llvm-project/mlir/lib/Conversion/AffineToStandard/AffineToStandard.cpp

767 lines
30 KiB
C++

//===- AffineToStandard.cpp - Lower affine constructs to primitives -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file lowers affine constructs (If and For statements, AffineApply
// operations) within a function into their standard If and For equivalent ops.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/AffineToStandard/AffineToStandard.h"
#include "../PassDetail.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/SCF.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/Vector/VectorOps.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/Passes.h"
using namespace mlir;
using namespace mlir::vector;
namespace {
/// Visit affine expressions recursively and build the sequence of operations
/// that correspond to it. Visitation functions return an Value of the
/// expression subtree they visited or `nullptr` on error.
class AffineApplyExpander
: public AffineExprVisitor<AffineApplyExpander, Value> {
public:
/// This internal class expects arguments to be non-null, checks must be
/// performed at the call site.
AffineApplyExpander(OpBuilder &builder, ValueRange dimValues,
ValueRange symbolValues, Location loc)
: builder(builder), dimValues(dimValues), symbolValues(symbolValues),
loc(loc) {}
template <typename OpTy>
Value buildBinaryExpr(AffineBinaryOpExpr expr) {
auto lhs = visit(expr.getLHS());
auto rhs = visit(expr.getRHS());
if (!lhs || !rhs)
return nullptr;
auto op = builder.create<OpTy>(loc, lhs, rhs);
return op.getResult();
}
Value visitAddExpr(AffineBinaryOpExpr expr) {
return buildBinaryExpr<AddIOp>(expr);
}
Value visitMulExpr(AffineBinaryOpExpr expr) {
return buildBinaryExpr<MulIOp>(expr);
}
/// Euclidean modulo operation: negative RHS is not allowed.
/// Remainder of the euclidean integer division is always non-negative.
///
/// Implemented as
///
/// a mod b =
/// let remainder = srem a, b;
/// negative = a < 0 in
/// select negative, remainder + b, remainder.
Value visitModExpr(AffineBinaryOpExpr expr) {
auto rhsConst = expr.getRHS().dyn_cast<AffineConstantExpr>();
if (!rhsConst) {
emitError(
loc,
"semi-affine expressions (modulo by non-const) are not supported");
return nullptr;
}
if (rhsConst.getValue() <= 0) {
emitError(loc, "modulo by non-positive value is not supported");
return nullptr;
}
auto lhs = visit(expr.getLHS());
auto rhs = visit(expr.getRHS());
assert(lhs && rhs && "unexpected affine expr lowering failure");
Value remainder = builder.create<SignedRemIOp>(loc, lhs, rhs);
Value zeroCst = builder.create<ConstantIndexOp>(loc, 0);
Value isRemainderNegative =
builder.create<CmpIOp>(loc, CmpIPredicate::slt, remainder, zeroCst);
Value correctedRemainder = builder.create<AddIOp>(loc, remainder, rhs);
Value result = builder.create<SelectOp>(loc, isRemainderNegative,
correctedRemainder, remainder);
return result;
}
/// Floor division operation (rounds towards negative infinity).
///
/// For positive divisors, it can be implemented without branching and with a
/// single division operation as
///
/// a floordiv b =
/// let negative = a < 0 in
/// let absolute = negative ? -a - 1 : a in
/// let quotient = absolute / b in
/// negative ? -quotient - 1 : quotient
Value visitFloorDivExpr(AffineBinaryOpExpr expr) {
auto rhsConst = expr.getRHS().dyn_cast<AffineConstantExpr>();
if (!rhsConst) {
emitError(
loc,
"semi-affine expressions (division by non-const) are not supported");
return nullptr;
}
if (rhsConst.getValue() <= 0) {
emitError(loc, "division by non-positive value is not supported");
return nullptr;
}
auto lhs = visit(expr.getLHS());
auto rhs = visit(expr.getRHS());
assert(lhs && rhs && "unexpected affine expr lowering failure");
Value zeroCst = builder.create<ConstantIndexOp>(loc, 0);
Value noneCst = builder.create<ConstantIndexOp>(loc, -1);
Value negative =
builder.create<CmpIOp>(loc, CmpIPredicate::slt, lhs, zeroCst);
Value negatedDecremented = builder.create<SubIOp>(loc, noneCst, lhs);
Value dividend =
builder.create<SelectOp>(loc, negative, negatedDecremented, lhs);
Value quotient = builder.create<SignedDivIOp>(loc, dividend, rhs);
Value correctedQuotient = builder.create<SubIOp>(loc, noneCst, quotient);
Value result =
builder.create<SelectOp>(loc, negative, correctedQuotient, quotient);
return result;
}
/// Ceiling division operation (rounds towards positive infinity).
