpr::VK_None);
case MCExpr::Binary:
if (const MCBinaryExpr *BE = dyn_cast<MCBinaryExpr>(Expr)) {
if (!isEvaluated(BE->getLHS()))
return false;
return isEvaluated(BE->getRHS());
}
case MCExpr::Unary:
return isEvaluated(cast<MCUnaryExpr>(Expr)->getSubExpr());
default:
return false;
}
return false;
}
bool MipsAsmParser::parseRelocOperand(const MCExpr *&Res) {
Parser.Lex(); // Eat the % token.
const AsmToken &Tok = Parser.getTok(); // Get next token, operation.
if (Tok.isNot(AsmToken::Identifier))
return true;
std::string Str = Tok.getIdentifier().str();
Parser.Lex(); // Eat the identifier.
// Now make an expression from the rest of the operand.
const MCExpr *IdVal;
SMLoc EndLoc;
if (getLexer().getKind() == AsmToken::LParen) {
while (1) {
Parser.Lex(); // Eat the '(' token.
if (getLexer().getKind() == AsmToken::Percent) {
Parser.Lex(); // Eat the % token.
const AsmToken &nextTok = Parser.getTok();
if (nextTok.isNot(AsmToken::Identifier))
return true;
Str += "(%";
Str += nextTok.getIdentifier();
Parser.Lex(); // Eat the identifier.
if (getLexer().getKind() != AsmToken::LParen)
return true;
} else
break;
}
if (getParser().parseParenExpression(IdVal, EndLoc))
return true;
while (getLexer().getKind() == AsmToken::RParen)
Parser.Lex(); // Eat the ')' token.
} else
return true; // Parenthesis must follow the relocation operand.
Res = evaluateRelocExpr(IdVal, Str);
return false;
}
bool MipsAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) {
StartLoc = Parser.getTok().getLoc();
RegNo = tryParseRegister(isMips64());
EndLoc = Parser.getTok().getLoc();
return (RegNo == (unsigned)-1);
}
bool MipsAsmParser::parseMemOffset(const MCExpr *&Res, bool isParenExpr) {
SMLoc S;
bool Result = true;
while (getLexer().getKind() == AsmToken::LParen)
Parser.Lex();
switch (getLexer().getKind()) {
default:
return true;
case AsmToken::Identifier:
case AsmToken::LParen:
case AsmToken::Integer:
case AsmToken::Minus:
case AsmToken::Plus:
if (isParenExpr)
Result = getParser().parseParenExpression(Res, S);
else
Result = (getParser().parseExpression(Res));
while (getLexer().getKind() == AsmToken::RParen)
Parser.Lex();
break;
case AsmToken::Percent:
Result = parseRelocOperand(Res);
}
return Result;
}
MipsAsmParser::OperandMatchResultTy MipsAsmParser::parseMemOperand(
SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
const MCExpr *IdVal = 0;
SMLoc S;
bool isParenExpr = false;
MipsAsmParser::OperandMatchResultTy Res = MatchOperand_NoMatch;
// First operand is the offset.
S = Parser.getTok().getLoc();
if (getLexer().getKind() == AsmToken::LParen) {
Parser.Lex();
isParenExpr = true;
}
if (getLexer().getKind() != AsmToken::Dollar) {
if (parseMemOffset(IdVal, isParenExpr))
return MatchOperand_ParseFail;
const AsmToken &Tok = Parser.getTok(); // Get the next token.
if (Tok.isNot(AsmToken::LParen)) {
MipsOperand *Mnemonic = static_cast<MipsOperand *>(Operands[0]);
if (Mnemonic->getToken() == "la") {
SMLoc E =
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(MipsOperand::CreateImm(IdVal, S, E));
return MatchOperand_Success;
}
if (Tok.is(AsmToken::EndOfStatement)) {
SMLoc E =
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
// Zero register assumed, add a memory operand with ZERO as its base.
Operands.push_back(MipsOperand::CreateMem(
isMips64() ? Mips::ZERO_64 : Mips::ZERO, IdVal, S, E));
return MatchOperand_Success;
}
Error(Parser.getTok().getLoc(), "'(' expected");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat the '(' token.
}
Res = parseRegs(Operands, isMips64() ? (int)MipsOperand::Kind_GPR64
: (int)MipsOperand::Kind_GPR32);
if (Res != MatchOperand_Success)
return Res;
if (Parser.getTok().isNot(AsmToken::RParen)) {
Error(Parser.getTok().getLoc(), "')' expected");
return MatchOperand_ParseFail;
}
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Parser.Lex(); // Eat the ')' token.
if (IdVal == 0)
IdVal = MCConstantExpr::Create(0, getContext());
// Replace the register operand with the memory operand.
MipsOperand *op = static_cast<MipsOperand *>(Operands.back());
int RegNo = op->getReg();
// Remove the register from the operands.
