forked from OSchip/llvm-project
1040 lines
44 KiB
C++
1040 lines
44 KiB
C++
//===- MatmulOptimizer.cpp -----------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "polly/MatmulOptimizer.h"
|
|
#include "polly/DependenceInfo.h"
|
|
#include "polly/Options.h"
|
|
#include "polly/ScheduleTreeTransform.h"
|
|
#include "polly/ScopInfo.h"
|
|
#include "polly/ScopPass.h"
|
|
#include "polly/Simplify.h"
|
|
#include "polly/Support/ISLTools.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/Sequence.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/TypeSize.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "isl/ctx.h"
|
|
#include "isl/schedule_node.h"
|
|
#include "isl/schedule_type.h"
|
|
#include "isl/union_map.h"
|
|
#include "isl/union_set.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstdint>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#define DEBUG_TYPE "polly-opt-isl"
|
|
|
|
using namespace llvm;
|
|
using namespace polly;
|
|
|
|
namespace llvm {
|
|
class Value;
|
|
}
|
|
|
|
static cl::opt<int> LatencyVectorFma(
|
|
"polly-target-latency-vector-fma",
|
|
cl::desc("The minimal number of cycles between issuing two "
|
|
"dependent consecutive vector fused multiply-add "
|
|
"instructions."),
|
|
cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
|
|
|
|
static cl::opt<int> ThroughputVectorFma(
|
|
"polly-target-throughput-vector-fma",
|
|
cl::desc("A throughput of the processor floating-point arithmetic units "
|
|
"expressed in the number of vector fused multiply-add "
|
|
"instructions per clock cycle."),
|
|
cl::Hidden, cl::init(1), cl::ZeroOrMore, cl::cat(PollyCategory));
|
|
|
|
static cl::opt<int> FirstCacheLevelSize(
|
|
"polly-target-1st-cache-level-size",
|
|
cl::desc("The size of the first cache level specified in bytes."),
|
|
cl::Hidden, cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
|
|
|
|
static cl::opt<int> FirstCacheLevelDefaultSize(
|
|
"polly-target-1st-cache-level-default-size",
|
|
cl::desc("The default size of the first cache level specified in bytes"
|
|
" (if not enough were provided by the TargetTransformInfo)."),
|
|
cl::Hidden, cl::init(32768), cl::ZeroOrMore, cl::cat(PollyCategory));
|
|
|
|
static cl::opt<int> SecondCacheLevelSize(
|
|
"polly-target-2nd-cache-level-size",
|
|
cl::desc("The size of the second level specified in bytes."), cl::Hidden,
|
|
cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
|
|
|
|
static cl::opt<int> SecondCacheLevelDefaultSize(
|
|
"polly-target-2nd-cache-level-default-size",
|
|
cl::desc("The default size of the second cache level specified in bytes"
|
|
" (if not enough were provided by the TargetTransformInfo)."),
|
|
cl::Hidden, cl::init(262144), cl::ZeroOrMore, cl::cat(PollyCategory));
|
|
|
|
// This option, along with --polly-target-2nd-cache-level-associativity,
|
|
// --polly-target-1st-cache-level-size, and --polly-target-2st-cache-level-size
|
|
// represent the parameters of the target cache, which do not have typical
|
|
// values that can be used by default. However, to apply the pattern matching
|
|
// optimizations, we use the values of the parameters of Intel Core i7-3820
|
|
// SandyBridge in case the parameters are not specified or not provided by the
|
|
// TargetTransformInfo.
|
|
static cl::opt<int> FirstCacheLevelAssociativity(
|
|
"polly-target-1st-cache-level-associativity",
|
|
cl::desc("The associativity of the first cache level."), cl::Hidden,
|
|
cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
|
|
|
|
static cl::opt<int> FirstCacheLevelDefaultAssociativity(
|
|
"polly-target-1st-cache-level-default-associativity",
|
|
cl::desc("The default associativity of the first cache level"
|
|
" (if not enough were provided by the TargetTransformInfo)."),
|
|
cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
|
|
|
|
static cl::opt<int> SecondCacheLevelAssociativity(
|
|
"polly-target-2nd-cache-level-associativity",
|
|
cl::desc("The associativity of the second cache level."), cl::Hidden,
|
|
cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
|
|
|
|
static cl::opt<int> SecondCacheLevelDefaultAssociativity(
|
|
"polly-target-2nd-cache-level-default-associativity",
|
|
cl::desc("The default associativity of the second cache level"
|
|
" (if not enough were provided by the TargetTransformInfo)."),
|
|
cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
|
|
|
|
static cl::opt<int> VectorRegisterBitwidth(
|
|
"polly-target-vector-register-bitwidth",
|
|
cl::desc("The size in bits of a vector register (if not set, this "
|
|
"information is taken from LLVM's target information."),
|
|
cl::Hidden, cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
|
|
|
|
static cl::opt<int> PollyPatternMatchingNcQuotient(
|
|
"polly-pattern-matching-nc-quotient",
|
|
cl::desc("Quotient that is obtained by dividing Nc, the parameter of the"
|
|
"macro-kernel, by Nr, the parameter of the micro-kernel"),
|
|
cl::Hidden, cl::init(256), cl::ZeroOrMore, cl::cat(PollyCategory));
|
|
|
|
namespace {
|
|
/// Parameters of the micro kernel.
|
|
///
|
|
/// Parameters, which determine sizes of rank-1 (i.e., outer product) update
|
|
/// used in the optimized matrix multiplication.
|
|
struct MicroKernelParamsTy {
|
|
int Mr;
|
|
int Nr;
|
|
};
|
|
|
|
/// Parameters of the macro kernel.
|
|
///
|
|
/// Parameters, which determine sizes of blocks of partitioned matrices
|
|
/// used in the optimized matrix multiplication.
|
|
struct MacroKernelParamsTy {
|
|
int Mc;
|
|
int Nc;
|
|
int Kc;
|
|
};
|
|
|
|
/// Parameters of the matrix multiplication operands.
|
|
///
|
|
/// Parameters, which describe access relations that represent operands of the
|
|
/// matrix multiplication.
|
|
struct MatMulInfoTy {
|
|
MemoryAccess *A = nullptr;
|
|
MemoryAccess *B = nullptr;
|
|
MemoryAccess *ReadFromC = nullptr;
|
|
MemoryAccess *WriteToC = nullptr;
|
|
int i = -1;
|
|
int j = -1;
|
|
int k = -1;
|
|
};
|
|
|
|
/// Create an isl::union_set, which describes the option of the form
|
|
/// [isolate[] -> unroll[x]].
|
|
///
|
|
/// @param Ctx An isl::ctx, which is used to create the isl::union_set.
