forked from OSchip/llvm-project
784 lines
26 KiB
C++
784 lines
26 KiB
C++
//===- ParallelDSP.cpp - Parallel DSP Pass --------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// Armv6 introduced instructions to perform 32-bit SIMD operations. The
|
|
/// purpose of this pass is do some IR pattern matching to create ACLE
|
|
/// DSP intrinsics, which map on these 32-bit SIMD operations.
|
|
/// This pass runs only when unaligned accesses is supported/enabled.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/LoopAccessAnalysis.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/NoFolder.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/PassRegistry.h"
|
|
#include "llvm/PassSupport.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "ARM.h"
|
|
#include "ARMSubtarget.h"
|
|
|
|
using namespace llvm;
|
|
using namespace PatternMatch;
|
|
|
|
#define DEBUG_TYPE "arm-parallel-dsp"
|
|
|
|
STATISTIC(NumSMLAD , "Number of smlad instructions generated");
|
|
|
|
static cl::opt<bool>
|
|
DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false),
|
|
cl::desc("Disable the ARM Parallel DSP pass"));
|
|
|
|
namespace {
|
|
struct OpChain;
|
|
struct BinOpChain;
|
|
struct Reduction;
|
|
|
|
using OpChainList = SmallVector<std::unique_ptr<OpChain>, 8>;
|
|
using ReductionList = SmallVector<Reduction, 8>;
|
|
using ValueList = SmallVector<Value*, 8>;
|
|
using MemInstList = SmallVector<LoadInst*, 8>;
|
|
using PMACPair = std::pair<BinOpChain*,BinOpChain*>;
|
|
using PMACPairList = SmallVector<PMACPair, 8>;
|
|
using Instructions = SmallVector<Instruction*,16>;
|
|
using MemLocList = SmallVector<MemoryLocation, 4>;
|
|
|
|
struct OpChain {
|
|
Instruction *Root;
|
|
ValueList AllValues;
|
|
MemInstList VecLd; // List of all load instructions.
|
|
MemInstList Loads;
|
|
bool ReadOnly = true;
|
|
|
|
OpChain(Instruction *I, ValueList &vl) : Root(I), AllValues(vl) { }
|
|
virtual ~OpChain() = default;
|
|
|
|
void PopulateLoads() {
|
|
for (auto *V : AllValues) {
|
|
if (auto *Ld = dyn_cast<LoadInst>(V))
|
|
Loads.push_back(Ld);
|
|
}
|
|
}
|
|
|
|
unsigned size() const { return AllValues.size(); }
|
|
};
|
|
|
|
// 'BinOpChain' and 'Reduction' are just some bookkeeping data structures.
|
|
// 'Reduction' contains the phi-node and accumulator statement from where we
|
|
// start pattern matching, and 'BinOpChain' the multiplication
|
|
// instructions that are candidates for parallel execution.
|
|
struct BinOpChain : public OpChain {
|
|
ValueList LHS; // List of all (narrow) left hand operands.
|
|
ValueList RHS; // List of all (narrow) right hand operands.
|
|
bool Exchange = false;
|
|
|
|
BinOpChain(Instruction *I, ValueList &lhs, ValueList &rhs) :
|
|
OpChain(I, lhs), LHS(lhs), RHS(rhs) {
|
|
for (auto *V : RHS)
|
|
AllValues.push_back(V);
|
|
}
|
|
|
|
bool AreSymmetrical(BinOpChain *Other);
|
|
};
|
|
|
|
struct Reduction {
|
|
PHINode *Phi; // The Phi-node from where we start
|
|
// pattern matching.
|
|
Instruction *AccIntAdd; // The accumulating integer add statement,
|
|
// i.e, the reduction statement.
|
|
OpChainList MACCandidates; // The MAC candidates associated with
|
|
// this reduction statement.