Operands.pop_back();
// Add the memory operand.
if (const MCBinaryExpr *BE = dyn_cast<MCBinaryExpr>(IdVal)) {
int64_t Imm;
if (IdVal->EvaluateAsAbsolute(Imm))
IdVal = MCConstantExpr::Create(Imm, getContext());
else if (BE->getLHS()->getKind() != MCExpr::SymbolRef)
IdVal = MCBinaryExpr::Create(BE->getOpcode(), BE->getRHS(), BE->getLHS(),
getContext());
}
Operands.push_back(MipsOperand::CreateMem(RegNo, IdVal, S, E));
delete op;
return MatchOperand_Success;
}
bool MipsAsmParser::parsePtrReg(SmallVectorImpl<MCParsedAsmOperand *> &Operands,
int RegKind) {
// If the first token is not '$' we have an error.
if (Parser.getTok().isNot(AsmToken::Dollar))
return false;
SMLoc S = Parser.getTok().getLoc();
Parser.Lex();
AsmToken::TokenKind TkKind = getLexer().getKind();
int Reg;
if (TkKind == AsmToken::Integer) {
Reg = matchRegisterByNumber(Parser.getTok().getIntVal(),
regKindToRegClass(RegKind));
if (Reg == -1)
return false;
} else if (TkKind == AsmToken::Identifier) {
if ((Reg = matchCPURegisterName(Parser.getTok().getString().lower())) == -1)
return false;
Reg = getReg(regKindToRegClass(RegKind), Reg);
} else {
return false;
}
MipsOperand *Op = MipsOperand::CreatePtrReg(Reg, S, Parser.getTok().getLoc());
Op->setRegKind((MipsOperand::RegisterKind)RegKind);
Operands.push_back(Op);
Parser.Lex();
return true;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parsePtrReg(SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
MipsOperand::RegisterKind RegKind =
isN64() ? MipsOperand::Kind_GPR64 : MipsOperand::Kind_GPR32;
// Parse index register.
if (!parsePtrReg(Operands, RegKind))
return MatchOperand_NoMatch;
// Parse '('.
if (Parser.getTok().isNot(AsmToken::LParen))
return MatchOperand_NoMatch;
Operands.push_back(MipsOperand::CreateToken("(", getLexer().getLoc()));
Parser.Lex();
// Parse base register.
if (!parsePtrReg(Operands, RegKind))
return MatchOperand_NoMatch;
// Parse ')'.
if (Parser.getTok().isNot(AsmToken::RParen))
return MatchOperand_NoMatch;
Operands.push_back(MipsOperand::CreateToken(")", getLexer().getLoc()));
Parser.Lex();
return MatchOperand_Success;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseRegs(SmallVectorImpl<MCParsedAsmOperand *> &Operands,
int RegKind) {
MipsOperand::RegisterKind Kind = (MipsOperand::RegisterKind)RegKind;
if (getLexer().getKind() == AsmToken::Identifier && !hasConsumedDollar) {
if (searchSymbolAlias(Operands, Kind))
return MatchOperand_Success;
return MatchOperand_NoMatch;
}
SMLoc S = Parser.getTok().getLoc();
// If the first token is not '$', we have an error.
if (Parser.getTok().isNot(AsmToken::Dollar) && !hasConsumedDollar)
return MatchOperand_NoMatch;
if (!hasConsumedDollar) {
Parser.Lex(); // Eat the '$'
hasConsumedDollar = true;
}
if (getLexer().getKind() == AsmToken::Identifier) {
int RegNum = -1;
std::string RegName = Parser.getTok().getString().lower();
// Match register by name
switch (RegKind) {
case MipsOperand::Kind_GPR32:
case MipsOperand::Kind_GPR64:
RegNum = matchCPURegisterName(RegName);
break;
case MipsOperand::Kind_AFGR64Regs:
case MipsOperand::Kind_FGR64Regs:
case MipsOperand::Kind_FGR32Regs:
case MipsOperand::Kind_FGRH32Regs:
RegNum = matchFPURegisterName(RegName);
if (RegKind == MipsOperand::Kind_AFGR64Regs)
RegNum /= 2;
else if (RegKind == MipsOperand::Kind_FGRH32Regs && !isFP64())
if (RegNum != -1 && RegNum % 2 != 0)
Warning(S, "Float register should be even.");
break;
case MipsOperand::Kind_FCCRegs:
RegNum = matchFCCRegisterName(RegName);
break;
case MipsOperand::Kind_ACC64DSP:
RegNum = matchACRegisterName(RegName);
break;
default:
break; // No match, value is set to -1.
