llvm-project/llvm/lib/VMCore/LLVMContextImpl.h

512 lines
17 KiB
C++

//===----------------- LLVMContextImpl.h - Implementation ------*- C++ -*--===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares LLVMContextImpl, the opaque implementation
// of LLVMContext.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LLVMCONTEXT_IMPL_H
#define LLVM_LLVMCONTEXT_IMPL_H
#include "llvm/LLVMContext.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/System/Mutex.h"
#include "llvm/System/RWMutex.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/StringMap.h"
#include <map>
#include <vector>
namespace llvm {
template<class ValType>
struct ConstantTraits;
// The number of operands for each ConstantCreator::create method is
// determined by the ConstantTraits template.
// ConstantCreator - A class that is used to create constants by
// ValueMap*. This class should be partially specialized if there is
// something strange that needs to be done to interface to the ctor for the
// constant.
//
template<typename T, typename Alloc>
struct VISIBILITY_HIDDEN ConstantTraits< std::vector<T, Alloc> > {
static unsigned uses(const std::vector<T, Alloc>& v) {
return v.size();
}
};
template<class ConstantClass, class TypeClass, class ValType>
struct VISIBILITY_HIDDEN ConstantCreator {
static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
}
};
template<class ConstantClass, class TypeClass>
struct VISIBILITY_HIDDEN ConvertConstantType {
static void convert(ConstantClass *OldC, const TypeClass *NewTy) {
llvm_unreachable("This type cannot be converted!");
}
};
// ConstantAggregateZero does not take extra "value" argument...
template<class ValType>
struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
return new ConstantAggregateZero(Ty);
}
};
template<>
struct ConvertConstantType<ConstantAggregateZero, Type> {
static void convert(ConstantAggregateZero *OldC, const Type *NewTy) {
// Make everyone now use a constant of the new type...
Constant *New = NewTy->getContext().getConstantAggregateZero(NewTy);
assert(New != OldC && "Didn't replace constant??");
OldC->uncheckedReplaceAllUsesWith(New);
OldC->destroyConstant(); // This constant is now dead, destroy it.
}
};
template<>
struct ConvertConstantType<ConstantArray, ArrayType> {
static void convert(ConstantArray *OldC, const ArrayType *NewTy) {
// Make everyone now use a constant of the new type...
std::vector<Constant*> C;
for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
C.push_back(cast<Constant>(OldC->getOperand(i)));
Constant *New = NewTy->getContext().getConstantArray(NewTy, C);
assert(New != OldC && "Didn't replace constant??");
OldC->uncheckedReplaceAllUsesWith(New);
OldC->destroyConstant(); // This constant is now dead, destroy it.
}
};
template<>
struct ConvertConstantType<ConstantStruct, StructType> {
static void convert(ConstantStruct *OldC, const StructType *NewTy) {
// Make everyone now use a constant of the new type...
std::vector<Constant*> C;
for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
C.push_back(cast<Constant>(OldC->getOperand(i)));
Constant *New = NewTy->getContext().getConstantStruct(NewTy, C);
assert(New != OldC && "Didn't replace constant??");
OldC->uncheckedReplaceAllUsesWith(New);
OldC->destroyConstant(); // This constant is now dead, destroy it.
}
};
template<>
struct ConvertConstantType<ConstantVector, VectorType> {
static void convert(ConstantVector *OldC, const VectorType *NewTy) {
// Make everyone now use a constant of the new type...
std::vector<Constant*> C;
for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
C.push_back(cast<Constant>(OldC->getOperand(i)));
Constant *New = OldC->getContext().getConstantVector(NewTy, C);
assert(New != OldC && "Didn't replace constant??");
OldC->uncheckedReplaceAllUsesWith(New);
OldC->destroyConstant(); // This constant is now dead, destroy it.
}
};
template<class ValType, class TypeClass, class ConstantClass,
bool HasLargeKey = false /*true for arrays and structs*/ >
class ValueMap : public AbstractTypeUser {
public:
typedef std::pair<const Type*, ValType> MapKey;
typedef std::map<MapKey, Constant *> MapTy;
typedef std::map<Constant*, typename MapTy::iterator> InverseMapTy;
typedef std::map<const Type*, typename MapTy::iterator> AbstractTypeMapTy;
private:
/// Map - This is the main map from the element descriptor to the Constants.