///
/// For positive divisors, it can be implemented without branching and with a
/// single division operation as
///
/// a ceildiv b =
/// let negative = a <= 0 in
/// let absolute = negative ? -a : a - 1 in
/// let quotient = absolute / b in
/// negative ? -quotient : quotient + 1
Value visitCeilDivExpr(AffineBinaryOpExpr expr) {
auto rhsConst = expr.getRHS().dyn_cast<AffineConstantExpr>();
if (!rhsConst) {
emitError(loc) << "semi-affine expressions (division by non-const) are "
"not supported";
return nullptr;
}
if (rhsConst.getValue() <= 0) {
emitError(loc, "division by non-positive value is not supported");
return nullptr;
}
auto lhs = visit(expr.getLHS());
auto rhs = visit(expr.getRHS());
assert(lhs && rhs && "unexpected affine expr lowering failure");
Value zeroCst = builder.create<ConstantIndexOp>(loc, 0);
Value oneCst = builder.create<ConstantIndexOp>(loc, 1);
Value nonPositive =
builder.create<CmpIOp>(loc, CmpIPredicate::sle, lhs, zeroCst);
Value negated = builder.create<SubIOp>(loc, zeroCst, lhs);
Value decremented = builder.create<SubIOp>(loc, lhs, oneCst);
Value dividend =
builder.create<SelectOp>(loc, nonPositive, negated, decremented);
Value quotient = builder.create<SignedDivIOp>(loc, dividend, rhs);
Value negatedQuotient = builder.create<SubIOp>(loc, zeroCst, quotient);
Value incrementedQuotient = builder.create<AddIOp>(loc, quotient, oneCst);
Value result = builder.create<SelectOp>(loc, nonPositive, negatedQuotient,
incrementedQuotient);
return result;
}
Value visitConstantExpr(AffineConstantExpr expr) {
auto valueAttr =
builder.getIntegerAttr(builder.getIndexType(), expr.getValue());
auto op =
builder.create<ConstantOp>(loc, builder.getIndexType(), valueAttr);
return op.getResult();
}
Value visitDimExpr(AffineDimExpr expr) {
assert(expr.getPosition() < dimValues.size() &&
"affine dim position out of range");
return dimValues[expr.getPosition()];
}
Value visitSymbolExpr(AffineSymbolExpr expr) {
assert(expr.getPosition() < symbolValues.size() &&
"symbol dim position out of range");
return symbolValues[expr.getPosition()];
}
private:
OpBuilder &builder;
ValueRange dimValues;
ValueRange symbolValues;
Location loc;
};
} // namespace
/// Create a sequence of operations that implement the `expr` applied to the
/// given dimension and symbol values.
mlir::Value mlir::expandAffineExpr(OpBuilder &builder, Location loc,
AffineExpr expr, ValueRange dimValues,
ValueRange symbolValues) {
return AffineApplyExpander(builder, dimValues, symbolValues, loc).visit(expr);
}
/// Create a sequence of operations that implement the `affineMap` applied to
/// the given `operands` (as it it were an AffineApplyOp).
