forked from OSchip/llvm-project
1216 lines
45 KiB
C++
1216 lines
45 KiB
C++
//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the SplitAnalysis class as well as mutator functions for
|
|
// live range splitting.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "regalloc"
|
|
#include "SplitKit.h"
|
|
#include "LiveRangeEdit.h"
|
|
#include "VirtRegMap.h"
|
|
#include "llvm/CodeGen/CalcSpillWeights.h"
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool>
|
|
AllowSplit("spiller-splits-edges",
|
|
cl::desc("Allow critical edge splitting during spilling"));
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Split Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SplitAnalysis::SplitAnalysis(const MachineFunction &mf,
|
|
const LiveIntervals &lis,
|
|
const MachineLoopInfo &mli)
|
|
: MF(mf),
|
|
LIS(lis),
|
|
Loops(mli),
|
|
TII(*mf.getTarget().getInstrInfo()),
|
|
CurLI(0) {}
|
|
|
|
void SplitAnalysis::clear() {
|
|
UseSlots.clear();
|
|
UsingInstrs.clear();
|
|
UsingBlocks.clear();
|
|
UsingLoops.clear();
|
|
CurLI = 0;
|
|
}
|
|
|
|
bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) {
|
|
MachineBasicBlock *T, *F;
|
|
SmallVector<MachineOperand, 4> Cond;
|
|
return !TII.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
|
|
}
|
|
|
|
/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
|
|
void SplitAnalysis::analyzeUses() {
|
|
const MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(CurLI->reg);
|
|
MachineInstr *MI = I.skipInstruction();) {
|
|
if (MI->isDebugValue() || !UsingInstrs.insert(MI))
|
|
continue;
|
|
UseSlots.push_back(LIS.getInstructionIndex(MI).getDefIndex());
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
if (UsingBlocks[MBB]++)
|
|
continue;
|
|
for (MachineLoop *Loop = Loops.getLoopFor(MBB); Loop;
|
|
Loop = Loop->getParentLoop())
|
|
UsingLoops[Loop]++;
|
|
}
|
|
array_pod_sort(UseSlots.begin(), UseSlots.end());
|
|
DEBUG(dbgs() << " counted "
|
|
<< UsingInstrs.size() << " instrs, "
|
|
<< UsingBlocks.size() << " blocks, "
|
|
<< UsingLoops.size() << " loops.\n");
|
|
}
|
|
|
|
void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const {
|
|
for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) {
|
|
unsigned count = UsingBlocks.lookup(*I);
|
|
OS << " BB#" << (*I)->getNumber();
|
|
if (count)
|
|
OS << '(' << count << ')';
|
|
}
|
|
}
|
|
|
|
// Get three sets of basic blocks surrounding a loop: Blocks inside the loop,
|
|
// predecessor blocks, and exit blocks.
|
|
void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) {
|
|
Blocks.clear();
|
|
|
|
// Blocks in the loop.
|
|
Blocks.Loop.insert(Loop->block_begin(), Loop->block_end());
|
|
|
|
// Predecessor blocks.
|
|
const MachineBasicBlock *Header = Loop->getHeader();
|
|
for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(),
|
|
E = Header->pred_end(); I != E; ++I)
|
|
if (!Blocks.Loop.count(*I))
|
|
Blocks.Preds.insert(*I);
|
|
|
|
// Exit blocks.
|
|
for (MachineLoop::block_iterator I = Loop->block_begin(),
|
|
E = Loop->block_end(); I != E; ++I) {
|
|
const MachineBasicBlock *MBB = *I;
|
|
for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
|
|
SE = MBB->succ_end(); SI != SE; ++SI)
|
|
if (!Blocks.Loop.count(*SI))
|
|
Blocks.Exits.insert(*SI);
|
|
}
|
|
}
|
|
|
|
void SplitAnalysis::print(const LoopBlocks &B, raw_ostream &OS) const {
|
|
OS << "Loop:";
|
|
print(B.Loop, OS);
|
|
OS << ", preds:";
|
|
print(B.Preds, OS);
|
|
OS << ", exits:";
|
|
print(B.Exits, OS);
|
|
}
|
|
|
|
/// analyzeLoopPeripheralUse - Return an enum describing how CurLI is used in
|
|
/// and around the Loop.
|
|
SplitAnalysis::LoopPeripheralUse SplitAnalysis::
|
|
analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) {
|
|
LoopPeripheralUse use = ContainedInLoop;
|
|
for (BlockCountMap::iterator I = UsingBlocks.begin(), E = UsingBlocks.end();
|
|
I != E; ++I) {
|
|
const MachineBasicBlock *MBB = I->first;
|
|
// Is this a peripheral block?
|
|
if (use < MultiPeripheral &&
|
|
(Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) {
|
|
if (I->second > 1) use = MultiPeripheral;
|
|
else use = SinglePeripheral;
|
|
continue;
|
|
}
|
|
// Is it a loop block?
|
|
if (Blocks.Loop.count(MBB))
|
|
continue;
|
|
// It must be an unrelated block.
|
|
DEBUG(dbgs() << ", outside: BB#" << MBB->getNumber());
|
|
return OutsideLoop;
|
|
}
|
|
return use;
|
|
}
|
|
|
|
/// getCriticalExits - It may be necessary to partially break critical edges
|
|
/// leaving the loop if an exit block has predecessors from outside the loop
|
|
/// periphery.
|
|
void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
|
|
BlockPtrSet &CriticalExits) {
|
|
CriticalExits.clear();
|
|
|
|
// A critical exit block has CurLI live-in, and has a predecessor that is not
|
|
// in the loop nor a loop predecessor. For such an exit block, the edges
|
|
// carrying the new variable must be moved to a new pre-exit block.
|
|
for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end();
|
|
I != E; ++I) {
|
|
const MachineBasicBlock *Exit = *I;
|
|
// A single-predecessor exit block is definitely not a critical edge.
|
|
if (Exit->pred_size() == 1)
|
|
continue;
|
|
// This exit may not have CurLI live in at all. No need to split.
|
|
if (!LIS.isLiveInToMBB(*CurLI, Exit))
|
|
continue;
|
|
// Does this exit block have a predecessor that is not a loop block or loop
|
|
// predecessor?