|
|
static isl::union_set getUnrollIsolatedSetOptions(isl::ctx Ctx) {
|
|
isl::space Space = isl::space(Ctx, 0, 0, 1);
|
|
isl::map UnrollIsolatedSetOption = isl::map::universe(Space);
|
|
isl::id DimInId = isl::id::alloc(Ctx, "isolate", nullptr);
|
|
isl::id DimOutId = isl::id::alloc(Ctx, "unroll", nullptr);
|
|
UnrollIsolatedSetOption =
|
|
UnrollIsolatedSetOption.set_tuple_id(isl::dim::in, DimInId);
|
|
UnrollIsolatedSetOption =
|
|
UnrollIsolatedSetOption.set_tuple_id(isl::dim::out, DimOutId);
|
|
return UnrollIsolatedSetOption.wrap();
|
|
}
|
|
|
|
/// Permute the two dimensions of the isl map.
|
|
///
|
|
/// Permute @p DstPos and @p SrcPos dimensions of the isl map @p Map that
|
|
/// have type @p DimType.
|
|
///
|
|
/// @param Map The isl map to be modified.
|
|
/// @param DimType The type of the dimensions.
|
|
/// @param DstPos The first dimension.
|
|
/// @param SrcPos The second dimension.
|
|
/// @return The modified map.
|
|
static isl::map permuteDimensions(isl::map Map, isl::dim DimType,
|
|
unsigned DstPos, unsigned SrcPos) {
|
|
assert(DstPos < unsignedFromIslSize(Map.dim(DimType)) &&
|
|
SrcPos < unsignedFromIslSize(Map.dim(DimType)));
|
|
if (DstPos == SrcPos)
|
|
return Map;
|
|
isl::id DimId;
|
|
if (Map.has_tuple_id(DimType))
|
|
DimId = Map.get_tuple_id(DimType);
|
|
auto FreeDim = DimType == isl::dim::in ? isl::dim::out : isl::dim::in;
|
|
isl::id FreeDimId;
|
|
if (Map.has_tuple_id(FreeDim))
|
|
FreeDimId = Map.get_tuple_id(FreeDim);
|
|
auto MaxDim = std::max(DstPos, SrcPos);
|
|
auto MinDim = std::min(DstPos, SrcPos);
|
|
Map = Map.move_dims(FreeDim, 0, DimType, MaxDim, 1);
|
|
Map = Map.move_dims(FreeDim, 0, DimType, MinDim, 1);
|
|
Map = Map.move_dims(DimType, MinDim, FreeDim, 1, 1);
|
|
Map = Map.move_dims(DimType, MaxDim, FreeDim, 0, 1);
|
|
if (!DimId.is_null())
|
|
Map = Map.set_tuple_id(DimType, DimId);
|
|
if (!FreeDimId.is_null())
|
|
Map = Map.set_tuple_id(FreeDim, FreeDimId);
|
|
return Map;
|
|
}
|
|
|
|
/// Check the form of the access relation.
|
|
///
|
|
/// Check that the access relation @p AccMap has the form M[i][j], where i
|
|
/// is a @p FirstPos and j is a @p SecondPos.
|
|
///
|
|
/// @param AccMap The access relation to be checked.
|
|
/// @param FirstPos The index of the input dimension that is mapped to
|
|
/// the first output dimension.
|
|
/// @param SecondPos The index of the input dimension that is mapped to the
|
|
/// second output dimension.
|
|
/// @return True in case @p AccMap has the expected form and false,
|
|
/// otherwise.
|
|
static bool isMatMulOperandAcc(isl::set Domain, isl::map AccMap, int &FirstPos,
|
|
int &SecondPos) {
|
|
isl::space Space = AccMap.get_space();
|
|
isl::map Universe = isl::map::universe(Space);
|
|
|
|
if (unsignedFromIslSize(Space.dim(isl::dim::out)) != 2)
|
|
return false;
|
|
|
|
// MatMul has the form:
|
|
// for (i = 0; i < N; i++)
|
|
// for (j = 0; j < M; j++)
|
|
// for (k = 0; k < P; k++)
|
|
// C[i, j] += A[i, k] * B[k, j]
|
|
//
|
|
// Permutation of three outer loops: 3! = 6 possibilities.
|
|
int FirstDims[] = {0, 0, 1, 1, 2, 2};
|
|
int SecondDims[] = {1, 2, 2, 0, 0, 1};
|
|
for (int i = 0; i < 6; i += 1) {
|
|
auto PossibleMatMul =
|
|
Universe.equate(isl::dim::in, FirstDims[i], isl::dim::out, 0)
|
|
.equate(isl::dim::in, SecondDims[i], isl::dim::out, 1);
|
|
|
|
AccMap = AccMap.intersect_domain(Domain);
|
|
PossibleMatMul = PossibleMatMul.intersect_domain(Domain);
|
|
|
|
// If AccMap spans entire domain (Non-partial write),
|
|
// compute FirstPos and SecondPos.
|
|
// If AccMap != PossibleMatMul here (the two maps have been gisted at
|
|
// this point), it means that the writes are not complete, or in other
|
|
// words, it is a Partial write and Partial writes must be rejected.
|
|
if (AccMap.is_equal(PossibleMatMul)) {
|
|
if (FirstPos != -1 && FirstPos != FirstDims[i])
|
|
continue;
|
|
FirstPos = FirstDims[i];
|
|
if (SecondPos != -1 && SecondPos != SecondDims[i])
|
|
continue;
|
|
SecondPos = SecondDims[i];
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Does the memory access represent a non-scalar operand of the matrix
|
|
/// multiplication.
|
|
///
|
|
/// Check that the memory access @p MemAccess is the read access to a non-scalar
|
|
/// operand of the matrix multiplication or its result.
|
|
///
|
|
/// @param MemAccess The memory access to be checked.
|
|
/// @param MMI Parameters of the matrix multiplication operands.
|
|
/// @return True in case the memory access represents the read access
|
|
/// to a non-scalar operand of the matrix multiplication and
|
|
/// false, otherwise.
|
|
static bool isMatMulNonScalarReadAccess(MemoryAccess *MemAccess,
|
|
MatMulInfoTy &MMI) {
|
|
if (!MemAccess->isLatestArrayKind() || !MemAccess->isRead())
|
|
return false;
|
|
auto AccMap = MemAccess->getLatestAccessRelation();
|
|
isl::set StmtDomain = MemAccess->getStatement()->getDomain();
|
|
if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.i, MMI.j) && !MMI.ReadFromC) {
|
|
MMI.ReadFromC = MemAccess;
|
|
return true;
|
|
}
|
|
if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.i, MMI.k) && !MMI.A) {
|
|
MMI.A = MemAccess;
|
|
return true;
|
|
}
|
|
if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.k, MMI.j) && !MMI.B) {
|
|
MMI.B = MemAccess;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Check accesses to operands of the matrix multiplication.
|
|
///
|
|
/// Check that accesses of the SCoP statement, which corresponds to
|
|
/// the partial schedule @p PartialSchedule, are scalar in terms of loops
|
|
/// containing the matrix multiplication, in case they do not represent
|
|
/// accesses to the non-scalar operands of the matrix multiplication or
|
|
/// its result.
