forked from OSchip/llvm-project
618 lines
23 KiB
C++
618 lines
23 KiB
C++
//===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This contains code to emit Constant Expr nodes as LLVM code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeGenFunction.h"
|
|
#include "CodeGenModule.h"
|
|
#include "clang/AST/AST.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/GlobalVariable.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
namespace {
|
|
class VISIBILITY_HIDDEN ConstExprEmitter :
|
|
public StmtVisitor<ConstExprEmitter, llvm::Constant*> {
|
|
CodeGenModule &CGM;
|
|
public:
|
|
ConstExprEmitter(CodeGenModule &cgm)
|
|
: CGM(cgm) {
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Visitor Methods
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
llvm::Constant *VisitStmt(Stmt *S) {
|
|
CGM.WarnUnsupported(S, "constant expression");
|
|
return llvm::UndefValue::get(CGM.getTypes().ConvertType(cast<Expr>(S)->getType()));
|
|
}
|
|
|
|
llvm::Constant *VisitParenExpr(ParenExpr *PE) {
|
|
return Visit(PE->getSubExpr());
|
|
}
|
|
|
|
// Leaves
|
|
llvm::Constant *VisitIntegerLiteral(const IntegerLiteral *E) {
|
|
return llvm::ConstantInt::get(E->getValue());
|
|
}
|
|
llvm::Constant *VisitFloatingLiteral(const FloatingLiteral *E) {
|
|
return llvm::ConstantFP::get(ConvertType(E->getType()), E->getValue());
|
|
}
|
|
llvm::Constant *VisitCharacterLiteral(const CharacterLiteral *E) {
|
|
return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
|
|
}
|
|
llvm::Constant *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
|
|
return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
|
|
}
|
|
|
|
llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
|
|
return Visit(E->getInitializer());
|
|
}
|
|
|
|
llvm::Constant *VisitCastExpr(const CastExpr* E) {
|
|
llvm::Constant *C = Visit(E->getSubExpr());
|
|
|
|
return EmitConversion(C, E->getSubExpr()->getType(), E->getType());
|
|
}
|
|
|
|
llvm::Constant *EmitArrayInitialization(InitListExpr *ILE,
|
|
const llvm::ArrayType *AType) {
|
|
|
|
std::vector<llvm::Constant*> Elts;
|
|
unsigned NumInitElements = ILE->getNumInits();
|
|
const llvm::Type *ElemTy = AType->getElementType();
|
|
unsigned NumElements = AType->getNumElements();
|
|
|
|
// Initialising an array requires us to automatically
|
|
// initialise any elements that have not been initialised explicitly
|
|
unsigned NumInitableElts = std::min(NumInitElements, NumElements);
|
|
|
|
// Copy initializer elements.
|
|
unsigned i = 0;
|
|
for (; i < NumInitableElts; ++i) {
|
|
|
|
llvm::Constant *C = Visit(ILE->getInit(i));
|
|
// FIXME: Remove this when sema of initializers is finished (and the code
|
|
// above).
|
|
if (C == 0 && ILE->getInit(i)->getType()->isVoidType()) {
|
|
if (ILE->getType()->isVoidType()) return 0;
|
|
return llvm::UndefValue::get(AType);
|
|
}
|
|
assert (C && "Failed to create initializer expression");
|
|
Elts.push_back(C);
|
|
}
|
|
|
|
// Initialize remaining array elements.
|
|
for (; i < NumElements; ++i)
|
|
Elts.push_back(llvm::Constant::getNullValue(ElemTy));
|
|
|
|
return llvm::ConstantArray::get(AType, Elts);
|
|
}
|
|
|
|
llvm::Constant *EmitStructInitialization(InitListExpr *ILE,
|
|
const llvm::StructType *SType) {
|
|
|
|
TagDecl *TD = ILE->getType()->getAsRecordType()->getDecl();
|
|
std::vector<llvm::Constant*> Elts;
|
|
const CGRecordLayout *CGR = CGM.getTypes().getCGRecordLayout(TD);
|
|
unsigned NumInitElements = ILE->getNumInits();
|
|
unsigned NumElements = SType->getNumElements();
|
|
|
|
// Initialising an structure requires us to automatically
|
|
// initialise any elements that have not been initialised explicitly
|
|
unsigned NumInitableElts = std::min(NumInitElements, NumElements);
|
|
|
|
// Copy initializer elements. Skip padding fields.