|
|
PMACPairList PMACPairs;
|
|
Reduction (PHINode *P, Instruction *Acc) : Phi(P), AccIntAdd(Acc) { };
|
|
};
|
|
|
|
class WidenedLoad {
|
|
LoadInst *NewLd = nullptr;
|
|
SmallVector<LoadInst*, 4> Loads;
|
|
|
|
public:
|
|
WidenedLoad(SmallVectorImpl<LoadInst*> &Lds, LoadInst *Wide)
|
|
: NewLd(Wide) {
|
|
for (auto *I : Lds)
|
|
Loads.push_back(I);
|
|
}
|
|
LoadInst *getLoad() {
|
|
return NewLd;
|
|
}
|
|
};
|
|
|
|
class ARMParallelDSP : public LoopPass {
|
|
ScalarEvolution *SE;
|
|
AliasAnalysis *AA;
|
|
TargetLibraryInfo *TLI;
|
|
DominatorTree *DT;
|
|
LoopInfo *LI;
|
|
Loop *L;
|
|
const DataLayout *DL;
|
|
Module *M;
|
|
std::map<LoadInst*, LoadInst*> LoadPairs;
|
|
std::map<LoadInst*, std::unique_ptr<WidenedLoad>> WideLoads;
|
|
|
|
bool RecordMemoryOps(BasicBlock *BB);
|
|
bool InsertParallelMACs(Reduction &Reduction);
|
|
bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem);
|
|
LoadInst* CreateWideLoad(SmallVectorImpl<LoadInst*> &Loads,
|
|
IntegerType *LoadTy);
|
|
void CreateParallelMACPairs(Reduction &R);
|
|
Instruction *CreateSMLADCall(SmallVectorImpl<LoadInst*> &VecLd0,
|
|
SmallVectorImpl<LoadInst*> &VecLd1,
|
|
Instruction *Acc, bool Exchange,
|
|
Instruction *InsertAfter);
|
|
|
|
/// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate
|
|
/// Dual performs two signed 16x16-bit multiplications. It adds the
|
|
/// products to a 32-bit accumulate operand. Optionally, the instruction can
|
|
/// exchange the halfwords of the second operand before performing the
|
|
/// arithmetic.
|
|
bool MatchSMLAD(Function &F);
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
ARMParallelDSP() : LoopPass(ID) { }
|
|
|
|
bool doInitialization(Loop *L, LPPassManager &LPM) override {
|
|
LoadPairs.clear();
|
|
WideLoads.clear();
|
|
return true;
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
LoopPass::getAnalysisUsage(AU);
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addRequired<ScalarEvolutionWrapperPass>();
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
AU.addRequired<LoopInfoWrapperPass>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<TargetPassConfig>();
|
|
AU.addPreserved<LoopInfoWrapperPass>();
|
|
AU.setPreservesCFG();
|
|
}
|
|
|
|
bool runOnLoop(Loop *TheLoop, LPPassManager &) override {
|
|
if (DisableParallelDSP)
|
|
return false;
|
|
L = TheLoop;
|
|
SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
|
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
|
|
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
auto &TPC = getAnalysis<TargetPassConfig>();
|
|
|
|
BasicBlock *Header = TheLoop->getHeader();
|
|
if (!Header)
|
|
return false;
|
|
|
|
// TODO: We assume the loop header and latch to be the same block.
|
|
// This is not a fundamental restriction, but lifting this would just
|
|
// require more work to do the transformation and then patch up the CFG.
|
|
if (Header != TheLoop->getLoopLatch()) {
|
|
LLVM_DEBUG(dbgs() << "The loop header is not the loop latch: not "
|
|
"running pass ARMParallelDSP\n");
|
|
return false;
|
|
}
|
|
|
|
// We need a preheader as getIncomingValueForBlock assumes there is one.