|
|
///
|
|
/// @param PartialSchedule The partial schedule of the SCoP statement.
|
|
/// @param MMI Parameters of the matrix multiplication operands.
|
|
/// @return True in case the corresponding SCoP statement
|
|
/// represents matrix multiplication and false,
|
|
/// otherwise.
|
|
static bool containsOnlyMatrMultAcc(isl::map PartialSchedule,
|
|
MatMulInfoTy &MMI) {
|
|
auto InputDimId = PartialSchedule.get_tuple_id(isl::dim::in);
|
|
auto *Stmt = static_cast<ScopStmt *>(InputDimId.get_user());
|
|
unsigned OutDimNum = unsignedFromIslSize(PartialSchedule.range_tuple_dim());
|
|
assert(OutDimNum > 2 && "In case of the matrix multiplication the loop nest "
|
|
"and, consequently, the corresponding scheduling "
|
|
"functions have at least three dimensions.");
|
|
auto MapI =
|
|
permuteDimensions(PartialSchedule, isl::dim::out, MMI.i, OutDimNum - 1);
|
|
auto MapJ =
|
|
permuteDimensions(PartialSchedule, isl::dim::out, MMI.j, OutDimNum - 1);
|
|
auto MapK =
|
|
permuteDimensions(PartialSchedule, isl::dim::out, MMI.k, OutDimNum - 1);
|
|
|
|
auto Accesses = getAccessesInOrder(*Stmt);
|
|
for (auto *MemA = Accesses.begin(); MemA != Accesses.end() - 1; MemA++) {
|
|
auto *MemAccessPtr = *MemA;
|
|
if (MemAccessPtr->isLatestArrayKind() && MemAccessPtr != MMI.WriteToC &&
|
|
!isMatMulNonScalarReadAccess(MemAccessPtr, MMI) &&
|
|
!(MemAccessPtr->isStrideZero(MapI) &&
|
|
MemAccessPtr->isStrideZero(MapJ) && MemAccessPtr->isStrideZero(MapK)))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Check for dependencies corresponding to the matrix multiplication.
|
|
///
|
|
/// Check that there is only true dependence of the form
|
|
/// S(..., k, ...) -> S(..., k + 1, …), where S is the SCoP statement
|
|
/// represented by @p Schedule and k is @p Pos. Such a dependence corresponds
|
|
/// to the dependency produced by the matrix multiplication.
|
|
///
|
|
/// @param Schedule The schedule of the SCoP statement.
|
|
/// @param D The SCoP dependencies.
|
|
/// @param Pos The parameter to describe an acceptable true dependence.
|
|
/// In case it has a negative value, try to determine its
|
|
/// acceptable value.
|
|
/// @return True in case dependencies correspond to the matrix multiplication
|
|
/// and false, otherwise.
|
|
static bool containsOnlyMatMulDep(isl::map Schedule, const Dependences *D,
|
|
int &Pos) {
|
|
isl::union_map Dep = D->getDependences(Dependences::TYPE_RAW);
|
|
isl::union_map Red = D->getDependences(Dependences::TYPE_RED);
|
|
if (!Red.is_null())
|
|
Dep = Dep.unite(Red);
|
|
auto DomainSpace = Schedule.get_space().domain();
|
|
auto Space = DomainSpace.map_from_domain_and_range(DomainSpace);
|
|
auto Deltas = Dep.extract_map(Space).deltas();
|
|
int DeltasDimNum = unsignedFromIslSize(Deltas.dim(isl::dim::set));
|
|
for (int i = 0; i < DeltasDimNum; i++) {
|
|
auto Val = Deltas.plain_get_val_if_fixed(isl::dim::set, i);
|
|
Pos = Pos < 0 && Val.is_one() ? i : Pos;
|
|
if (Val.is_nan() || !(Val.is_zero() || (i == Pos && Val.is_one())))
|
|
return false;
|
|
}
|
|
if (DeltasDimNum == 0 || Pos < 0)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// Check if the SCoP statement could probably be optimized with analytical
|
|
/// modeling.
|
|
///
|
|
/// containsMatrMult tries to determine whether the following conditions
|
|
/// are true:
|
|
/// 1. The last memory access modeling an array, MA1, represents writing to
|
|
/// memory and has the form S(..., i1, ..., i2, ...) -> M(i1, i2) or
|
|
/// S(..., i2, ..., i1, ...) -> M(i1, i2), where S is the SCoP statement
|
|
/// under consideration.
|
|
/// 2. There is only one loop-carried true dependency, and it has the
|
|
/// form S(..., i3, ...) -> S(..., i3 + 1, ...), and there are no
|
|
/// loop-carried or anti dependencies.
|
|
/// 3. SCoP contains three access relations, MA2, MA3, and MA4 that represent
|
|
/// reading from memory and have the form S(..., i3, ...) -> M(i1, i3),
|
|
/// S(..., i3, ...) -> M(i3, i2), S(...) -> M(i1, i2), respectively,
|
|
/// and all memory accesses of the SCoP that are different from MA1, MA2,
|
|
/// MA3, and MA4 have stride 0, if the innermost loop is exchanged with any
|
|
/// of loops i1, i2 and i3.
|
|
///
|
|
/// @param PartialSchedule The PartialSchedule that contains a SCoP statement
|
|
/// to check.
|
|
/// @D The SCoP dependencies.
|
|
/// @MMI Parameters of the matrix multiplication operands.
|
|
static bool containsMatrMult(isl::map PartialSchedule, const Dependences *D,
|
|
MatMulInfoTy &MMI) {
|
|
auto InputDimsId = PartialSchedule.get_tuple_id(isl::dim::in);
|
|
auto *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user());
|
|
if (Stmt->size() <= 1)
|
|
return false;
|
|
|
|
auto Accesses = getAccessesInOrder(*Stmt);
|
|
for (auto *MemA = Accesses.end() - 1; MemA != Accesses.begin(); MemA--) {
|
|
auto *MemAccessPtr = *MemA;
|
|
if (!MemAccessPtr->isLatestArrayKind())
|
|
continue;
|
|
if (!MemAccessPtr->isWrite())
|
|
return false;
|
|
auto AccMap = MemAccessPtr->getLatestAccessRelation();
|
|
if (!isMatMulOperandAcc(Stmt->getDomain(), AccMap, MMI.i, MMI.j))
|
|
return false;
|
|
MMI.WriteToC = MemAccessPtr;
|
|
break;
|
|
}
|
|
|
|
if (!containsOnlyMatMulDep(PartialSchedule, D, MMI.k))
|
|
return false;
|
|
|
|
if (!MMI.WriteToC || !containsOnlyMatrMultAcc(PartialSchedule, MMI))
|
|
return false;
|
|
|
|
if (!MMI.A || !MMI.B || !MMI.ReadFromC)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// Permute two dimensions of the band node.
|
|
///
|
|
/// Permute FirstDim and SecondDim dimensions of the Node.
|
|
///
|
|
/// @param Node The band node to be modified.
