llvm-project/llvm/lib/Target/ARM/ARMScheduleA57.td

1500 lines
63 KiB
TableGen
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//=- ARMScheduleA57.td - ARM Cortex-A57 Scheduling Defs -----*- tablegen -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the machine model for ARM Cortex-A57 to support
// instruction scheduling and other instruction cost heuristics.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// *** Common description and scheduling model parameters taken from AArch64 ***
// The Cortex-A57 is a traditional superscalar microprocessor with a
// conservative 3-wide in-order stage for decode and dispatch. Combined with the
// much wider out-of-order issue stage, this produced a need to carefully
// schedule micro-ops so that all three decoded each cycle are successfully
// issued as the reservation station(s) simply don't stay occupied for long.
// Therefore, IssueWidth is set to the narrower of the two at three, while still
// modeling the machine as out-of-order.
def IsCPSRDefinedAndPredicated : CheckAll<[IsCPSRDefined, IsPredicated]>;
def IsCPSRDefinedAndPredicatedPred :
MCSchedPredicate<IsCPSRDefinedAndPredicated>;
// Cortex A57 rev. r1p0 or later (false = r0px)
def IsR1P0AndLaterPred : MCSchedPredicate<FalsePred>;
def IsLdrAm3RegOffPred : MCSchedPredicate<CheckInvalidRegOperand<2>>;
def IsLdrAm3RegOffPredX2 : MCSchedPredicate<CheckInvalidRegOperand<3>>;
def IsLdrAm3RegOffPredX3 : MCSchedPredicate<CheckInvalidRegOperand<4>>;
// If Addrmode3 contains "minus register"
def IsLdrAm3NegRegOffPred :
SchedPredicate<[{TII->isAddrMode3OpMinusReg(*MI, 1)}]>;
// The same predicate with operand offset 2 and 3:
def IsLdrAm3NegRegOffPredX2 :
SchedPredicate<[{TII->isAddrMode3OpMinusReg(*MI, 2)}]>;
def IsLdrAm3NegRegOffPredX3 :
SchedPredicate<[{TII->isAddrMode3OpMinusReg(*MI, 3)}]>;
// Load, scaled register offset, not plus LSL2
def IsLdstsoScaledNotOptimalPredX0 :
SchedPredicate<[{TII->isLdstScaledRegNotPlusLsl2(*MI, 0)}]>;
def IsLdstsoScaledNotOptimalPred :
SchedPredicate<[{TII->isLdstScaledRegNotPlusLsl2(*MI, 1)}]>;
def IsLdstsoScaledNotOptimalPredX2 :
SchedPredicate<[{TII->isLdstScaledRegNotPlusLsl2(*MI, 2)}]>;
def IsLdstsoScaledPredX2 : MCSchedPredicate<CheckNot<CheckExtNoShift>>;
def IsLdstsoMinusRegPredX0 :
SchedPredicate<[{TII->isLdstSoMinusReg(*MI, 0)}]>;
def IsLdstsoMinusRegPred :
SchedPredicate<[{TII->isLdstSoMinusReg(*MI, 1)}]>;
def IsLdstsoMinusRegPredX2 :
SchedPredicate<[{TII->isLdstSoMinusReg(*MI, 2)}]>;
// Load, scaled register offset
def IsLdrAm2ScaledPred :
SchedPredicate<[{TII->isAm2ScaledReg(*MI, 1)}]>;
// LDM, base reg in list
def IsLDMBaseRegInListPred : MCSchedPredicate<IsLDMBaseRegInList>;
class A57WriteLMOpsListType<list<SchedWriteRes> writes> {
list <SchedWriteRes> Writes = writes;
SchedMachineModel SchedModel = ?;
}
// *** Common description and scheduling model parameters taken from AArch64 ***
// (AArch64SchedA57.td)
def CortexA57Model : SchedMachineModel {
let IssueWidth = 3; // 3-way decode and dispatch
let MicroOpBufferSize = 128; // 128 micro-op re-order buffer
let LoadLatency = 4; // Optimistic load latency
let MispredictPenalty = 16; // Fetch + Decode/Rename/Dispatch + Branch
// Enable partial & runtime unrolling.
let LoopMicroOpBufferSize = 16;
let CompleteModel = 1;
// FIXME: Remove when all errors have been fixed.
let FullInstRWOverlapCheck = 0;
let UnsupportedFeatures = [HasV8_1MMainline, HasMVEInt, HasMVEFloat,
HasFPRegsV8_1M, HasFP16FML, HasMatMulInt8, HasBF16];
}
//===----------------------------------------------------------------------===//
// Define each kind of processor resource and number available on Cortex-A57.
// Cortex A-57 has 8 pipelines that each has its own 8-entry queue where
// micro-ops wait for their operands and then issue out-of-order.
def A57UnitB : ProcResource<1>; // Type B micro-ops
def A57UnitI : ProcResource<2>; // Type I micro-ops
def A57UnitM : ProcResource<1>; // Type M micro-ops
def A57UnitL : ProcResource<1>; // Type L micro-ops
def A57UnitS : ProcResource<1>; // Type S micro-ops
def A57UnitX : ProcResource<1>; // Type X micro-ops (F1)
def A57UnitW : ProcResource<1>; // Type W micro-ops (F0)
let SchedModel = CortexA57Model in {
def A57UnitV : ProcResGroup<[A57UnitX, A57UnitW]>; // Type V micro-ops
}
let SchedModel = CortexA57Model in {
//===----------------------------------------------------------------------===//
// Define customized scheduler read/write types specific to the Cortex-A57.
include "ARMScheduleA57WriteRes.td"
// To have "CompleteModel = 1", support of pseudos and special instructions
def : InstRW<[WriteNoop], (instregex "(t)?BKPT$", "(t2)?CDP(2)?$",
"(t2)?CLREX$", "CONSTPOOL_ENTRY$", "COPY_STRUCT_BYVAL_I32$",
"(t2)?CPS[123]p$", "(t2)?DBG$", "(t2)?DMB$", "(t2)?DSB$", "ERET$",
"(t2|t)?HINT$", "(t)?HLT$", "(t2)?HVC$", "(t2)?ISB$", "ITasm$",
"(t2)?RFE(DA|DB|IA|IB)", "(t)?SETEND", "(t2)?SETPAN", "(t2)?SMC", "SPACE",
"(t2)?SRS(DA|DB|IA|IB)", "SWP(B)?", "t?TRAP", "(t2|t)?UDF$", "t2DCPS", "t2SG",
"t2TT", "tCPS", "CMP_SWAP", "t?SVC", "t2IT", "CompilerBarrier",
"t__brkdiv0")>;
def : InstRW<[WriteNoop], (instregex "VMRS", "VMSR", "FMSTAT")>;
// Specific memory instrs
def : InstRW<[WriteNoop, WriteNoop], (instregex "(t2)?LDA", "(t2)?LDC", "(t2)?STC",
"(t2)?STL", "(t2)?LDREX", "(t2)?STREX", "MEMCPY")>;
// coprocessor moves
def : InstRW<[WriteNoop, WriteNoop], (instregex
"(t2)?MCR(2|R|R2)?$", "(t2)?MRC(2)?$",
"(t2)?MRRC(2)?$", "(t2)?MRS(banked|sys|_AR|_M|sys_AR)?$",
"(t2)?MSR(banked|i|_AR|_M)?$")>;
// Deprecated instructions
def : InstRW<[WriteNoop], (instregex "FLDM", "FSTM")>;
// Pseudos
def : InstRW<[WriteNoop], (instregex "(t2)?ABS$",
"(t)?ADJCALLSTACKDOWN$", "(t)?ADJCALLSTACKUP$", "(t2|t)?Int_eh_sjlj",
"tLDRpci_pic", "(t2)?SUBS_PC_LR",
"JUMPTABLE", "tInt_WIN_eh_sjlj_longjmp",
"VLD(1|2)LN(d|q)(WB_fixed_|WB_register_)?Asm",
"VLD(3|4)(DUP|LN)?(d|q)(WB_fixed_|WB_register_)?Asm",
"VST(1|2)LN(d|q)(WB_fixed_|WB_register_)?Asm",
"VST(3|4)(DUP|LN)?(d|q)(WB_fixed_|WB_register_)?Asm",
"WIN__CHKSTK", "WIN__DBZCHK")>;
// Miscellaneous
// -----------------------------------------------------------------------------
def : InstRW<[A57Write_1cyc_1I], (instrs COPY)>;
// --- 3.2 Branch Instructions ---
// B, BX, BL, BLX (imm, reg != LR, reg == LR), CBZ, CBNZ
def : InstRW<[A57Write_1cyc_1B], (instregex "(t2|t)?B$", "t?BX", "(t2|t)?Bcc$",
"t?TAILJMP(d|r)", "TCRETURN(d|r)i", "tBfar", "tCBN?Z")>;
def : InstRW<[A57Write_1cyc_1B_1I],
(instregex "t?BL$", "BL_pred$", "t?BLXi", "t?TPsoft")>;
def : InstRW<[A57Write_2cyc_1B_1I], (instregex "BLX", "tBLX(NS)?r")>;
// Pseudos
def : InstRW<[A57Write_2cyc_1B_1I], (instregex "BCCi64", "BCCZi64")>;
def : InstRW<[A57Write_3cyc_1B_1I], (instregex "BR_JTadd", "t?BR_JTr",
"t2BR_JT", "t2BXJ", "(t2)?TB(B|H)(_JT)?$", "tBRIND")>;
def : InstRW<[A57Write_6cyc_1B_1L], (instregex "BR_JTm")>;
// --- 3.3 Arithmetic and Logical Instructions ---
// ADD{S}, ADC{S}, ADR, AND{S}, BIC{S}, CMN, CMP, EOR{S}, ORN{S}, ORR{S},
// RSB{S}, RSC{S}, SUB{S}, SBC{S}, TEQ, TST
def : InstRW<[A57Write_1cyc_1I], (instregex "tADDframe")>;
// shift by register, conditional or unconditional
// TODO: according to the doc, conditional uses I0/I1, unconditional uses M
// Why more complex instruction uses more simple pipeline?
// May be an error in doc.
def A57WriteALUsi : SchedWriteVariant<[
// lsl #2, lsl #1, or lsr #1.