|
|
if (!TheLoop->getLoopPreheader()) {
|
|
LLVM_DEBUG(dbgs() << "No preheader found, bailing out\n");
|
|
return false;
|
|
}
|
|
|
|
Function &F = *Header->getParent();
|
|
M = F.getParent();
|
|
DL = &M->getDataLayout();
|
|
|
|
auto &TM = TPC.getTM<TargetMachine>();
|
|
auto *ST = &TM.getSubtarget<ARMSubtarget>(F);
|
|
|
|
if (!ST->allowsUnalignedMem()) {
|
|
LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not "
|
|
"running pass ARMParallelDSP\n");
|
|
return false;
|
|
}
|
|
|
|
if (!ST->hasDSP()) {
|
|
LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass "
|
|
"ARMParallelDSP\n");
|
|
return false;
|
|
}
|
|
|
|
if (!ST->isLittle()) {
|
|
LLVM_DEBUG(dbgs() << "Only supporting little endian: not running pass "
|
|
<< "ARMParallelDSP\n");
|
|
return false;
|
|
}
|
|
|
|
LoopAccessInfo LAI(L, SE, TLI, AA, DT, LI);
|
|
|
|
LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n");
|
|
LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n");
|
|
|
|
if (!RecordMemoryOps(Header)) {
|
|
LLVM_DEBUG(dbgs() << " - No sequential loads found.\n");
|
|
return false;
|
|
}
|
|
|
|
bool Changes = MatchSMLAD(F);
|
|
return Changes;
|
|
}
|
|
};
|
|
}
|
|
|
|
template<typename MemInst>
|
|
static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1,
|
|
const DataLayout &DL, ScalarEvolution &SE) {
|
|
if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1,
|
|
MemInstList &VecMem) {
|
|
if (!Ld0 || !Ld1)
|
|
return false;
|
|
|
|
if (!LoadPairs.count(Ld0) || LoadPairs[Ld0] != Ld1)
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "Loads are sequential and valid:\n";
|
|
dbgs() << "Ld0:"; Ld0->dump();
|
|
dbgs() << "Ld1:"; Ld1->dump();
|
|
);
|
|
|
|
VecMem.clear();
|
|
VecMem.push_back(Ld0);
|
|
VecMem.push_back(Ld1);
|
|
return true;
|
|
}
|
|
|
|
/// Iterate through the block and record base, offset pairs of loads which can
|
|
/// be widened into a single load.
|
|
bool ARMParallelDSP::RecordMemoryOps(BasicBlock *BB) {
|
|
SmallVector<LoadInst*, 8> Loads;
|
|
SmallVector<Instruction*, 8> Writes;
|
|
|
|
// Collect loads and instruction that may write to memory. For now we only
|
|
// record loads which are simple, sign-extended and have a single user.
|
|
// TODO: Allow zero-extended loads.
|
|
for (auto &I : *BB) {
|
|
if (I.mayWriteToMemory())
|
|
Writes.push_back(&I);
|
|
auto *Ld = dyn_cast<LoadInst>(&I);
|
|
if (!Ld || !Ld->isSimple() ||
|
|
!Ld->hasOneUse() || !isa<SExtInst>(Ld->user_back()))
|
|
continue;
|
|
Loads.push_back(Ld);
|
|
}
|
|
|
|
using InstSet = std::set<Instruction*>;
|
|
using DepMap = std::map<Instruction*, InstSet>;
|
|
DepMap RAWDeps;
|
|
|
|
// Record any writes that may alias a load.
|
|
const auto Size = LocationSize::unknown();
|
|
for (auto Read : Loads) {
|
|
for (auto Write : Writes) {
|
|
MemoryLocation ReadLoc =
|
|
MemoryLocation(Read->getPointerOperand(), Size);
|
|
|
|
if (!isModOrRefSet(intersectModRef(AA->getModRefInfo(Write, ReadLoc),
|
|
ModRefInfo::ModRef)))
|
|
continue;
|
|
if (DT->dominates(Write, Read))
|
|
RAWDeps[Read].insert(Write);
|
|
}
|
|
}
|
|
|
|
// Check whether there's not a write between the two loads which would
|
|
// prevent them from being safely merged.
|
|
auto SafeToPair = [&](LoadInst *Base, LoadInst *Offset) {
|
|
LoadInst *Dominator = DT->dominates(Base, Offset) ? Base : Offset;
|
|
LoadInst *Dominated = DT->dominates(Base, Offset) ? Offset : Base;
|
|
|
|
if (RAWDeps.count(Dominated)) {
|
|
InstSet &WritesBefore = RAWDeps[Dominated];
|
|
|
|
for (auto Before : WritesBefore) {
|
|
|
|
// We can't move the second load backward, past a write, to merge
|
|
// with the first load.