|
|
/// @param FirstDim The first dimension to be permuted.
|
|
/// @param SecondDim The second dimension to be permuted.
|
|
static isl::schedule_node permuteBandNodeDimensions(isl::schedule_node Node,
|
|
unsigned FirstDim,
|
|
unsigned SecondDim) {
|
|
assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band &&
|
|
(unsigned)isl_schedule_node_band_n_member(Node.get()) >
|
|
std::max(FirstDim, SecondDim));
|
|
auto PartialSchedule =
|
|
isl::manage(isl_schedule_node_band_get_partial_schedule(Node.get()));
|
|
auto PartialScheduleFirstDim = PartialSchedule.at(FirstDim);
|
|
auto PartialScheduleSecondDim = PartialSchedule.at(SecondDim);
|
|
PartialSchedule =
|
|
PartialSchedule.set_union_pw_aff(SecondDim, PartialScheduleFirstDim);
|
|
PartialSchedule =
|
|
PartialSchedule.set_union_pw_aff(FirstDim, PartialScheduleSecondDim);
|
|
Node = isl::manage(isl_schedule_node_delete(Node.release()));
|
|
return Node.insert_partial_schedule(PartialSchedule);
|
|
}
|
|
|
|
static isl::schedule_node
|
|
createMicroKernel(isl::schedule_node Node,
|
|
MicroKernelParamsTy MicroKernelParams) {
|
|
Node = applyRegisterTiling(Node, {MicroKernelParams.Mr, MicroKernelParams.Nr},
|
|
1);
|
|
Node = Node.parent().parent();
|
|
return permuteBandNodeDimensions(Node, 0, 1).child(0).child(0);
|
|
}
|
|
|
|
/// Create the BLIS macro-kernel.
|
|
///
|
|
/// We create the BLIS macro-kernel by applying a combination of tiling
|
|
/// of dimensions of the band node and interchanging of two innermost
|
|
/// modified dimensions. The values of of MacroKernelParams's fields are used
|
|
/// as tile sizes.
|
|
///
|
|
/// @param Node The schedule node to be modified.
|
|
/// @param MacroKernelParams Parameters of the macro kernel
|
|
/// to be used as tile sizes.
|
|
static isl::schedule_node
|
|
createMacroKernel(isl::schedule_node Node,
|
|
MacroKernelParamsTy MacroKernelParams) {
|
|
assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
|
|
if (MacroKernelParams.Mc == 1 && MacroKernelParams.Nc == 1 &&
|
|
MacroKernelParams.Kc == 1)
|
|
return Node;
|
|
int DimOutNum = isl_schedule_node_band_n_member(Node.get());
|
|
std::vector<int> TileSizes(DimOutNum, 1);
|
|
TileSizes[DimOutNum - 3] = MacroKernelParams.Mc;
|
|
TileSizes[DimOutNum - 2] = MacroKernelParams.Nc;
|
|
TileSizes[DimOutNum - 1] = MacroKernelParams.Kc;
|
|
Node = tileNode(Node, "1st level tiling", TileSizes, 1);
|
|
Node = Node.parent().parent();
|
|
Node = permuteBandNodeDimensions(Node, DimOutNum - 2, DimOutNum - 1);
|
|
Node = permuteBandNodeDimensions(Node, DimOutNum - 3, DimOutNum - 1);
|
|
|
|
// Mark the outermost loop as parallelizable.
|
|
Node = Node.as<isl::schedule_node_band>().member_set_coincident(0, true);
|
|
|
|
return Node.child(0).child(0);
|
|
}
|
|
|
|
/// Get the size of the widest type of the matrix multiplication operands
|
|
/// in bytes, including alignment padding.
|
|
///
|
|
/// @param MMI Parameters of the matrix multiplication operands.
|
|
/// @return The size of the widest type of the matrix multiplication operands
|
|
/// in bytes, including alignment padding.
|
|
static uint64_t getMatMulAlignTypeSize(MatMulInfoTy MMI) {
|
|
auto *S = MMI.A->getStatement()->getParent();
|
|
auto &DL = S->getFunction().getParent()->getDataLayout();
|
|
auto ElementSizeA = DL.getTypeAllocSize(MMI.A->getElementType());
|
|
auto ElementSizeB = DL.getTypeAllocSize(MMI.B->getElementType());
|
|
auto ElementSizeC = DL.getTypeAllocSize(MMI.WriteToC->getElementType());
|
|
return std::max({ElementSizeA, ElementSizeB, ElementSizeC});
|
|
}
|
|
|
|
/// Get the size of the widest type of the matrix multiplication operands
|
|
/// in bits.
|
|
///
|
|
/// @param MMI Parameters of the matrix multiplication operands.
|
|
/// @return The size of the widest type of the matrix multiplication operands
|
|
/// in bits.
|
|
static uint64_t getMatMulTypeSize(MatMulInfoTy MMI) {
|
|
auto *S = MMI.A->getStatement()->getParent();
|
|
auto &DL = S->getFunction().getParent()->getDataLayout();
|
|
auto ElementSizeA = DL.getTypeSizeInBits(MMI.A->getElementType());
|
|
auto ElementSizeB = DL.getTypeSizeInBits(MMI.B->getElementType());
|
|
auto ElementSizeC = DL.getTypeSizeInBits(MMI.WriteToC->getElementType());
|
|
return std::max({ElementSizeA, ElementSizeB, ElementSizeC});
|
|
}
|
|
|
|
/// Get parameters of the BLIS micro kernel.
|
|
///
|
|
/// We choose the Mr and Nr parameters of the micro kernel to be large enough
|
|
/// such that no stalls caused by the combination of latencies and dependencies
|
|
/// are introduced during the updates of the resulting matrix of the matrix
|
|
/// multiplication. However, they should also be as small as possible to
|
|
/// release more registers for entries of multiplied matrices.
|
|
///
|
|
/// @param TTI Target Transform Info.
|
|
/// @param MMI Parameters of the matrix multiplication operands.
|
|
/// @return The structure of type MicroKernelParamsTy.
|
|
/// @see MicroKernelParamsTy
|
|
static struct MicroKernelParamsTy
|
|
getMicroKernelParams(const TargetTransformInfo *TTI, MatMulInfoTy MMI) {
|
|
assert(TTI && "The target transform info should be provided.");
|
|
|
|
// Nvec - Number of double-precision floating-point numbers that can be hold
|
|
// by a vector register. Use 2 by default.
|
|
long RegisterBitwidth = VectorRegisterBitwidth;
|
|
|
|
if (RegisterBitwidth == -1)
|
|
RegisterBitwidth =
|
|
TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector);
|
|
auto ElementSize = getMatMulTypeSize(MMI);
|
|
assert(ElementSize > 0 && "The element size of the matrix multiplication "
|
|
"operands should be greater than zero.");
|
|
auto Nvec = RegisterBitwidth / ElementSize;
|
|
if (Nvec == 0)
|
|
Nvec = 2;
|
|
int Nr = ceil(sqrt((double)(Nvec * LatencyVectorFma * ThroughputVectorFma)) /
|
|
Nvec) *
|
|
Nvec;
|
|
int Mr = ceil((double)(Nvec * LatencyVectorFma * ThroughputVectorFma / Nr));
|
|
return {Mr, Nr};
|
|
}
|
|
|
|
/// Determine parameters of the target cache.