SchedVar<IsPredicatedPred, [A57Write_2cyc_1M]>,
SchedVar<NoSchedPred, [A57Write_2cyc_1M]>
]>;
def A57WriteALUsr : SchedWriteVariant<[
SchedVar<IsPredicatedPred, [A57Write_2cyc_1I]>,
SchedVar<NoSchedPred, [A57Write_2cyc_1M]>
]>;
def A57WriteALUSsr : SchedWriteVariant<[
SchedVar<IsPredicatedPred, [A57Write_2cyc_1I]>,
SchedVar<NoSchedPred, [A57Write_2cyc_1M]>
]>;
def A57ReadALUsr : SchedReadVariant<[
SchedVar<IsPredicatedPred, [ReadDefault]>,
SchedVar<NoSchedPred, [ReadDefault]>
]>;
def : SchedAlias<WriteALUsi, A57WriteALUsi>;
def : SchedAlias<WriteALUsr, A57WriteALUsr>;
def : SchedAlias<WriteALUSsr, A57WriteALUSsr>;
def : SchedAlias<ReadALUsr, A57ReadALUsr>;
def A57WriteCMPsr : SchedWriteVariant<[
SchedVar<IsPredicatedPred, [A57Write_2cyc_1I]>,
SchedVar<NoSchedPred, [A57Write_2cyc_1M]>
]>;
def : SchedAlias<WriteCMP, A57Write_1cyc_1I>;
def : SchedAlias<WriteCMPsi, A57Write_2cyc_1M>;
def : SchedAlias<WriteCMPsr, A57WriteCMPsr>;
// --- 3.4 Move and Shift Instructions ---
// Move, basic
// MOV{S}, MOVW, MVN{S}
def : InstRW<[A57Write_1cyc_1I], (instregex "MOV(r|i|i16|r_TC)",
"(t2)?MVN(CC)?(r|i)", "BMOVPCB_CALL", "BMOVPCRX_CALL",
"MOVCC(r|i|i16|i32imm)", "tMOV", "tMVN")>;
// Move, shift by immed, setflags/no setflags
// (ASR, LSL, LSR, ROR, RRX)=MOVsi, MVN
// setflags = isCPSRDefined
def A57WriteMOVsi : SchedWriteVariant<[
SchedVar<IsCPSRDefinedPred, [A57Write_2cyc_1M]>,
SchedVar<NoSchedPred, [A57Write_1cyc_1I]>
]>;
def : InstRW<[A57WriteMOVsi], (instregex "MOV(CC)?si", "MVNsi",
"ASRi", "(t2|t)ASRri", "LSRi", "(t2|t)LSRri", "LSLi", "(t2|t)LSLri", "RORi",
"(t2|t)RORri", "(t2)?RRX", "t2MOV", "tROR")>;
// shift by register, conditional or unconditional, setflags/no setflags
def A57WriteMOVsr : SchedWriteVariant<[
SchedVar<IsCPSRDefinedAndPredicatedPred, [A57Write_2cyc_1I]>,
SchedVar<IsCPSRDefinedPred, [A57Write_2cyc_1M]>,
SchedVar<IsPredicatedPred, [A57Write_2cyc_1I]>,
SchedVar<NoSchedPred, [A57Write_1cyc_1I]>
]>;
def : InstRW<[A57WriteMOVsr], (instregex "MOV(CC)?sr", "MVNsr", "t2MVNs",
"ASRr", "(t2|t)ASRrr", "LSRr", "(t2|t)LSRrr", "LSLr", "(t2|t)?LSLrr", "RORr",
"(t2|t)RORrr")>;
// Move, top
// MOVT - A57Write_2cyc_1M for r0px, A57Write_1cyc_1I for r1p0 and later
def A57WriteMOVT : SchedWriteVariant<[
SchedVar<IsR1P0AndLaterPred, [A57Write_1cyc_1I]>,
SchedVar<NoSchedPred, [A57Write_2cyc_1M]>
]>;
def : InstRW<[A57WriteMOVT], (instregex "MOVTi16")>;
def A57WriteI2pc :
WriteSequence<[A57Write_1cyc_1I, A57Write_1cyc_1I, A57Write_1cyc_1I]>;
def A57WriteI2ld :
WriteSequence<[A57Write_1cyc_1I, A57Write_1cyc_1I, A57Write_4cyc_1L]>;
def : InstRW< [A57WriteI2pc], (instregex "MOV_ga_pcrel")>;
def : InstRW< [A57WriteI2ld], (instregex "MOV_ga_pcrel_ldr")>;
// +2cyc for branch forms
def : InstRW<[A57Write_3cyc_1I], (instregex "MOVPC(LR|RX)")>;
// --- 3.5 Divide and Multiply Instructions ---
// Divide: SDIV, UDIV
// latency from documentration: 4 ­ 20, maximum taken
def : SchedAlias<WriteDIV, A57Write_20cyc_1M>;
// Multiply: tMul not bound to common WriteRes types
def : InstRW<[A57Write_3cyc_1M], (instregex "tMUL")>;
def : SchedAlias<WriteMUL16, A57Write_3cyc_1M>;
def : SchedAlias<WriteMUL32, A57Write_3cyc_1M>;
def : ReadAdvance<ReadMUL, 0>;
// Multiply accumulate: MLA, MLS, SMLABB, SMLABT, SMLATB, SMLATT, SMLAWB,
// SMLAWT, SMLAD{X}, SMLSD{X}, SMMLA{R}, SMMLS{R}
// Multiply-accumulate pipelines support late-forwarding of accumulate operands
// from similar μops, allowing a typical sequence of multiply-accumulate μops
// to issue one every 1 cycle (sched advance = 2).
def A57WriteMLA : SchedWriteRes<[A57UnitM]> { let Latency = 3; }
def A57WriteMLAL : SchedWriteRes<[A57UnitM]> { let Latency = 4; }
def A57ReadMLA : SchedReadAdvance<2, [A57WriteMLA, A57WriteMLAL]>;
def : InstRW<[A57WriteMLA],
(instregex "t2SMLAD", "t2SMLADX", "t2SMLSD", "t2SMLSDX")>;
def : SchedAlias<WriteMAC16, A57WriteMLA>;
def : SchedAlias<WriteMAC32, A57WriteMLA>;
def : SchedAlias<ReadMAC, A57ReadMLA>;
def : SchedAlias<WriteMAC64Lo, A57WriteMLAL>;
def : SchedAlias<WriteMAC64Hi, A57WriteMLAL>;
// Multiply long: SMULL, UMULL
def : SchedAlias<WriteMUL64Lo, A57Write_4cyc_1M>;
def : SchedAlias<WriteMUL64Hi, A57Write_4cyc_1M>;
// --- 3.6 Saturating and Parallel Arithmetic Instructions ---
// Parallel arith
// SADD16, SADD8, SSUB16, SSUB8, UADD16, UADD8, USUB16, USUB8
// Conditional GE-setting instructions require three extra μops
// and two additional cycles to conditionally update the GE field.
def A57WriteParArith : SchedWriteVariant<[
SchedVar<IsPredicatedPred, [A57Write_4cyc_1I_1M]>,
SchedVar<NoSchedPred, [A57Write_2cyc_1I_1M]>
]>;
def : InstRW< [A57WriteParArith], (instregex
"(t2)?SADD(16|8)", "(t2)?SSUB(16|8)",
"(t2)?UADD(16|8)", "(t2)?USUB(16|8)")>;
// Parallel arith with exchange: SASX, SSAX, UASX, USAX
def A57WriteParArithExch : SchedWriteVariant<[
SchedVar<IsPredicatedPred, [A57Write_5cyc_1I_1M]>,
SchedVar<NoSchedPred, [A57Write_3cyc_1I_1M]>
]>;
def : InstRW<[A57WriteParArithExch],
(instregex "(t2)?SASX", "(t2)?SSAX", "(t2)?UASX", "(t2)?USAX")>;
// Parallel halving arith
// SHADD16, SHADD8, SHSUB16, SHSUB8, UHADD16, UHADD8, UHSUB16, UHSUB8
def : InstRW<[A57Write_2cyc_1M], (instregex
"(t2)?SHADD(16|8)", "(t2)?SHSUB(16|8)",
"(t2)?UHADD(16|8)", "(t2)?UHSUB(16|8)")>;
// Parallel halving arith with exchange
// SHASX, SHSAX, UHASX, UHSAX
def : InstRW<[A57Write_3cyc_1I_1M], (instregex "(t2)?SHASX", "(t2)?SHSAX",
"(t2)?UHASX", "(t2)?UHSAX")>;
// Parallel saturating arith
// QADD16, QADD8, QSUB16, QSUB8, UQADD16, UQADD8, UQSUB16, UQSUB8
def : InstRW<[A57Write_2cyc_1M], (instregex "QADD(16|8)", "QSUB(16|8)",
"UQADD(16|8)", "UQSUB(16|8)", "t2(U?)QADD", "t2(U?)QSUB")>;
// Parallel saturating arith with exchange
// QASX, QSAX, UQASX, UQSAX
def : InstRW<[A57Write_3cyc_1I_1M], (instregex "(t2)?QASX", "(t2)?QSAX",
"(t2)?UQASX", "(t2)?UQSAX")>;
// Saturate: SSAT, SSAT16, USAT, USAT16
def : InstRW<[A57Write_2cyc_1M],
(instregex "(t2)?SSAT(16)?", "(t2)?USAT(16)?")>;
// Saturating arith: QADD, QSUB
def : InstRW<[A57Write_2cyc_1M], (instregex "QADD$", "QSUB$")>;
// Saturating doubling arith: QDADD, QDSUB
def : InstRW<[A57Write_3cyc_1I_1M], (instregex "(t2)?QDADD", "(t2)?QDSUB")>;
// --- 3.7 Miscellaneous Data-Processing Instructions ---
// Bit field extract: SBFX, UBFX
def : InstRW<[A57Write_1cyc_1I], (instregex "(t2)?SBFX", "(t2)?UBFX")>;
// Bit field insert/clear: BFI, BFC
def : InstRW<[A57Write_2cyc_1M], (instregex "(t2)?BFI", "(t2)?BFC")>;
// Select bytes, conditional/unconditional
def A57WriteSEL : SchedWriteVariant<[
SchedVar<IsPredicatedPred, [A57Write_2cyc_1I]>,
SchedVar<NoSchedPred, [A57Write_1cyc_1I]>
]>;
def : InstRW<[A57WriteSEL], (instregex "(t2)?SEL")>;
// Sign/zero extend, normal: SXTB, SXTH, UXTB, UXTH
def : InstRW<[A57Write_1cyc_1I],
(instregex "(t2|t)?SXT(B|H)$", "(t2|t)?UXT(B|H)$")>;
// Sign/zero extend and add, normal: SXTAB, SXTAH, UXTAB, UXTAH
def : InstRW<[A57Write_2cyc_1M],
(instregex "(t2)?SXTA(B|H)$", "(t2)?UXTA(B|H)$")>;
// Sign/zero extend and add, parallel: SXTAB16, UXTAB16
def : InstRW<[A57Write_4cyc_1M], (instregex "(t2)?SXTAB16", "(t2)?UXTAB16")>;
// Sum of absolute differences: USAD8, USADA8
def : InstRW<[A57Write_3cyc_1M], (instregex "(t2)?USAD8", "(t2)?USADA8")>;
// --- 3.8 Load Instructions ---
// Load, immed offset
// LDR and LDRB have LDRi12 and LDRBi12 forms for immediate
def : InstRW<[A57Write_4cyc_1L], (instregex "LDRi12", "LDRBi12",
"LDRcp", "(t2|t)?LDRConstPool", "LDRLIT_ga_(pcrel|abs)",
"PICLDR", "tLDR")>;
def : InstRW<[A57Write_4cyc_1L],
(instregex "t2LDRS?(B|H)?(pcrel|T|i8|i12|pci|pci_pic|s)?$")>;
// For "Load, register offset, minus" we need +1cyc, +1I
def A57WriteLdrAm3 : SchedWriteVariant<[
SchedVar<IsLdrAm3NegRegOffPred, [A57Write_5cyc_1I_1L]>,
SchedVar<NoSchedPred, [A57Write_4cyc_1L]>
]>;
def : InstRW<[A57WriteLdrAm3], (instregex "LDR(H|SH|SB)$")>;
def A57WriteLdrAm3X2 : SchedWriteVariant<[
SchedVar<IsLdrAm3NegRegOffPredX2, [A57Write_5cyc_1I_1L]>,
SchedVar<NoSchedPred, [A57Write_4cyc_1L]>
]>;
def : InstRW<[A57WriteLdrAm3X2, A57WriteLdrAm3X2], (instregex "LDRD$")>;
def : InstRW<[A57Write_4cyc_1L, A57Write_4cyc_1L], (instregex "t2LDRDi8")>;
def A57WriteLdrAmLDSTSO : SchedWriteVariant<[
SchedVar<IsLdstsoScaledNotOptimalPred, [A57Write_5cyc_1I_1L]>,
SchedVar<IsLdstsoMinusRegPred, [A57Write_5cyc_1I_1L]>,
SchedVar<NoSchedPred, [A57Write_4cyc_1L]>
]>;
def : InstRW<[A57WriteLdrAmLDSTSO], (instregex "LDRrs", "LDRBrs")>;
def A57WrBackOne : SchedWriteRes<[]> {
let Latency = 1;
let NumMicroOps = 0;
}
def A57WrBackTwo : SchedWriteRes<[]> {
let Latency = 2;
let NumMicroOps = 0;
}
def A57WrBackThree : SchedWriteRes<[]> {
let Latency = 3;
let NumMicroOps = 0;
}
// --- LDR pre-indexed ---
// Load, immed pre-indexed (4 cyc for load result, 1 cyc for Base update)
def : InstRW<[A57Write_4cyc_1L_1I, A57WrBackOne], (instregex "LDR_PRE_IMM",
"LDRB_PRE_IMM", "t2LDRB_PRE")>;
// Load, register pre-indexed (4 cyc for load result, 2 cyc for Base update)
// (5 cyc load result for not-lsl2 scaled)
def A57WriteLdrAmLDSTSOPre : SchedWriteVariant<[
SchedVar<IsLdstsoScaledNotOptimalPredX2, [A57Write_5cyc_1I_1L]>,
SchedVar<NoSchedPred, [A57Write_4cyc_1L_1I]>
]>;
def : InstRW<[A57WriteLdrAmLDSTSOPre, A57WrBackTwo],
(instregex "LDR_PRE_REG", "LDRB_PRE_REG")>;
def A57WriteLdrAm3PreWrBack : SchedWriteVariant<[
SchedVar<IsLdrAm3RegOffPredX2, [A57WrBackTwo]>,
SchedVar<NoSchedPred, [A57WrBackOne]>
]>;
def : InstRW<[A57Write_4cyc_1L, A57WriteLdrAm3PreWrBack],
(instregex "LDR(H|SH|SB)_PRE")>;
def : InstRW<[A57Write_4cyc_1L, A57WrBackOne],
(instregex "t2LDR(H|SH|SB)?_PRE")>;
// LDRD pre-indexed: 5(2) cyc for reg, 4(1) cyc for imm.