|
|
unsigned EltNo = 0; // Element no in ILE
|
|
unsigned FieldNo = 0; // Field no in SType
|
|
while (EltNo < NumInitableElts) {
|
|
|
|
// Zero initialize padding field.
|
|
if (CGR->isPaddingField(FieldNo)) {
|
|
const llvm::Type *FieldTy = SType->getElementType(FieldNo);
|
|
Elts.push_back(llvm::Constant::getNullValue(FieldTy));
|
|
FieldNo++;
|
|
continue;
|
|
}
|
|
|
|
llvm::Constant *C = Visit(ILE->getInit(EltNo));
|
|
// FIXME: Remove this when sema of initializers is finished (and the code
|
|
// above).
|
|
if (C == 0 && ILE->getInit(EltNo)->getType()->isVoidType()) {
|
|
if (ILE->getType()->isVoidType()) return 0;
|
|
return llvm::UndefValue::get(SType);
|
|
}
|
|
assert (C && "Failed to create initializer expression");
|
|
Elts.push_back(C);
|
|
EltNo++;
|
|
FieldNo++;
|
|
}
|
|
|
|
// Initialize remaining structure elements.
|
|
for (unsigned i = Elts.size(); i < NumElements; ++i) {
|
|
const llvm::Type *FieldTy = SType->getElementType(i);
|
|
Elts.push_back(llvm::Constant::getNullValue(FieldTy));
|
|
}
|
|
|
|
return llvm::ConstantStruct::get(SType, Elts);
|
|
}
|
|
|
|
llvm::Constant *EmitVectorInitialization(InitListExpr *ILE,
|
|
const llvm::VectorType *VType) {
|
|
|
|
std::vector<llvm::Constant*> Elts;
|
|
unsigned NumInitElements = ILE->getNumInits();
|
|
unsigned NumElements = VType->getNumElements();
|
|
|
|
assert (NumInitElements == NumElements
|
|
&& "Unsufficient vector init elelments");
|
|
// Copy initializer elements.
|
|
unsigned i = 0;
|
|
for (; i < NumElements; ++i) {
|
|
|
|
llvm::Constant *C = Visit(ILE->getInit(i));
|
|
// FIXME: Remove this when sema of initializers is finished (and the code
|
|
// above).
|
|
if (C == 0 && ILE->getInit(i)->getType()->isVoidType()) {
|
|
if (ILE->getType()->isVoidType()) return 0;
|
|
return llvm::UndefValue::get(VType);
|
|
}
|
|
assert (C && "Failed to create initializer expression");
|
|
Elts.push_back(C);
|
|
}
|
|
|
|
return llvm::ConstantVector::get(VType, Elts);
|
|
}
|
|
|
|
llvm::Constant *VisitInitListExpr(InitListExpr *ILE) {
|
|
const llvm::CompositeType *CType =
|
|
dyn_cast<llvm::CompositeType>(ConvertType(ILE->getType()));
|
|
|
|
if (!CType) {
|
|
// We have a scalar in braces. Just use the first element.
|
|
return Visit(ILE->getInit(0));
|
|
}
|
|
|
|
if (const llvm::ArrayType *AType = dyn_cast<llvm::ArrayType>(CType))
|
|
return EmitArrayInitialization(ILE, AType);
|
|
|
|
if (const llvm::StructType *SType = dyn_cast<llvm::StructType>(CType))
|
|
return EmitStructInitialization(ILE, SType);
|
|
|
|
if (const llvm::VectorType *VType = dyn_cast<llvm::VectorType>(CType))
|
|
return EmitVectorInitialization(ILE, VType);
|
|
|
|
// Make sure we have an array at this point
|
|
assert(0 && "Unable to handle InitListExpr");
|
|
}
|
|
|
|
llvm::Constant *VisitImplicitCastExpr(ImplicitCastExpr *ICExpr) {
|
|
// If this is due to array->pointer conversion, emit the array expression as
|
|
// an l-value.