Optional<SmallVector<Value, 8>> mlir::expandAffineMap(OpBuilder &builder,
Location loc,
AffineMap affineMap,
ValueRange operands) {
auto numDims = affineMap.getNumDims();
auto expanded = llvm::to_vector<8>(
llvm::map_range(affineMap.getResults(),
[numDims, &builder, loc, operands](AffineExpr expr) {
return expandAffineExpr(builder, loc, expr,
operands.take_front(numDims),
operands.drop_front(numDims));
}));
if (llvm::all_of(expanded, [](Value v) { return v; }))
return expanded;
return None;
}
/// Given a range of values, emit the code that reduces them with "min" or "max"
/// depending on the provided comparison predicate. The predicate defines which
/// comparison to perform, "lt" for "min", "gt" for "max" and is used for the
/// `cmpi` operation followed by the `select` operation:
///
/// %cond = cmpi "predicate" %v0, %v1
/// %result = select %cond, %v0, %v1
///
/// Multiple values are scanned in a linear sequence. This creates a data
/// dependences that wouldn't exist in a tree reduction, but is easier to
/// recognize as a reduction by the subsequent passes.
static Value buildMinMaxReductionSeq(Location loc, CmpIPredicate predicate,
ValueRange values, OpBuilder &builder) {
assert(!llvm::empty(values) && "empty min/max chain");
auto valueIt = values.begin();
Value value = *valueIt++;
for (; valueIt != values.end(); ++valueIt) {
auto cmpOp = builder.create<CmpIOp>(loc, predicate, value, *valueIt);
value = builder.create<SelectOp>(loc, cmpOp.getResult(), value, *valueIt);
}
return value;
}
/// Emit instructions that correspond to computing the maximum value among the
/// values of a (potentially) multi-output affine map applied to `operands`.
static Value lowerAffineMapMax(OpBuilder &builder, Location loc, AffineMap map,
ValueRange operands) {
if (auto values = expandAffineMap(builder, loc, map, operands))
return buildMinMaxReductionSeq(loc, CmpIPredicate::sgt, *values, builder);
return nullptr;
}
/// Emit instructions that correspond to computing the minimum value among the
/// values of a (potentially) multi-output affine map applied to `operands`.
static Value lowerAffineMapMin(OpBuilder &builder, Location loc, AffineMap map,
ValueRange operands) {
if (auto values = expandAffineMap(builder, loc, map, operands))
return buildMinMaxReductionSeq(loc, CmpIPredicate::slt, *values, builder);
return nullptr;
}
/// Emit instructions that correspond to the affine map in the upper bound
/// applied to the respective operands, and compute the minimum value across
/// the results.
Value mlir::lowerAffineUpperBound(AffineForOp op, OpBuilder &builder) {
return lowerAffineMapMin(builder, op.getLoc(), op.getUpperBoundMap(),
op.getUpperBoundOperands());
}
/// Emit instructions that correspond to the affine map in the lower bound
/// applied to the respective operands, and compute the maximum value across
/// the results.
Value mlir::lowerAffineLowerBound(AffineForOp op, OpBuilder &builder) {
return lowerAffineMapMax(builder, op.getLoc(), op.getLowerBoundMap(),
op.getLowerBoundOperands());
}
namespace {
class AffineMinLowering : public OpRewritePattern<AffineMinOp> {
public:
using OpRewritePattern<AffineMinOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AffineMinOp op,
PatternRewriter &rewriter) const override {
Value reduced =
lowerAffineMapMin(rewriter, op.getLoc(), op.map(), op.operands());
if (!reduced)
return failure();
rewriter.replaceOp(op, reduced);
return success();
}
};
class AffineMaxLowering : public OpRewritePattern<AffineMaxOp> {
public:
using OpRewritePattern<AffineMaxOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AffineMaxOp op,
PatternRewriter &rewriter) const override {
Value reduced =
lowerAffineMapMax(rewriter, op.getLoc(), op.map(), op.operands());
if (!reduced)
return failure();
rewriter.replaceOp(op, reduced);
return success();
}
};
/// Affine yields ops are removed.
class AffineYieldOpLowering : public OpRewritePattern<AffineYieldOp> {
public:
using OpRewritePattern<AffineYieldOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AffineYieldOp op,
PatternRewriter &rewriter) const override {
if (isa<scf::ParallelOp>(op->getParentOp())) {
// scf.parallel does not yield any values via its terminator scf.yield but
// models reductions differently using additional ops in its region.