def A57WriteLdrDAm3Pre : SchedWriteVariant<[
SchedVar<IsLdrAm3RegOffPredX3, [A57Write_5cyc_1I_1L]>,
SchedVar<NoSchedPred, [A57Write_4cyc_1L_1I]>
]>;
def A57WriteLdrDAm3PreWrBack : SchedWriteVariant<[
SchedVar<IsLdrAm3RegOffPredX3, [A57WrBackTwo]>,
SchedVar<NoSchedPred, [A57WrBackOne]>
]>;
def : InstRW<[A57WriteLdrDAm3Pre, A57WriteLdrDAm3Pre, A57WriteLdrDAm3PreWrBack],
(instregex "LDRD_PRE")>;
def : InstRW<[A57Write_4cyc_1L_1I, A57Write_4cyc_1L_1I, A57WrBackOne],
(instregex "t2LDRD_PRE")>;
// --- LDR post-indexed ---
def : InstRW<[A57Write_4cyc_1L_1I, A57WrBackOne], (instregex "LDR(T?)_POST_IMM",
"LDRB(T?)_POST_IMM", "LDR(SB|H|SH)Ti", "t2LDRB_POST")>;
def A57WriteLdrAm3PostWrBack : SchedWriteVariant<[
SchedVar<IsLdrAm3RegOffPred, [A57WrBackTwo]>,
SchedVar<NoSchedPred, [A57WrBackOne]>
]>;
def : InstRW<[A57Write_4cyc_1L_1I, A57WriteLdrAm3PostWrBack],
(instregex "LDR(H|SH|SB)_POST")>;
def : InstRW<[A57Write_4cyc_1L, A57WrBackOne],
(instregex "t2LDR(H|SH|SB)?_POST")>;
def : InstRW<[A57Write_4cyc_1L_1I, A57WrBackTwo], (instregex "LDR_POST_REG",
"LDRB_POST_REG", "LDR(B?)T_POST$")>;
def A57WriteLdrTRegPost : SchedWriteVariant<[
SchedVar<IsLdrAm2ScaledPred, [A57Write_4cyc_1I_1L_1M]>,
SchedVar<NoSchedPred, [A57Write_4cyc_1L_1I]>
]>;
def A57WriteLdrTRegPostWrBack : SchedWriteVariant<[
SchedVar<IsLdrAm2ScaledPred, [A57WrBackThree]>,
SchedVar<NoSchedPred, [A57WrBackTwo]>
]>;
// 4(3) "I0/I1,L,M" for scaled register, otherwise 4(2) "I0/I1,L"
def : InstRW<[A57WriteLdrTRegPost, A57WriteLdrTRegPostWrBack],
(instregex "LDRT_POST_REG", "LDRBT_POST_REG")>;
def : InstRW<[A57Write_4cyc_1L_1I, A57WrBackTwo], (instregex "LDR(SB|H|SH)Tr")>;
def A57WriteLdrAm3PostWrBackX3 : SchedWriteVariant<[
SchedVar<IsLdrAm3RegOffPredX3, [A57WrBackTwo]>,
SchedVar<NoSchedPred, [A57WrBackOne]>
]>;
// LDRD post-indexed: 4(2) cyc for reg, 4(1) cyc for imm.
def : InstRW<[A57Write_4cyc_1L_1I, A57Write_4cyc_1L_1I,
A57WriteLdrAm3PostWrBackX3], (instregex "LDRD_POST")>;
def : InstRW<[A57Write_4cyc_1L_1I, A57Write_4cyc_1L_1I, A57WrBackOne],
(instregex "t2LDRD_POST")>;
// --- Preload instructions ---
// Preload, immed offset
def : InstRW<[A57Write_4cyc_1L], (instregex "(t2)?PLDi12", "(t2)?PLDWi12",
"t2PLDW?(i8|pci|s)", "(t2)?PLI")>;
// Preload, register offset,
// 5cyc "I0/I1,L" for minus reg or scaled not plus lsl2
// otherwise 4cyc "L"
def A57WritePLD : SchedWriteVariant<[
SchedVar<IsLdstsoScaledNotOptimalPredX0, [A57Write_5cyc_1I_1L]>,
SchedVar<IsLdstsoMinusRegPredX0, [A57Write_5cyc_1I_1L]>,
SchedVar<NoSchedPred, [A57Write_4cyc_1L]>
]>;
def : InstRW<[A57WritePLD], (instregex "PLDrs", "PLDWrs")>;
// --- Load multiple instructions ---
foreach NumAddr = 1-8 in {
def A57LMAddrPred#NumAddr : MCSchedPredicate<CheckAny<[
CheckNumOperands<!add(!shl(NumAddr, 1), 2)>,
CheckNumOperands<!add(!shl(NumAddr, 1), 3)>]>>;
def A57LMAddrUpdPred#NumAddr : MCSchedPredicate<CheckAny<[
CheckNumOperands<!add(!shl(NumAddr, 1), 3)>,
CheckNumOperands<!add(!shl(NumAddr, 1), 4)>]>>;
}
def A57LDMOpsListNoregin : A57WriteLMOpsListType<
[A57Write_3cyc_1L, A57Write_3cyc_1L,
A57Write_4cyc_1L, A57Write_4cyc_1L,
A57Write_5cyc_1L, A57Write_5cyc_1L,
A57Write_6cyc_1L, A57Write_6cyc_1L,
A57Write_7cyc_1L, A57Write_7cyc_1L,
A57Write_8cyc_1L, A57Write_8cyc_1L,
A57Write_9cyc_1L, A57Write_9cyc_1L,
A57Write_10cyc_1L, A57Write_10cyc_1L]>;
def A57WriteLDMnoreginlist : SchedWriteVariant<[
SchedVar<A57LMAddrPred1, A57LDMOpsListNoregin.Writes[0-1]>,
SchedVar<A57LMAddrPred2, A57LDMOpsListNoregin.Writes[0-3]>,
SchedVar<A57LMAddrPred3, A57LDMOpsListNoregin.Writes[0-5]>,
SchedVar<A57LMAddrPred4, A57LDMOpsListNoregin.Writes[0-7]>,
SchedVar<A57LMAddrPred5, A57LDMOpsListNoregin.Writes[0-9]>,
SchedVar<A57LMAddrPred6, A57LDMOpsListNoregin.Writes[0-11]>,
SchedVar<A57LMAddrPred7, A57LDMOpsListNoregin.Writes[0-13]>,
SchedVar<A57LMAddrPred8, A57LDMOpsListNoregin.Writes[0-15]>,
SchedVar<NoSchedPred, A57LDMOpsListNoregin.Writes[0-15]>
]> { let Variadic=1; }
def A57LDMOpsListRegin : A57WriteLMOpsListType<
[A57Write_4cyc_1L_1I, A57Write_4cyc_1L_1I,
A57Write_5cyc_1L_1I, A57Write_5cyc_1L_1I,
A57Write_6cyc_1L_1I, A57Write_6cyc_1L_1I,
A57Write_7cyc_1L_1I, A57Write_7cyc_1L_1I,
A57Write_8cyc_1L_1I, A57Write_8cyc_1L_1I,
A57Write_9cyc_1L_1I, A57Write_9cyc_1L_1I,
A57Write_10cyc_1L_1I, A57Write_10cyc_1L_1I,
A57Write_11cyc_1L_1I, A57Write_11cyc_1L_1I]>;
def A57WriteLDMreginlist : SchedWriteVariant<[
SchedVar<A57LMAddrPred1, A57LDMOpsListRegin.Writes[0-1]>,
SchedVar<A57LMAddrPred2, A57LDMOpsListRegin.Writes[0-3]>,
SchedVar<A57LMAddrPred3, A57LDMOpsListRegin.Writes[0-5]>,
SchedVar<A57LMAddrPred4, A57LDMOpsListRegin.Writes[0-7]>,
SchedVar<A57LMAddrPred5, A57LDMOpsListRegin.Writes[0-9]>,
SchedVar<A57LMAddrPred6, A57LDMOpsListRegin.Writes[0-11]>,
SchedVar<A57LMAddrPred7, A57LDMOpsListRegin.Writes[0-13]>,
SchedVar<A57LMAddrPred8, A57LDMOpsListRegin.Writes[0-15]>,
SchedVar<NoSchedPred, A57LDMOpsListRegin.Writes[0-15]>
]> { let Variadic=1; }
def A57LDMOpsList_Upd : A57WriteLMOpsListType<
[A57WrBackOne,
A57Write_3cyc_1L_1I, A57Write_3cyc_1L_1I,
A57Write_4cyc_1L_1I, A57Write_4cyc_1L_1I,
A57Write_5cyc_1L_1I, A57Write_5cyc_1L_1I,
A57Write_6cyc_1L_1I, A57Write_6cyc_1L_1I,
A57Write_7cyc_1L_1I, A57Write_7cyc_1L_1I,
A57Write_8cyc_1L_1I, A57Write_8cyc_1L_1I,
A57Write_9cyc_1L_1I, A57Write_9cyc_1L_1I,
A57Write_10cyc_1L_1I, A57Write_10cyc_1L_1I]>;
def A57WriteLDM_Upd : SchedWriteVariant<[
SchedVar<A57LMAddrUpdPred1, A57LDMOpsList_Upd.Writes[0-2]>,
SchedVar<A57LMAddrUpdPred2, A57LDMOpsList_Upd.Writes[0-4]>,
SchedVar<A57LMAddrUpdPred3, A57LDMOpsList_Upd.Writes[0-6]>,
SchedVar<A57LMAddrUpdPred4, A57LDMOpsList_Upd.Writes[0-8]>,
SchedVar<A57LMAddrUpdPred5, A57LDMOpsList_Upd.Writes[0-10]>,
SchedVar<A57LMAddrUpdPred6, A57LDMOpsList_Upd.Writes[0-12]>,
SchedVar<A57LMAddrUpdPred7, A57LDMOpsList_Upd.Writes[0-14]>,
SchedVar<A57LMAddrUpdPred8, A57LDMOpsList_Upd.Writes[0-16]>,
SchedVar<NoSchedPred, A57LDMOpsList_Upd.Writes[0-16]>
]> { let Variadic=1; }
def A57WriteLDM : SchedWriteVariant<[
SchedVar<IsLDMBaseRegInListPred, [A57WriteLDMreginlist]>,
SchedVar<NoSchedPred, [A57WriteLDMnoreginlist]>
]> { let Variadic=1; }
def : InstRW<[A57WriteLDM], (instregex "(t|t2|sys)?LDM(IA|DA|DB|IB)$")>;
// TODO: no writeback latency defined in documentation (implemented as 1 cyc)
def : InstRW<[A57WriteLDM_Upd],
(instregex "(t|t2|sys)?LDM(IA_UPD|DA_UPD|DB_UPD|IB_UPD|IA_RET)", "tPOP")>;
def : InstRW<[A57Write_5cyc_1L], (instregex "VLLDM")>;
// --- 3.9 Store Instructions ---
// Store, immed offset
def : InstRW<[A57Write_1cyc_1S], (instregex "STRi12", "STRBi12", "PICSTR",
"t2STR(B?)(T|i12|i8|s)", "t2STRDi8", "t2STRH(i12|i8|s)", "tSTR")>;
// Store, register offset
// For minus or for not plus lsl2 scaled we need 3cyc "I0/I1, S",
// otherwise 1cyc S.