|
|
if (ICExpr->getSubExpr()->getType()->isArrayType()) {
|
|
// Note that VLAs can't exist for global variables.
|
|
llvm::Constant *C = EmitLValue(ICExpr->getSubExpr());
|
|
assert(isa<llvm::PointerType>(C->getType()) &&
|
|
isa<llvm::ArrayType>(cast<llvm::PointerType>(C->getType())
|
|
->getElementType()));
|
|
llvm::Constant *Idx0 = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
|
|
|
|
llvm::Constant *Ops[] = {Idx0, Idx0};
|
|
C = llvm::ConstantExpr::getGetElementPtr(C, Ops, 2);
|
|
|
|
// The resultant pointer type can be implicitly cast to other pointer
|
|
// types as well, for example void*.
|
|
const llvm::Type *DestPTy = ConvertType(ICExpr->getType());
|
|
assert(isa<llvm::PointerType>(DestPTy) &&
|
|
"Only expect implicit cast to pointer");
|
|
return llvm::ConstantExpr::getBitCast(C, DestPTy);
|
|
}
|
|
|
|
llvm::Constant *C = Visit(ICExpr->getSubExpr());
|
|
|
|
return EmitConversion(C, ICExpr->getSubExpr()->getType(),ICExpr->getType());
|
|
}
|
|
|
|
llvm::Constant *VisitStringLiteral(StringLiteral *E) {
|
|
const char *StrData = E->getStrData();
|
|
unsigned Len = E->getByteLength();
|
|
assert(!E->getType()->isPointerType() && "Strings are always arrays");
|
|
|
|
// Otherwise this must be a string initializing an array in a static
|
|
// initializer. Don't emit it as the address of the string, emit the string
|
|
// data itself as an inline array.
|
|
const ConstantArrayType *CAT = E->getType()->getAsConstantArrayType();
|
|
assert(CAT && "String isn't pointer or array!");
|
|
|
|
std::string Str(StrData, StrData + Len);
|
|
// Null terminate the string before potentially truncating it.
|
|
// FIXME: What about wchar_t strings?
|
|
Str.push_back(0);
|
|
|
|
uint64_t RealLen = CAT->getSize().getZExtValue();
|
|
// String or grow the initializer to the required size.
|
|
if (RealLen != Str.size())
|
|
Str.resize(RealLen);
|
|
|
|
return llvm::ConstantArray::get(Str, false);
|
|
}
|
|
|
|
llvm::Constant *VisitDeclRefExpr(DeclRefExpr *E) {
|
|
const ValueDecl *Decl = E->getDecl();
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl))
|
|
return CGM.GetAddrOfFunctionDecl(FD, false);
|
|
if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(Decl))
|
|
return llvm::ConstantInt::get(EC->getInitVal());
|
|
assert(0 && "Unsupported decl ref type!");
|
|
return 0;
|
|
}
|
|
|
|
llvm::Constant *VisitSizeOfAlignOfTypeExpr(const SizeOfAlignOfTypeExpr *E) {
|
|
return EmitSizeAlignOf(E->getArgumentType(), E->getType(), E->isSizeOf());
|
|
}
|
|
|
|
// Unary operators
|
|
llvm::Constant *VisitUnaryPlus(const UnaryOperator *E) {
|
|
return Visit(E->getSubExpr());
|
|
}
|
|
llvm::Constant *VisitUnaryMinus(const UnaryOperator *E) {
|
|
return llvm::ConstantExpr::getNeg(Visit(E->getSubExpr()));
|
|
}
|
|
llvm::Constant *VisitUnaryNot(const UnaryOperator *E) {
|
|
return llvm::ConstantExpr::getNot(Visit(E->getSubExpr()));
|
|
}
|
|
llvm::Constant *VisitUnaryLNot(const UnaryOperator *E) {
|
|
llvm::Constant *SubExpr = Visit(E->getSubExpr());
|
|
|
|
if (E->getSubExpr()->getType()->isRealFloatingType()) {
|
|
// Compare against 0.0 for fp scalars.