rewriter.replaceOpWithNewOp<scf::YieldOp>(op);
return success();
}
rewriter.replaceOpWithNewOp<scf::YieldOp>(op, op.operands());
return success();
}
};
class AffineForLowering : public OpRewritePattern<AffineForOp> {
public:
using OpRewritePattern<AffineForOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AffineForOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value lowerBound = lowerAffineLowerBound(op, rewriter);
Value upperBound = lowerAffineUpperBound(op, rewriter);
Value step = rewriter.create<ConstantIndexOp>(loc, op.getStep());
auto scfForOp = rewriter.create<scf::ForOp>(loc, lowerBound, upperBound,
step, op.getIterOperands());
rewriter.eraseBlock(scfForOp.getBody());
rewriter.inlineRegionBefore(op.region(), scfForOp.region(),
scfForOp.region().end());
rewriter.replaceOp(op, scfForOp.results());
return success();
}
};
/// Convert an `affine.parallel` (loop nest) operation into a `scf.parallel`
/// operation.
class AffineParallelLowering : public OpRewritePattern<AffineParallelOp> {
public:
using OpRewritePattern<AffineParallelOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AffineParallelOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
SmallVector<Value, 8> steps;
SmallVector<Value, 8> upperBoundTuple;
SmallVector<Value, 8> lowerBoundTuple;
SmallVector<Value, 8> identityVals;
// Emit IR computing the lower and upper bound by expanding the map
// expression.
lowerBoundTuple.reserve(op.getNumDims());
upperBoundTuple.reserve(op.getNumDims());
for (unsigned i = 0, e = op.getNumDims(); i < e; ++i) {
Value lower = lowerAffineMapMax(rewriter, loc, op.getLowerBoundMap(i),
op.getLowerBoundsOperands());
if (!lower)
return rewriter.notifyMatchFailure(op, "couldn't convert lower bounds");
lowerBoundTuple.push_back(lower);
Value upper = lowerAffineMapMin(rewriter, loc, op.getUpperBoundMap(i),
op.getUpperBoundsOperands());
if (!upper)
return rewriter.notifyMatchFailure(op, "couldn't convert upper bounds");
upperBoundTuple.push_back(upper);
}
steps.reserve(op.steps().size());
for (Attribute step : op.steps())
steps.push_back(rewriter.create<ConstantIndexOp>(
loc, step.cast<IntegerAttr>().getInt()));
// Get the terminator op.
Operation *affineParOpTerminator = op.getBody()->getTerminator();
scf::ParallelOp parOp;
if (op.results().empty()) {
// Case with no reduction operations/return values.
parOp = rewriter.create<scf::ParallelOp>(loc, lowerBoundTuple,
upperBoundTuple, steps,
/*bodyBuilderFn=*/nullptr);
rewriter.eraseBlock(parOp.getBody());
rewriter.inlineRegionBefore(op.region(), parOp.region(),
parOp.region().end());
rewriter.replaceOp(op, parOp.results());
return success();
}
// Case with affine.parallel with reduction operations/return values.
// scf.parallel handles the reduction operation differently unlike
// affine.parallel.
ArrayRef<Attribute> reductions = op.reductions().getValue();
for (auto pair : llvm::zip(reductions, op.getResultTypes())) {
// For each of the reduction operations get the identity values for
// initialization of the result values.
Attribute reduction = std::get<0>(pair);
Type resultType = std::get<1>(pair);
Optional<AtomicRMWKind> reductionOp = symbolizeAtomicRMWKind(
static_cast<uint64_t>(reduction.cast<IntegerAttr>().getInt()));
assert(reductionOp.hasValue() &&
"Reduction operation cannot be of None Type");
AtomicRMWKind reductionOpValue = reductionOp.getValue();
identityVals.push_back(
getIdentityValue(reductionOpValue, resultType, rewriter, loc));
}
parOp = rewriter.create<scf::ParallelOp>(
loc, lowerBoundTuple, upperBoundTuple, steps, identityVals,
/*bodyBuilderFn=*/nullptr);
// Copy the body of the affine.parallel op.
rewriter.eraseBlock(parOp.getBody());
rewriter.inlineRegionBefore(op.region(), parOp.region(),
parOp.region().end());
assert(reductions.size() == affineParOpTerminator->getNumOperands() &&
"Unequal number of reductions and operands.");
for (unsigned i = 0, end = reductions.size(); i < end; i++) {
// For each of the reduction operations get the respective mlir::Value.