|
|
///
|
|
/// @param TTI Target Transform Info.
|
|
static void getTargetCacheParameters(const llvm::TargetTransformInfo *TTI) {
|
|
auto L1DCache = llvm::TargetTransformInfo::CacheLevel::L1D;
|
|
auto L2DCache = llvm::TargetTransformInfo::CacheLevel::L2D;
|
|
if (FirstCacheLevelSize == -1) {
|
|
if (TTI->getCacheSize(L1DCache).hasValue())
|
|
FirstCacheLevelSize = TTI->getCacheSize(L1DCache).getValue();
|
|
else
|
|
FirstCacheLevelSize = static_cast<int>(FirstCacheLevelDefaultSize);
|
|
}
|
|
if (SecondCacheLevelSize == -1) {
|
|
if (TTI->getCacheSize(L2DCache).hasValue())
|
|
SecondCacheLevelSize = TTI->getCacheSize(L2DCache).getValue();
|
|
else
|
|
SecondCacheLevelSize = static_cast<int>(SecondCacheLevelDefaultSize);
|
|
}
|
|
if (FirstCacheLevelAssociativity == -1) {
|
|
if (TTI->getCacheAssociativity(L1DCache).hasValue())
|
|
FirstCacheLevelAssociativity =
|
|
TTI->getCacheAssociativity(L1DCache).getValue();
|
|
else
|
|
FirstCacheLevelAssociativity =
|
|
static_cast<int>(FirstCacheLevelDefaultAssociativity);
|
|
}
|
|
if (SecondCacheLevelAssociativity == -1) {
|
|
if (TTI->getCacheAssociativity(L2DCache).hasValue())
|
|
SecondCacheLevelAssociativity =
|
|
TTI->getCacheAssociativity(L2DCache).getValue();
|
|
else
|
|
SecondCacheLevelAssociativity =
|
|
static_cast<int>(SecondCacheLevelDefaultAssociativity);
|
|
}
|
|
}
|
|
|
|
/// Get parameters of the BLIS macro kernel.
|
|
///
|
|
/// During the computation of matrix multiplication, blocks of partitioned
|
|
/// matrices are mapped to different layers of the memory hierarchy.
|
|
/// To optimize data reuse, blocks should be ideally kept in cache between
|
|
/// iterations. Since parameters of the macro kernel determine sizes of these
|
|
/// blocks, there are upper and lower bounds on these parameters.
|
|
///
|
|
/// @param TTI Target Transform Info.
|
|
/// @param MicroKernelParams Parameters of the micro-kernel
|
|
/// to be taken into account.
|
|
/// @param MMI Parameters of the matrix multiplication operands.
|
|
/// @return The structure of type MacroKernelParamsTy.
|
|
/// @see MacroKernelParamsTy
|
|
/// @see MicroKernelParamsTy
|
|
static struct MacroKernelParamsTy
|
|
getMacroKernelParams(const llvm::TargetTransformInfo *TTI,
|
|
const MicroKernelParamsTy &MicroKernelParams,
|
|
MatMulInfoTy MMI) {
|
|
getTargetCacheParameters(TTI);
|
|
// According to www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf,
|
|
// it requires information about the first two levels of a cache to determine
|
|
// all the parameters of a macro-kernel. It also checks that an associativity
|
|
// degree of a cache level is greater than two. Otherwise, another algorithm
|
|
// for determination of the parameters should be used.
|
|
if (!(MicroKernelParams.Mr > 0 && MicroKernelParams.Nr > 0 &&
|
|
FirstCacheLevelSize > 0 && SecondCacheLevelSize > 0 &&
|
|
FirstCacheLevelAssociativity > 2 && SecondCacheLevelAssociativity > 2))
|
|
return {1, 1, 1};
|
|
// The quotient should be greater than zero.
|
|
if (PollyPatternMatchingNcQuotient <= 0)
|
|
return {1, 1, 1};
|
|
int Car = floor(
|
|
(FirstCacheLevelAssociativity - 1) /
|
|
(1 + static_cast<double>(MicroKernelParams.Nr) / MicroKernelParams.Mr));
|
|
|
|
// Car can be computed to be zero since it is floor to int.
|
|
// On Mac OS, division by 0 does not raise a signal. This causes negative
|
|
// tile sizes to be computed. Prevent division by Cac==0 by early returning
|
|
// if this happens.
|
|
if (Car == 0)
|
|
return {1, 1, 1};
|
|
|
|
auto ElementSize = getMatMulAlignTypeSize(MMI);
|
|
assert(ElementSize > 0 && "The element size of the matrix multiplication "
|
|
"operands should be greater than zero.");
|
|
int Kc = (Car * FirstCacheLevelSize) /
|
|
(MicroKernelParams.Mr * FirstCacheLevelAssociativity * ElementSize);
|
|
double Cac =
|
|
static_cast<double>(Kc * ElementSize * SecondCacheLevelAssociativity) /
|
|
SecondCacheLevelSize;
|
|
int Mc = floor((SecondCacheLevelAssociativity - 2) / Cac);
|
|
int Nc = PollyPatternMatchingNcQuotient * MicroKernelParams.Nr;
|
|
|
|
assert(Mc > 0 && Nc > 0 && Kc > 0 &&
|
|
"Matrix block sizes should be greater than zero");
|
|
return {Mc, Nc, Kc};
|
|
}
|
|
|
|
/// Create an access relation that is specific to
|
|
/// the matrix multiplication pattern.
|
|
///
|
|
/// Create an access relation of the following form:
|
|
/// [O0, O1, O2, O3, O4, O5, O6, O7, O8] -> [OI, O5, OJ]
|
|
/// where I is @p FirstDim, J is @p SecondDim.
|
|
///
|
|
/// It can be used, for example, to create relations that helps to consequently
|
|
/// access elements of operands of a matrix multiplication after creation of
|
|
/// the BLIS micro and macro kernels.
|
|
///
|
|
/// @see ScheduleTreeOptimizer::createMicroKernel
|
|
/// @see ScheduleTreeOptimizer::createMacroKernel
|
|
///
|
|
/// Subsequently, the described access relation is applied to the range of
|
|
/// @p MapOldIndVar, that is used to map original induction variables to
|
|
/// the ones, which are produced by schedule transformations. It helps to
|
|
/// define relations using a new space and, at the same time, keep them
|
|
/// in the original one.
|
|
///
|
|
/// @param MapOldIndVar The relation, which maps original induction variables
|
|
/// to the ones, which are produced by schedule
|
|
/// transformations.