def A57WriteStrAmLDSTSO : SchedWriteVariant<[
SchedVar<IsLdstsoScaledNotOptimalPred, [A57Write_3cyc_1I_1S]>,
SchedVar<IsLdstsoMinusRegPred, [A57Write_3cyc_1I_1S]>,
SchedVar<NoSchedPred, [A57Write_1cyc_1S]>
]>;
def : InstRW<[A57WriteStrAmLDSTSO], (instregex "STRrs", "STRBrs")>;
// STRH,STRD: 3cyc "I0/I1, S" for minus reg, 1cyc S for imm or for plus reg.
def A57WriteStrAm3 : SchedWriteVariant<[
SchedVar<IsLdrAm3NegRegOffPred, [A57Write_3cyc_1I_1S]>,
SchedVar<NoSchedPred, [A57Write_1cyc_1S]>
]>;
def : InstRW<[A57WriteStrAm3], (instregex "STRH$")>;
def A57WriteStrAm3X2 : SchedWriteVariant<[
SchedVar<IsLdrAm3NegRegOffPredX2, [A57Write_3cyc_1I_1S]>,
SchedVar<NoSchedPred, [A57Write_1cyc_1S]>
]>;
def : InstRW<[A57WriteStrAm3X2], (instregex "STRD$")>;
// Store, immed pre-indexed (1cyc "S, I0/I1", 1cyc writeback)
def : InstRW<[A57WrBackOne, A57Write_1cyc_1S_1I], (instregex "STR_PRE_IMM",
"STRB_PRE_IMM", "STR(B)?(r|i)_preidx", "(t2)?STRH_(preidx|PRE)",
"t2STR(B?)_(PRE|preidx)", "t2STRD_PRE")>;
// Store, register pre-indexed:
// 1(1) "S, I0/I1" for plus reg
// 3(2) "I0/I1, S" for minus reg
// 1(2) "S, M" for scaled plus lsl2
// 3(2) "I0/I1, S" for other scaled
def A57WriteStrAmLDSTSOPre : SchedWriteVariant<[
SchedVar<IsLdstsoScaledNotOptimalPredX2, [A57Write_3cyc_1I_1S]>,
SchedVar<IsLdstsoMinusRegPredX2, [A57Write_3cyc_1I_1S]>,
SchedVar<IsLdstsoScaledPredX2, [A57Write_1cyc_1S_1M]>,
SchedVar<NoSchedPred, [A57Write_1cyc_1S_1I]>
]>;
def A57WriteStrAmLDSTSOPreWrBack : SchedWriteVariant<[
SchedVar<IsLdstsoScaledPredX2, [A57WrBackTwo]>,
SchedVar<IsLdstsoMinusRegPredX2, [A57WrBackTwo]>,
SchedVar<NoSchedPred, [A57WrBackOne]>
]>;
def : InstRW<[A57WriteStrAmLDSTSOPreWrBack, A57WriteStrAmLDSTSOPre],
(instregex "STR_PRE_REG", "STRB_PRE_REG")>;
// pre-indexed STRH/STRD (STRH_PRE, STRD_PRE)
// 1(1) "S, I0/I1" for imm or reg plus
// 3(2) "I0/I1, S" for reg minus
def A57WriteStrAm3PreX2 : SchedWriteVariant<[
SchedVar<IsLdrAm3NegRegOffPredX2, [A57Write_3cyc_1I_1S]>,
SchedVar<NoSchedPred, [A57Write_1cyc_1S_1I]>
]>;
def A57WriteStrAm3PreWrBackX2 : SchedWriteVariant<[
SchedVar<IsLdrAm3NegRegOffPredX2, [A57WrBackTwo]>,
SchedVar<NoSchedPred, [A57WrBackOne]>
]>;
def : InstRW<[A57WriteStrAm3PreWrBackX2, A57WriteStrAm3PreX2],
(instregex "STRH_PRE")>;
def A57WriteStrAm3PreX3 : SchedWriteVariant<[
SchedVar<IsLdrAm3NegRegOffPredX3, [A57Write_3cyc_1I_1S]>,
SchedVar<NoSchedPred, [A57Write_1cyc_1S_1I]>
]>;
def A57WriteStrAm3PreWrBackX3 : SchedWriteVariant<[
SchedVar<IsLdrAm3NegRegOffPredX3, [A57WrBackTwo]>,
SchedVar<NoSchedPred, [A57WrBackOne]>
]>;
def : InstRW<[A57WriteStrAm3PreWrBackX3, A57WriteStrAm3PreX3],
(instregex "STRD_PRE")>;
def : InstRW<[A57WrBackOne, A57Write_1cyc_1S_1I], (instregex "STR(T?)_POST_IMM",
"STRB(T?)_POST_IMM", "t2STR(B?)_POST")>;
// 1(2) "S, M" for STR/STRB register post-indexed (both scaled or not)
def : InstRW<[A57WrBackTwo, A57Write_1cyc_1S_1M], (instregex "STR(T?)_POST_REG",
"STRB(T?)_POST_REG", "STR(B?)T_POST$")>;
// post-indexed STRH/STRD(STRH_POST, STRD_POST), STRHTi, STRHTr
// 1(1) "S, I0/I1" both for reg or imm
def : InstRW<[A57WrBackOne, A57Write_1cyc_1S_1I],
(instregex "(t2)?STR(H|D)_POST", "STRHT(i|r)", "t2STRHT")>;
// --- Store multiple instructions ---
// TODO: no writeback latency defined in documentation
def A57WriteSTM : SchedWriteVariant<[
SchedVar<A57LMAddrPred1, [A57Write_1cyc_1S]>,
SchedVar<A57LMAddrPred2, [A57Write_2cyc_1S]>,
SchedVar<A57LMAddrPred3, [A57Write_3cyc_1S]>,
SchedVar<A57LMAddrPred4, [A57Write_4cyc_1S]>,
SchedVar<A57LMAddrPred5, [A57Write_5cyc_1S]>,
SchedVar<A57LMAddrPred6, [A57Write_6cyc_1S]>,
SchedVar<A57LMAddrPred7, [A57Write_7cyc_1S]>,
SchedVar<A57LMAddrPred8, [A57Write_8cyc_1S]>,
SchedVar<NoSchedPred, [A57Write_2cyc_1S]>
]>;
def A57WriteSTM_Upd : SchedWriteVariant<[
SchedVar<A57LMAddrPred1, [A57Write_1cyc_1S_1I]>,
SchedVar<A57LMAddrPred2, [A57Write_2cyc_1S_1I]>,
SchedVar<A57LMAddrPred3, [A57Write_3cyc_1S_1I]>,
SchedVar<A57LMAddrPred4, [A57Write_4cyc_1S_1I]>,
SchedVar<A57LMAddrPred5, [A57Write_5cyc_1S_1I]>,
SchedVar<A57LMAddrPred6, [A57Write_6cyc_1S_1I]>,
SchedVar<A57LMAddrPred7, [A57Write_7cyc_1S_1I]>,
SchedVar<A57LMAddrPred8, [A57Write_8cyc_1S_1I]>,
SchedVar<NoSchedPred, [A57Write_2cyc_1S_1I]>
]>;
def : InstRW<[A57WriteSTM], (instregex "(t2|sys|t)?STM(IA|DA|DB|IB)$")>;
def : InstRW<[A57WrBackOne, A57WriteSTM_Upd],
(instregex "(t2|sys|t)?STM(IA_UPD|DA_UPD|DB_UPD|IB_UPD)", "tPUSH")>;
def : InstRW<[A57Write_5cyc_1S], (instregex "VLSTM")>;
// --- 3.10 FP Data Processing Instructions ---
def : SchedAlias<WriteFPALU32, A57Write_5cyc_1V>;
def : SchedAlias<WriteFPALU64, A57Write_5cyc_1V>;
def : InstRW<[A57Write_3cyc_1V], (instregex "VABS(S|D|H)")>;
// fp compare - 3cyc F1 for unconditional, 6cyc "F0/F1, F1" for conditional
def A57WriteVcmp : SchedWriteVariant<[
SchedVar<IsPredicatedPred, [A57Write_6cyc_1V_1X]>,
SchedVar<NoSchedPred, [A57Write_3cyc_1X]>
]>;
def : InstRW<[A57WriteVcmp],
(instregex "VCMP(D|S|H|ZD|ZS|ZH)$", "VCMPE(D|S|H|ZD|ZS|ZH)")>;
// fp convert
def : InstRW<[A57Write_5cyc_1V], (instregex
"VCVT(A|N|P|M)(SH|UH|SS|US|SD|UD)", "VCVT(BDH|THD|TDH)")>;
def : InstRW<[A57Write_5cyc_1V], (instregex "VTOSLS", "VTOUHS", "VTOULS")>;
def : SchedAlias<WriteFPCVT, A57Write_5cyc_1V>;
def : InstRW<[A57Write_5cyc_1V], (instregex "VJCVT")>;
// FP round to integral
def : InstRW<[A57Write_5cyc_1V], (instregex "VRINT(A|N|P|M|Z|R|X)(H|S|D)$")>;
// FP divide, FP square root
def : SchedAlias<WriteFPDIV32, A57Write_17cyc_1W>;
def : SchedAlias<WriteFPDIV64, A57Write_32cyc_1W>;
def : SchedAlias<WriteFPSQRT32, A57Write_17cyc_1W>;
def : SchedAlias<WriteFPSQRT64, A57Write_32cyc_1W>;
def : InstRW<[A57Write_17cyc_1W], (instregex "VSQRTH")>;
// FP max/min
def : InstRW<[A57Write_5cyc_1V], (instregex "VMAX", "VMIN")>;
// FP multiply-accumulate pipelines support late forwarding of the result
// from FP multiply μops to the accumulate operands of an
// FP multiply-accumulate μop. The latter can potentially be issued 1 cycle
// after the FP multiply μop has been issued
// FP multiply, FZ
def A57WriteVMUL : SchedWriteRes<[A57UnitV]> { let Latency = 5; }
def : SchedAlias<WriteFPMUL32, A57WriteVMUL>;
def : SchedAlias<WriteFPMUL64, A57WriteVMUL>;
def : ReadAdvance<ReadFPMUL, 0>;
// FP multiply accumulate, FZ: 9cyc "F0/F1" or 4 cyc for sequenced accumulate
// VFMA, VFMS, VFNMA, VFNMS, VMLA, VMLS, VNMLA, VNMLS
def A57WriteVFMA : SchedWriteRes<[A57UnitV]> { let Latency = 9; }
// VFMA takes 9 cyc for common case and 4 cyc for VFMA->VFMA chain (5 read adv.)
// VMUL takes 5 cyc for common case and 1 cyc for VMUL->VFMA chain (4 read adv.)
// Currently, there is no way to define different read advances for VFMA operand
// from VFMA or from VMUL, so there will be 5 read advance.
// Zero latency (instead of one) for VMUL->VFMA shouldn't break something.