Optional<AtomicRMWKind> reductionOp =
symbolizeAtomicRMWKind(reductions[i].cast<IntegerAttr>().getInt());
assert(reductionOp.hasValue() &&
"Reduction Operation cannot be of None Type");
AtomicRMWKind reductionOpValue = reductionOp.getValue();
rewriter.setInsertionPoint(&parOp.getBody()->back());
auto reduceOp = rewriter.create<scf::ReduceOp>(
loc, affineParOpTerminator->getOperand(i));
rewriter.setInsertionPointToEnd(&reduceOp.reductionOperator().front());
Value reductionResult =
getReductionOp(reductionOpValue, rewriter, loc,
reduceOp.reductionOperator().front().getArgument(0),
reduceOp.reductionOperator().front().getArgument(1));
rewriter.create<scf::ReduceReturnOp>(loc, reductionResult);
}
rewriter.replaceOp(op, parOp.results());
return success();
}
};
class AffineIfLowering : public OpRewritePattern<AffineIfOp> {
public:
using OpRewritePattern<AffineIfOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AffineIfOp op,
PatternRewriter &rewriter) const override {
auto loc = op.getLoc();
// Now we just have to handle the condition logic.
auto integerSet = op.getIntegerSet();
Value zeroConstant = rewriter.create<ConstantIndexOp>(loc, 0);
SmallVector<Value, 8> operands(op.getOperands());
auto operandsRef = llvm::makeArrayRef(operands);
// Calculate cond as a conjunction without short-circuiting.
Value cond = nullptr;
for (unsigned i = 0, e = integerSet.getNumConstraints(); i < e; ++i) {
AffineExpr constraintExpr = integerSet.getConstraint(i);
bool isEquality = integerSet.isEq(i);
// Build and apply an affine expression
auto numDims = integerSet.getNumDims();
Value affResult = expandAffineExpr(rewriter, loc, constraintExpr,
operandsRef.take_front(numDims),
operandsRef.drop_front(numDims));
if (!affResult)
return failure();
auto pred = isEquality ? CmpIPredicate::eq : CmpIPredicate::sge;
Value cmpVal =
rewriter.create<CmpIOp>(loc, pred, affResult, zeroConstant);
cond =
cond ? rewriter.create<AndOp>(loc, cond, cmpVal).getResult() : cmpVal;
}
cond = cond ? cond
: rewriter.create<ConstantIntOp>(loc, /*value=*/1, /*width=*/1);
bool hasElseRegion = !op.elseRegion().empty();
auto ifOp = rewriter.create<scf::IfOp>(loc, op.getResultTypes(), cond,
hasElseRegion);
rewriter.inlineRegionBefore(op.thenRegion(), &ifOp.thenRegion().back());
rewriter.eraseBlock(&ifOp.thenRegion().back());
if (hasElseRegion) {
rewriter.inlineRegionBefore(op.elseRegion(), &ifOp.elseRegion().back());
rewriter.eraseBlock(&ifOp.elseRegion().back());
}
// Replace the Affine IfOp finally.
rewriter.replaceOp(op, ifOp.results());
return success();
}
};
/// Convert an "affine.apply" operation into a sequence of arithmetic
/// operations using the StandardOps dialect.
class AffineApplyLowering : public OpRewritePattern<AffineApplyOp> {
public:
using OpRewritePattern<AffineApplyOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AffineApplyOp op,
PatternRewriter &rewriter) const override {
auto maybeExpandedMap =
expandAffineMap(rewriter, op.getLoc(), op.getAffineMap(),
llvm::to_vector<8>(op.getOperands()));
if (!maybeExpandedMap)
return failure();
rewriter.replaceOp(op, *maybeExpandedMap);
return success();
}
};
/// Apply the affine map from an 'affine.load' operation to its operands, and
/// feed the results to a newly created 'memref.load' operation (which replaces
/// the original 'affine.load').
class AffineLoadLowering : public OpRewritePattern<AffineLoadOp> {
public:
using OpRewritePattern<AffineLoadOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AffineLoadOp op,
PatternRewriter &rewriter) const override {
// Expand affine map from 'affineLoadOp'.