|
|
/// @param FirstDim, SecondDim The input dimensions that are used to define
|
|
/// the specified access relation.
|
|
/// @return The specified access relation.
|
|
static isl::map getMatMulAccRel(isl::map MapOldIndVar, unsigned FirstDim,
|
|
unsigned SecondDim) {
|
|
auto AccessRelSpace = isl::space(MapOldIndVar.ctx(), 0, 9, 3);
|
|
auto AccessRel = isl::map::universe(AccessRelSpace);
|
|
AccessRel = AccessRel.equate(isl::dim::in, FirstDim, isl::dim::out, 0);
|
|
AccessRel = AccessRel.equate(isl::dim::in, 5, isl::dim::out, 1);
|
|
AccessRel = AccessRel.equate(isl::dim::in, SecondDim, isl::dim::out, 2);
|
|
return MapOldIndVar.apply_range(AccessRel);
|
|
}
|
|
|
|
static isl::schedule_node createExtensionNode(isl::schedule_node Node,
|
|
isl::map ExtensionMap) {
|
|
auto Extension = isl::union_map(ExtensionMap);
|
|
auto NewNode = isl::schedule_node::from_extension(Extension);
|
|
return Node.graft_before(NewNode);
|
|
}
|
|
|
|
static isl::schedule_node optimizePackedB(isl::schedule_node Node,
|
|
ScopStmt *Stmt, isl::map MapOldIndVar,
|
|
MicroKernelParamsTy MicroParams,
|
|
MacroKernelParamsTy MacroParams,
|
|
MatMulInfoTy &MMI) {
|
|
Scop *S = Stmt->getParent();
|
|
isl::set Domain = Stmt->getDomain();
|
|
|
|
// Create packed array.
|
|
unsigned FirstDimSize = MacroParams.Nc / MicroParams.Nr;
|
|
unsigned SecondDimSize = MacroParams.Kc;
|
|
unsigned ThirdDimSize = MicroParams.Nr;
|
|
ScopArrayInfo *PackedB =
|
|
S->createScopArrayInfo(MMI.B->getElementType(), "Packed_B",
|
|
{FirstDimSize, SecondDimSize, ThirdDimSize});
|
|
|
|
// Compute the access relation for copying from B to PackedB.
|
|
isl::map AccRelB = MMI.B->getLatestAccessRelation();
|
|
isl::map AccRelPackedB = getMatMulAccRel(MapOldIndVar, 3, 7);
|
|
AccRelPackedB =
|
|
AccRelPackedB.set_tuple_id(isl::dim::out, PackedB->getBasePtrId());
|
|
|
|
// Create the copy statement and redirect access.
|
|
ScopStmt *CopyStmt = S->addScopStmt(AccRelB, AccRelPackedB, Domain);
|
|
MMI.B->setNewAccessRelation(AccRelPackedB);
|
|
|
|
unsigned Dim = unsignedFromIslSize(MapOldIndVar.range_tuple_dim());
|
|
assert(Dim >= 2);
|
|
// Insert into the schedule tree.
|
|
isl::map ExtMap = MapOldIndVar.project_out(isl::dim::out, 2, Dim - 2);
|
|
ExtMap = ExtMap.reverse();
|
|
ExtMap = ExtMap.fix_si(isl::dim::out, MMI.i, 0);
|
|
ExtMap = ExtMap.intersect_range(Domain);
|
|
ExtMap = ExtMap.set_tuple_id(isl::dim::out, CopyStmt->getDomainId());
|
|
return createExtensionNode(Node, ExtMap);
|
|
}
|
|
|
|
static isl::schedule_node optimizePackedA(isl::schedule_node Node, ScopStmt *,
|
|
isl::map MapOldIndVar,
|
|
MicroKernelParamsTy MicroParams,
|
|
MacroKernelParamsTy MacroParams,
|
|
MatMulInfoTy &MMI) {
|
|
isl::id InputDimsId = MapOldIndVar.get_tuple_id(isl::dim::in);
|
|
ScopStmt *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user());
|
|
isl::set Domain = Stmt->getDomain();
|
|
isl::id DomainId = Domain.get_tuple_id();
|
|
|
|
// Create the packed array.
|
|
unsigned FirstDimSize = MacroParams.Mc / MicroParams.Mr;
|
|
unsigned SecondDimSize = MacroParams.Kc;
|
|
unsigned ThirdDimSize = MicroParams.Mr;
|
|
ScopArrayInfo *PackedA = Stmt->getParent()->createScopArrayInfo(
|
|
MMI.A->getElementType(), "Packed_A",
|
|
{FirstDimSize, SecondDimSize, ThirdDimSize});
|
|
|
|
// Compute the access relation for copying from A to PackedA.
|
|
isl::map AccRelA = MMI.A->getLatestAccessRelation();
|
|
isl::map AccRelPackedA = getMatMulAccRel(MapOldIndVar, 4, 6);
|
|
AccRelPackedA =
|
|
AccRelPackedA.set_tuple_id(isl::dim::out, PackedA->getBasePtrId());
|
|
// { MemrefA[] -> PackedA[] }
|
|
isl::map PackedATranslator = AccRelPackedA.apply_domain(AccRelA);
|
|
|
|
// Compute the domain for the copy statement.
|
|
// Construct the copy statement domain out of the 3 outermost scatter
|
|
// dimensions (to match the 3 band nodes surrounding the extension node) and
|
|
// the array elements to copy (one statement instance per array element).
|
|
// { Scatter[] }
|
|
isl::set ScatterDomain = MapOldIndVar.intersect_domain(Domain).range();
|
|
// { Scatter[] -> OutermostScatter[] }
|
|
isl::map OuterDomainMap =
|
|
makeIdentityMap(ScatterDomain, true).project_out(isl::dim::out, 3, 6);
|
|
// { Scatter[] -> MemrefA[] }
|
|
isl::map CopyFrom = MapOldIndVar.reverse().apply_range(AccRelA);
|
|
// { Scatter[] -> CopyStmt[] }
|
|
isl::map DomainTranslator = OuterDomainMap.range_product(CopyFrom);
|
|
// { CopyStmt[] }
|
|
isl::set CopyDomain = DomainTranslator.range();
|
|
|
|
// Translate the access relations to the new domain.
|
|
// { CopyStmt[] -> MemrefA[] }
|
|
CopyFrom = CopyFrom.apply_domain(DomainTranslator);
|
|
// { CopyStmt[] -> PackedA[] }
|
|
isl::map CopyTo = CopyFrom.apply_range(PackedATranslator);
|
|
|
|
// Create the copy statement and redirect access.
|
|
ScopStmt *CopyStmt =
|
|
Stmt->getParent()->addScopStmt(CopyFrom, CopyTo, CopyDomain);
|
|
MMI.A->setNewAccessRelation(AccRelPackedA);
|
|
|
|
// Insert into the schedule tree.