|
|
if (DT->dominates(Dominator, Before))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
};
|
|
|
|
// Record base, offset load pairs.
|
|
for (auto *Base : Loads) {
|
|
for (auto *Offset : Loads) {
|
|
if (Base == Offset)
|
|
continue;
|
|
|
|
if (AreSequentialAccesses<LoadInst>(Base, Offset, *DL, *SE) &&
|
|
SafeToPair(Base, Offset)) {
|
|
LoadPairs[Base] = Offset;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(if (!LoadPairs.empty()) {
|
|
dbgs() << "Consecutive load pairs:\n";
|
|
for (auto &MapIt : LoadPairs) {
|
|
LLVM_DEBUG(dbgs() << *MapIt.first << ", "
|
|
<< *MapIt.second << "\n");
|
|
}
|
|
});
|
|
return LoadPairs.size() > 1;
|
|
}
|
|
|
|
void ARMParallelDSP::CreateParallelMACPairs(Reduction &R) {
|
|
OpChainList &Candidates = R.MACCandidates;
|
|
PMACPairList &PMACPairs = R.PMACPairs;
|
|
const unsigned Elems = Candidates.size();
|
|
|
|
if (Elems < 2)
|
|
return;
|
|
|
|
auto CanPair = [&](BinOpChain *PMul0, BinOpChain *PMul1) {
|
|
if (!PMul0->AreSymmetrical(PMul1))
|
|
return false;
|
|
|
|
// The first elements of each vector should be loads with sexts. If we
|
|
// find that its two pairs of consecutive loads, then these can be
|
|
// transformed into two wider loads and the users can be replaced with
|
|
// DSP intrinsics.
|
|
for (unsigned x = 0; x < PMul0->LHS.size(); x += 2) {
|
|
auto *Ld0 = dyn_cast<LoadInst>(PMul0->LHS[x]);
|
|
auto *Ld1 = dyn_cast<LoadInst>(PMul1->LHS[x]);
|
|
auto *Ld2 = dyn_cast<LoadInst>(PMul0->RHS[x]);
|
|
auto *Ld3 = dyn_cast<LoadInst>(PMul1->RHS[x]);
|
|
|
|
if (!Ld0 || !Ld1 || !Ld2 || !Ld3)
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "Loads:\n"
|
|
<< " - " << *Ld0 << "\n"
|
|
<< " - " << *Ld1 << "\n"
|
|
<< " - " << *Ld2 << "\n"
|
|
<< " - " << *Ld3 << "\n");
|
|
|
|
if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) {
|
|
if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) {
|
|
LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
|
|
PMACPairs.push_back(std::make_pair(PMul0, PMul1));
|
|
return true;
|
|
} else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) {
|
|
LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
|
|
LLVM_DEBUG(dbgs() << " exchanging Ld2 and Ld3\n");
|
|
PMul1->Exchange = true;
|
|
PMACPairs.push_back(std::make_pair(PMul0, PMul1));
|
|
return true;
|
|
}
|
|
} else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd) &&
|
|
AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) {
|
|
LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
|
|
LLVM_DEBUG(dbgs() << " exchanging Ld0 and Ld1\n");
|
|
LLVM_DEBUG(dbgs() << " and swapping muls\n");
|
|
PMul0->Exchange = true;
|
|
// Only the second operand can be exchanged, so swap the muls.