// The same situation with ASIMD VMUL/VFMA instructions
// def A57ReadVFMA : SchedRead;
// def : ReadAdvance<A57ReadVFMA, 5, [A57WriteVFMA]>;
// def : ReadAdvance<A57ReadVFMA, 4, [A57WriteVMUL]>;
def A57ReadVFMA5 : SchedReadAdvance<5, [A57WriteVFMA, A57WriteVMUL]>;
def : SchedAlias<WriteFPMAC32, A57WriteVFMA>;
def : SchedAlias<WriteFPMAC64, A57WriteVFMA>;
def : SchedAlias<ReadFPMAC, A57ReadVFMA5>;
// VMLAH/VMLSH are not binded to scheduling classes by default, so here custom:
def : InstRW<[A57WriteVFMA, A57ReadVFMA5, ReadFPMUL, ReadFPMUL],
(instregex "VMLAH", "VMLSH", "VNMLAH", "VNMLSH")>;
def : InstRW<[A57WriteVMUL],
(instregex "VUDOTD", "VSDOTD", "VUDOTQ", "VSDOTQ")>;
def : InstRW<[A57Write_3cyc_1V], (instregex "VNEG")>;
def : InstRW<[A57Write_3cyc_1V], (instregex "VSEL")>;
// --- 3.11 FP Miscellaneous Instructions ---
// VMOV: 3cyc "F0/F1" for imm/reg
def : InstRW<[A57Write_3cyc_1V], (instregex "FCONST(D|S|H)")>;
def : InstRW<[A57Write_3cyc_1V], (instregex "VMOV(D|S|H)(cc)?$")>;
def : InstRW<[A57Write_3cyc_1V], (instregex "VINSH")>;
// 5cyc L for FP transfer, vfp to core reg,
// 5cyc L for FP transfer, core reg to vfp
def : SchedAlias<WriteFPMOV, A57Write_5cyc_1L>;
// VMOVRRS/VMOVRRD in common code declared with one WriteFPMOV (instead of 2).
def : InstRW<[A57Write_5cyc_1L, A57Write_5cyc_1L], (instregex "VMOV(RRS|RRD)")>;
// 8cyc "L,F0/F1" for FP transfer, core reg to upper or lower half of vfp D-reg
def : InstRW<[A57Write_8cyc_1L_1I], (instregex "VMOVDRR")>;
// --- 3.12 FP Load Instructions ---
def : InstRW<[A57Write_5cyc_1L], (instregex "VLDR(D|S|H)")>;
def : InstRW<[A57Write_5cyc_1L], (instregex "VLDMQIA$")>;
// FP load multiple (VLDM)
def A57VLDMOpsListUncond : A57WriteLMOpsListType<
[A57Write_5cyc_1L, A57Write_5cyc_1L,
A57Write_6cyc_1L, A57Write_6cyc_1L,
A57Write_7cyc_1L, A57Write_7cyc_1L,
A57Write_8cyc_1L, A57Write_8cyc_1L,
A57Write_9cyc_1L, A57Write_9cyc_1L,
A57Write_10cyc_1L, A57Write_10cyc_1L,
A57Write_11cyc_1L, A57Write_11cyc_1L,
A57Write_12cyc_1L, A57Write_12cyc_1L]>;
def A57WriteVLDMuncond : SchedWriteVariant<[
SchedVar<A57LMAddrPred1, A57VLDMOpsListUncond.Writes[0-1]>,
SchedVar<A57LMAddrPred2, A57VLDMOpsListUncond.Writes[0-3]>,
SchedVar<A57LMAddrPred3, A57VLDMOpsListUncond.Writes[0-5]>,
SchedVar<A57LMAddrPred4, A57VLDMOpsListUncond.Writes[0-7]>,
SchedVar<A57LMAddrPred5, A57VLDMOpsListUncond.Writes[0-9]>,
SchedVar<A57LMAddrPred6, A57VLDMOpsListUncond.Writes[0-11]>,
SchedVar<A57LMAddrPred7, A57VLDMOpsListUncond.Writes[0-13]>,
SchedVar<A57LMAddrPred8, A57VLDMOpsListUncond.Writes[0-15]>,
SchedVar<NoSchedPred, A57VLDMOpsListUncond.Writes[0-15]>
]> { let Variadic=1; }
def A57VLDMOpsListCond : A57WriteLMOpsListType<
[A57Write_5cyc_1L, A57Write_6cyc_1L,
A57Write_7cyc_1L, A57Write_8cyc_1L,
A57Write_9cyc_1L, A57Write_10cyc_1L,
A57Write_11cyc_1L, A57Write_12cyc_1L,
A57Write_13cyc_1L, A57Write_14cyc_1L,
A57Write_15cyc_1L, A57Write_16cyc_1L,
A57Write_17cyc_1L, A57Write_18cyc_1L,
A57Write_19cyc_1L, A57Write_20cyc_1L]>;
def A57WriteVLDMcond : SchedWriteVariant<[
SchedVar<A57LMAddrPred1, A57VLDMOpsListCond.Writes[0-1]>,
SchedVar<A57LMAddrPred2, A57VLDMOpsListCond.Writes[0-3]>,
SchedVar<A57LMAddrPred3, A57VLDMOpsListCond.Writes[0-5]>,
SchedVar<A57LMAddrPred4, A57VLDMOpsListCond.Writes[0-7]>,
SchedVar<A57LMAddrPred5, A57VLDMOpsListCond.Writes[0-9]>,
SchedVar<A57LMAddrPred6, A57VLDMOpsListCond.Writes[0-11]>,
SchedVar<A57LMAddrPred7, A57VLDMOpsListCond.Writes[0-13]>,
SchedVar<A57LMAddrPred8, A57VLDMOpsListCond.Writes[0-15]>,
SchedVar<NoSchedPred, A57VLDMOpsListCond.Writes[0-15]>
]> { let Variadic=1; }
def A57WriteVLDM : SchedWriteVariant<[
SchedVar<IsPredicatedPred, [A57WriteVLDMcond]>,
SchedVar<NoSchedPred, [A57WriteVLDMuncond]>
]> { let Variadic=1; }
def : InstRW<[A57WriteVLDM], (instregex "VLDM(DIA|SIA)$")>;
def A57VLDMOpsListUncond_Upd : A57WriteLMOpsListType<
[A57Write_5cyc_1L_1I, A57Write_5cyc_1L_1I,
A57Write_6cyc_1L_1I, A57Write_6cyc_1L_1I,
A57Write_7cyc_1L_1I, A57Write_7cyc_1L_1I,
A57Write_8cyc_1L_1I, A57Write_8cyc_1L_1I,
A57Write_9cyc_1L_1I, A57Write_9cyc_1L_1I,
A57Write_10cyc_1L_1I, A57Write_10cyc_1L_1I,
A57Write_11cyc_1L_1I, A57Write_11cyc_1L_1I,
A57Write_12cyc_1L_1I, A57Write_12cyc_1L_1I]>;
def A57WriteVLDMuncond_UPD : SchedWriteVariant<[
SchedVar<A57LMAddrPred1, A57VLDMOpsListUncond_Upd.Writes[0-1]>,
SchedVar<A57LMAddrPred2, A57VLDMOpsListUncond_Upd.Writes[0-3]>,
SchedVar<A57LMAddrPred3, A57VLDMOpsListUncond_Upd.Writes[0-5]>,
SchedVar<A57LMAddrPred4, A57VLDMOpsListUncond_Upd.Writes[0-7]>,
SchedVar<A57LMAddrPred5, A57VLDMOpsListUncond_Upd.Writes[0-9]>,
SchedVar<A57LMAddrPred6, A57VLDMOpsListUncond_Upd.Writes[0-11]>,
SchedVar<A57LMAddrPred7, A57VLDMOpsListUncond_Upd.Writes[0-13]>,
SchedVar<A57LMAddrPred8, A57VLDMOpsListUncond_Upd.Writes[0-15]>,
SchedVar<NoSchedPred, A57VLDMOpsListUncond_Upd.Writes[0-15]>
]> { let Variadic=1; }
def A57VLDMOpsListCond_Upd : A57WriteLMOpsListType<
[A57Write_5cyc_1L_1I, A57Write_6cyc_1L_1I,
A57Write_7cyc_1L_1I, A57Write_8cyc_1L_1I,
A57Write_9cyc_1L_1I, A57Write_10cyc_1L_1I,
A57Write_11cyc_1L_1I, A57Write_12cyc_1L_1I,
A57Write_13cyc_1L_1I, A57Write_14cyc_1L_1I,
A57Write_15cyc_1L_1I, A57Write_16cyc_1L_1I,
A57Write_17cyc_1L_1I, A57Write_18cyc_1L_1I,
A57Write_19cyc_1L_1I, A57Write_20cyc_1L_1I]>;
def A57WriteVLDMcond_UPD : SchedWriteVariant<[
SchedVar<A57LMAddrPred1, A57VLDMOpsListCond_Upd.Writes[0-1]>,
SchedVar<A57LMAddrPred2, A57VLDMOpsListCond_Upd.Writes[0-3]>,
SchedVar<A57LMAddrPred3, A57VLDMOpsListCond_Upd.Writes[0-5]>,
SchedVar<A57LMAddrPred4, A57VLDMOpsListCond_Upd.Writes[0-7]>,
SchedVar<A57LMAddrPred5, A57VLDMOpsListCond_Upd.Writes[0-9]>,
SchedVar<A57LMAddrPred6, A57VLDMOpsListCond_Upd.Writes[0-11]>,
SchedVar<A57LMAddrPred7, A57VLDMOpsListCond_Upd.Writes[0-13]>,
SchedVar<A57LMAddrPred8, A57VLDMOpsListCond_Upd.Writes[0-15]>,
SchedVar<NoSchedPred, A57VLDMOpsListCond_Upd.Writes[0-15]>
]> { let Variadic=1; }
def A57WriteVLDM_UPD : SchedWriteVariant<[
SchedVar<IsPredicatedPred, [A57WriteVLDMcond_UPD]>,
SchedVar<NoSchedPred, [A57WriteVLDMuncond_UPD]>
]> { let Variadic=1; }
def : InstRW<[A57WrBackOne, A57WriteVLDM_UPD],
(instregex "VLDM(DIA_UPD|DDB_UPD|SIA_UPD|SDB_UPD)")>;
// --- 3.13 FP Store Instructions ---
def : InstRW<[A57Write_1cyc_1S], (instregex "VSTR(D|S|H)")>;
def : InstRW<[A57Write_2cyc_1S], (instregex "VSTMQIA$")>;
def A57WriteVSTMs : SchedWriteVariant<[
SchedVar<A57LMAddrPred1, [A57Write_1cyc_1S]>,
SchedVar<A57LMAddrPred2, [A57Write_2cyc_1S]>,
SchedVar<A57LMAddrPred3, [A57Write_3cyc_1S]>,
SchedVar<A57LMAddrPred4, [A57Write_4cyc_1S]>,
SchedVar<A57LMAddrPred5, [A57Write_5cyc_1S]>,
SchedVar<A57LMAddrPred6, [A57Write_6cyc_1S]>,
SchedVar<A57LMAddrPred7, [A57Write_7cyc_1S]>,
SchedVar<A57LMAddrPred8, [A57Write_8cyc_1S]>,
SchedVar<NoSchedPred, [A57Write_2cyc_1S]>
]>;
def A57WriteVSTMd : SchedWriteVariant<[
SchedVar<A57LMAddrPred1, [A57Write_2cyc_1S]>,
SchedVar<A57LMAddrPred2, [A57Write_4cyc_1S]>,
SchedVar<A57LMAddrPred3, [A57Write_6cyc_1S]>,
SchedVar<A57LMAddrPred4, [A57Write_8cyc_1S]>,
SchedVar<A57LMAddrPred5, [A57Write_10cyc_1S]>,
SchedVar<A57LMAddrPred6, [A57Write_12cyc_1S]>,
SchedVar<A57LMAddrPred7, [A57Write_14cyc_1S]>,
SchedVar<A57LMAddrPred8, [A57Write_16cyc_1S]>,
SchedVar<NoSchedPred, [A57Write_4cyc_1S]>
]>;
def A57WriteVSTMs_Upd : SchedWriteVariant<[
SchedVar<A57LMAddrPred1, [A57Write_1cyc_1S_1I]>,
SchedVar<A57LMAddrPred2, [A57Write_2cyc_1S_1I]>,
SchedVar<A57LMAddrPred3, [A57Write_3cyc_1S_1I]>,
SchedVar<A57LMAddrPred4, [A57Write_4cyc_1S_1I]>,
SchedVar<A57LMAddrPred5, [A57Write_5cyc_1S_1I]>,