}
// No match found, return _NoMatch to give a chance to other round.
if (RegNum < 0)
return MatchOperand_NoMatch;
int RegVal = getReg(regKindToRegClass(Kind), RegNum);
if (RegVal == -1)
return MatchOperand_NoMatch;
MipsOperand *Op =
MipsOperand::CreateReg(RegVal, S, Parser.getTok().getLoc());
Op->setRegKind(Kind);
Operands.push_back(Op);
hasConsumedDollar = false;
Parser.Lex(); // Eat the register name.
return MatchOperand_Success;
} else if (getLexer().getKind() == AsmToken::Integer) {
unsigned RegNum = Parser.getTok().getIntVal();
if (Kind == MipsOperand::Kind_HWRegs) {
if (RegNum != 29)
return MatchOperand_NoMatch;
// Only hwreg 29 is supported, found at index 0.
RegNum = 0;
}
int Reg = matchRegisterByNumber(RegNum, regKindToRegClass(Kind));
if (Reg == -1)
return MatchOperand_NoMatch;
MipsOperand *Op = MipsOperand::CreateReg(Reg, S, Parser.getTok().getLoc());
Op->setRegKind(Kind);
Operands.push_back(Op);
hasConsumedDollar = false;
Parser.Lex(); // Eat the register number.
if ((RegKind == MipsOperand::Kind_GPR32) &&
(getLexer().is(AsmToken::LParen))) {
// Check if it is indexed addressing operand.
Operands.push_back(MipsOperand::CreateToken("(", getLexer().getLoc()));
Parser.Lex(); // Eat the parenthesis.
if (parseRegs(Operands, RegKind) != MatchOperand_Success)
return MatchOperand_NoMatch;
if (getLexer().isNot(AsmToken::RParen))
return MatchOperand_NoMatch;
Operands.push_back(MipsOperand::CreateToken(")", getLexer().getLoc()));
Parser.Lex();
}
return MatchOperand_Success;
}
return MatchOperand_NoMatch;
}
bool MipsAsmParser::validateMSAIndex(int Val, int RegKind) {
MipsOperand::RegisterKind Kind = (MipsOperand::RegisterKind)RegKind;
if (Val < 0)
return false;
switch (Kind) {
default:
return false;
case MipsOperand::Kind_MSA128BRegs:
return Val < 16;
case MipsOperand::Kind_MSA128HRegs:
return Val < 8;
case MipsOperand::Kind_MSA128WRegs:
return Val < 4;
case MipsOperand::Kind_MSA128DRegs:
return Val < 2;
}
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseMSARegs(SmallVectorImpl<MCParsedAsmOperand *> &Operands,
int RegKind) {
MipsOperand::RegisterKind Kind = (MipsOperand::RegisterKind)RegKind;
SMLoc S = Parser.getTok().getLoc();
std::string RegName;
if (Parser.getTok().isNot(AsmToken::Dollar))
return MatchOperand_NoMatch;
switch (RegKind) {
default:
return MatchOperand_ParseFail;
case MipsOperand::Kind_MSA128BRegs:
case MipsOperand::Kind_MSA128HRegs:
case MipsOperand::Kind_MSA128WRegs:
case MipsOperand::Kind_MSA128DRegs:
break;
}
Parser.Lex(); // Eat the '$'.
if (getLexer().getKind() == AsmToken::Identifier)
RegName = Parser.getTok().getString().lower();
else
return MatchOperand_ParseFail;
int RegNum = matchMSA128RegisterName(RegName);
if (RegNum < 0 || RegNum > 31)
return MatchOperand_ParseFail;
int RegVal = getReg(regKindToRegClass(Kind), RegNum);
if (RegVal == -1)
return MatchOperand_ParseFail;
MipsOperand *Op = MipsOperand::CreateReg(RegVal, S, Parser.getTok().getLoc());
Op->setRegKind(Kind);
Operands.push_back(Op);
Parser.Lex(); // Eat the register identifier.
// MSA registers may be suffixed with an index in the form of:
// 1) Immediate expression.
// 2) General Purpose Register.
// Examples:
// 1) copy_s.b $29,$w0[0]
// 2) sld.b $w0,$w1[$1]
if (Parser.getTok().isNot(AsmToken::LBrac))
return MatchOperand_Success;
MipsOperand *Mnemonic = static_cast<MipsOperand *>(Operands[0]);
Operands.push_back(MipsOperand::CreateToken("[", Parser.getTok().getLoc()));
Parser.Lex(); // Parse the '[' token.
if (Parser.getTok().is(AsmToken::Dollar)) {
// This must be a GPR.
MipsOperand *RegOp;
SMLoc VIdx = Parser.getTok().getLoc();
Parser.Lex(); // Parse the '$' token.