|
|
PMACPairs.push_back(std::make_pair(PMul1, PMul0));
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
};
|
|
|
|
SmallPtrSet<const Instruction*, 4> Paired;
|
|
for (unsigned i = 0; i < Elems; ++i) {
|
|
BinOpChain *PMul0 = static_cast<BinOpChain*>(Candidates[i].get());
|
|
if (Paired.count(PMul0->Root))
|
|
continue;
|
|
|
|
for (unsigned j = 0; j < Elems; ++j) {
|
|
if (i == j)
|
|
continue;
|
|
|
|
BinOpChain *PMul1 = static_cast<BinOpChain*>(Candidates[j].get());
|
|
if (Paired.count(PMul1->Root))
|
|
continue;
|
|
|
|
const Instruction *Mul0 = PMul0->Root;
|
|
const Instruction *Mul1 = PMul1->Root;
|
|
if (Mul0 == Mul1)
|
|
continue;
|
|
|
|
assert(PMul0 != PMul1 && "expected different chains");
|
|
|
|
if (CanPair(PMul0, PMul1)) {
|
|
Paired.insert(Mul0);
|
|
Paired.insert(Mul1);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool ARMParallelDSP::InsertParallelMACs(Reduction &Reduction) {
|
|
Instruction *Acc = Reduction.Phi;
|
|
Instruction *InsertAfter = Reduction.AccIntAdd;
|
|
|
|
for (auto &Pair : Reduction.PMACPairs) {
|
|
BinOpChain *PMul0 = Pair.first;
|
|
BinOpChain *PMul1 = Pair.second;
|
|
LLVM_DEBUG(dbgs() << "Found parallel MACs:\n"
|
|
<< "- " << *PMul0->Root << "\n"
|
|
<< "- " << *PMul1->Root << "\n");
|
|
|
|
Acc = CreateSMLADCall(PMul0->VecLd, PMul1->VecLd, Acc, PMul1->Exchange,
|
|
InsertAfter);
|
|
InsertAfter = Acc;
|
|
}
|
|
|
|
if (Acc != Reduction.Phi) {
|
|
LLVM_DEBUG(dbgs() << "Replace Accumulate: "; Acc->dump());
|
|
Reduction.AccIntAdd->replaceAllUsesWith(Acc);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
template<typename InstType, unsigned BitWidth>
|
|
bool IsExtendingLoad(Value *V) {
|
|
auto *I = dyn_cast<InstType>(V);
|
|
if (!I)
|
|
return false;
|
|
|
|
if (I->getSrcTy()->getIntegerBitWidth() != BitWidth)
|
|
return false;
|
|
|
|
return isa<LoadInst>(I->getOperand(0));
|
|
}
|
|
|
|
static void MatchParallelMACSequences(Reduction &R,
|
|
OpChainList &Candidates) {
|
|
Instruction *Acc = R.AccIntAdd;
|
|
LLVM_DEBUG(dbgs() << "\n- Analysing:\t" << *Acc << "\n");
|
|
|
|
// Returns false to signal the search should be stopped.
|
|
std::function<bool(Value*)> Match =
|
|
[&Candidates, &Match](Value *V) -> bool {
|
|
|
|
auto *I = dyn_cast<Instruction>(V);
|
|
if (!I)
|
|
return false;
|
|
|
|
switch (I->getOpcode()) {
|
|
case Instruction::Add:
|
|
if (Match(I->getOperand(0)) || (Match(I->getOperand(1))))
|
|
return true;
|
|
break;
|
|
case Instruction::Mul: {
|
|
Value *Op0 = I->getOperand(0);
|
|
Value *Op1 = I->getOperand(1);
|
|
if (IsExtendingLoad<SExtInst, 16>(Op0) &&
|
|
IsExtendingLoad<SExtInst, 16>(Op1)) {
|
|
ValueList LHS = { cast<SExtInst>(Op0)->getOperand(0), Op0 };
|
|
ValueList RHS = { cast<SExtInst>(Op1)->getOperand(0), Op1 };
|
|
Candidates.push_back(make_unique<BinOpChain>(I, LHS, RHS));
|
|
}
|
|
return false;
|
|
}
|
|
case Instruction::SExt:
|
|
return Match(I->getOperand(0));
|
|
}
|
|
return false;
|
|
};
|
|
|
|
while (Match (Acc));
|
|
LLVM_DEBUG(dbgs() << "Finished matching MAC sequences, found "
|
|
<< Candidates.size() << " candidates.\n");
|
|
}
|
|
|
|
static bool CheckMACMemory(OpChainList &Candidates) {
|
|
for (auto &C : Candidates) {
|
|
// A mul has 2 operands, and a narrow op consist of sext and a load; thus
|
|
// we expect at least 4 items in this operand value list.