SmallVector<Value, 8> indices(op.getMapOperands());
auto resultOperands =
expandAffineMap(rewriter, op.getLoc(), op.getAffineMap(), indices);
if (!resultOperands)
return failure();
// Build vector.load memref[expandedMap.results].
rewriter.replaceOpWithNewOp<memref::LoadOp>(op, op.getMemRef(),
*resultOperands);
return success();
}
};
/// Apply the affine map from an 'affine.prefetch' operation to its operands,
/// and feed the results to a newly created 'memref.prefetch' operation (which
/// replaces the original 'affine.prefetch').
class AffinePrefetchLowering : public OpRewritePattern<AffinePrefetchOp> {
public:
using OpRewritePattern<AffinePrefetchOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AffinePrefetchOp op,
PatternRewriter &rewriter) const override {
// Expand affine map from 'affinePrefetchOp'.
SmallVector<Value, 8> indices(op.getMapOperands());
auto resultOperands =
expandAffineMap(rewriter, op.getLoc(), op.getAffineMap(), indices);
if (!resultOperands)
return failure();
// Build memref.prefetch memref[expandedMap.results].
rewriter.replaceOpWithNewOp<memref::PrefetchOp>(
op, op.memref(), *resultOperands, op.isWrite(), op.localityHint(),
op.isDataCache());
return success();
}
};
/// Apply the affine map from an 'affine.store' operation to its operands, and
/// feed the results to a newly created 'memref.store' operation (which replaces
/// the original 'affine.store').
class AffineStoreLowering : public OpRewritePattern<AffineStoreOp> {
public:
using OpRewritePattern<AffineStoreOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AffineStoreOp op,
PatternRewriter &rewriter) const override {
// Expand affine map from 'affineStoreOp'.
SmallVector<Value, 8> indices(op.getMapOperands());
auto maybeExpandedMap =
expandAffineMap(rewriter, op.getLoc(), op.getAffineMap(), indices);
if (!maybeExpandedMap)
return failure();
// Build memref.store valueToStore, memref[expandedMap.results].
rewriter.replaceOpWithNewOp<memref::StoreOp>(
op, op.getValueToStore(), op.getMemRef(), *maybeExpandedMap);
return success();
}
};
/// Apply the affine maps from an 'affine.dma_start' operation to each of their
/// respective map operands, and feed the results to a newly created
/// 'memref.dma_start' operation (which replaces the original
/// 'affine.dma_start').
class AffineDmaStartLowering : public OpRewritePattern<AffineDmaStartOp> {
public:
using OpRewritePattern<AffineDmaStartOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AffineDmaStartOp op,
PatternRewriter &rewriter) const override {
SmallVector<Value, 8> operands(op.getOperands());
auto operandsRef = llvm::makeArrayRef(operands);
// Expand affine map for DMA source memref.
auto maybeExpandedSrcMap = expandAffineMap(
rewriter, op.getLoc(), op.getSrcMap(),
operandsRef.drop_front(op.getSrcMemRefOperandIndex() + 1));
if (!maybeExpandedSrcMap)
return failure();
// Expand affine map for DMA destination memref.
auto maybeExpandedDstMap = expandAffineMap(
rewriter, op.getLoc(), op.getDstMap(),
operandsRef.drop_front(op.getDstMemRefOperandIndex() + 1));
if (!maybeExpandedDstMap)
return failure();
// Expand affine map for DMA tag memref.
auto maybeExpandedTagMap = expandAffineMap(
rewriter, op.getLoc(), op.getTagMap(),
operandsRef.drop_front(op.getTagMemRefOperandIndex() + 1));
if (!maybeExpandedTagMap)
return failure();
// Build memref.dma_start operation with affine map results.
rewriter.replaceOpWithNewOp<memref::DmaStartOp>(
op, op.getSrcMemRef(), *maybeExpandedSrcMap, op.getDstMemRef(),
*maybeExpandedDstMap, op.getNumElements(), op.getTagMemRef(),
*maybeExpandedTagMap, op.getStride(), op.getNumElementsPerStride());
return success();
}
};
/// Apply the affine map from an 'affine.dma_wait' operation tag memref,
/// and feed the results to a newly created 'memref.dma_wait' operation (which
/// replaces the original 'affine.dma_wait').
class AffineDmaWaitLowering : public OpRewritePattern<AffineDmaWaitOp> {
public:
using OpRewritePattern<AffineDmaWaitOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AffineDmaWaitOp op,
PatternRewriter &rewriter) const override {
// Expand affine map for DMA tag memref.