// GPR have aliases and we must account for that. Example: $30 == $fp
if (getLexer().getKind() == AsmToken::Integer) {
unsigned RegNum = Parser.getTok().getIntVal();
int Reg = matchRegisterByNumber(
RegNum, regKindToRegClass(MipsOperand::Kind_GPR32));
if (Reg == -1) {
Error(VIdx, "invalid general purpose register");
return MatchOperand_ParseFail;
}
RegOp = MipsOperand::CreateReg(Reg, VIdx, Parser.getTok().getLoc());
} else if (getLexer().getKind() == AsmToken::Identifier) {
int RegNum = -1;
std::string RegName = Parser.getTok().getString().lower();
RegNum = matchCPURegisterName(RegName);
if (RegNum == -1) {
Error(VIdx, "general purpose register expected");
return MatchOperand_ParseFail;
}
RegNum = getReg(regKindToRegClass(MipsOperand::Kind_GPR32), RegNum);
RegOp = MipsOperand::CreateReg(RegNum, VIdx, Parser.getTok().getLoc());
} else
return MatchOperand_ParseFail;
RegOp->setRegKind(MipsOperand::Kind_GPR32);
Operands.push_back(RegOp);
Parser.Lex(); // Eat the register identifier.
if (Parser.getTok().isNot(AsmToken::RBrac))
return MatchOperand_ParseFail;
Operands.push_back(MipsOperand::CreateToken("]", Parser.getTok().getLoc()));
Parser.Lex(); // Parse the ']' token.
return MatchOperand_Success;
}
// The index must be a constant expression then.
SMLoc VIdx = Parser.getTok().getLoc();
const MCExpr *ImmVal;
if (getParser().parseExpression(ImmVal))
return MatchOperand_ParseFail;
const MCConstantExpr *expr = dyn_cast<MCConstantExpr>(ImmVal);
if (!expr || !validateMSAIndex((int)expr->getValue(), Kind)) {
Error(VIdx, "invalid immediate value");
return MatchOperand_ParseFail;
}
SMLoc E = Parser.getTok().getEndLoc();
if (Parser.getTok().isNot(AsmToken::RBrac))
return MatchOperand_ParseFail;
bool insve =
Mnemonic->getToken() == "insve.b" || Mnemonic->getToken() == "insve.h" ||
Mnemonic->getToken() == "insve.w" || Mnemonic->getToken() == "insve.d";
// The second vector index of insve instructions is always 0.
if (insve && Operands.size() > 6) {
if (expr->getValue() != 0) {
Error(VIdx, "immediate value must be 0");
return MatchOperand_ParseFail;
}
Operands.push_back(MipsOperand::CreateToken("0", VIdx));
} else
Operands.push_back(MipsOperand::CreateImm(expr, VIdx, E));
Operands.push_back(MipsOperand::CreateToken("]", Parser.getTok().getLoc()));
Parser.Lex(); // Parse the ']' token.
return MatchOperand_Success;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseMSACtrlRegs(SmallVectorImpl<MCParsedAsmOperand *> &Operands,
int RegKind) {
MipsOperand::RegisterKind Kind = (MipsOperand::RegisterKind)RegKind;
if (Kind != MipsOperand::Kind_MSA128CtrlRegs)
return MatchOperand_NoMatch;
if (Parser.getTok().isNot(AsmToken::Dollar))
return MatchOperand_ParseFail;
SMLoc S = Parser.getTok().getLoc();
Parser.Lex(); // Eat the '$' symbol.
int RegNum = -1;
if (getLexer().getKind() == AsmToken::Identifier)
RegNum = matchMSA128CtrlRegisterName(Parser.getTok().getString().lower());
else if (getLexer().getKind() == AsmToken::Integer)
RegNum = Parser.getTok().getIntVal();
else
return MatchOperand_ParseFail;
if (RegNum < 0 || RegNum > 7)
return MatchOperand_ParseFail;
int RegVal = getReg(regKindToRegClass(Kind), RegNum);
if (RegVal == -1)
return MatchOperand_ParseFail;
MipsOperand *RegOp =
MipsOperand::CreateReg(RegVal, S, Parser.getTok().getLoc());
RegOp->setRegKind(MipsOperand::Kind_MSA128CtrlRegs);
Operands.push_back(RegOp);
Parser.Lex(); // Eat the register identifier.
return MatchOperand_Success;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseGPR64(SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
if (!isMips64())
return MatchOperand_NoMatch;
return parseRegs(Operands, (int)MipsOperand::Kind_GPR64);
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseGPR32(SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
return parseRegs(Operands, (int)MipsOperand::Kind_GPR32);
}
MipsAsmParser::OperandMatchResultTy MipsAsmParser::parseAFGR64Regs(
SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
if (isFP64())
return MatchOperand_NoMatch;
return parseRegs(Operands, (int)MipsOperand::Kind_AFGR64Regs);
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseFGR64Regs(SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
if (!isFP64())
return MatchOperand_NoMatch;
return parseRegs(Operands, (int)MipsOperand::Kind_FGR64Regs);
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseFGR32Regs(SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
return parseRegs(Operands, (int)MipsOperand::Kind_FGR32Regs);
}
MipsAsmParser::OperandMatchResultTy MipsAsmParser::parseFGRH32Regs(
SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
return parseRegs(Operands, (int)MipsOperand::Kind_FGRH32Regs);
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseFCCRegs(SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
return parseRegs(Operands, (int)MipsOperand::Kind_FCCRegs);
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseACC64DSP(SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
return parseRegs(Operands, (int)MipsOperand::Kind_ACC64DSP);
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseLO32DSP(SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
// If the first token is not '$' we have an error.