|
|
for (MachineBasicBlock::const_pred_iterator PI = Exit->pred_begin(),
|
|
PE = Exit->pred_end(); PI != PE; ++PI) {
|
|
const MachineBasicBlock *Pred = *PI;
|
|
if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred))
|
|
continue;
|
|
// This is a critical exit block, and we need to split the exit edge.
|
|
CriticalExits.insert(Exit);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void SplitAnalysis::getCriticalPreds(const SplitAnalysis::LoopBlocks &Blocks,
|
|
BlockPtrSet &CriticalPreds) {
|
|
CriticalPreds.clear();
|
|
|
|
// A critical predecessor block has CurLI live-out, and has a successor that
|
|
// has CurLI live-in and is not in the loop nor a loop exit block. For such a
|
|
// predecessor block, we must carry the value in both the 'inside' and
|
|
// 'outside' registers.
|
|
for (BlockPtrSet::iterator I = Blocks.Preds.begin(), E = Blocks.Preds.end();
|
|
I != E; ++I) {
|
|
const MachineBasicBlock *Pred = *I;
|
|
// Definitely not a critical edge.
|
|
if (Pred->succ_size() == 1)
|
|
continue;
|
|
// This block may not have CurLI live out at all if there is a PHI.
|
|
if (!LIS.isLiveOutOfMBB(*CurLI, Pred))
|
|
continue;
|
|
// Does this block have a successor outside the loop?
|
|
for (MachineBasicBlock::const_pred_iterator SI = Pred->succ_begin(),
|
|
SE = Pred->succ_end(); SI != SE; ++SI) {
|
|
const MachineBasicBlock *Succ = *SI;
|
|
if (Blocks.Loop.count(Succ) || Blocks.Exits.count(Succ))
|
|
continue;
|
|
if (!LIS.isLiveInToMBB(*CurLI, Succ))
|
|
continue;
|
|
// This is a critical predecessor block.
|
|
CriticalPreds.insert(Pred);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// canSplitCriticalExits - Return true if it is possible to insert new exit
|
|
/// blocks before the blocks in CriticalExits.
|
|
bool
|
|
SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
|
|
BlockPtrSet &CriticalExits) {
|
|
// If we don't allow critical edge splitting, require no critical exits.
|
|
if (!AllowSplit)
|
|
return CriticalExits.empty();
|
|
|
|
for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end();
|
|
I != E; ++I) {
|
|
const MachineBasicBlock *Succ = *I;
|
|
// We want to insert a new pre-exit MBB before Succ, and change all the
|
|
// in-loop blocks to branch to the pre-exit instead of Succ.
|
|
// Check that all the in-loop predecessors can be changed.
|
|
for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(),
|
|
PE = Succ->pred_end(); PI != PE; ++PI) {
|
|
const MachineBasicBlock *Pred = *PI;
|
|
// The external predecessors won't be altered.
|
|
if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred))
|
|
continue;
|
|
if (!canAnalyzeBranch(Pred))
|
|
return false;
|
|
}
|
|
|
|
// If Succ's layout predecessor falls through, that too must be analyzable.
|
|
// We need to insert the pre-exit block in the gap.
|
|
MachineFunction::const_iterator MFI = Succ;
|
|
if (MFI == MF.begin())
|
|
continue;
|
|
if (!canAnalyzeBranch(--MFI))
|
|
return false;
|
|
}
|
|
// No problems found.
|
|
return true;
|
|
}
|
|
|
|
void SplitAnalysis::analyze(const LiveInterval *li) {
|
|
clear();
|
|
CurLI = li;
|
|
analyzeUses();
|
|
}
|
|
|
|
void SplitAnalysis::getSplitLoops(LoopPtrSet &Loops) {
|
|
assert(CurLI && "Call analyze() before getSplitLoops");
|
|
if (UsingLoops.empty())
|
|
return;
|
|
|
|
LoopBlocks Blocks;
|
|
BlockPtrSet CriticalExits;
|
|
|
|
// We split around loops where CurLI is used outside the periphery.
|
|
for (LoopCountMap::const_iterator I = UsingLoops.begin(),
|
|
E = UsingLoops.end(); I != E; ++I) {
|
|
const MachineLoop *Loop = I->first;
|
|
getLoopBlocks(Loop, Blocks);
|
|
DEBUG({ dbgs() << " "; print(Blocks, dbgs()); });
|
|
|
|
switch(analyzeLoopPeripheralUse(Blocks)) {
|
|
case OutsideLoop:
|
|
break;
|
|
case MultiPeripheral:
|
|
// FIXME: We could split a live range with multiple uses in a peripheral
|
|
// block and still make progress. However, it is possible that splitting
|
|
// another live range will insert copies into a peripheral block, and
|
|
// there is a small chance we can enter an infinite loop, inserting copies
|
|
// forever.
|
|
// For safety, stick to splitting live ranges with uses outside the
|
|
// periphery.
|
|
DEBUG(dbgs() << ": multiple peripheral uses");
|
|
break;
|
|
case ContainedInLoop:
|
|
DEBUG(dbgs() << ": fully contained\n");
|
|
continue;
|
|
case SinglePeripheral:
|
|
DEBUG(dbgs() << ": single peripheral use\n");
|
|
continue;
|
|
}
|
|
// Will it be possible to split around this loop?
|
|
getCriticalExits(Blocks, CriticalExits);
|
|
DEBUG(dbgs() << ": " << CriticalExits.size() << " critical exits\n");
|
|
if (!canSplitCriticalExits(Blocks, CriticalExits))
|
|
continue;
|
|
// This is a possible split.
|
|
Loops.insert(Loop);
|
|
}
|
|
|
|
DEBUG(dbgs() << " getSplitLoops found " << Loops.size()
|
|
<< " candidate loops.\n");
|
|
}
|
|
|
|
const MachineLoop *SplitAnalysis::getBestSplitLoop() {
|
|
LoopPtrSet Loops;
|
|
getSplitLoops(Loops);
|
|
if (Loops.empty())
|
|
return 0;
|
|
|
|
// Pick the earliest loop.
|
|
// FIXME: Are there other heuristics to consider?
|
|
const MachineLoop *Best = 0;
|
|
SlotIndex BestIdx;
|
|
for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E;
|
|
++I) {
|
|
SlotIndex Idx = LIS.getMBBStartIdx((*I)->getHeader());
|
|
if (!Best || Idx < BestIdx)
|
|
Best = *I, BestIdx = Idx;
|
|
}
|
|
DEBUG(dbgs() << " getBestSplitLoop found " << *Best);
|
|
return Best;
|
|
}
|
|
|
|
/// isBypassLoop - Return true if CurLI is live through Loop and has no uses
|
|
/// inside the loop. Bypass loops are candidates for splitting because it can
|
|
/// prevent interference inside the loop.