|
|
llvm::Constant *Zero = llvm::Constant::getNullValue(SubExpr->getType());
|
|
SubExpr = llvm::ConstantExpr::getFCmp(llvm::FCmpInst::FCMP_UEQ, SubExpr,
|
|
Zero);
|
|
} else {
|
|
assert((E->getSubExpr()->getType()->isIntegerType() ||
|
|
E->getSubExpr()->getType()->isPointerType()) &&
|
|
"Unknown scalar type to convert");
|
|
// Compare against an integer or pointer null.
|
|
llvm::Constant *Zero = llvm::Constant::getNullValue(SubExpr->getType());
|
|
SubExpr = llvm::ConstantExpr::getICmp(llvm::ICmpInst::ICMP_EQ, SubExpr,
|
|
Zero);
|
|
}
|
|
|
|
return llvm::ConstantExpr::getZExt(SubExpr, ConvertType(E->getType()));
|
|
}
|
|
llvm::Constant *VisitUnarySizeOf(const UnaryOperator *E) {
|
|
return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), true);
|
|
}
|
|
llvm::Constant *VisitUnaryAlignOf(const UnaryOperator *E) {
|
|
return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), false);
|
|
}
|
|
llvm::Constant *VisitUnaryAddrOf(const UnaryOperator *E) {
|
|
return EmitLValue(E->getSubExpr());
|
|
}
|
|
llvm::Constant *VisitUnaryOffsetOf(const UnaryOperator *E) {
|
|
int64_t Val = E->evaluateOffsetOf(CGM.getContext());
|
|
|
|
assert(E->getType()->isIntegerType() && "Result type must be an integer!");
|
|
|
|
uint32_t ResultWidth = static_cast<uint32_t>(
|
|
CGM.getContext().getTypeSize(E->getType(), SourceLocation()));
|
|
return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val));
|
|
}
|
|
|
|
// Binary operators
|
|
llvm::Constant *VisitBinOr(const BinaryOperator *E) {
|
|
llvm::Constant *LHS = Visit(E->getLHS());
|
|
llvm::Constant *RHS = Visit(E->getRHS());
|
|
|
|
return llvm::ConstantExpr::getOr(LHS, RHS);
|
|
}
|
|
llvm::Constant *VisitBinSub(const BinaryOperator *E) {
|
|
llvm::Constant *LHS = Visit(E->getLHS());
|
|
llvm::Constant *RHS = Visit(E->getRHS());
|
|
|
|
if (!isa<llvm::PointerType>(RHS->getType())) {
|
|
// pointer - int
|
|
if (isa<llvm::PointerType>(LHS->getType())) {
|
|
llvm::Constant *Idx = llvm::ConstantExpr::getNeg(RHS);
|
|
|
|
return llvm::ConstantExpr::getGetElementPtr(LHS, &Idx, 1);
|
|
}
|
|
|
|
// int - int
|
|
return llvm::ConstantExpr::getSub(LHS, RHS);
|
|
}
|
|
|
|
assert(0 && "Unhandled bin sub case!");
|
|
return 0;
|
|
}
|
|
|
|
llvm::Constant *VisitBinShl(const BinaryOperator *E) {
|
|
llvm::Constant *LHS = Visit(E->getLHS());
|
|
llvm::Constant *RHS = Visit(E->getRHS());
|
|
|
|
// LLVM requires the LHS and RHS to be the same type: promote or truncate the
|
|
// RHS to the same size as the LHS.