if (Parser.getTok().isNot(AsmToken::Dollar))
return MatchOperand_NoMatch;
SMLoc S = Parser.getTok().getLoc();
Parser.Lex(); // Eat the '$'
const AsmToken &Tok = Parser.getTok(); // Get next token.
if (Tok.isNot(AsmToken::Identifier))
return MatchOperand_NoMatch;
if (!Tok.getIdentifier().startswith("ac"))
return MatchOperand_NoMatch;
StringRef NumString = Tok.getIdentifier().substr(2);
unsigned IntVal;
if (NumString.getAsInteger(10, IntVal))
return MatchOperand_NoMatch;
unsigned Reg = matchRegisterByNumber(IntVal, Mips::LO32DSPRegClassID);
MipsOperand *Op = MipsOperand::CreateReg(Reg, S, Parser.getTok().getLoc());
Op->setRegKind(MipsOperand::Kind_LO32DSP);
Operands.push_back(Op);
Parser.Lex(); // Eat the register number.
return MatchOperand_Success;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseHI32DSP(SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
// If the first token is not '$' we have an error.
if (Parser.getTok().isNot(AsmToken::Dollar))
return MatchOperand_NoMatch;
SMLoc S = Parser.getTok().getLoc();
Parser.Lex(); // Eat the '$'
const AsmToken &Tok = Parser.getTok(); // Get next token.
if (Tok.isNot(AsmToken::Identifier))
return MatchOperand_NoMatch;
if (!Tok.getIdentifier().startswith("ac"))
return MatchOperand_NoMatch;
StringRef NumString = Tok.getIdentifier().substr(2);
unsigned IntVal;
if (NumString.getAsInteger(10, IntVal))
return MatchOperand_NoMatch;
unsigned Reg = matchRegisterByNumber(IntVal, Mips::HI32DSPRegClassID);
MipsOperand *Op = MipsOperand::CreateReg(Reg, S, Parser.getTok().getLoc());
Op->setRegKind(MipsOperand::Kind_HI32DSP);
Operands.push_back(Op);
Parser.Lex(); // Eat the register number.
return MatchOperand_Success;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseCOP2(SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
// If the first token is not '$' we have an error.
if (Parser.getTok().isNot(AsmToken::Dollar))
return MatchOperand_NoMatch;
SMLoc S = Parser.getTok().getLoc();
Parser.Lex(); // Eat the '$'
const AsmToken &Tok = Parser.getTok(); // Get next token.
if (Tok.isNot(AsmToken::Integer))
return MatchOperand_NoMatch;
unsigned IntVal = Tok.getIntVal();
unsigned Reg = matchRegisterByNumber(IntVal, Mips::COP2RegClassID);
MipsOperand *Op = MipsOperand::CreateReg(Reg, S, Parser.getTok().getLoc());
Op->setRegKind(MipsOperand::Kind_COP2);
Operands.push_back(Op);
Parser.Lex(); // Eat the register number.
return MatchOperand_Success;
}
MipsAsmParser::OperandMatchResultTy MipsAsmParser::parseMSA128BRegs(
SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
return parseMSARegs(Operands, (int)MipsOperand::Kind_MSA128BRegs);
}
MipsAsmParser::OperandMatchResultTy MipsAsmParser::parseMSA128HRegs(
SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
return parseMSARegs(Operands, (int)MipsOperand::Kind_MSA128HRegs);
}
MipsAsmParser::OperandMatchResultTy MipsAsmParser::parseMSA128WRegs(
SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
return parseMSARegs(Operands, (int)MipsOperand::Kind_MSA128WRegs);
}
MipsAsmParser::OperandMatchResultTy MipsAsmParser::parseMSA128DRegs(
SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
return parseMSARegs(Operands, (int)MipsOperand::Kind_MSA128DRegs);
}
MipsAsmParser::OperandMatchResultTy MipsAsmParser::parseMSA128CtrlRegs(
SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
return parseMSACtrlRegs(Operands, (int)MipsOperand::Kind_MSA128CtrlRegs);
}
bool MipsAsmParser::searchSymbolAlias(
SmallVectorImpl<MCParsedAsmOperand *> &Operands, unsigned RegKind) {
MCSymbol *Sym = getContext().LookupSymbol(Parser.getTok().getIdentifier());
if (Sym) {
SMLoc S = Parser.getTok().getLoc();
const MCExpr *Expr;
if (Sym->isVariable())
Expr = Sym->getVariableValue();
else
return false;
if (Expr->getKind() == MCExpr::SymbolRef) {
MipsOperand::RegisterKind Kind = (MipsOperand::RegisterKind)RegKind;
const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr);
const StringRef DefSymbol = Ref->getSymbol().getName();
if (DefSymbol.startswith("$")) {
int RegNum = -1;
APInt IntVal(32, -1);
if (!DefSymbol.substr(1).getAsInteger(10, IntVal))
RegNum = matchRegisterByNumber(IntVal.getZExtValue(),
isMips64() ? Mips::GPR64RegClassID
: Mips::GPR32RegClassID);
else {
// Lookup for the register with the corresponding name.