|
|
if (C->size() < 4) {
|
|
LLVM_DEBUG(dbgs() << "Operand list too short.\n");
|
|
return false;
|
|
}
|
|
C->PopulateLoads();
|
|
ValueList &LHS = static_cast<BinOpChain*>(C.get())->LHS;
|
|
ValueList &RHS = static_cast<BinOpChain*>(C.get())->RHS;
|
|
|
|
// Use +=2 to skip over the expected extend instructions.
|
|
for (unsigned i = 0, e = LHS.size(); i < e; i += 2) {
|
|
if (!isa<LoadInst>(LHS[i]) || !isa<LoadInst>(RHS[i]))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Loop Pass that needs to identify integer add/sub reductions of 16-bit vector
|
|
// multiplications.
|
|
// To use SMLAD:
|
|
// 1) we first need to find integer add reduction PHIs,
|
|
// 2) then from the PHI, look for this pattern:
|
|
//
|
|
// acc0 = phi i32 [0, %entry], [%acc1, %loop.body]
|
|
// ld0 = load i16
|
|
// sext0 = sext i16 %ld0 to i32
|
|
// ld1 = load i16
|
|
// sext1 = sext i16 %ld1 to i32
|
|
// mul0 = mul %sext0, %sext1
|
|
// ld2 = load i16
|
|
// sext2 = sext i16 %ld2 to i32
|
|
// ld3 = load i16
|
|
// sext3 = sext i16 %ld3 to i32
|
|
// mul1 = mul i32 %sext2, %sext3
|
|
// add0 = add i32 %mul0, %acc0
|
|
// acc1 = add i32 %add0, %mul1
|
|
//
|
|
// Which can be selected to:
|
|
//
|
|
// ldr.h r0
|
|
// ldr.h r1
|
|
// smlad r2, r0, r1, r2
|
|
//
|
|
// If constants are used instead of loads, these will need to be hoisted
|
|
// out and into a register.
|
|
//
|
|
// If loop invariants are used instead of loads, these need to be packed
|
|
// before the loop begins.
|
|
//
|
|
bool ARMParallelDSP::MatchSMLAD(Function &F) {
|
|
|
|
auto FindReductions = [&](ReductionList &Reductions) {
|
|
RecurrenceDescriptor RecDesc;
|
|
const bool HasFnNoNaNAttr =
|
|
F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
|
|
BasicBlock *Latch = L->getLoopLatch();
|
|
|
|
for (PHINode &Phi : Latch->phis()) {
|
|
const auto *Ty = Phi.getType();
|
|
if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64))
|
|
continue;
|
|
|
|
const bool IsReduction = RecurrenceDescriptor::AddReductionVar(
|
|
&Phi, RecurrenceDescriptor::RK_IntegerAdd, L, HasFnNoNaNAttr, RecDesc);
|
|
|
|
if (!IsReduction)
|
|
continue;
|
|
|
|
Instruction *Acc = dyn_cast<Instruction>(Phi.getIncomingValueForBlock(Latch));
|
|
if (!Acc)
|
|
continue;
|
|
|
|
Reductions.push_back(Reduction(&Phi, Acc));
|
|
}
|
|
return !Reductions.empty();
|
|
};
|
|
|
|
ReductionList Reductions;
|
|
if (!FindReductions(Reductions))
|
|
return false;
|
|
|
|
for (auto &R : Reductions) {
|
|
OpChainList MACCandidates;
|
|
MatchParallelMACSequences(R, MACCandidates);
|
|
if (!CheckMACMemory(MACCandidates))
|
|
continue;
|
|
|
|
R.MACCandidates = std::move(MACCandidates);
|
|
|
|
LLVM_DEBUG(dbgs() << "MAC candidates:\n";
|
|
for (auto &M : R.MACCandidates)
|
|
M->Root->dump();
|
|
dbgs() << "\n";);
|
|
}
|
|
|
|
bool Changed = false;
|
|
// Check whether statements in the basic block that write to memory alias
|
|
// with the memory locations accessed by the MAC-chains.