|
|
bool SplitAnalysis::isBypassLoop(const MachineLoop *Loop) {
|
|
// If CurLI is live into the loop header and there are no uses in the loop, it
|
|
// must be live in the entire loop and live on at least one exiting edge.
|
|
return !UsingLoops.count(Loop) &&
|
|
LIS.isLiveInToMBB(*CurLI, Loop->getHeader());
|
|
}
|
|
|
|
/// getBypassLoops - Get all the maximal bypass loops. These are the bypass
|
|
/// loops whose parent is not a bypass loop.
|
|
void SplitAnalysis::getBypassLoops(LoopPtrSet &BypassLoops) {
|
|
SmallVector<MachineLoop*, 8> Todo(Loops.begin(), Loops.end());
|
|
while (!Todo.empty()) {
|
|
MachineLoop *Loop = Todo.pop_back_val();
|
|
if (!UsingLoops.count(Loop)) {
|
|
// This is either a bypass loop or completely irrelevant.
|
|
if (LIS.isLiveInToMBB(*CurLI, Loop->getHeader()))
|
|
BypassLoops.insert(Loop);
|
|
// Either way, skip the child loops.
|
|
continue;
|
|
}
|
|
|
|
// The child loops may be bypass loops.
|
|
Todo.append(Loop->begin(), Loop->end());
|
|
}
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LiveIntervalMap
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Work around the fact that the std::pair constructors are broken for pointer
|
|
// pairs in some implementations. makeVV(x, 0) works.
|
|
static inline std::pair<const VNInfo*, VNInfo*>
|
|
makeVV(const VNInfo *a, VNInfo *b) {
|
|
return std::make_pair(a, b);
|
|
}
|
|
|
|
void LiveIntervalMap::reset(LiveInterval *li) {
|
|
LI = li;
|
|
Values.clear();
|
|
LiveOutCache.clear();
|
|
}
|
|
|
|
bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const {
|
|
ValueMap::const_iterator i = Values.find(ParentVNI);
|
|
return i != Values.end() && i->second == 0;
|
|
}
|
|
|
|
// defValue - Introduce a LI def for ParentVNI that could be later than
|
|
// ParentVNI->def.
|
|
VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) {
|
|
assert(LI && "call reset first");
|
|
assert(ParentVNI && "Mapping NULL value");
|
|
assert(Idx.isValid() && "Invalid SlotIndex");
|
|
assert(ParentLI.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
|
|
|
|
// Create a new value.
|
|
VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator());
|
|
|
|
// Preserve the PHIDef bit.
|
|
if (ParentVNI->isPHIDef() && Idx == ParentVNI->def)
|
|
VNI->setIsPHIDef(true);
|
|
|
|
// Use insert for lookup, so we can add missing values with a second lookup.
|
|
std::pair<ValueMap::iterator,bool> InsP =
|
|
Values.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0));
|
|
|
|
// This is now a complex def. Mark with a NULL in valueMap.
|
|
if (!InsP.second)
|
|
InsP.first->second = 0;
|
|
|
|
return VNI;
|
|
}
|
|
|
|
|
|
// mapValue - Find the mapped value for ParentVNI at Idx.
|
|
// Potentially create phi-def values.
|
|
VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
|
|
bool *simple) {
|
|
assert(LI && "call reset first");
|
|
assert(ParentVNI && "Mapping NULL value");
|
|
assert(Idx.isValid() && "Invalid SlotIndex");
|
|
assert(ParentLI.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
|
|
|
|
// Use insert for lookup, so we can add missing values with a second lookup.
|
|
std::pair<ValueMap::iterator,bool> InsP =
|
|
Values.insert(makeVV(ParentVNI, 0));
|
|
|
|
// This was an unknown value. Create a simple mapping.
|
|
if (InsP.second) {
|
|
if (simple) *simple = true;
|
|
return InsP.first->second = LI->createValueCopy(ParentVNI,
|
|
LIS.getVNInfoAllocator());
|
|
}
|
|
|
|
// This was a simple mapped value.
|
|
if (InsP.first->second) {
|
|
if (simple) *simple = true;
|
|
return InsP.first->second;
|
|
}
|
|
|
|
// This is a complex mapped value. There may be multiple defs, and we may need
|
|
// to create phi-defs.
|
|
if (simple) *simple = false;
|
|
MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx);
|
|
assert(IdxMBB && "No MBB at Idx");
|
|
|
|
// Is there a def in the same MBB we can extend?
|
|
if (VNInfo *VNI = extendTo(IdxMBB, Idx))
|
|
return VNI;
|
|
|
|
// Now for the fun part. We know that ParentVNI potentially has multiple defs,
|
|
// and we may need to create even more phi-defs to preserve VNInfo SSA form.
|
|
// Perform a search for all predecessor blocks where we know the dominating
|
|
// VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.
|
|
DEBUG(dbgs() << "\n Reaching defs for BB#" << IdxMBB->getNumber()
|
|
<< " at " << Idx << " in " << *LI << '\n');
|
|
|
|
// Blocks where LI should be live-in.
|
|
SmallVector<MachineDomTreeNode*, 16> LiveIn;
|
|
LiveIn.push_back(MDT[IdxMBB]);
|
|
|
|
// Using LiveOutCache as a visited set, perform a BFS for all reaching defs.
|
|
for (unsigned i = 0; i != LiveIn.size(); ++i) {
|
|
MachineBasicBlock *MBB = LiveIn[i]->getBlock();
|
|
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
|
|
PE = MBB->pred_end(); PI != PE; ++PI) {
|
|
MachineBasicBlock *Pred = *PI;
|
|
// Is this a known live-out block?
|
|
std::pair<LiveOutMap::iterator,bool> LOIP =
|
|
LiveOutCache.insert(std::make_pair(Pred, LiveOutPair()));
|
|
// Yes, we have been here before.
|
|
if (!LOIP.second) {
|
|
DEBUG(if (VNInfo *VNI = LOIP.first->second.first)
|
|
dbgs() << " known valno #" << VNI->id
|
|
<< " at BB#" << Pred->getNumber() << '\n');
|
|
continue;
|
|
}
|
|
|
|
// Does Pred provide a live-out value?