switch (Kind) {
case MipsOperand::Kind_AFGR64Regs:
case MipsOperand::Kind_FGR64Regs:
RegNum = matchFPURegisterName(DefSymbol.substr(1));
break;
case MipsOperand::Kind_FGR32Regs:
RegNum = matchFPURegisterName(DefSymbol.substr(1));
break;
case MipsOperand::Kind_GPR64:
case MipsOperand::Kind_GPR32:
default:
RegNum = matchCPURegisterName(DefSymbol.substr(1));
break;
}
if (RegNum > -1)
RegNum = getReg(regKindToRegClass(Kind), RegNum);
}
if (RegNum > -1) {
Parser.Lex();
MipsOperand *op =
MipsOperand::CreateReg(RegNum, S, Parser.getTok().getLoc());
op->setRegKind(Kind);
Operands.push_back(op);
return true;
}
}
} else if (Expr->getKind() == MCExpr::Constant) {
Parser.Lex();
const MCConstantExpr *Const = static_cast<const MCConstantExpr *>(Expr);
MipsOperand *op =
MipsOperand::CreateImm(Const, S, Parser.getTok().getLoc());
Operands.push_back(op);
return true;
}
}
return false;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseHWRegs(SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
return parseRegs(Operands, (int)MipsOperand::Kind_HWRegs);
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseCCRRegs(SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
return parseRegs(Operands, (int)MipsOperand::Kind_CCRRegs);
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseInvNum(SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
const MCExpr *IdVal;
// If the first token is '$' we may have register operand.
if (Parser.getTok().is(AsmToken::Dollar))
return MatchOperand_NoMatch;
SMLoc S = Parser.getTok().getLoc();
if (getParser().parseExpression(IdVal))
return MatchOperand_ParseFail;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(IdVal);
assert(MCE && "Unexpected MCExpr type.");
int64_t Val = MCE->getValue();
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(MipsOperand::CreateImm(
MCConstantExpr::Create(0 - Val, getContext()), S, E));
return MatchOperand_Success;
}
MipsAsmParser::OperandMatchResultTy
MipsAsmParser::parseLSAImm(SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
switch (getLexer().getKind()) {
default:
return MatchOperand_NoMatch;
case AsmToken::LParen:
case AsmToken::Plus:
case AsmToken::Minus:
case AsmToken::Integer:
break;
}
const MCExpr *Expr;
SMLoc S = Parser.getTok().getLoc();
if (getParser().parseExpression(Expr))
return MatchOperand_ParseFail;
int64_t Val;
if (!Expr->EvaluateAsAbsolute(Val)) {
Error(S, "expected immediate value");
return MatchOperand_ParseFail;
}
// The LSA instruction allows a 2-bit unsigned immediate. For this reason
// and because the CPU always adds one to the immediate field, the allowed
// range becomes 1..4. We'll only check the range here and will deal
// with the addition/subtraction when actually decoding/encoding
// the instruction.
if (Val < 1 || Val > 4) {
Error(S, "immediate not in range (1..4)");
return MatchOperand_ParseFail;
}
Operands.push_back(MipsOperand::CreateLSAImm(Expr, S,
Parser.getTok().getLoc()));
return MatchOperand_Success;
}
MCSymbolRefExpr::VariantKind MipsAsmParser::getVariantKind(StringRef Symbol) {
MCSymbolRefExpr::VariantKind VK =
StringSwitch<MCSymbolRefExpr::VariantKind>(Symbol)
.Case("hi", MCSymbolRefExpr::VK_Mips_ABS_HI)
.Case("lo", MCSymbolRefExpr::VK_Mips_ABS_LO)
.Case("gp_rel", MCSymbolRefExpr::VK_Mips_GPREL)
.Case("call16", MCSymbolRefExpr::VK_Mips_GOT_CALL)
.Case("got", MCSymbolRefExpr::VK_Mips_GOT)
.Case("tlsgd", MCSymbolRefExpr::VK_Mips_TLSGD)
.Case("tlsldm", MCSymbolRefExpr::VK_Mips_TLSLDM)
.Case("dtprel_hi", MCSymbolRefExpr::VK_Mips_DTPREL_HI)
.Case("dtprel_lo", MCSymbolRefExpr::VK_Mips_DTPREL_LO)
.Case("gottprel", MCSymbolRefExpr::VK_Mips_GOTTPREL)
.Case("tprel_hi", MCSymbolRefExpr::VK_Mips_TPREL_HI)
.Case("tprel_lo", MCSymbolRefExpr::VK_Mips_TPREL_LO)
.Case("got_disp", MCSymbolRefExpr::VK_Mips_GOT_DISP)
.Case("got_page", MCSymbolRefExpr::VK_Mips_GOT_PAGE)
.Case("got_ofst", MCSymbolRefExpr::VK_Mips_GOT_OFST)
.Case("hi(%neg(%gp_rel", MCSymbolRefExpr::VK_Mips_GPOFF_HI)
.Case("lo(%neg(%gp_rel", MCSymbolRefExpr::VK_Mips_GPOFF_LO)
.Default(MCSymbolRefExpr::VK_None);
return VK;
}
bool MipsAsmParser::ParseInstruction(
ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc,
SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
// Check if we have valid mnemonic
if (!mnemonicIsValid(Name, 0)) {
Parser.eatToEndOfStatement();
return Error(NameLoc, "Unknown instruction");
}
// First operand in MCInst is instruction mnemonic.
