llvm-project/mlir/lib/Dialect/Traits.cpp

279 lines
10 KiB
C++

//===- Traits.cpp - Common op traits shared by dialects -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Traits.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/TypeUtilities.h"
#include "llvm/Support/FormatVariadic.h"
using namespace mlir;
bool OpTrait::util::staticallyKnownBroadcastable(ArrayRef<int64_t> shape1,
ArrayRef<int64_t> shape2) {
SmallVector<SmallVector<int64_t, 6>, 2> extents;
extents.emplace_back(shape1.begin(), shape1.end());
extents.emplace_back(shape2.begin(), shape2.end());
return staticallyKnownBroadcastable(extents);
}
bool OpTrait::util::staticallyKnownBroadcastable(
ArrayRef<SmallVector<int64_t, 6>> shapes) {
assert(!shapes.empty() && "Expected at least one shape");
size_t maxRank = shapes[0].size();
for (size_t i = 1; i != shapes.size(); ++i)
maxRank = std::max(maxRank, shapes[i].size());
// We look backwards through every column of `shapes`.
for (size_t i = 0; i != maxRank; ++i) {
bool seenDynamic = false;
Optional<int64_t> nonOneDim;
for (ArrayRef<int64_t> extent : shapes) {
int64_t dim = i >= extent.size() ? 1 : extent[extent.size() - i - 1];
if (dim == 1)
continue;
// Dimensions are compatible when
//. 1. One is dynamic, the rest are 1
if (ShapedType::isDynamic(dim)) {
if (seenDynamic || nonOneDim)
return false;
seenDynamic = true;
}
// 2. All are 1 or a specific constant.
if (nonOneDim && dim != *nonOneDim)
return false;
nonOneDim = dim;
}
}
return true;
}
bool OpTrait::util::getBroadcastedShape(ArrayRef<int64_t> shape1,
ArrayRef<int64_t> shape2,
SmallVectorImpl<int64_t> &resultShape) {
// To compute the result broadcasted shape, we compare operand shapes
// element-wise: starting with the trailing dimensions, and working the
// way backward. Two dimensions are compatible when
// 1. they are equal, or
// 2. one of them is 1
// The result shape has the maximum among the two inputs at every
// dimension index.
resultShape.clear();
if (shape1.size() > shape2.size()) {
std::copy(shape1.begin(), shape1.end(), std::back_inserter(resultShape));
} else {
std::copy(shape2.begin(), shape2.end(), std::back_inserter(resultShape));
}
auto i1 = shape1.rbegin(), e1 = shape1.rend();
auto i2 = shape2.rbegin(), e2 = shape2.rend();
auto iR = resultShape.rbegin();
// Check each dimension is consistent.
for (; i1 != e1 && i2 != e2; ++i1, ++i2, ++iR) {
if (*i1 == -1 || *i2 == -1) {
// One or both dimensions is unknown. Follow TensorFlow behavior:
// - If either dimension is greater than 1, we assume that the program is
// correct, and the other dimension will be broadcast to match it.
// - If either dimension is 1, the other dimension is the output.
if (*i1 > 1) {
*iR = *i1;
} else if (*i2 > 1) {
*iR = *i2;
} else if (*i1 == 1) {
*iR = *i2;
} else if (*i2 == 1) {
*iR = *i1;
} else {
*iR = -1;
}
} else {
if (*i1 == *i2 || *i2 == 1) {
*iR = *i1;
} else if (*i1 == 1) {
*iR = *i2;
} else {
// This dimension of the two operand types is incompatible.
resultShape.clear();
return false;
}
}
}
return true;
}
/// Returns the shape of the given type. Scalars will be considered as having a
/// shape with zero dimensions.
static ArrayRef<int64_t> getShape(Type type) {
if (auto sType = type.dyn_cast<ShapedType>())
return sType.getShape();
return {};
}
/// Returns the result broadcast composition type from the two given types by
/// following NumPy broadcast semantics. Returned type may have dynamic shape if
/// either of the input types has dynamic shape. Returns null type if the two
/// given types are not broadcast-compatible.
///
/// elementType, if specified, will be used as the element type of the
/// broadcasted result type. Otherwise it is required that the element type of
/// type1 and type2 is the same and this element type will be used as the
/// resultant element type.
Type OpTrait::util::getBroadcastedType(Type type1, Type type2,
Type elementType) {
// If the elementType is not specified, then the use the common element type
// of the inputs or fail if there is no common element type.
if (!elementType) {
elementType = getElementTypeOrSelf(type1);
if (elementType != getElementTypeOrSelf(type2))
return {};
}
// If one of the types is unranked tensor, then the other type shouldn't be
// vector and the result should have unranked tensor type.
if (type1.isa<UnrankedTensorType>() || type2.isa<UnrankedTensorType>()) {
if (type1.isa<VectorType>() || type2.isa<VectorType>())
return {};
return UnrankedTensorType::get(elementType);
}
// Returns the type kind if the given type is a vector or ranked tensor type.