|
|
SlotIndex Last = LIS.getMBBEndIdx(Pred).getPrevSlot();
|
|
if (VNInfo *VNI = extendTo(Pred, Last)) {
|
|
MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(VNI->def);
|
|
DEBUG(dbgs() << " found valno #" << VNI->id
|
|
<< " from BB#" << DefMBB->getNumber()
|
|
<< " at BB#" << Pred->getNumber() << '\n');
|
|
LiveOutPair &LOP = LOIP.first->second;
|
|
LOP.first = VNI;
|
|
LOP.second = MDT[DefMBB];
|
|
continue;
|
|
}
|
|
// No, we need a live-in value for Pred as well
|
|
if (Pred != IdxMBB)
|
|
LiveIn.push_back(MDT[Pred]);
|
|
}
|
|
}
|
|
|
|
// We may need to add phi-def values to preserve the SSA form.
|
|
// This is essentially the same iterative algorithm that SSAUpdater uses,
|
|
// except we already have a dominator tree, so we don't have to recompute it.
|
|
VNInfo *IdxVNI = 0;
|
|
unsigned Changes;
|
|
do {
|
|
Changes = 0;
|
|
DEBUG(dbgs() << " Iterating over " << LiveIn.size() << " blocks.\n");
|
|
// Propagate live-out values down the dominator tree, inserting phi-defs when
|
|
// necessary. Since LiveIn was created by a BFS, going backwards makes it more
|
|
// likely for us to visit immediate dominators before their children.
|
|
for (unsigned i = LiveIn.size(); i; --i) {
|
|
MachineDomTreeNode *Node = LiveIn[i-1];
|
|
MachineBasicBlock *MBB = Node->getBlock();
|
|
MachineDomTreeNode *IDom = Node->getIDom();
|
|
LiveOutPair IDomValue;
|
|
// We need a live-in value to a block with no immediate dominator?
|
|
// This is probably an unreachable block that has survived somehow.
|
|
bool needPHI = !IDom;
|
|
|
|
// Get the IDom live-out value.
|
|
if (!needPHI) {
|
|
LiveOutMap::iterator I = LiveOutCache.find(IDom->getBlock());
|
|
if (I != LiveOutCache.end())
|
|
IDomValue = I->second;
|
|
else
|
|
// If IDom is outside our set of live-out blocks, there must be new
|
|
// defs, and we need a phi-def here.
|
|
needPHI = true;
|
|
}
|
|
|
|
// IDom dominates all of our predecessors, but it may not be the immediate
|
|
// dominator. Check if any of them have live-out values that are properly
|
|
// dominated by IDom. If so, we need a phi-def here.
|
|
if (!needPHI) {
|
|
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
|
|
PE = MBB->pred_end(); PI != PE; ++PI) {
|
|
LiveOutPair Value = LiveOutCache[*PI];
|
|
if (!Value.first || Value.first == IDomValue.first)
|
|
continue;
|
|
// This predecessor is carrying something other than IDomValue.
|
|
// It could be because IDomValue hasn't propagated yet, or it could be
|
|
// because MBB is in the dominance frontier of that value.
|
|
if (MDT.dominates(IDom, Value.second)) {
|
|
needPHI = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Create a phi-def if required.
|
|
if (needPHI) {
|
|
++Changes;
|
|
SlotIndex Start = LIS.getMBBStartIdx(MBB);
|
|
VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator());
|
|
VNI->setIsPHIDef(true);
|
|
DEBUG(dbgs() << " - BB#" << MBB->getNumber()
|
|
<< " phi-def #" << VNI->id << " at " << Start << '\n');
|
|
// We no longer need LI to be live-in.
|
|
LiveIn.erase(LiveIn.begin()+(i-1));
|
|
// Blocks in LiveIn are either IdxMBB, or have a value live-through.
|
|
if (MBB == IdxMBB)
|
|
IdxVNI = VNI;
|
|
// Check if we need to update live-out info.
|
|
LiveOutMap::iterator I = LiveOutCache.find(MBB);
|
|
if (I == LiveOutCache.end() || I->second.second == Node) {
|
|
// We already have a live-out defined in MBB, so this must be IdxMBB.
|
|
assert(MBB == IdxMBB && "Adding phi-def to known live-out");
|
|
LI->addRange(LiveRange(Start, Idx.getNextSlot(), VNI));
|
|
} else {
|
|
// This phi-def is also live-out, so color the whole block.
|
|
LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
|
|
I->second = LiveOutPair(VNI, Node);
|
|
}
|
|
} else if (IDomValue.first) {
|
|
// No phi-def here. Remember incoming value for IdxMBB.
|
|
if (MBB == IdxMBB)
|
|
IdxVNI = IDomValue.first;
|
|
// Propagate IDomValue if needed:
|
|
// MBB is live-out and doesn't define its own value.
|
|
LiveOutMap::iterator I = LiveOutCache.find(MBB);
|
|
if (I != LiveOutCache.end() && I->second.second != Node &&
|
|
I->second.first != IDomValue.first) {
|
|
++Changes;
|
|
I->second = IDomValue;
|
|
DEBUG(dbgs() << " - BB#" << MBB->getNumber()
|
|
<< " idom valno #" << IDomValue.first->id
|
|
<< " from BB#" << IDom->getBlock()->getNumber() << '\n');
|
|
}
|
|
}
|
|
}
|
|
DEBUG(dbgs() << " - made " << Changes << " changes.\n");
|
|
} while (Changes);
|
|
|
|
assert(IdxVNI && "Didn't find value for Idx");
|
|
|
|
#ifndef NDEBUG
|
|
// Check the LiveOutCache invariants.
|
|
for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end();
|
|
I != E; ++I) {
|
|
assert(I->first && "Null MBB entry in cache");
|
|
assert(I->second.first && "Null VNInfo in cache");
|
|
assert(I->second.second && "Null DomTreeNode in cache");
|
|
if (I->second.second->getBlock() == I->first)
|
|
continue;
|
|
for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(),
|
|
PE = I->first->pred_end(); PI != PE; ++PI)
|
|
assert(LiveOutCache.lookup(*PI) == I->second && "Bad invariant");
|
|
}
|
|
#endif
|
|
|
|
// Since we went through the trouble of a full BFS visiting all reaching defs,
|
|
// the values in LiveIn are now accurate. No more phi-defs are needed
|
|
// for these blocks, so we can color the live ranges.