Operands.push_back(MipsOperand::CreateToken(Name, NameLoc));
// Read the remaining operands.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
// Read the first operand.
if (ParseOperand(Operands, Name)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
while (getLexer().is(AsmToken::Comma)) {
Parser.Lex(); // Eat the comma.
// Parse and remember the operand.
if (ParseOperand(Operands, Name)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
}
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::reportParseError(StringRef ErrorMsg) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, ErrorMsg);
}
bool MipsAsmParser::parseSetNoAtDirective() {
// Line should look like: ".set noat".
// set at reg to 0.
Options.setATReg(0);
// eat noat
Parser.Lex();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token in statement");
return false;
}
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseSetAtDirective() {
// Line can be .set at - defaults to $1
// or .set at=$reg
int AtRegNo;
getParser().Lex();
if (getLexer().is(AsmToken::EndOfStatement)) {
Options.setATReg(1);
Parser.Lex(); // Consume the EndOfStatement.
return false;
} else if (getLexer().is(AsmToken::Equal)) {
getParser().Lex(); // Eat the '='.
if (getLexer().isNot(AsmToken::Dollar)) {
reportParseError("unexpected token in statement");
return false;
}
Parser.Lex(); // Eat the '$'.
const AsmToken &Reg = Parser.getTok();
if (Reg.is(AsmToken::Identifier)) {
AtRegNo = matchCPURegisterName(Reg.getIdentifier());
} else if (Reg.is(AsmToken::Integer)) {
AtRegNo = Reg.getIntVal();
} else {
reportParseError("unexpected token in statement");
return false;
}
if (AtRegNo < 1 || AtRegNo > 31) {
reportParseError("unexpected token in statement");
return false;
}
if (!Options.setATReg(AtRegNo)) {
reportParseError("unexpected token in statement");
return false;
}
getParser().Lex(); // Eat the register.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token in statement");
return false;
}
Parser.Lex(); // Consume the EndOfStatement.
return false;
} else {
reportParseError("unexpected token in statement");
return false;
}
}
bool MipsAsmParser::parseSetReorderDirective() {
Parser.Lex();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token in statement");
return false;
}
Options.setReorder();
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseSetNoReorderDirective() {
Parser.Lex();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token in statement");
return false;
}
Options.setNoreorder();
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseSetMacroDirective() {
Parser.Lex();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("unexpected token in statement");
return false;
}
Options.setMacro();
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseSetNoMacroDirective() {
Parser.Lex();
// If this is not the end of the statement, report an error.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
reportParseError("`noreorder' must be set before `nomacro'");
return false;
}
if (Options.isReorder()) {
reportParseError("`noreorder' must be set before `nomacro'");
return false;
}
Options.setNomacro();
Parser.Lex(); // Consume the EndOfStatement.
return false;
}
bool MipsAsmParser::parseSetAssignment() {
StringRef Name;
const MCExpr *Value;
if (Parser.parseIdentifier(Name))
reportParseError("expected identifier after .set");
if (getLexer().isNot(AsmToken::Comma))
return reportParseError("unexpected token in .set directive");
Lex(); // Eat comma
if (Parser.parseExpression(Value))
return reportParseError("expected valid expression after comma");
// Check if the Name already exists as a symbol.
MCSymbol *Sym = getContext().LookupSymbol(Name);
if (Sym)
return reportParseError("symbol already defined");
Sym = getContext().GetOrCreateSymbol(Name);
Sym->setVariableValue(Value);
return false;
}
bool MipsAsmParser::parseDirectiveSet() {
// Get the next token.
const AsmToken &Tok = Parser.getTok();
if (Tok.getString() == "noat") {
return parseSetNoAtDirective();
} else if (Tok.getString() == "at") {
return parseSetAtDirective();
} else if (Tok.getString() == "reorder") {
return parseSetReorderDirective();
} else if (Tok.getString() == "noreorder") {
return parseSetNoReorderDirective();
} else if (Tok.getString() == "macro") {
return parseSetMacroDirective();
} else if (Tok.getString() == "nomacro") {
return parseSetNoMacroDirective();
} else if (Tok.getString() == "nomips16") {
// Ignore this directive for now.