// Returns llvm::None otherwise.
auto getCompositeTypeKind = [](Type type) -> Optional<TypeID> {
if (type.isa<VectorType, RankedTensorType>())
return type.getTypeID();
return llvm::None;
};
// Make sure the composite type, if has, is consistent.
Optional<TypeID> compositeKind1 = getCompositeTypeKind(type1);
Optional<TypeID> compositeKind2 = getCompositeTypeKind(type2);
Optional<TypeID> resultCompositeKind;
if (compositeKind1 && compositeKind2) {
// Disallow mixing vector and tensor.
if (compositeKind1 != compositeKind2)
return {};
resultCompositeKind = compositeKind1;
} else if (compositeKind1) {
resultCompositeKind = compositeKind1;
} else if (compositeKind2) {
resultCompositeKind = compositeKind2;
}
// Get the shape of each type.
SmallVector<int64_t, 4> resultShape;
if (!getBroadcastedShape(getShape(type1), getShape(type2), resultShape))
return {};
// Compose the final broadcasted type
if (resultCompositeKind == VectorType::getTypeID())
return VectorType::get(resultShape, elementType);
if (resultCompositeKind == RankedTensorType::getTypeID())
return RankedTensorType::get(resultShape, elementType);
return elementType;
}
/// Returns a tuple corresponding to whether range has tensor or vector type.
template <typename iterator_range>
static std::tuple<bool, bool> hasTensorOrVectorType(iterator_range types) {
return std::make_tuple(
llvm::any_of(types, [](Type t) { return t.isa<TensorType>(); }),
llvm::any_of(types, [](Type t) { return t.isa<VectorType>(); }));
}
static bool isCompatibleInferredReturnShape(ArrayRef<int64_t> inferred,
ArrayRef<int64_t> existing) {
auto isCompatible = [](int64_t dim1, int64_t dim2) {
// If the inferred and existing dim is the same, or one of them is unknown
// then it is compatible, else if the inferred dim is 1 then it is also
// compatible. But if the existing dim is 1 and the inferred is greater than
// 1 then flag.
return dim1 == dim2 || dim1 == -1 || dim2 == -1 || dim1 == 1;
};
if (inferred.size() != existing.size())
return false;
for (auto p : llvm::zip(inferred, existing))
if (!isCompatible(std::get<0>(p), std::get<1>(p)))
return false;
return true;
}
static std::string getShapeString(ArrayRef<int64_t> shape) {
// TODO: should replace with printing shape more uniformly across here and
// when in type.
std::string ret;
llvm::raw_string_ostream ss(ret);
ss << '\'';
llvm::interleave(
shape, ss,
[&](int64_t dim) {
if (ShapedType::isDynamic(dim))
ss << '?';
else
ss << dim;
},
"x");
ss << '\'';
return ss.str();
}
LogicalResult OpTrait::impl::verifyCompatibleOperandBroadcast(Operation *op) {
// Ensure broadcasting only tensor or only vector types.
auto operandsHasTensorVectorType =
hasTensorOrVectorType(op->getOperandTypes());
auto resultsHasTensorVectorType = hasTensorOrVectorType(op->getResultTypes());
if ((std::get<0>(operandsHasTensorVectorType) ||
std::get<0>(resultsHasTensorVectorType)) &&
(std::get<1>(operandsHasTensorVectorType) ||
std::get<1>(resultsHasTensorVectorType)))
return op->emitError("cannot broadcast vector with tensor");
auto rankedOperands = make_filter_range(
op->getOperandTypes(), [](Type t) { return t.isa<RankedTensorType>(); });
// If all operands are unranked, then all result shapes are possible.
if (rankedOperands.empty())
return success();
// Compute broadcasted shape of operands (which requires that operands are
// broadcast compatible). The results need to be broadcast compatible with
// this result shape.
SmallVector<int64_t, 4> resultShape;
(void)util::getBroadcastedShape(getShape(*rankedOperands.begin()), {},
resultShape);
for (auto other : make_early_inc_range(rankedOperands)) {
SmallVector<int64_t, 4> temp = resultShape;
if (!util::getBroadcastedShape(temp, getShape(other), resultShape))
return op->emitOpError("operands don't have broadcast-compatible shapes");
}
auto rankedResults = make_filter_range(
op->getResultTypes(), [](Type t) { return t.isa<RankedTensorType>(); });
// If all of the results are unranked then no further verification.
if (rankedResults.empty())
return success();
for (auto type : rankedResults) {
ArrayRef<int64_t> actualSuffix =
getShape(type).take_back(resultShape.size());
if (!isCompatibleInferredReturnShape(resultShape, actualSuffix))
return op->emitOpError()
<< "result type " << getShapeString(getShape(type))
<< " not broadcast compatible with broadcasted operands's shapes "
<< getShapeString(resultShape);
}
return success();
}