SchedVar<A57LMAddrPred6, [A57Write_6cyc_1S_1I]>,
SchedVar<A57LMAddrPred7, [A57Write_7cyc_1S_1I]>,
SchedVar<A57LMAddrPred8, [A57Write_8cyc_1S_1I]>,
SchedVar<NoSchedPred, [A57Write_2cyc_1S_1I]>
]>;
def A57WriteVSTMd_Upd : SchedWriteVariant<[
SchedVar<A57LMAddrPred1, [A57Write_2cyc_1S_1I]>,
SchedVar<A57LMAddrPred2, [A57Write_4cyc_1S_1I]>,
SchedVar<A57LMAddrPred3, [A57Write_6cyc_1S_1I]>,
SchedVar<A57LMAddrPred4, [A57Write_8cyc_1S_1I]>,
SchedVar<A57LMAddrPred5, [A57Write_10cyc_1S_1I]>,
SchedVar<A57LMAddrPred6, [A57Write_12cyc_1S_1I]>,
SchedVar<A57LMAddrPred7, [A57Write_14cyc_1S_1I]>,
SchedVar<A57LMAddrPred8, [A57Write_16cyc_1S_1I]>,
SchedVar<NoSchedPred, [A57Write_2cyc_1S_1I]>
]>;
def : InstRW<[A57WriteVSTMs], (instregex "VSTMSIA$")>;
def : InstRW<[A57WriteVSTMd], (instregex "VSTMDIA$")>;
def : InstRW<[A57WrBackOne, A57WriteVSTMs_Upd],
(instregex "VSTM(SIA_UPD|SDB_UPD)")>;
def : InstRW<[A57WrBackOne, A57WriteVSTMd_Upd],
(instregex "VSTM(DIA_UPD|DDB_UPD)")>;
// --- 3.14 ASIMD Integer Instructions ---
// ASIMD absolute diff, 3cyc F0/F1 for integer VABD
def : InstRW<[A57Write_3cyc_1V], (instregex "VABD(s|u)")>;
// ASIMD absolute diff accum: 4(1) F1 for D-form, 5(2) F1 for Q-form
def A57WriteVABAD : SchedWriteRes<[A57UnitX]> { let Latency = 4; }
def A57ReadVABAD : SchedReadAdvance<3, [A57WriteVABAD]>;
def : InstRW<[A57WriteVABAD, A57ReadVABAD],
(instregex "VABA(s|u)(v8i8|v4i16|v2i32)")>;
def A57WriteVABAQ : SchedWriteRes<[A57UnitX]> { let Latency = 5; }
def A57ReadVABAQ : SchedReadAdvance<3, [A57WriteVABAQ]>;
def : InstRW<[A57WriteVABAQ, A57ReadVABAQ],
(instregex "VABA(s|u)(v16i8|v8i16|v4i32)")>;
// ASIMD absolute diff accum long: 4(1) F1 for VABAL
def A57WriteVABAL : SchedWriteRes<[A57UnitX]> { let Latency = 4; }
def A57ReadVABAL : SchedReadAdvance<3, [A57WriteVABAL]>;
def : InstRW<[A57WriteVABAL, A57ReadVABAL], (instregex "VABAL(s|u)")>;
// ASIMD absolute diff long: 3cyc F0/F1 for VABDL
def : InstRW<[A57Write_3cyc_1V], (instregex "VABDL(s|u)")>;
// ASIMD arith, basic
def : InstRW<[A57Write_3cyc_1V], (instregex "VADDv", "VADDL", "VADDW",
"VNEG(s8d|s16d|s32d|s8q|s16q|s32q|d|q)",
"VPADDi", "VPADDL", "VSUBv", "VSUBL", "VSUBW")>;
// ASIMD arith, complex
def : InstRW<[A57Write_3cyc_1V], (instregex "VABS", "VADDHN", "VHADD", "VHSUB",
"VQABS", "VQADD", "VQNEG", "VQSUB",
"VRADDHN", "VRHADD", "VRSUBHN", "VSUBHN")>;
// ASIMD compare
def : InstRW<[A57Write_3cyc_1V],
(instregex "VCEQ", "VCGE", "VCGT", "VCLE", "VTST", "VCLT")>;
// ASIMD logical
def : InstRW<[A57Write_3cyc_1V],
(instregex "VAND", "VBIC", "VMVN", "VORR", "VORN", "VEOR")>;
// ASIMD max/min
def : InstRW<[A57Write_3cyc_1V],
(instregex "(VMAX|VMIN)(s|u)", "(VPMAX|VPMIN)(s8|s16|s32|u8|u16|u32)")>;
// ASIMD multiply, D-form: 5cyc F0 for r0px, 4cyc F0 for r1p0 and later
// Cortex-A57 r1p0 and later reduce the latency of ASIMD multiply
// and multiply-with-accumulate instructions relative to r0pX.
def A57WriteVMULD_VecInt : SchedWriteVariant<[
SchedVar<IsR1P0AndLaterPred, [A57Write_4cyc_1W]>,
SchedVar<NoSchedPred, [A57Write_5cyc_1W]>]>;
def : InstRW<[A57WriteVMULD_VecInt], (instregex
"VMUL(v8i8|v4i16|v2i32|pd)", "VMULsl(v4i16|v2i32)",
"VQDMULH(sl)?(v4i16|v2i32)", "VQRDMULH(sl)?(v4i16|v2i32)")>;
// ASIMD multiply, Q-form: 6cyc F0 for r0px, 5cyc F0 for r1p0 and later
def A57WriteVMULQ_VecInt : SchedWriteVariant<[
SchedVar<IsR1P0AndLaterPred, [A57Write_5cyc_1W]>,
SchedVar<NoSchedPred, [A57Write_6cyc_1W]>]>;
def : InstRW<[A57WriteVMULQ_VecInt], (instregex
"VMUL(v16i8|v8i16|v4i32|pq)", "VMULsl(v8i16|v4i32)",
"VQDMULH(sl)?(v8i16|v4i32)", "VQRDMULH(sl)?(v8i16|v4i32)")>;
// ASIMD multiply accumulate, D-form
// 5cyc F0 for r0px, 4cyc F0 for r1p0 and later, 1cyc for accumulate sequence
// (4 or 3 ReadAdvance)
def A57WriteVMLAD_VecInt : SchedWriteVariant<[
SchedVar<IsR1P0AndLaterPred, [A57Write_4cyc_1W]>,
SchedVar<NoSchedPred, [A57Write_5cyc_1W]>]>;
def A57ReadVMLAD_VecInt : SchedReadVariant<[
SchedVar<IsR1P0AndLaterPred, [SchedReadAdvance<3, [A57WriteVMLAD_VecInt]>]>,
SchedVar<NoSchedPred, [SchedReadAdvance<4, [A57WriteVMLAD_VecInt]>]>
]>;
def : InstRW<[A57WriteVMLAD_VecInt, A57ReadVMLAD_VecInt],
(instregex "VMLA(sl)?(v8i8|v4i16|v2i32)", "VMLS(sl)?(v8i8|v4i16|v2i32)")>;
// ASIMD multiply accumulate, Q-form
// 6cyc F0 for r0px, 5cyc F0 for r1p0 and later, 2cyc for accumulate sequence
// (4 or 3 ReadAdvance)
def A57WriteVMLAQ_VecInt : SchedWriteVariant<[
SchedVar<IsR1P0AndLaterPred, [A57Write_5cyc_1W]>,
SchedVar<NoSchedPred, [A57Write_6cyc_1W]>]>;
def A57ReadVMLAQ_VecInt : SchedReadVariant<[
SchedVar<IsR1P0AndLaterPred, [SchedReadAdvance<3, [A57WriteVMLAQ_VecInt]>]>,
SchedVar<NoSchedPred, [SchedReadAdvance<4, [A57WriteVMLAQ_VecInt]>]>
]>;
def : InstRW<[A57WriteVMLAQ_VecInt, A57ReadVMLAQ_VecInt],
(instregex "VMLA(sl)?(v16i8|v8i16|v4i32)", "VMLS(sl)?(v16i8|v8i16|v4i32)")>;
// ASIMD multiply accumulate long
// 5cyc F0 for r0px, 4cyc F0 for r1p0 and later, 1cyc for accumulate sequence
// (4 or 3 ReadAdvance)
def A57WriteVMLAL_VecInt : SchedWriteVariant<[
SchedVar<IsR1P0AndLaterPred, [A57Write_4cyc_1W]>,
SchedVar<NoSchedPred, [A57Write_5cyc_1W]>]>;
def A57ReadVMLAL_VecInt : SchedReadVariant<[
SchedVar<IsR1P0AndLaterPred, [SchedReadAdvance<3, [A57WriteVMLAL_VecInt]>]>,
SchedVar<NoSchedPred, [SchedReadAdvance<4, [A57WriteVMLAL_VecInt]>]>
]>;
def : InstRW<[A57WriteVMLAL_VecInt, A57ReadVMLAL_VecInt],
(instregex "VMLAL(s|u)", "VMLSL(s|u)")>;
// ASIMD multiply accumulate saturating long
// 5cyc F0 for r0px, 4cyc F0 for r1p0 and later, 2cyc for accumulate sequence
// (3 or 2 ReadAdvance)
def A57WriteVQDMLAL_VecInt : SchedWriteVariant<[
SchedVar<IsR1P0AndLaterPred, [A57Write_4cyc_1W]>,
SchedVar<NoSchedPred, [A57Write_5cyc_1W]>]>;
def A57ReadVQDMLAL_VecInt : SchedReadVariant<[
SchedVar<IsR1P0AndLaterPred, [SchedReadAdvance<2, [A57WriteVQDMLAL_VecInt]>]>,
SchedVar<NoSchedPred, [SchedReadAdvance<3, [A57WriteVQDMLAL_VecInt]>]>
]>;
def : InstRW<[A57WriteVQDMLAL_VecInt, A57ReadVQDMLAL_VecInt],
(instregex "VQDMLAL", "VQDMLSL")>;
// Vector Saturating Rounding Doubling Multiply Accumulate/Subtract Long
// Scheduling info from VQDMLAL/VQDMLSL
def : InstRW<[A57WriteVQDMLAL_VecInt, A57ReadVQDMLAL_VecInt],
(instregex "VQRDMLAH", "VQRDMLSH")>;
// ASIMD multiply long
// 5cyc F0 for r0px, 4cyc F0 for r1p0 and later
def A57WriteVMULL_VecInt : SchedWriteVariant<[
SchedVar<IsR1P0AndLaterPred, [A57Write_4cyc_1W]>,
SchedVar<NoSchedPred, [A57Write_5cyc_1W]>]>;
def : InstRW<[A57WriteVMULL_VecInt],
(instregex "VMULL(s|u|p8|sls|slu)", "VQDMULL")>;
// ASIMD pairwise add and accumulate
// 4cyc F1, 1cyc for accumulate sequence (3cyc ReadAdvance)
def A57WriteVPADAL : SchedWriteRes<[A57UnitX]> { let Latency = 4; }
def A57ReadVPADAL : SchedReadAdvance<3, [A57WriteVPADAL]>;
def : InstRW<[A57WriteVPADAL, A57ReadVPADAL], (instregex "VPADAL(s|u)")>;
// ASIMD shift accumulate
// 4cyc F1, 1cyc for accumulate sequence (3cyc ReadAdvance)
def A57WriteVSRA : SchedWriteRes<[A57UnitX]> { let Latency = 4; }
def A57ReadVSRA : SchedReadAdvance<3, [A57WriteVSRA]>;
def : InstRW<[A57WriteVSRA, A57ReadVSRA], (instregex "VSRA", "VRSRA")>;
// ASIMD shift by immed, basic
def : InstRW<[A57Write_3cyc_1X],
(instregex "VMOVL", "VSHLi", "VSHLL", "VSHR(s|u)", "VSHRN")>;
// ASIMD shift by immed, complex
def : InstRW<[A57Write_4cyc_1X], (instregex
"VQRSHRN", "VQRSHRUN", "VQSHL(si|ui|su)", "VQSHRN", "VQSHRUN", "VRSHR(s|u)",
"VRSHRN")>;
// ASIMD shift by immed and insert, basic, D-form
def : InstRW<[A57Write_4cyc_1X], (instregex
"VSLI(v8i8|v4i16|v2i32|v1i64)", "VSRI(v8i8|v4i16|v2i32|v1i64)")>;