SmallVector<Value, 8> indices(op.getTagIndices());
auto maybeExpandedTagMap =
expandAffineMap(rewriter, op.getLoc(), op.getTagMap(), indices);
if (!maybeExpandedTagMap)
return failure();
// Build memref.dma_wait operation with affine map results.
rewriter.replaceOpWithNewOp<memref::DmaWaitOp>(
op, op.getTagMemRef(), *maybeExpandedTagMap, op.getNumElements());
return success();
}
};
/// Apply the affine map from an 'affine.vector_load' operation to its operands,
/// and feed the results to a newly created 'vector.load' operation (which
/// replaces the original 'affine.vector_load').
class AffineVectorLoadLowering : public OpRewritePattern<AffineVectorLoadOp> {
public:
using OpRewritePattern<AffineVectorLoadOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AffineVectorLoadOp op,
PatternRewriter &rewriter) const override {
// Expand affine map from 'affineVectorLoadOp'.
SmallVector<Value, 8> indices(op.getMapOperands());
auto resultOperands =
expandAffineMap(rewriter, op.getLoc(), op.getAffineMap(), indices);
if (!resultOperands)
return failure();
// Build vector.load memref[expandedMap.results].
rewriter.replaceOpWithNewOp<vector::LoadOp>(
op, op.getVectorType(), op.getMemRef(), *resultOperands);
return success();
}
};
/// Apply the affine map from an 'affine.vector_store' operation to its
/// operands, and feed the results to a newly created 'vector.store' operation
/// (which replaces the original 'affine.vector_store').
class AffineVectorStoreLowering : public OpRewritePattern<AffineVectorStoreOp> {
public:
using OpRewritePattern<AffineVectorStoreOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AffineVectorStoreOp op,
PatternRewriter &rewriter) const override {
// Expand affine map from 'affineVectorStoreOp'.
SmallVector<Value, 8> indices(op.getMapOperands());
auto maybeExpandedMap =
expandAffineMap(rewriter, op.getLoc(), op.getAffineMap(), indices);
if (!maybeExpandedMap)
return failure();
rewriter.replaceOpWithNewOp<vector::StoreOp>(
op, op.getValueToStore(), op.getMemRef(), *maybeExpandedMap);
return success();
}
};
} // end namespace
void mlir::populateAffineToStdConversionPatterns(RewritePatternSet &patterns) {
// clang-format off
patterns.add<
AffineApplyLowering,
AffineDmaStartLowering,
AffineDmaWaitLowering,
AffineLoadLowering,
AffineMinLowering,
AffineMaxLowering,
AffineParallelLowering,
AffinePrefetchLowering,
AffineStoreLowering,
AffineForLowering,
AffineIfLowering,
AffineYieldOpLowering>(patterns.getContext());
// clang-format on
}
void mlir::populateAffineToVectorConversionPatterns(
RewritePatternSet &patterns) {
// clang-format off
patterns.add<
AffineVectorLoadLowering,
AffineVectorStoreLowering>(patterns.getContext());
// clang-format on
}
namespace {
class LowerAffinePass : public ConvertAffineToStandardBase<LowerAffinePass> {
void runOnOperation() override {
RewritePatternSet patterns(&getContext());
populateAffineToStdConversionPatterns(patterns);
populateAffineToVectorConversionPatterns(patterns);
ConversionTarget target(getContext());
target.addLegalDialect<memref::MemRefDialect, scf::SCFDialect,
StandardOpsDialect, VectorDialect>();
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
} // namespace
/// Lowers If and For operations within a function into their lower level CFG
/// equivalent blocks.
std::unique_ptr<Pass> mlir::createLowerAffinePass() {
return std::make_unique<LowerAffinePass>();
}