|
|
if (LHS->getType() != RHS->getType())
|
|
RHS = llvm::ConstantExpr::getIntegerCast(RHS, LHS->getType(), false);
|
|
|
|
return llvm::ConstantExpr::getShl(LHS, RHS);
|
|
}
|
|
|
|
llvm::Constant *VisitBinMul(const BinaryOperator *E) {
|
|
llvm::Constant *LHS = Visit(E->getLHS());
|
|
llvm::Constant *RHS = Visit(E->getRHS());
|
|
|
|
return llvm::ConstantExpr::getMul(LHS, RHS);
|
|
}
|
|
|
|
llvm::Constant *VisitBinDiv(const BinaryOperator *E) {
|
|
llvm::Constant *LHS = Visit(E->getLHS());
|
|
llvm::Constant *RHS = Visit(E->getRHS());
|
|
|
|
if (LHS->getType()->isFPOrFPVector())
|
|
return llvm::ConstantExpr::getFDiv(LHS, RHS);
|
|
else if (E->getType()->isUnsignedIntegerType())
|
|
return llvm::ConstantExpr::getUDiv(LHS, RHS);
|
|
else
|
|
return llvm::ConstantExpr::getSDiv(LHS, RHS);
|
|
}
|
|
|
|
llvm::Constant *VisitBinAdd(const BinaryOperator *E) {
|
|
llvm::Constant *LHS = Visit(E->getLHS());
|
|
llvm::Constant *RHS = Visit(E->getRHS());
|
|
|
|
if (!E->getType()->isPointerType())
|
|
return llvm::ConstantExpr::getAdd(LHS, RHS);
|
|
|
|
llvm::Constant *Ptr, *Idx;
|
|
if (isa<llvm::PointerType>(LHS->getType())) { // pointer + int
|
|
Ptr = LHS;
|
|
Idx = RHS;
|
|
} else { // int + pointer
|
|
Ptr = RHS;
|
|
Idx = LHS;
|
|
}
|
|
|
|
return llvm::ConstantExpr::getGetElementPtr(Ptr, &Idx, 1);
|
|
}
|
|
|
|
llvm::Constant *VisitBinAnd(const BinaryOperator *E) {
|
|
llvm::Constant *LHS = Visit(E->getLHS());
|
|
llvm::Constant *RHS = Visit(E->getRHS());
|
|
|
|
return llvm::ConstantExpr::getAnd(LHS, RHS);
|
|
}
|
|
|
|
// Utility methods
|
|
const llvm::Type *ConvertType(QualType T) {
|
|
return CGM.getTypes().ConvertType(T);
|
|
}
|
|
|
|
llvm::Constant *EmitConversionToBool(llvm::Constant *Src, QualType SrcType) {
|
|
assert(SrcType->isCanonical() && "EmitConversion strips typedefs");
|
|
|
|
if (SrcType->isRealFloatingType()) {
|
|
// Compare against 0.0 for fp scalars.
|
|
llvm::Constant *Zero = llvm::Constant::getNullValue(Src->getType());
|
|
return llvm::ConstantExpr::getFCmp(llvm::FCmpInst::FCMP_UNE, Src, Zero);
|
|
}
|
|
|
|
assert((SrcType->isIntegerType() || SrcType->isPointerType()) &&
|
|
"Unknown scalar type to convert");
|
|
|
|
// Compare against an integer or pointer null.
|
|
llvm::Constant *Zero = llvm::Constant::getNullValue(Src->getType());
|
|
return llvm::ConstantExpr::getICmp(llvm::ICmpInst::ICMP_NE, Src, Zero);
|
|
}
|
|
|
|
llvm::Constant *EmitConversion(llvm::Constant *Src, QualType SrcType,
|
|
QualType DstType) {
|
|
SrcType = SrcType.getCanonicalType();
|
|
DstType = DstType.getCanonicalType();
|
|
if (SrcType == DstType) return Src;
|
|
|
|
// Handle conversions to bool first, they are special: comparisons against 0.
|
|
if (DstType->isBooleanType())
|
|
return EmitConversionToBool(Src, SrcType);
|
|
|
|
const llvm::Type *DstTy = ConvertType(DstType);
|
|
|
|
// Ignore conversions like int -> uint.
|
|
if (Src->getType() == DstTy)
|
|
return Src;
|
|
|
|
// Handle pointer conversions next: pointers can only be converted to/from
|
|
// other pointers and integers.
|
|
if (isa<PointerType>(DstType)) {
|
|
// The source value may be an integer, or a pointer.
|
|
if (isa<llvm::PointerType>(Src->getType()))
|
|
return llvm::ConstantExpr::getBitCast(Src, DstTy);
|
|
assert(SrcType->isIntegerType() &&"Not ptr->ptr or int->ptr conversion?");
|
|
return llvm::ConstantExpr::getIntToPtr(Src, DstTy);
|
|
}
|
|
|
|
if (isa<PointerType>(SrcType)) {
|
|
// Must be an ptr to int cast.