|
|
// This makes the next mapValue call much faster.
|
|
for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) {
|
|
MachineBasicBlock *MBB = LiveIn[i]->getBlock();
|
|
SlotIndex Start = LIS.getMBBStartIdx(MBB);
|
|
VNInfo *VNI = LiveOutCache.lookup(MBB).first;
|
|
|
|
// Anything in LiveIn other than IdxMBB is live-through.
|
|
// In IdxMBB, we should stop at Idx unless the same value is live-out.
|
|
if (MBB == IdxMBB && IdxVNI != VNI)
|
|
LI->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI));
|
|
else
|
|
LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
|
|
}
|
|
|
|
return IdxVNI;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void LiveIntervalMap::dumpCache() {
|
|
for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end();
|
|
I != E; ++I) {
|
|
assert(I->first && "Null MBB entry in cache");
|
|
assert(I->second.first && "Null VNInfo in cache");
|
|
assert(I->second.second && "Null DomTreeNode in cache");
|
|
dbgs() << " cache: BB#" << I->first->getNumber()
|
|
<< " has valno #" << I->second.first->id << " from BB#"
|
|
<< I->second.second->getBlock()->getNumber() << ", preds";
|
|
for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(),
|
|
PE = I->first->pred_end(); PI != PE; ++PI)
|
|
dbgs() << " BB#" << (*PI)->getNumber();
|
|
dbgs() << '\n';
|
|
}
|
|
dbgs() << " cache: " << LiveOutCache.size() << " entries.\n";
|
|
}
|
|
#endif
|
|
|
|
// extendTo - Find the last LI value defined in MBB at or before Idx. The
|
|
// ParentLI is assumed to be live at Idx. Extend the live range to Idx.
|
|
// Return the found VNInfo, or NULL.
|
|
VNInfo *LiveIntervalMap::extendTo(const MachineBasicBlock *MBB, SlotIndex Idx) {
|
|
assert(LI && "call reset first");
|
|
LiveInterval::iterator I = std::upper_bound(LI->begin(), LI->end(), Idx);
|
|
if (I == LI->begin())
|
|
return 0;
|
|
--I;
|
|
if (I->end <= LIS.getMBBStartIdx(MBB))
|
|
return 0;
|
|
if (I->end <= Idx)
|
|
I->end = Idx.getNextSlot();
|
|
return I->valno;
|
|
}
|
|
|
|
// addSimpleRange - Add a simple range from ParentLI to LI.
|
|
// ParentVNI must be live in the [Start;End) interval.
|
|
void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End,
|
|
const VNInfo *ParentVNI) {
|
|
assert(LI && "call reset first");
|
|
bool simple;
|
|
VNInfo *VNI = mapValue(ParentVNI, Start, &simple);
|
|
// A simple mapping is easy.
|
|
if (simple) {
|
|
LI->addRange(LiveRange(Start, End, VNI));
|
|
return;
|
|
}
|
|
|
|
// ParentVNI is a complex value. We must map per MBB.
|
|
MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
|
|
MachineFunction::iterator MBBE = LIS.getMBBFromIndex(End.getPrevSlot());
|
|
|
|
if (MBB == MBBE) {
|
|
LI->addRange(LiveRange(Start, End, VNI));
|
|
return;
|
|
}
|
|
|
|
// First block.
|
|
LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
|
|
|
|
// Run sequence of full blocks.
|
|
for (++MBB; MBB != MBBE; ++MBB) {
|
|
Start = LIS.getMBBStartIdx(MBB);
|
|
LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB),
|
|
mapValue(ParentVNI, Start)));
|
|
}
|
|
|
|
// Final block.
|
|
Start = LIS.getMBBStartIdx(MBB);
|
|
if (Start != End)
|
|
LI->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start)));
|
|
}
|
|
|
|
/// addRange - Add live ranges to LI where [Start;End) intersects ParentLI.
|
|
/// All needed values whose def is not inside [Start;End) must be defined
|
|
/// beforehand so mapValue will work.
|
|
void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) {
|
|
assert(LI && "call reset first");
|
|
LiveInterval::const_iterator B = ParentLI.begin(), E = ParentLI.end();
|
|
LiveInterval::const_iterator I = std::lower_bound(B, E, Start);
|
|
|
|
// Check if --I begins before Start and overlaps.
|
|
if (I != B) {
|
|
--I;
|
|
if (I->end > Start)
|
|
addSimpleRange(Start, std::min(End, I->end), I->valno);
|
|
++I;
|
|
}
|
|
|
|
// The remaining ranges begin after Start.
|
|
for (;I != E && I->start < End; ++I)
|
|
addSimpleRange(I->start, std::min(End, I->end), I->valno);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Split Editor
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
|
|
SplitEditor::SplitEditor(SplitAnalysis &sa,
|
|
LiveIntervals &lis,
|
|
VirtRegMap &vrm,
|
|
MachineDominatorTree &mdt,
|
|
LiveRangeEdit &edit)
|
|
: sa_(sa), LIS(lis), VRM(vrm),
|
|
MRI(vrm.getMachineFunction().getRegInfo()),
|
|
MDT(mdt),
|
|
TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
|
|
TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
|
|
Edit(edit),
|
|
OpenIdx(0),
|
|
RegAssign(Allocator)
|
|
{
|
|
// We don't need an AliasAnalysis since we will only be performing
|
|
// cheap-as-a-copy remats anyway.
|
|
Edit.anyRematerializable(LIS, TII, 0);
|
|
}
|
|
|
|
void SplitEditor::dump() const {
|
|
if (RegAssign.empty()) {
|
|
dbgs() << " empty\n";
|
|
return;
|
|
}
|
|
|
|
for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
|
|
dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
|
|
dbgs() << '\n';
|
|
}
|
|
|
|
VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
|
|
VNInfo *ParentVNI,
|
|
SlotIndex UseIdx,
|
|
MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I) {
|
|
MachineInstr *CopyMI = 0;
|
|
SlotIndex Def;
|
|
LiveInterval *LI = Edit.get(RegIdx);
|
|
|
|
// Attempt cheap-as-a-copy rematerialization.
|
|
LiveRangeEdit::Remat RM(ParentVNI);
|
|
if (Edit.canRematerializeAt(RM, UseIdx, true, LIS)) {
|
|
Def = Edit.rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI);
|
|
} else {
|
|
// Can't remat, just insert a copy from parent.