// ASIMD shift by immed and insert, basic, Q-form
def : InstRW<[A57Write_5cyc_1X], (instregex
"VSLI(v16i8|v8i16|v4i32|v2i64)", "VSRI(v16i8|v8i16|v4i32|v2i64)")>;
// ASIMD shift by register, basic, D-form
def : InstRW<[A57Write_3cyc_1X], (instregex
"VSHL(s|u)(v8i8|v4i16|v2i32|v1i64)")>;
// ASIMD shift by register, basic, Q-form
def : InstRW<[A57Write_4cyc_1X], (instregex
"VSHL(s|u)(v16i8|v8i16|v4i32|v2i64)")>;
// ASIMD shift by register, complex, D-form
// VQRSHL, VQSHL, VRSHL
def : InstRW<[A57Write_4cyc_1X], (instregex
"VQRSHL(s|u)(v8i8|v4i16|v2i32|v1i64)", "VQSHL(s|u)(v8i8|v4i16|v2i32|v1i64)",
"VRSHL(s|u)(v8i8|v4i16|v2i32|v1i64)")>;
// ASIMD shift by register, complex, Q-form
def : InstRW<[A57Write_5cyc_1X], (instregex
"VQRSHL(s|u)(v16i8|v8i16|v4i32|v2i64)", "VQSHL(s|u)(v16i8|v8i16|v4i32|v2i64)",
"VRSHL(s|u)(v16i8|v8i16|v4i32|v2i64)")>;
// --- 3.15 ASIMD Floating-Point Instructions ---
// ASIMD FP absolute value
def : InstRW<[A57Write_3cyc_1V], (instregex "VABS(fd|fq|hd|hq)")>;
// ASIMD FP arith
def : InstRW<[A57Write_5cyc_1V], (instregex "VABD(fd|fq|hd|hq)",
"VADD(fd|fq|hd|hq)", "VPADD(f|h)", "VSUB(fd|fq|hd|hq)")>;
def : InstRW<[A57Write_5cyc_1V], (instregex "VCADD", "VCMLA")>;
// ASIMD FP compare
def : InstRW<[A57Write_5cyc_1V], (instregex "VAC(GE|GT|LE|LT)",
"VC(EQ|GE|GT|LE)(fd|fq|hd|hq)")>;
// ASIMD FP convert, integer
def : InstRW<[A57Write_5cyc_1V], (instregex
"VCVT(f2sd|f2ud|s2fd|u2fd|f2sq|f2uq|s2fq|u2fq|f2xsd|f2xud|xs2fd|xu2fd)",
"VCVT(f2xsq|f2xuq|xs2fq|xu2fq)",
"VCVT(AN|MN|NN|PN)(SDf|SQf|UDf|UQf|SDh|SQh|UDh|UQh)")>;
// ASIMD FP convert, half-precision: 8cyc F0/F1
def : InstRW<[A57Write_8cyc_1V], (instregex
"VCVT(h2sd|h2ud|s2hd|u2hd|h2sq|h2uq|s2hq|u2hq|h2xsd|h2xud|xs2hd|xu2hd)",
"VCVT(h2xsq|h2xuq|xs2hq|xu2hq)",
"VCVT(f2h|h2f)")>;
// ASIMD FP max/min
def : InstRW<[A57Write_5cyc_1V], (instregex
"(VMAX|VMIN)(fd|fq|hd|hq)", "(VPMAX|VPMIN)(f|h)", "(NEON|VFP)_VMAXNM",
"(NEON|VFP)_VMINNM")>;
// ASIMD FP multiply
def A57WriteVMUL_VecFP : SchedWriteRes<[A57UnitV]> { let Latency = 5; }
def : InstRW<[A57WriteVMUL_VecFP], (instregex "VMUL(sl)?(fd|fq|hd|hq)")>;
// ASIMD FP multiply accumulate: 9cyc F0/F1, 4cyc for accumulate sequence
def A57WriteVMLA_VecFP : SchedWriteRes<[A57UnitV]> { let Latency = 9; }
def A57ReadVMLA_VecFP :
SchedReadAdvance<5, [A57WriteVMLA_VecFP, A57WriteVMUL_VecFP]>;
def : InstRW<[A57WriteVMLA_VecFP, A57ReadVMLA_VecFP],
(instregex "(VMLA|VMLS)(sl)?(fd|fq|hd|hq)", "(VFMA|VFMS)(fd|fq|hd|hq)")>;
// ASIMD FP negate
def : InstRW<[A57Write_3cyc_1V], (instregex "VNEG(fd|f32q|hd|hq)")>;
// ASIMD FP round to integral
def : InstRW<[A57Write_5cyc_1V], (instregex
"VRINT(AN|MN|NN|PN|XN|ZN)(Df|Qf|Dh|Qh)")>;
// --- 3.16 ASIMD Miscellaneous Instructions ---
// ASIMD bitwise insert
def : InstRW<[A57Write_3cyc_1V], (instregex "VBIF", "VBIT", "VBSL", "VBSP")>;
// ASIMD count
def : InstRW<[A57Write_3cyc_1V], (instregex "VCLS", "VCLZ", "VCNT")>;
// ASIMD duplicate, core reg: 8cyc "L, F0/F1"
def : InstRW<[A57Write_8cyc_1L_1V], (instregex "VDUP(8|16|32)(d|q)")>;
// ASIMD duplicate, scalar: 3cyc "F0/F1"
def : InstRW<[A57Write_3cyc_1V], (instregex "VDUPLN(8|16|32)(d|q)")>;
// ASIMD extract
def : InstRW<[A57Write_3cyc_1V], (instregex "VEXT(d|q)(8|16|32|64)")>;
// ASIMD move, immed
def : InstRW<[A57Write_3cyc_1V], (instregex
"VMOV(v8i8|v16i8|v4i16|v8i16|v2i32|v4i32|v1i64|v2i64|v2f32|v4f32)",
"VMOVD0", "VMOVQ0")>;
// ASIMD move, narrowing
def : InstRW<[A57Write_3cyc_1V], (instregex "VMOVN")>;
// ASIMD move, saturating
def : InstRW<[A57Write_4cyc_1X], (instregex "VQMOVN")>;
// ASIMD reciprocal estimate
def : InstRW<[A57Write_5cyc_1V], (instregex "VRECPE", "VRSQRTE")>;
// ASIMD reciprocal step, FZ
def : InstRW<[A57Write_9cyc_1V], (instregex "VRECPS", "VRSQRTS")>;
// ASIMD reverse, swap, table lookup (1-2 reg)
def : InstRW<[A57Write_3cyc_1V], (instregex "VREV", "VSWP", "VTB(L|X)(1|2)")>;
// ASIMD table lookup (3-4 reg)
def : InstRW<[A57Write_6cyc_1V], (instregex "VTBL(3|4)", "VTBX(3|4)")>;
// ASIMD transfer, scalar to core reg: 6cyc "L, I0/I1"
def : InstRW<[A57Write_6cyc_1L_1I], (instregex "VGETLN")>;
// ASIMD transfer, core reg to scalar: 8cyc "L, F0/F1"
def : InstRW<[A57Write_8cyc_1L_1V], (instregex "VSETLN")>;
// ASIMD transpose
def : InstRW<[A57Write_3cyc_1V, A57Write_3cyc_1V], (instregex "VTRN")>;
// ASIMD unzip/zip, D-form
def : InstRW<[A57Write_3cyc_1V, A57Write_3cyc_1V],
(instregex "VUZPd", "VZIPd")>;
// ASIMD unzip/zip, Q-form
def : InstRW<[A57Write_6cyc_1V, A57Write_6cyc_1V],
(instregex "VUZPq", "VZIPq")>;
// --- 3.17 ASIMD Load Instructions ---
// Overriden via InstRW for this processor.
def : WriteRes<WriteVLD1, []>;
def : WriteRes<WriteVLD2, []>;
def : WriteRes<WriteVLD3, []>;
def : WriteRes<WriteVLD4, []>;
def : WriteRes<WriteVST1, []>;
def : WriteRes<WriteVST2, []>;
def : WriteRes<WriteVST3, []>;
def : WriteRes<WriteVST4, []>;
// 1-2 reg: 5cyc L, +I for writeback, 1 cyc wb latency
def : InstRW<[A57Write_5cyc_1L], (instregex "VLD1(d|q)(8|16|32|64)$")>;
def : InstRW<[A57Write_5cyc_1L_1I, A57WrBackOne],
(instregex "VLD1(d|q)(8|16|32|64)wb")>;
// 3-4 reg: 6cyc L, +I for writeback, 1 cyc wb latency
def : InstRW<[A57Write_6cyc_1L],
(instregex "VLD1(d|q)(8|16|32|64)(T|Q)$", "VLD1d64(T|Q)Pseudo")>;
def : InstRW<[A57Write_6cyc_1L_1I, A57WrBackOne],
(instregex "VLD1(d|q)(8|16|32|64)(T|Q)wb")>;
// ASIMD load, 1 element, one lane and all lanes: 8cyc "L, F0/F1"
def : InstRW<[A57Write_8cyc_1L_1V], (instregex
"VLD1(LN|DUP)(d|q)(8|16|32)$", "VLD1(LN|DUP)(d|q)(8|16|32)Pseudo$")>;
def : InstRW<[A57Write_8cyc_1L_1V_1I, A57WrBackOne], (instregex
"VLD1(LN|DUP)(d|q)(8|16|32)(wb|_UPD)", "VLD1LNq(8|16|32)Pseudo_UPD")>;
// ASIMD load, 2 element, multiple, 2 reg: 8cyc "L, F0/F1"
def : InstRW<[A57Write_8cyc_1L_1V],
(instregex "VLD2(d|q)(8|16|32)$", "VLD2q(8|16|32)Pseudo$")>;
def : InstRW<[A57Write_8cyc_1L_1V_1I, A57WrBackOne],
(instregex "VLD2(d|q)(8|16|32)wb", "VLD2q(8|16|32)PseudoWB")>;
// ASIMD load, 2 element, multiple, 4 reg: 9cyc "L, F0/F1"
def : InstRW<[A57Write_9cyc_1L_1V], (instregex "VLD2b(8|16|32)$")>;
def : InstRW<[A57Write_9cyc_1L_1V_1I, A57WrBackOne],
(instregex "VLD2b(8|16|32)wb")>;
// ASIMD load, 2 element, one lane and all lanes: 8cyc "L, F0/F1"
def : InstRW<[A57Write_8cyc_1L_1V, A57Write_8cyc_1L_1V],
(instregex "VLD2(DUP|LN)(d|q)(8|16|32|8x2|16x2|32x2)$",
"VLD2LN(d|q)(8|16|32)Pseudo$")>;
// 2 results + wb result
def : InstRW<[A57Write_8cyc_1L_1V_1I, A57Write_8cyc_1L_1V, A57WrBackOne],
(instregex "VLD2LN(d|q)(8|16|32)_UPD$")>;
// 1 result + wb result
def : InstRW<[A57Write_8cyc_1L_1V_1I, A57WrBackOne],
(instregex "VLD2DUPd(8|16|32|8x2|16x2|32x2)wb",
"VLD2LN(d|q)(8|16|32)Pseudo_UPD")>;
// ASIMD load, 3 element, multiple, 3 reg: 9cyc "L, F0/F1"
// 3 results
def : InstRW<[A57Write_9cyc_1L_1V, A57Write_9cyc_1L_1V, A57Write_9cyc_1L_1V],
(instregex "VLD3(d|q)(8|16|32)$")>;
// 1 result
def : InstRW<[A57Write_9cyc_1L_1V],
(instregex "VLD3(d|q)(8|16|32)(oddP|P)seudo$")>;
// 3 results + wb
def : InstRW<[A57Write_9cyc_1L_1V_1I, A57Write_9cyc_1L_1V_1I,
A57Write_9cyc_1L_1V_1I, A57WrBackOne],
(instregex "VLD3(d|q)(8|16|32)_UPD$")>;
// 1 result + wb
def : InstRW<[A57Write_9cyc_1L_1V_1I, A57WrBackOne],
(instregex "VLD3(d|q)(8|16|32)(oddP|P)seudo_UPD")>;
// ASIMD load, 3 element, one lane, size 32: 8cyc "L, F0/F1"
def : InstRW<[A57Write_8cyc_1L_1V, A57Write_8cyc_1L_1V, A57Write_8cyc_1L_1V],
(instregex "VLD3LN(d|q)32$",
"VLD3LN(d|q)32Pseudo$")>;
def : InstRW<[A57Write_8cyc_1L_1V_1I, A57Write_8cyc_1L_1V_1I,
A57Write_8cyc_1L_1V_1I, A57WrBackOne],