Parser.eatToEndOfStatement();
return false;
} else if (Tok.getString() == "nomicromips") {
getTargetStreamer().emitDirectiveSetNoMicroMips();
Parser.eatToEndOfStatement();
return false;
} else if (Tok.getString() == "micromips") {
getTargetStreamer().emitDirectiveSetMicroMips();
Parser.eatToEndOfStatement();
return false;
} else {
// It is just an identifier, look for an assignment.
parseSetAssignment();
return false;
}
return true;
}
bool MipsAsmParser::parseDirectiveMipsHackELFFlags() {
int64_t Flags = 0;
if (Parser.parseAbsoluteExpression(Flags)) {
TokError("unexpected token");
return false;
}
getTargetStreamer().emitMipsHackELFFlags(Flags);
return false;
}
/// parseDirectiveWord
/// ::= .word [ expression (, expression)* ]
bool MipsAsmParser::parseDirectiveWord(unsigned Size, SMLoc L) {
if (getLexer().isNot(AsmToken::EndOfStatement)) {
for (;;) {
const MCExpr *Value;
if (getParser().parseExpression(Value))
return true;
getParser().getStreamer().EmitValue(Value, Size);
if (getLexer().is(AsmToken::EndOfStatement))
break;
// FIXME: Improve diagnostic.
if (getLexer().isNot(AsmToken::Comma))
return Error(L, "unexpected token in directive");
Parser.Lex();
}
}
Parser.Lex();
return false;
}
/// parseDirectiveGpWord
/// ::= .gpword local_sym
bool MipsAsmParser::parseDirectiveGpWord() {
const MCExpr *Value;
// EmitGPRel32Value requires an expression, so we are using base class
// method to evaluate the expression.
if (getParser().parseExpression(Value))
return true;
getParser().getStreamer().EmitGPRel32Value(Value);
if (getLexer().isNot(AsmToken::EndOfStatement))
return Error(getLexer().getLoc(), "unexpected token in directive");
Parser.Lex(); // Eat EndOfStatement token.
return false;
}
bool MipsAsmParser::parseDirectiveOption() {
// Get the option token.
AsmToken Tok = Parser.getTok();
// At the moment only identifiers are supported.
if (Tok.isNot(AsmToken::Identifier)) {
Error(Parser.getTok().getLoc(), "unexpected token in .option directive");
Parser.eatToEndOfStatement();
return false;
}
StringRef Option = Tok.getIdentifier();
if (Option == "pic0") {
getTargetStreamer().emitDirectiveOptionPic0();
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
Error(Parser.getTok().getLoc(),
"unexpected token in .option pic0 directive");
Parser.eatToEndOfStatement();
}
return false;
}
// Unknown option.
Warning(Parser.getTok().getLoc(), "unknown option in .option directive");
Parser.eatToEndOfStatement();
return false;
}
bool MipsAsmParser::ParseDirective(AsmToken DirectiveID) {
StringRef IDVal = DirectiveID.getString();
if (IDVal == ".ent") {
// Ignore this directive for now.
Parser.Lex();
return false;
}
if (IDVal == ".end") {
// Ignore this directive for now.
Parser.Lex();
return false;
}
if (IDVal == ".frame") {
// Ignore this directive for now.
Parser.eatToEndOfStatement();
return false;
}
if (IDVal == ".set") {
return parseDirectiveSet();
}
if (IDVal == ".fmask") {
// Ignore this directive for now.
Parser.eatToEndOfStatement();
return false;
}
if (IDVal == ".mask") {
// Ignore this directive for now.
Parser.eatToEndOfStatement();
return false;
}
if (IDVal == ".gpword") {
// Ignore this directive for now.
parseDirectiveGpWord();
return false;
}
if (IDVal == ".word") {
parseDirectiveWord(4, DirectiveID.getLoc());
return false;
}
if (IDVal == ".mips_hack_elf_flags")
return parseDirectiveMipsHackELFFlags();
if (IDVal == ".option")
return parseDirectiveOption();
if (IDVal == ".abicalls") {
getTargetStreamer().emitDirectiveAbiCalls();
if (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
Error(Parser.getTok().getLoc(), "unexpected token in directive");
// Clear line
Parser.eatToEndOfStatement();
}
return false;
}
return true;
}
extern "C" void LLVMInitializeMipsAsmParser() {
RegisterMCAsmParser<MipsAsmParser> X(TheMipsTarget);
RegisterMCAsmParser<MipsAsmParser> Y(TheMipselTarget);
RegisterMCAsmParser<MipsAsmParser> A(TheMips64Target);
RegisterMCAsmParser<MipsAsmParser> B(TheMips64elTarget);
}
#define GET_REGISTER_MATCHER
#define GET_MATCHER_IMPLEMENTATION
#include "MipsGenAsmMatcher.inc"