|
|
// { Scatter[] -> CopyStmt[] }
|
|
isl::map ExtScatterCopy = makeIdentityMap(CopyStmt->getDomain(), true);
|
|
ExtScatterCopy = ExtScatterCopy.project_out(isl::dim::in, 3, 2);
|
|
return createExtensionNode(Node, ExtScatterCopy);
|
|
}
|
|
|
|
/// Apply the packing transformation.
|
|
///
|
|
/// The packing transformation can be described as a data-layout
|
|
/// transformation that requires to introduce a new array, copy data
|
|
/// to the array, and change memory access locations to reference the array.
|
|
/// It can be used to ensure that elements of the new array are read in-stride
|
|
/// access, aligned to cache lines boundaries, and preloaded into certain cache
|
|
/// levels.
|
|
///
|
|
/// As an example let us consider the packing of the array A that would help
|
|
/// to read its elements with in-stride access. An access to the array A
|
|
/// is represented by an access relation that has the form
|
|
/// S[i, j, k] -> A[i, k]. The scheduling function of the SCoP statement S has
|
|
/// the form S[i,j, k] -> [floor((j mod Nc) / Nr), floor((i mod Mc) / Mr),
|
|
/// k mod Kc, j mod Nr, i mod Mr].
|
|
///
|
|
/// To ensure that elements of the array A are read in-stride access, we add
|
|
/// a new array Packed_A[Mc/Mr][Kc][Mr] to the SCoP, using
|
|
/// Scop::createScopArrayInfo, change the access relation
|
|
/// S[i, j, k] -> A[i, k] to
|
|
/// S[i, j, k] -> Packed_A[floor((i mod Mc) / Mr), k mod Kc, i mod Mr], using
|
|
/// MemoryAccess::setNewAccessRelation, and copy the data to the array, using
|
|
/// the copy statement created by Scop::addScopStmt.
|
|
///
|
|
/// @param Node The schedule node to be optimized.
|
|
/// @param MapOldIndVar The relation, which maps original induction variables
|
|
/// to the ones, which are produced by schedule
|
|
/// transformations.
|
|
/// @param MicroParams, MacroParams Parameters of the BLIS kernel
|
|
/// to be taken into account.
|
|
/// @param MMI Parameters of the matrix multiplication operands.
|
|
/// @return The optimized schedule node.
|
|
static isl::schedule_node
|
|
optimizeDataLayoutMatrMulPattern(isl::schedule_node Node, isl::map MapOldIndVar,
|
|
MicroKernelParamsTy MicroParams,
|
|
MacroKernelParamsTy MacroParams,
|
|
MatMulInfoTy &MMI) {
|
|
isl::id InputDimsId = MapOldIndVar.get_tuple_id(isl::dim::in);
|
|
ScopStmt *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user());
|
|
|
|
Node = Node.parent().parent().parent().parent().parent().parent();
|
|
Node = isl::manage(isl_schedule_node_band_split(Node.release(), 2));
|
|
|
|
Node = Node.child(0);
|
|
Node =
|
|
optimizePackedB(Node, Stmt, MapOldIndVar, MicroParams, MacroParams, MMI);
|
|
|
|
Node = Node.child(0);
|
|
Node =
|
|
optimizePackedA(Node, Stmt, MapOldIndVar, MicroParams, MacroParams, MMI);
|
|
|
|
return Node.child(0).child(0).child(0).child(0).child(0);
|
|
}
|
|
|
|
/// Get a relation mapping induction variables produced by schedule
|
|
/// transformations to the original ones.
|
|
///
|
|
/// @param Node The schedule node produced as the result of creation
|
|
/// of the BLIS kernels.
|
|
/// @param MicroKernelParams, MacroKernelParams Parameters of the BLIS kernel
|
|
/// to be taken into account.
|
|
/// @return The relation mapping original induction variables to the ones
|
|
/// produced by schedule transformation.
|
|
/// @see ScheduleTreeOptimizer::createMicroKernel
|
|
/// @see ScheduleTreeOptimizer::createMacroKernel
|
|
/// @see getMacroKernelParams
|
|
static isl::map
|
|
getInductionVariablesSubstitution(isl::schedule_node Node,
|
|
MicroKernelParamsTy MicroKernelParams,
|
|
MacroKernelParamsTy MacroKernelParams) {
|
|
auto Child = Node.child(0);
|
|
auto UnMapOldIndVar = Child.get_prefix_schedule_union_map();
|
|
auto MapOldIndVar = isl::map::from_union_map(UnMapOldIndVar);
|
|
unsigned Dim = unsignedFromIslSize(MapOldIndVar.range_tuple_dim());
|
|
if (Dim > 9u)
|
|
return MapOldIndVar.project_out(isl::dim::out, 0, Dim - 9);
|
|
return MapOldIndVar;
|
|
}
|
|
|
|
/// Isolate a set of partial tile prefixes and unroll the isolated part.
|
|
///
|
|
/// The set should ensure that it contains only partial tile prefixes that have
|
|
/// exactly Mr x Nr iterations of the two innermost loops produced by
|
|
/// the optimization of the matrix multiplication. Mr and Nr are parameters of
|
|
/// the micro-kernel.
|
|
///
|
|
/// In case of parametric bounds, this helps to auto-vectorize the unrolled
|
|
/// innermost loops, using the SLP vectorizer.
|
|
///
|
|
/// @param Node The schedule node to be modified.
|
|
/// @param MicroKernelParams Parameters of the micro-kernel
|
|
/// to be taken into account.
|
|
/// @return The modified isl_schedule_node.
|
|
static isl::schedule_node
|
|
isolateAndUnrollMatMulInnerLoops(isl::schedule_node Node,
|
|
struct MicroKernelParamsTy MicroKernelParams) {
|
|
isl::schedule_node Child = Node.child(0);
|
|
isl::union_map UnMapOldIndVar = Child.get_prefix_schedule_relation();
|
|
isl::set Prefix = isl::map::from_union_map(UnMapOldIndVar).range();
|
|
unsigned Dims = unsignedFromIslSize(Prefix.tuple_dim());
|
|
assert(Dims >= 1);
|
|
Prefix = Prefix.project_out(isl::dim::set, Dims - 1, 1);
|
|
Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Nr);
|
|
Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Mr);
|
|
|
|
isl::union_set IsolateOption =
|
|
getIsolateOptions(Prefix.add_dims(isl::dim::set, 3), 3);
|
|
isl::ctx Ctx = Node.ctx();
|
|
auto Options = IsolateOption.unite(getDimOptions(Ctx, "unroll"));
|
|
Options = Options.unite(getUnrollIsolatedSetOptions(Ctx));
|
|
Node = Node.as<isl::schedule_node_band>().set_ast_build_options(Options);
|
|
Node = Node.parent().parent().parent();
|
|
IsolateOption = getIsolateOptions(Prefix, 3);
|
|
Options = IsolateOption.unite(getDimOptions(Ctx, "separate"));
|
|
Node = Node.as<isl::schedule_node_band>().set_ast_build_options(Options);
|
|
Node = Node.child(0).child(0).child(0);
|
|
return Node;
|
|
}
|
|
|
|
/// Insert "Loop Vectorizer Disabled" mark node.