|
|
for (auto &R : Reductions) {
|
|
CreateParallelMACPairs(R);
|
|
Changed |= InsertParallelMACs(R);
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
LoadInst* ARMParallelDSP::CreateWideLoad(SmallVectorImpl<LoadInst*> &Loads,
|
|
IntegerType *LoadTy) {
|
|
assert(Loads.size() == 2 && "currently only support widening two loads");
|
|
|
|
LoadInst *Base = Loads[0];
|
|
LoadInst *Offset = Loads[1];
|
|
|
|
Instruction *BaseSExt = dyn_cast<SExtInst>(Base->user_back());
|
|
Instruction *OffsetSExt = dyn_cast<SExtInst>(Offset->user_back());
|
|
|
|
assert((BaseSExt && OffsetSExt)
|
|
&& "Loads should have a single, extending, user");
|
|
|
|
std::function<void(Value*, Value*)> MoveBefore =
|
|
[&](Value *A, Value *B) -> void {
|
|
if (!isa<Instruction>(A) || !isa<Instruction>(B))
|
|
return;
|
|
|
|
auto *Source = cast<Instruction>(A);
|
|
auto *Sink = cast<Instruction>(B);
|
|
|
|
if (DT->dominates(Source, Sink) ||
|
|
Source->getParent() != Sink->getParent() ||
|
|
isa<PHINode>(Source) || isa<PHINode>(Sink))
|
|
return;
|
|
|
|
Source->moveBefore(Sink);
|
|
for (auto &U : Source->uses())
|
|
MoveBefore(Source, U.getUser());
|
|
};
|
|
|
|
// Insert the load at the point of the original dominating load.
|
|
LoadInst *DomLoad = DT->dominates(Base, Offset) ? Base : Offset;
|
|
IRBuilder<NoFolder> IRB(DomLoad->getParent(),
|
|
++BasicBlock::iterator(DomLoad));
|
|
|
|
// Bitcast the pointer to a wider type and create the wide load, while making
|
|
// sure to maintain the original alignment as this prevents ldrd from being
|
|
// generated when it could be illegal due to memory alignment.
|
|
const unsigned AddrSpace = DomLoad->getPointerAddressSpace();
|
|
Value *VecPtr = IRB.CreateBitCast(Base->getPointerOperand(),
|
|
LoadTy->getPointerTo(AddrSpace));
|
|
LoadInst *WideLoad = IRB.CreateAlignedLoad(LoadTy, VecPtr,
|
|
Base->getAlignment());
|
|
|
|
// Make sure everything is in the correct order in the basic block.
|
|
MoveBefore(Base->getPointerOperand(), VecPtr);
|
|
MoveBefore(VecPtr, WideLoad);
|
|
|
|
// From the wide load, create two values that equal the original two loads.
|
|
// Loads[0] needs trunc while Loads[1] needs a lshr and trunc.
|
|
// TODO: Support big-endian as well.