|
|
assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
|
|
return llvm::ConstantExpr::getPtrToInt(Src, DstTy);
|
|
}
|
|
|
|
// A scalar source can be splatted to a vector of the same element type
|
|
if (isa<llvm::VectorType>(DstTy) && !isa<VectorType>(SrcType)) {
|
|
const llvm::VectorType *VT = cast<llvm::VectorType>(DstTy);
|
|
assert((VT->getElementType() == Src->getType()) &&
|
|
"Vector element type must match scalar type to splat.");
|
|
unsigned NumElements = DstType->getAsVectorType()->getNumElements();
|
|
llvm::SmallVector<llvm::Constant*, 16> Elements;
|
|
for (unsigned i = 0; i < NumElements; i++)
|
|
Elements.push_back(Src);
|
|
|
|
return llvm::ConstantVector::get(&Elements[0], NumElements);
|
|
}
|
|
|
|
if (isa<llvm::VectorType>(Src->getType()) ||
|
|
isa<llvm::VectorType>(DstTy)) {
|
|
return llvm::ConstantExpr::getBitCast(Src, DstTy);
|
|
}
|
|
|
|
// Finally, we have the arithmetic types: real int/float.
|
|
if (isa<llvm::IntegerType>(Src->getType())) {
|
|
bool InputSigned = SrcType->isSignedIntegerType();
|
|
if (isa<llvm::IntegerType>(DstTy))
|
|
return llvm::ConstantExpr::getIntegerCast(Src, DstTy, InputSigned);
|
|
else if (InputSigned)
|
|
return llvm::ConstantExpr::getSIToFP(Src, DstTy);
|
|
else
|
|
return llvm::ConstantExpr::getUIToFP(Src, DstTy);
|
|
}
|
|
|
|
assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
|
|
if (isa<llvm::IntegerType>(DstTy)) {
|
|
if (DstType->isSignedIntegerType())
|
|
return llvm::ConstantExpr::getFPToSI(Src, DstTy);
|
|
else
|
|
return llvm::ConstantExpr::getFPToUI(Src, DstTy);
|
|
}
|
|
|
|
assert(DstTy->isFloatingPoint() && "Unknown real conversion");
|
|
if (DstTy->getTypeID() < Src->getType()->getTypeID())
|
|
return llvm::ConstantExpr::getFPTrunc(Src, DstTy);
|
|
else
|
|
return llvm::ConstantExpr::getFPExtend(Src, DstTy);
|
|
}
|
|
|
|
llvm::Constant *EmitSizeAlignOf(QualType TypeToSize,
|
|
QualType RetType, bool isSizeOf) {
|
|
std::pair<uint64_t, unsigned> Info =
|
|
CGM.getContext().getTypeInfo(TypeToSize, SourceLocation());
|
|
|
|
uint64_t Val = isSizeOf ? Info.first : Info.second;
|
|
Val /= 8; // Return size in bytes, not bits.
|
|
|
|
assert(RetType->isIntegerType() && "Result type must be an integer!");
|
|
|
|
uint32_t ResultWidth = static_cast<uint32_t>(
|
|
CGM.getContext().getTypeSize(RetType, SourceLocation()));
|
|
return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val));
|
|
}
|
|
|
|
llvm::Constant *EmitLValue(Expr *E) {
|
|
switch (E->getStmtClass()) {
|
|
default: break;
|
|
case Expr::ParenExprClass:
|
|
// Elide parenthesis
|
|
return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
|
|
case Expr::CompoundLiteralExprClass: {
|
|
// Note that due to the nature of compound literals, this is guaranteed
|
|
// to be the only use of the variable, so we just generate it here.
|
|
CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
|
|
llvm::Constant* C = Visit(CLE->getInitializer());
|
|
C = new llvm::GlobalVariable(C->getType(),E->getType().isConstQualified(),
|
|
llvm::GlobalValue::InternalLinkage,
|
|
C, ".compoundliteral", &CGM.getModule());
|
|
return C;
|
|
}
|
|
case Expr::DeclRefExprClass: {
|
|
ValueDecl *Decl = cast<DeclRefExpr>(E)->getDecl();
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl))
|
|
return CGM.GetAddrOfFunctionDecl(FD, false);
|
|
if (const FileVarDecl* VD = dyn_cast<FileVarDecl>(Decl))
|
|
return CGM.GetAddrOfGlobalVar(VD, false);
|
|
// We can end up here with static block-scope variables (and others?)