|
|
CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
|
|
.addReg(Edit.getReg());
|
|
Def = LIS.InsertMachineInstrInMaps(CopyMI).getDefIndex();
|
|
}
|
|
|
|
// Define the value in Reg.
|
|
VNInfo *VNI = LIMappers[RegIdx].defValue(ParentVNI, Def);
|
|
VNI->setCopy(CopyMI);
|
|
|
|
// Add minimal liveness for the new value.
|
|
Edit.get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
|
|
return VNI;
|
|
}
|
|
|
|
/// Create a new virtual register and live interval.
|
|
void SplitEditor::openIntv() {
|
|
assert(!OpenIdx && "Previous LI not closed before openIntv");
|
|
|
|
// Create the complement as index 0.
|
|
if (Edit.empty()) {
|
|
Edit.create(MRI, LIS, VRM);
|
|
LIMappers.push_back(LiveIntervalMap(LIS, MDT, Edit.getParent()));
|
|
LIMappers.back().reset(Edit.get(0));
|
|
}
|
|
|
|
// Create the open interval.
|
|
OpenIdx = Edit.size();
|
|
Edit.create(MRI, LIS, VRM);
|
|
LIMappers.push_back(LiveIntervalMap(LIS, MDT, Edit.getParent()));
|
|
LIMappers[OpenIdx].reset(Edit.get(OpenIdx));
|
|
}
|
|
|
|
SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
|
|
assert(OpenIdx && "openIntv not called before enterIntvBefore");
|
|
DEBUG(dbgs() << " enterIntvBefore " << Idx);
|
|
Idx = Idx.getBaseIndex();
|
|
VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
|
|
if (!ParentVNI) {
|
|
DEBUG(dbgs() << ": not live\n");
|
|
return Idx;
|
|
}
|
|
DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
|
|
MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
|
|
assert(MI && "enterIntvBefore called with invalid index");
|
|
|
|
VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
|
|
return VNI->def;
|
|
}
|
|
|
|
SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
|
|
assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
|
|
SlotIndex End = LIS.getMBBEndIdx(&MBB);
|
|
SlotIndex Last = End.getPrevSlot();
|
|
DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
|
|
VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Last);
|
|
if (!ParentVNI) {
|
|
DEBUG(dbgs() << ": not live\n");
|
|
return End;
|
|
}
|
|
DEBUG(dbgs() << ": valno " << ParentVNI->id);
|
|
VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
|
|
MBB.getFirstTerminator());
|
|
RegAssign.insert(VNI->def, End, OpenIdx);
|
|
DEBUG(dump());
|
|
return VNI->def;
|
|
}
|
|
|
|
/// useIntv - indicate that all instructions in MBB should use OpenLI.
|
|
void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
|
|
useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
|
|
}
|
|
|
|
void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
|
|
assert(OpenIdx && "openIntv not called before useIntv");
|
|
DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):");
|
|
RegAssign.insert(Start, End, OpenIdx);
|
|
DEBUG(dump());
|
|
}
|
|
|
|
SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
|
|
assert(OpenIdx && "openIntv not called before leaveIntvAfter");
|
|
DEBUG(dbgs() << " leaveIntvAfter " << Idx);
|
|
|
|
// The interval must be live beyond the instruction at Idx.
|
|
Idx = Idx.getBoundaryIndex();
|
|
VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
|
|
if (!ParentVNI) {
|
|
DEBUG(dbgs() << ": not live\n");
|
|
return Idx.getNextSlot();
|
|
}
|
|
DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
|
|
|
|
MachineBasicBlock::iterator MII = LIS.getInstructionFromIndex(Idx);
|
|
VNInfo *VNI = defFromParent(0, ParentVNI, Idx,
|
|
*MII->getParent(), llvm::next(MII));
|
|
return VNI->def;
|
|
}
|
|
|
|
SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
|
|
assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
|
|
SlotIndex Start = LIS.getMBBStartIdx(&MBB);
|
|
DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
|
|
|
|
VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Start);
|
|
if (!ParentVNI) {
|
|
DEBUG(dbgs() << ": not live\n");
|
|
return Start;
|
|
}
|
|
|
|
VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
|
|
MBB.SkipPHIsAndLabels(MBB.begin()));
|
|
RegAssign.insert(Start, VNI->def, OpenIdx);
|
|
DEBUG(dump());
|
|
return VNI->def;
|
|
}
|
|
|
|
/// closeIntv - Indicate that we are done editing the currently open
|
|
/// LiveInterval, and ranges can be trimmed.
|
|
void SplitEditor::closeIntv() {
|
|
assert(OpenIdx && "openIntv not called before closeIntv");
|
|
OpenIdx = 0;
|
|
}
|
|
|
|
/// rewriteAssigned - Rewrite all uses of Edit.getReg().
|
|
void SplitEditor::rewriteAssigned() {
|
|
for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit.getReg()),
|
|
RE = MRI.reg_end(); RI != RE;) {
|
|
MachineOperand &MO = RI.getOperand();
|
|
MachineInstr *MI = MO.getParent();
|
|
++RI;
|
|
// LiveDebugVariables should have handled all DBG_VALUE instructions.
|
|
if (MI->isDebugValue()) {
|
|
DEBUG(dbgs() << "Zapping " << *MI);
|
|
MO.setReg(0);
|
|
continue;
|
|
}
|
|
SlotIndex Idx = LIS.getInstructionIndex(MI);
|
|
Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
|
|
|
|
// Rewrite to the mapped register at Idx.
|
|
unsigned RegIdx = RegAssign.lookup(Idx);
|
|
MO.setReg(Edit.get(RegIdx)->reg);
|
|
DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'
|
|
<< Idx << ':' << RegIdx << '\t' << *MI);
|
|
|
|
// Extend liveness to Idx.
|
|
const VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
|
|
LIMappers[RegIdx].mapValue(ParentVNI, Idx);
|
|
}
|
|
}
|
|
|
|
/// rewriteSplit - Rewrite uses of Intvs[0] according to the ConEQ mapping.