|
|
Value *Bottom = IRB.CreateTrunc(WideLoad, Base->getType());
|
|
BaseSExt->setOperand(0, Bottom);
|
|
|
|
IntegerType *OffsetTy = cast<IntegerType>(Offset->getType());
|
|
Value *ShiftVal = ConstantInt::get(LoadTy, OffsetTy->getBitWidth());
|
|
Value *Top = IRB.CreateLShr(WideLoad, ShiftVal);
|
|
Value *Trunc = IRB.CreateTrunc(Top, OffsetTy);
|
|
OffsetSExt->setOperand(0, Trunc);
|
|
|
|
WideLoads.emplace(std::make_pair(Base,
|
|
make_unique<WidenedLoad>(Loads, WideLoad)));
|
|
return WideLoad;
|
|
}
|
|
|
|
Instruction *ARMParallelDSP::CreateSMLADCall(SmallVectorImpl<LoadInst*> &VecLd0,
|
|
SmallVectorImpl<LoadInst*> &VecLd1,
|
|
Instruction *Acc, bool Exchange,
|
|
Instruction *InsertAfter) {
|
|
LLVM_DEBUG(dbgs() << "Create SMLAD intrinsic using:\n"
|
|
<< "- " << *VecLd0[0] << "\n"
|
|
<< "- " << *VecLd0[1] << "\n"
|
|
<< "- " << *VecLd1[0] << "\n"
|
|
<< "- " << *VecLd1[1] << "\n"
|
|
<< "- " << *Acc << "\n"
|
|
<< "- Exchange: " << Exchange << "\n");
|
|
|
|
// Replace the reduction chain with an intrinsic call
|
|
IntegerType *Ty = IntegerType::get(M->getContext(), 32);
|
|
LoadInst *WideLd0 = WideLoads.count(VecLd0[0]) ?
|
|
WideLoads[VecLd0[0]]->getLoad() : CreateWideLoad(VecLd0, Ty);
|
|
LoadInst *WideLd1 = WideLoads.count(VecLd1[0]) ?
|
|
WideLoads[VecLd1[0]]->getLoad() : CreateWideLoad(VecLd1, Ty);
|
|
|
|
Value* Args[] = { WideLd0, WideLd1, Acc };
|
|
Function *SMLAD = nullptr;
|
|
if (Exchange)
|
|
SMLAD = Acc->getType()->isIntegerTy(32) ?
|
|
Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) :
|
|
Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx);
|
|
else
|
|
SMLAD = Acc->getType()->isIntegerTy(32) ?
|
|
Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) :
|
|
Intrinsic::getDeclaration(M, Intrinsic::arm_smlald);
|
|
|
|
IRBuilder<NoFolder> Builder(InsertAfter->getParent(),
|
|
++BasicBlock::iterator(InsertAfter));
|
|
CallInst *Call = Builder.CreateCall(SMLAD, Args);
|
|
NumSMLAD++;
|
|
return Call;
|
|
}
|
|
|
|
// Compare the value lists in Other to this chain.
|
|
bool BinOpChain::AreSymmetrical(BinOpChain *Other) {
|
|
// Element-by-element comparison of Value lists returning true if they are
|
|
// instructions with the same opcode or constants with the same value.
|
|
auto CompareValueList = [](const ValueList &VL0,
|
|
const ValueList &VL1) {
|
|
if (VL0.size() != VL1.size()) {
|
|
LLVM_DEBUG(dbgs() << "Muls are mismatching operand list lengths: "
|
|
<< VL0.size() << " != " << VL1.size() << "\n");
|
|
return false;
|
|
}
|
|
|
|
const unsigned Pairs = VL0.size();
|
|
|
|
for (unsigned i = 0; i < Pairs; ++i) {
|
|
const Value *V0 = VL0[i];
|
|
const Value *V1 = VL1[i];
|
|
const auto *Inst0 = dyn_cast<Instruction>(V0);
|
|
const auto *Inst1 = dyn_cast<Instruction>(V1);
|
|
|
|
if (!Inst0 || !Inst1)
|
|
return false;
|
|
|
|
if (Inst0->isSameOperationAs(Inst1))
|
|
continue;
|
|
|
|
const APInt *C0, *C1;
|
|
if (!(match(V0, m_APInt(C0)) && match(V1, m_APInt(C1)) && C0 == C1))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
};
|
|
|
|
return CompareValueList(LHS, Other->LHS) &&
|
|
CompareValueList(RHS, Other->RHS);
|
|
}
|
|
|
|
Pass *llvm::createARMParallelDSPPass() {
|
|
return new ARMParallelDSP();
|
|
}
|
|
|
|
char ARMParallelDSP::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp",
|
|
"Transform loops to use DSP intrinsics", false, false)
|
|
INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp",
|
|
"Transform loops to use DSP intrinsics", false, false)
|