(instregex "VLD3LN(d|q)32_UPD")>;
def : InstRW<[A57Write_8cyc_1L_1V_1I, A57WrBackOne],
(instregex "VLD3LN(d|q)32Pseudo_UPD")>;
// ASIMD load, 3 element, one lane, size 8/16: 9cyc "L, F0/F1"
def : InstRW<[A57Write_9cyc_1L_1V, A57Write_9cyc_1L_1V, A57Write_9cyc_1L_1V],
(instregex "VLD3LN(d|q)(8|16)$",
"VLD3LN(d|q)(8|16)Pseudo$")>;
def : InstRW<[A57Write_9cyc_1L_1V_1I, A57Write_9cyc_1L_1V_1I,
A57Write_9cyc_1L_1V_1I, A57WrBackOne],
(instregex "VLD3LN(d|q)(8|16)_UPD")>;
def : InstRW<[A57Write_9cyc_1L_1V_1I, A57WrBackOne],
(instregex "VLD3LN(d|q)(8|16)Pseudo_UPD")>;
// ASIMD load, 3 element, all lanes: 8cyc "L, F0/F1"
def : InstRW<[A57Write_8cyc_1L_1V, A57Write_8cyc_1L_1V, A57Write_8cyc_1L_1V],
(instregex "VLD3DUP(d|q)(8|16|32)$",
"VLD3DUP(d|q)(8|16|32)Pseudo$")>;
def : InstRW<[A57Write_8cyc_1L_1V_1I, A57Write_8cyc_1L_1V_1I,
A57Write_8cyc_1L_1V_1I, A57WrBackOne],
(instregex "VLD3DUP(d|q)(8|16|32)_UPD")>;
def : InstRW<[A57Write_8cyc_1L_1V_1I, A57WrBackOne],
(instregex "VLD3DUP(d|q)(8|16|32)Pseudo_UPD")>;
// ASIMD load, 4 element, multiple, 4 reg: 9cyc "L, F0/F1"
def : InstRW<[A57Write_9cyc_1L_1V, A57Write_9cyc_1L_1V, A57Write_9cyc_1L_1V,
A57Write_9cyc_1L_1V],
(instregex "VLD4(d|q)(8|16|32)$")>;
def : InstRW<[A57Write_9cyc_1L_1V],
(instregex "VLD4(d|q)(8|16|32)(oddP|P)seudo$")>;
def : InstRW<[A57Write_9cyc_1L_1V_1I, A57Write_9cyc_1L_1V_1I,
A57Write_9cyc_1L_1V_1I, A57Write_9cyc_1L_1V_1I, A57WrBackOne],
(instregex "VLD4(d|q)(8|16|32)_UPD")>;
def : InstRW<[A57Write_9cyc_1L_1V_1I, A57WrBackOne],
(instregex "VLD4(d|q)(8|16|32)(oddP|P)seudo_UPD")>;
// ASIMD load, 4 element, one lane, size 32: 8cyc "L, F0/F1"
def : InstRW<[A57Write_8cyc_1L_1V, A57Write_8cyc_1L_1V, A57Write_8cyc_1L_1V,
A57Write_8cyc_1L_1V],
(instregex "VLD4LN(d|q)32$",
"VLD4LN(d|q)32Pseudo$")>;
def : InstRW<[A57Write_8cyc_1L_1V_1I, A57Write_8cyc_1L_1V_1I,
A57Write_8cyc_1L_1V_1I, A57Write_8cyc_1L_1V_1I,
A57WrBackOne],
(instregex "VLD4LN(d|q)32_UPD")>;
def : InstRW<[A57Write_8cyc_1L_1V_1I, A57WrBackOne],
(instregex "VLD4LN(d|q)32Pseudo_UPD")>;
// ASIMD load, 4 element, one lane, size 8/16: 9cyc "L, F0/F1"
def : InstRW<[A57Write_9cyc_1L_1V, A57Write_9cyc_1L_1V, A57Write_9cyc_1L_1V,
A57Write_9cyc_1L_1V],
(instregex "VLD4LN(d|q)(8|16)$",
"VLD4LN(d|q)(8|16)Pseudo$")>;
def : InstRW<[A57Write_9cyc_1L_1V_1I, A57Write_9cyc_1L_1V_1I,
A57Write_9cyc_1L_1V_1I, A57Write_9cyc_1L_1V_1I,
A57WrBackOne],
(instregex "VLD4LN(d|q)(8|16)_UPD")>;
def : InstRW<[A57Write_9cyc_1L_1V_1I, A57WrBackOne],
(instregex "VLD4LN(d|q)(8|16)Pseudo_UPD")>;
// ASIMD load, 4 element, all lanes: 8cyc "L, F0/F1"
def : InstRW<[A57Write_8cyc_1L_1V, A57Write_8cyc_1L_1V, A57Write_8cyc_1L_1V,
A57Write_8cyc_1L_1V],
(instregex "VLD4DUP(d|q)(8|16|32)$",
"VLD4DUP(d|q)(8|16|32)Pseudo$")>;
def : InstRW<[A57Write_8cyc_1L_1V_1I, A57Write_8cyc_1L_1V_1I,
A57Write_8cyc_1L_1V_1I, A57Write_8cyc_1L_1V_1I,
A57WrBackOne],
(instregex "VLD4DUP(d|q)(8|16|32)_UPD")>;
def : InstRW<[A57Write_8cyc_1L_1V_1I, A57WrBackOne],
(instregex "VLD4DUP(d|q)(8|16|32)Pseudo_UPD")>;
// --- 3.18 ASIMD Store Instructions ---
// ASIMD store, 1 element, multiple, 1 reg: 1cyc S
def : InstRW<[A57Write_1cyc_1S], (instregex "VST1d(8|16|32|64)$")>;
def : InstRW<[A57WrBackOne, A57Write_1cyc_1S_1I],
(instregex "VST1d(8|16|32|64)wb")>;
// ASIMD store, 1 element, multiple, 2 reg: 2cyc S
def : InstRW<[A57Write_2cyc_1S], (instregex "VST1q(8|16|32|64)$")>;
def : InstRW<[A57WrBackOne, A57Write_2cyc_1S_1I],
(instregex "VST1q(8|16|32|64)wb")>;
// ASIMD store, 1 element, multiple, 3 reg: 3cyc S
def : InstRW<[A57Write_3cyc_1S],
(instregex "VST1d(8|16|32|64)T$", "VST1d64TPseudo$")>;
def : InstRW<[A57WrBackOne, A57Write_3cyc_1S_1I],
(instregex "VST1d(8|16|32|64)Twb", "VST1d64TPseudoWB")>;
// ASIMD store, 1 element, multiple, 4 reg: 4cyc S
def : InstRW<[A57Write_4cyc_1S],
(instregex "VST1d(8|16|32|64)(Q|QPseudo)$")>;
def : InstRW<[A57WrBackOne, A57Write_4cyc_1S_1I],
(instregex "VST1d(8|16|32|64)(Qwb|QPseudoWB)")>;
// ASIMD store, 1 element, one lane: 3cyc "F0/F1, S"
def : InstRW<[A57Write_3cyc_1S_1V],
(instregex "VST1LNd(8|16|32)$", "VST1LNq(8|16|32)Pseudo$")>;
def : InstRW<[A57WrBackOne, A57Write_3cyc_1S_1V_1I],
(instregex "VST1LNd(8|16|32)_UPD", "VST1LNq(8|16|32)Pseudo_UPD")>;
// ASIMD store, 2 element, multiple, 2 reg: 3cyc "F0/F1, S"
def : InstRW<[A57Write_3cyc_1S_1V],
(instregex "VST2(d|b)(8|16|32)$")>;
def : InstRW<[A57WrBackOne, A57Write_3cyc_1S_1V_1I],
(instregex "VST2(b|d)(8|16|32)wb")>;
// ASIMD store, 2 element, multiple, 4 reg: 4cyc "F0/F1, S"
def : InstRW<[A57Write_4cyc_1S_1V],
(instregex "VST2q(8|16|32)$", "VST2q(8|16|32)Pseudo$")>;
def : InstRW<[A57WrBackOne, A57Write_4cyc_1S_1V_1I],
(instregex "VST2q(8|16|32)wb", "VST2q(8|16|32)PseudoWB")>;
// ASIMD store, 2 element, one lane: 3cyc "F0/F1, S"
def : InstRW<[A57Write_3cyc_1S_1V],
(instregex "VST2LN(d|q)(8|16|32)$", "VST2LN(d|q)(8|16|32)Pseudo$")>;
def : InstRW<[A57WrBackOne, A57Write_3cyc_1S_1V_1I],
(instregex "VST2LN(d|q)(8|16|32)_UPD",
"VST2LN(d|q)(8|16|32)Pseudo_UPD")>;
// ASIMD store, 3 element, multiple, 3 reg
def : InstRW<[A57Write_3cyc_1S_1V],
(instregex "VST3(d|q)(8|16|32)$", "VST3(d|q)(8|16|32)(oddP|P)seudo$")>;
def : InstRW<[A57WrBackOne, A57Write_3cyc_1S_1V_1I],
(instregex "VST3(d|q)(8|16|32)_UPD",
"VST3(d|q)(8|16|32)(oddP|P)seudo_UPD$")>;
// ASIMD store, 3 element, one lane
def : InstRW<[A57Write_3cyc_1S_1V],
(instregex "VST3LN(d|q)(8|16|32)$", "VST3LN(d|q)(8|16|32)Pseudo$")>;
def : InstRW<[A57WrBackOne, A57Write_3cyc_1S_1V_1I],
(instregex "VST3LN(d|q)(8|16|32)_UPD",
"VST3LN(d|q)(8|16|32)Pseudo_UPD")>;
// ASIMD store, 4 element, multiple, 4 reg
def : InstRW<[A57Write_4cyc_1S_1V],
(instregex "VST4(d|q)(8|16|32)$", "VST4(d|q)(8|16|32)(oddP|P)seudo$")>;
def : InstRW<[A57WrBackOne, A57Write_4cyc_1S_1V_1I],
(instregex "VST4(d|q)(8|16|32)_UPD",
"VST4(d|q)(8|16|32)(oddP|P)seudo_UPD$")>;
// ASIMD store, 4 element, one lane
def : InstRW<[A57Write_3cyc_1S_1V],
(instregex "VST4LN(d|q)(8|16|32)$", "VST4LN(d|q)(8|16|32)Pseudo$")>;
def : InstRW<[A57WrBackOne, A57Write_3cyc_1S_1V_1I],
(instregex "VST4LN(d|q)(8|16|32)_UPD",
"VST4LN(d|q)(8|16|32)Pseudo_UPD")>;
// --- 3.19 Cryptography Extensions ---
// Crypto AES ops
// AESD, AESE, AESIMC, AESMC: 3cyc F0
def : InstRW<[A57Write_3cyc_1W], (instregex "^AES")>;
// Crypto polynomial (64x64) multiply long (VMULL.P64): 3cyc F0
def : InstRW<[A57Write_3cyc_1W], (instregex "^VMULLp64")>;
// Crypto SHA1 xor ops: 6cyc F0/F1
def : InstRW<[A57Write_6cyc_2V], (instregex "^SHA1SU0")>;
// Crypto SHA1 fast ops: 3cyc F0
def : InstRW<[A57Write_3cyc_1W], (instregex "^SHA1(H|SU1)")>;
// Crypto SHA1 slow ops: 6cyc F0
def : InstRW<[A57Write_6cyc_2W], (instregex "^SHA1[CMP]")>;
// Crypto SHA256 fast ops: 3cyc F0
def : InstRW<[A57Write_3cyc_1W], (instregex "^SHA256SU0")>;
// Crypto SHA256 slow ops: 6cyc F0
def : InstRW<[A57Write_6cyc_2W], (instregex "^SHA256(H|H2|SU1)")>;
// --- 3.20 CRC ---
def : InstRW<[A57Write_3cyc_1W], (instregex "^(t2)?CRC32")>;
// -----------------------------------------------------------------------------
// Common definitions
def : WriteRes<WriteNoop, []> { let Latency = 0; let NumMicroOps = 0; }
def : SchedAlias<WriteALU, A57Write_1cyc_1I>;
def : SchedAlias<WriteBr, A57Write_1cyc_1B>;
def : SchedAlias<WriteBrL, A57Write_1cyc_1B_1I>;
def : SchedAlias<WriteBrTbl, A57Write_1cyc_1B_1I>;
def : SchedAlias<WritePreLd, A57Write_4cyc_1L>;
def : SchedAlias<WriteLd, A57Write_4cyc_1L>;
def : SchedAlias<WriteST, A57Write_1cyc_1S>;
def : ReadAdvance<ReadALU, 0>;
} // SchedModel = CortexA57Model