|
|
void SplitEditor::rewriteComponents(const SmallVectorImpl<LiveInterval*> &Intvs,
|
|
const ConnectedVNInfoEqClasses &ConEq) {
|
|
for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Intvs[0]->reg),
|
|
RE = MRI.reg_end(); RI != RE;) {
|
|
MachineOperand &MO = RI.getOperand();
|
|
MachineInstr *MI = MO.getParent();
|
|
++RI;
|
|
if (MO.isUse() && MO.isUndef())
|
|
continue;
|
|
// DBG_VALUE instructions should have been eliminated earlier.
|
|
SlotIndex Idx = LIS.getInstructionIndex(MI);
|
|
Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
|
|
DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'
|
|
<< Idx << ':');
|
|
const VNInfo *VNI = Intvs[0]->getVNInfoAt(Idx);
|
|
assert(VNI && "Interval not live at use.");
|
|
MO.setReg(Intvs[ConEq.getEqClass(VNI)]->reg);
|
|
DEBUG(dbgs() << VNI->id << '\t' << *MI);
|
|
}
|
|
}
|
|
|
|
void SplitEditor::finish() {
|
|
assert(OpenIdx == 0 && "Previous LI not closed before rewrite");
|
|
|
|
// At this point, the live intervals in Edit contain VNInfos corresponding to
|
|
// the inserted copies.
|
|
|
|
// Add the original defs from the parent interval.
|
|
for (LiveInterval::const_vni_iterator I = Edit.getParent().vni_begin(),
|
|
E = Edit.getParent().vni_end(); I != E; ++I) {
|
|
const VNInfo *ParentVNI = *I;
|
|
LiveIntervalMap &LIM = LIMappers[RegAssign.lookup(ParentVNI->def)];
|
|
VNInfo *VNI = LIM.defValue(ParentVNI, ParentVNI->def);
|
|
LIM.getLI()->addRange(LiveRange(ParentVNI->def,
|
|
ParentVNI->def.getNextSlot(), VNI));
|
|
// Mark all values as complex to force liveness computation.
|
|
// This should really only be necessary for remat victims, but we are lazy.
|
|
LIM.markComplexMapped(ParentVNI);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
// Every new interval must have a def by now, otherwise the split is bogus.
|
|
for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I)
|
|
assert((*I)->hasAtLeastOneValue() && "Split interval has no value");
|
|
#endif
|
|
|
|
// FIXME: Don't recompute the liveness of all values, infer it from the
|
|
// overlaps between the parent live interval and RegAssign.
|
|
// The mapValue algorithm is only necessary when:
|
|
// - The parent value maps to multiple defs, and new phis are needed, or
|
|
// - The value has been rematerialized before some uses, and we want to
|
|
// minimize the live range so it only reaches the remaining uses.
|
|
// All other values have simple liveness that can be computed from RegAssign
|
|
// and the parent live interval.
|
|
|
|
// Extend live ranges to be live-out for successor PHI values.
|
|
for (LiveInterval::const_vni_iterator I = Edit.getParent().vni_begin(),
|
|
E = Edit.getParent().vni_end(); I != E; ++I) {
|
|
const VNInfo *PHIVNI = *I;
|
|
if (!PHIVNI->isPHIDef())
|
|
continue;
|
|
LiveIntervalMap &LIM = LIMappers[RegAssign.lookup(PHIVNI->def)];
|
|
MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
|
|
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
|
|
PE = MBB->pred_end(); PI != PE; ++PI) {
|
|
SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot();
|
|
// The predecessor may not have a live-out value. That is OK, like an
|
|
// undef PHI operand.
|
|
if (VNInfo *VNI = Edit.getParent().getVNInfoAt(End))
|
|
LIM.mapValue(VNI, End);
|
|
}
|
|
}
|
|
|
|
// Rewrite instructions.
|
|
rewriteAssigned();
|
|
|
|
// FIXME: Delete defs that were rematted everywhere.
|
|
|
|
// Get rid of unused values and set phi-kill flags.
|
|
for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I)
|
|
(*I)->RenumberValues(LIS);
|
|
|
|
// Now check if any registers were separated into multiple components.
|
|
ConnectedVNInfoEqClasses ConEQ(LIS);
|
|
for (unsigned i = 0, e = Edit.size(); i != e; ++i) {
|
|
// Don't use iterators, they are invalidated by create() below.
|
|
LiveInterval *li = Edit.get(i);
|
|
unsigned NumComp = ConEQ.Classify(li);
|
|
if (NumComp <= 1)
|
|
continue;
|
|
DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n');
|
|
SmallVector<LiveInterval*, 8> dups;
|
|
dups.push_back(li);
|
|
for (unsigned i = 1; i != NumComp; ++i)
|
|
dups.push_back(&Edit.create(MRI, LIS, VRM));
|
|
rewriteComponents(dups, ConEQ);
|
|
ConEQ.Distribute(&dups[0]);
|
|
}
|
|
|
|
// Calculate spill weight and allocation hints for new intervals.
|
|
VirtRegAuxInfo vrai(VRM.getMachineFunction(), LIS, sa_.Loops);
|
|
for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I){
|
|
LiveInterval &li = **I;
|
|
vrai.CalculateRegClass(li.reg);
|
|
vrai.CalculateWeightAndHint(li);
|
|
DEBUG(dbgs() << " new interval " << MRI.getRegClass(li.reg)->getName()
|
|
<< ":" << li << '\n');
|
|
}
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Loop Splitting
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void SplitEditor::splitAroundLoop(const MachineLoop *Loop) {
|
|
SplitAnalysis::LoopBlocks Blocks;
|
|
sa_.getLoopBlocks(Loop, Blocks);
|
|
|
|
DEBUG({
|
|
dbgs() << " splitAround"; sa_.print(Blocks, dbgs()); dbgs() << '\n';
|
|
});
|
|
|
|
// Break critical edges as needed.
|
|
SplitAnalysis::BlockPtrSet CriticalExits;
|
|
sa_.getCriticalExits(Blocks, CriticalExits);
|
|
assert(CriticalExits.empty() && "Cannot break critical exits yet");
|
|
|
|
// Create new live interval for the loop.
|
|
openIntv();
|
|
|
|
// Insert copies in the predecessors if live-in to the header.
|
|
if (LIS.isLiveInToMBB(Edit.getParent(), Loop->getHeader())) {
|
|
for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(),
|
|
E = Blocks.Preds.end(); I != E; ++I) {
|
|
MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
|
|
enterIntvAtEnd(MBB);
|
|
}
|
|
}
|
|
|
|
// Switch all loop blocks.