|
|
// FIXME: How do we implement block-scope variables?!
|
|
break;
|
|
}
|
|
case Expr::MemberExprClass: {
|
|
MemberExpr* ME = cast<MemberExpr>(E);
|
|
llvm::Constant *Base;
|
|
if (ME->isArrow())
|
|
Base = Visit(ME->getBase());
|
|
else
|
|
Base = EmitLValue(ME->getBase());
|
|
|
|
unsigned FieldNumber = CGM.getTypes().getLLVMFieldNo(ME->getMemberDecl());
|
|
llvm::Constant *Zero = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
|
|
llvm::Constant *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty,
|
|
FieldNumber);
|
|
llvm::Value *Ops[] = {Zero, Idx};
|
|
return llvm::ConstantExpr::getGetElementPtr(Base, Ops, 2);
|
|
}
|
|
case Expr::ArraySubscriptExprClass: {
|
|
ArraySubscriptExpr* ASExpr = cast<ArraySubscriptExpr>(E);
|
|
llvm::Constant *Base = Visit(ASExpr->getBase());
|
|
llvm::Constant *Index = Visit(ASExpr->getIdx());
|
|
assert(!ASExpr->getBase()->getType()->isVectorType() &&
|
|
"Taking the address of a vector component is illegal!");
|
|
return llvm::ConstantExpr::getGetElementPtr(Base, &Index, 1);
|
|
}
|
|
case Expr::StringLiteralClass: {
|
|
StringLiteral *String = cast<StringLiteral>(E);
|
|
assert(!String->isWide() && "Cannot codegen wide strings yet");
|
|
const char *StrData = String->getStrData();
|
|
unsigned Len = String->getByteLength();
|
|
|
|
return CGM.GetAddrOfConstantString(std::string(StrData, StrData + Len));
|
|
}
|
|
case Expr::UnaryOperatorClass: {
|
|
UnaryOperator *Exp = cast<UnaryOperator>(E);
|
|
switch (Exp->getOpcode()) {
|
|
default: break;
|
|
case UnaryOperator::Extension:
|
|
// Extension is just a wrapper for expressions
|
|
return EmitLValue(Exp->getSubExpr());
|
|
case UnaryOperator::Real:
|
|
case UnaryOperator::Imag: {
|
|
// The address of __real or __imag is just a GEP off the address
|
|
// of the internal expression
|
|
llvm::Constant* C = EmitLValue(Exp->getSubExpr());
|
|
llvm::Constant *Zero = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
|
|
llvm::Constant *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty,
|
|
Exp->getOpcode() == UnaryOperator::Imag);
|
|
llvm::Value *Ops[] = {Zero, Idx};
|
|
return llvm::ConstantExpr::getGetElementPtr(C, Ops, 2);
|
|
}
|
|
case UnaryOperator::Deref:
|
|
// The address of a deref is just the value of the expression
|
|
return Visit(Exp->getSubExpr());
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
CGM.WarnUnsupported(E, "constant l-value expression");
|
|
llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
|
|
return llvm::UndefValue::get(Ty);
|
|
}
|
|
|
|
};
|
|
|
|
} // end anonymous namespace.
|
|
|
|
|
|
llvm::Constant *CodeGenModule::EmitConstantExpr(const Expr *E)
|
|
{
|
|
QualType type = E->getType().getCanonicalType();
|
|
|
|
if (type->isIntegerType()) {
|
|
llvm::APSInt
|
|
Value(static_cast<uint32_t>(Context.getTypeSize(type, SourceLocation())));
|
|
if (E->isIntegerConstantExpr(Value, Context)) {
|
|
return llvm::ConstantInt::get(Value);
|
|
}
|
|
}
|
|
|
|
return ConstExprEmitter(*this).Visit(const_cast<Expr*>(E));
|
|
}
|