Go to file
Dominik Montada 8c03fdf34a [libcxxabi,libunwind] support running tests in standalone mode
Remove check for standalone and shared library mode in libcxxabi to
allow including tests in said mode. This check prevented running the
tests in standalone mode with static libraries, which is the case for
baremetal targets.

Fix check-unwind target trying to use a non-existent llvm-lit executable
in standalone mode. Copy the HandleOutOfTreeLLVM logic from libcxxabi to
libunwind in order to make the tests work in standalone mode.

Reviewed By: ldionne, #libc_abi, #libc

Differential Revision: https://reviews.llvm.org/D86540
2020-10-14 09:10:20 +02:00
clang Revert "[clang] Improve handling of physical registers in inline assembly operands." 2020-10-14 08:42:51 +02:00
clang-tools-extra [clangd] Propagate CollectMainFileRefs to BackgroundIndex 2020-10-13 09:20:18 -04:00
compiler-rt [sanitizer][NFC] Fix few cpplint warnings 2020-10-13 20:39:37 -07:00
debuginfo-tests
flang [flang][openacc] Lower data construct 2020-10-12 15:04:06 -04:00
libc [libc] Update buildbot worker version to 2.8.4. 2020-10-08 13:43:53 -07:00
libclc
libcxx [libcxxabi,libunwind] support running tests in standalone mode 2020-10-14 09:10:20 +02:00
libcxxabi [libcxxabi,libunwind] support running tests in standalone mode 2020-10-14 09:10:20 +02:00
libunwind [libcxxabi,libunwind] support running tests in standalone mode 2020-10-14 09:10:20 +02:00
lld [LLD] Add baseline test for TLS alignment. NFC. 2020-10-13 20:53:32 -07:00
lldb [lldb] Remove lexical block and fix formatting LoadScriptingModule (NFC) 2020-10-13 23:50:57 -07:00
llvm [ARM.td] Make instruction definitions visible to sched models 2020-10-14 09:58:45 +03:00
mlir [mlir] Remove obsolete "Quantization" section from the rationale. 2020-10-13 20:45:19 -07:00
openmp [libomptarget][amdgcn] Implement partial barrier 2020-10-12 21:27:32 +01:00
parallel-libs
polly Reland "[SCEV] Model ptrtoint(SCEVUnknown) cast not as unknown, but as zext/trunc/self of SCEVUnknown" 2020-10-12 23:02:55 +03:00
pstl
utils/arcanist Fix arc lint's clang-format rule: only format the file we were asked to format. 2020-10-11 14:24:23 -07:00
.arcconfig
.arclint
.clang-format
.clang-tidy
.git-blame-ignore-revs
.gitignore
CONTRIBUTING.md
README.md

README.md

The LLVM Compiler Infrastructure

This directory and its sub-directories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and converts it into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • mkdir build

    • cd build

    • cmake -G <generator> [options] ../llvm

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some Common options:

      • -DLLVM_ENABLE_PROJECTS='...' --- semicolon-separated list of the LLVM sub-projects you'd like to additionally build. Can include any of: clang, clang-tools-extra, libcxx, libcxxabi, libunwind, lldb, compiler-rt, lld, polly, or debuginfo-tests.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local).

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build . [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs, e.g. the number of CPUs you have.

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.