|
|
for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(),
|
|
E = Blocks.Loop.end(); I != E; ++I)
|
|
useIntv(**I);
|
|
|
|
// Insert back copies in the exit blocks.
|
|
for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(),
|
|
E = Blocks.Exits.end(); I != E; ++I) {
|
|
MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
|
|
leaveIntvAtTop(MBB);
|
|
}
|
|
|
|
// Done.
|
|
closeIntv();
|
|
finish();
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Single Block Splitting
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// getMultiUseBlocks - if CurLI has more than one use in a basic block, it
|
|
/// may be an advantage to split CurLI for the duration of the block.
|
|
bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
|
|
// If CurLI is local to one block, there is no point to splitting it.
|
|
if (UsingBlocks.size() <= 1)
|
|
return false;
|
|
// Add blocks with multiple uses.
|
|
for (BlockCountMap::iterator I = UsingBlocks.begin(), E = UsingBlocks.end();
|
|
I != E; ++I)
|
|
switch (I->second) {
|
|
case 0:
|
|
case 1:
|
|
continue;
|
|
case 2: {
|
|
// When there are only two uses and CurLI is both live in and live out,
|
|
// we don't really win anything by isolating the block since we would be
|
|
// inserting two copies.
|
|
// The remaing register would still have two uses in the block. (Unless it
|
|
// separates into disconnected components).
|
|
if (LIS.isLiveInToMBB(*CurLI, I->first) &&
|
|
LIS.isLiveOutOfMBB(*CurLI, I->first))
|
|
continue;
|
|
} // Fall through.
|
|
default:
|
|
Blocks.insert(I->first);
|
|
}
|
|
return !Blocks.empty();
|
|
}
|
|
|
|
/// splitSingleBlocks - Split CurLI into a separate live interval inside each
|
|
/// basic block in Blocks.
|
|
void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
|
|
DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n");
|
|
// Determine the first and last instruction using CurLI in each block.
|
|
typedef std::pair<SlotIndex,SlotIndex> IndexPair;
|
|
typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap;
|
|
IndexPairMap MBBRange;
|
|
for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.UsingInstrs.begin(),
|
|
E = sa_.UsingInstrs.end(); I != E; ++I) {
|
|
const MachineBasicBlock *MBB = (*I)->getParent();
|
|
if (!Blocks.count(MBB))
|
|
continue;
|
|
SlotIndex Idx = LIS.getInstructionIndex(*I);
|
|
DEBUG(dbgs() << " BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I);
|
|
IndexPair &IP = MBBRange[MBB];
|
|
if (!IP.first.isValid() || Idx < IP.first)
|
|
IP.first = Idx;
|
|
if (!IP.second.isValid() || Idx > IP.second)
|
|
IP.second = Idx;
|
|
}
|
|
|
|
// Create a new interval for each block.
|
|
for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(),
|
|
E = Blocks.end(); I != E; ++I) {
|
|
IndexPair &IP = MBBRange[*I];
|
|
DEBUG(dbgs() << " splitting for BB#" << (*I)->getNumber() << ": ["
|
|
<< IP.first << ';' << IP.second << ")\n");
|
|
assert(IP.first.isValid() && IP.second.isValid());
|
|
|
|
openIntv();
|
|
useIntv(enterIntvBefore(IP.first), leaveIntvAfter(IP.second));
|
|
closeIntv();
|
|
}
|
|
finish();
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Sub Block Splitting
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// getBlockForInsideSplit - If CurLI is contained inside a single basic block,
|
|
/// and it wou pay to subdivide the interval inside that block, return it.
|
|
/// Otherwise return NULL. The returned block can be passed to
|
|
/// SplitEditor::splitInsideBlock.
|
|
const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() {
|
|
// The interval must be exclusive to one block.
|
|
if (UsingBlocks.size() != 1)
|
|
return 0;
|
|
// Don't to this for less than 4 instructions. We want to be sure that
|
|
// splitting actually reduces the instruction count per interval.
|
|
if (UsingInstrs.size() < 4)
|
|
return 0;
|
|
return UsingBlocks.begin()->first;
|
|
}
|
|
|
|
/// splitInsideBlock - Split CurLI into multiple intervals inside MBB.
|
|
void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) {
|
|
SmallVector<SlotIndex, 32> Uses;
|
|
Uses.reserve(sa_.UsingInstrs.size());
|
|
for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.UsingInstrs.begin(),
|
|
E = sa_.UsingInstrs.end(); I != E; ++I)
|
|
if ((*I)->getParent() == MBB)
|
|
Uses.push_back(LIS.getInstructionIndex(*I));
|
|
DEBUG(dbgs() << " splitInsideBlock BB#" << MBB->getNumber() << " for "
|
|
<< Uses.size() << " instructions.\n");
|
|
assert(Uses.size() >= 3 && "Need at least 3 instructions");
|
|
array_pod_sort(Uses.begin(), Uses.end());
|
|
|
|
// Simple algorithm: Find the largest gap between uses as determined by slot
|
|
// indices. Create new intervals for instructions before the gap and after the
|
|
// gap.
|
|
unsigned bestPos = 0;
|
|
int bestGap = 0;
|
|
DEBUG(dbgs() << " dist (" << Uses[0]);
|
|
for (unsigned i = 1, e = Uses.size(); i != e; ++i) {
|
|
int g = Uses[i-1].distance(Uses[i]);
|
|
DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]);
|
|
if (g > bestGap)
|
|
bestPos = i, bestGap = g;
|
|
}
|
|
DEBUG(dbgs() << "), best: -" << bestGap << "-\n");
|
|
|
|
// bestPos points to the first use after the best gap.
|
|
assert(bestPos > 0 && "Invalid gap");
|
|
|
|
// FIXME: Don't create intervals for low densities.
|
|
|
|
// First interval before the gap. Don't create single-instr intervals.
|
|
if (bestPos > 1) {
|
|
openIntv();
|
|
useIntv(enterIntvBefore(Uses.front()), leaveIntvAfter(Uses[bestPos-1]));
|
|
closeIntv();
|
|
}
|
|
|
|
// Second interval after the gap.
|
|
if (bestPos < Uses.size()-1) {
|
|
openIntv();
|
|
useIntv(enterIntvBefore(Uses[bestPos]), leaveIntvAfter(Uses.back()));
|
|
closeIntv();
|
|
}
|
|
|
|
finish();
|
|
}
|