|
|
///
|
|
/// @param Node The child of the mark node to be inserted.
|
|
/// @return The modified isl_schedule_node.
|
|
static isl::schedule_node markLoopVectorizerDisabled(isl::schedule_node Node) {
|
|
auto Id = isl::id::alloc(Node.ctx(), "Loop Vectorizer Disabled", nullptr);
|
|
return Node.insert_mark(Id).child(0);
|
|
}
|
|
|
|
/// Restore the initial ordering of dimensions of the band node
|
|
///
|
|
/// In case the band node represents all the dimensions of the iteration
|
|
/// domain, recreate the band node to restore the initial ordering of the
|
|
/// dimensions.
|
|
///
|
|
/// @param Node The band node to be modified.
|
|
/// @return The modified schedule node.
|
|
static isl::schedule_node
|
|
getBandNodeWithOriginDimOrder(isl::schedule_node Node) {
|
|
assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
|
|
if (isl_schedule_node_get_type(Node.child(0).get()) != isl_schedule_node_leaf)
|
|
return Node;
|
|
auto Domain = Node.get_universe_domain();
|
|
assert(isl_union_set_n_set(Domain.get()) == 1);
|
|
if (Node.get_schedule_depth().release() != 0 ||
|
|
(unsignedFromIslSize(isl::set(Domain).tuple_dim()) !=
|
|
unsignedFromIslSize(Node.as<isl::schedule_node_band>().n_member())))
|
|
return Node;
|
|
Node = isl::manage(isl_schedule_node_delete(Node.copy()));
|
|
auto PartialSchedulePwAff = Domain.identity_union_pw_multi_aff();
|
|
auto PartialScheduleMultiPwAff =
|
|
isl::multi_union_pw_aff(PartialSchedulePwAff);
|
|
PartialScheduleMultiPwAff =
|
|
PartialScheduleMultiPwAff.reset_tuple_id(isl::dim::set);
|
|
return Node.insert_partial_schedule(PartialScheduleMultiPwAff);
|
|
}
|
|
|
|
static isl::schedule_node optimizeMatMulPattern(isl::schedule_node Node,
|
|
const TargetTransformInfo *TTI,
|
|
MatMulInfoTy &MMI) {
|
|
assert(TTI && "The target transform info should be provided.");
|
|
int DimOutNum = isl_schedule_node_band_n_member(Node.get());
|
|
assert(DimOutNum > 2 && "In case of the matrix multiplication the loop nest "
|
|
"and, consequently, the corresponding scheduling "
|
|
"functions have at least three dimensions.");
|
|
Node = getBandNodeWithOriginDimOrder(Node);
|
|
Node = permuteBandNodeDimensions(Node, MMI.i, DimOutNum - 3);
|
|
int NewJ = MMI.j == DimOutNum - 3 ? MMI.i : MMI.j;
|
|
int NewK = MMI.k == DimOutNum - 3 ? MMI.i : MMI.k;
|
|
Node = permuteBandNodeDimensions(Node, NewJ, DimOutNum - 2);
|
|
NewK = NewK == DimOutNum - 2 ? NewJ : NewK;
|
|
Node = permuteBandNodeDimensions(Node, NewK, DimOutNum - 1);
|
|
auto MicroKernelParams = getMicroKernelParams(TTI, MMI);
|
|
auto MacroKernelParams = getMacroKernelParams(TTI, MicroKernelParams, MMI);
|
|
Node = createMacroKernel(Node, MacroKernelParams);
|
|
Node = createMicroKernel(Node, MicroKernelParams);
|
|
if (MacroKernelParams.Mc == 1 || MacroKernelParams.Nc == 1 ||
|
|
MacroKernelParams.Kc == 1)
|
|
return Node;
|
|
auto MapOldIndVar = getInductionVariablesSubstitution(Node, MicroKernelParams,
|
|
MacroKernelParams);
|
|
if (MapOldIndVar.is_null())
|
|
return Node;
|
|
Node = markLoopVectorizerDisabled(Node.parent()).child(0);
|
|
Node = isolateAndUnrollMatMulInnerLoops(Node, MicroKernelParams);
|
|
return optimizeDataLayoutMatrMulPattern(Node, MapOldIndVar, MicroKernelParams,
|
|
MacroKernelParams, MMI);
|
|
}
|
|
|
|
/// Check if this node contains a partial schedule that could
|
|
/// probably be optimized with analytical modeling.
|
|
///
|
|
/// isMatrMultPattern tries to determine whether the following conditions
|
|
/// are true:
|
|
/// 1. the partial schedule contains only one statement.
|
|
/// 2. there are exactly three input dimensions.
|
|
/// 3. all memory accesses of the statement will have stride 0 or 1, if we
|
|
/// interchange loops (switch the variable used in the inner loop to
|
|
/// the outer loop).
|
|
/// 4. all memory accesses of the statement except from the last one, are
|
|
/// read memory access and the last one is write memory access.
|
|
/// 5. all subscripts of the last memory access of the statement don't
|
|
/// contain the variable used in the inner loop.
|
|
/// If this is the case, we could try to use an approach that is similar to
|
|
/// the one used to get close-to-peak performance of matrix multiplications.
|
|
///
|
|
/// @param Node The node to check.
|
|
/// @param D The SCoP dependencies.
|
|
/// @param MMI Parameters of the matrix multiplication operands.
|
|
static bool isMatrMultPattern(isl::schedule_node Node, const Dependences *D,
|
|
MatMulInfoTy &MMI) {
|
|
auto PartialSchedule = isl::manage(
|
|
isl_schedule_node_band_get_partial_schedule_union_map(Node.get()));
|
|
Node = Node.child(0);
|
|
auto LeafType = isl_schedule_node_get_type(Node.get());
|
|
Node = Node.parent();
|
|
if (LeafType != isl_schedule_node_leaf ||
|
|
isl_schedule_node_band_n_member(Node.get()) < 3 ||
|
|
Node.get_schedule_depth().release() != 0 ||
|
|
isl_union_map_n_map(PartialSchedule.get()) != 1)
|
|
return false;
|
|
auto NewPartialSchedule = isl::map::from_union_map(PartialSchedule);
|
|
if (containsMatrMult(NewPartialSchedule, D, MMI))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
isl::schedule_node
|
|
polly::tryOptimizeMatMulPattern(isl::schedule_node Node,
|
|
const llvm::TargetTransformInfo *TTI,
|
|
const Dependences *D) {
|
|
MatMulInfoTy MMI;
|
|
if (isMatrMultPattern(Node, D, MMI)) {
|
|
LLVM_DEBUG(dbgs() << "The matrix multiplication pattern was detected\n");
|
|
return optimizeMatMulPattern(Node, TTI, MMI);
|
|
}
|
|
return {};
|
|
}
|