/// This is the primary way we avoid creating two of the same shape
/// constant.
MapTy Map;
/// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
/// from the constants to their element in Map. This is important for
/// removal of constants from the array, which would otherwise have to scan
/// through the map with very large keys.
InverseMapTy InverseMap;
/// AbstractTypeMap - Map for abstract type constants.
///
AbstractTypeMapTy AbstractTypeMap;
/// ValueMapLock - Mutex for this map.
sys::SmartMutex<true> ValueMapLock;
public:
// NOTE: This function is not locked. It is the caller's responsibility
// to enforce proper synchronization.
typename MapTy::iterator map_end() { return Map.end(); }
/// InsertOrGetItem - Return an iterator for the specified element.
/// If the element exists in the map, the returned iterator points to the
/// entry and Exists=true. If not, the iterator points to the newly
/// inserted entry and returns Exists=false. Newly inserted entries have
/// I->second == 0, and should be filled in.
/// NOTE: This function is not locked. It is the caller's responsibility
// to enforce proper synchronization.
typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, Constant *>
&InsertVal,
bool &Exists) {
std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
Exists = !IP.second;
return IP.first;
}
private:
typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
if (HasLargeKey) {
typename InverseMapTy::iterator IMI = InverseMap.find(CP);
assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
IMI->second->second == CP &&
"InverseMap corrupt!");
return IMI->second;
}
typename MapTy::iterator I =
Map.find(MapKey(static_cast<const TypeClass*>(CP->getRawType()),
getValType(CP)));
if (I == Map.end() || I->second != CP) {
// FIXME: This should not use a linear scan. If this gets to be a
// performance problem, someone should look at this.
for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
/* empty */;
}
return I;
}
ConstantClass* Create(const TypeClass *Ty, const ValType &V,
typename MapTy::iterator I) {
ConstantClass* Result =
ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
assert(Result->getType() == Ty && "Type specified is not correct!");
I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
if (HasLargeKey) // Remember the reverse mapping if needed.
InverseMap.insert(std::make_pair(Result, I));
// If the type of the constant is abstract, make sure that an entry
// exists for it in the AbstractTypeMap.
if (Ty->isAbstract()) {
typename AbstractTypeMapTy::iterator TI =
AbstractTypeMap.find(Ty);
if (TI == AbstractTypeMap.end()) {
// Add ourselves to the ATU list of the type.
cast<DerivedType>(Ty)->addAbstractTypeUser(this);
AbstractTypeMap.insert(TI, std::make_pair(Ty, I));
}
}
return Result;
}
public:
/// getOrCreate - Return the specified constant from the map, creating it if
/// necessary.
ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
sys::SmartScopedLock<true> Lock(ValueMapLock);
MapKey Lookup(Ty, V);
ConstantClass* Result = 0;
typename MapTy::iterator I = Map.find(Lookup);
// Is it in the map?
if (I != Map.end())
Result = static_cast<ConstantClass *>(I->second);
if (!Result) {
// If no preexisting value, create one now...
Result = Create(Ty, V, I);
}
return Result;
}
void remove(ConstantClass *CP) {
sys::SmartScopedLock<true> Lock(ValueMapLock);
typename MapTy::iterator I = FindExistingElement(CP);
assert(I != Map.end() && "Constant not found in constant table!");
assert(I->second == CP && "Didn't find correct element?");
if (HasLargeKey) // Remember the reverse mapping if needed.
InverseMap.erase(CP);
// Now that we found the entry, make sure this isn't the entry that
// the AbstractTypeMap points to.
const TypeClass *Ty = static_cast<const TypeClass *>(I->first.first);
if (Ty->isAbstract()) {
assert(AbstractTypeMap.count(Ty) &&
"Abstract type not in AbstractTypeMap?");
typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty];
if (ATMEntryIt == I) {
// Yes, we are removing the representative entry for this type.
// See if there are any other entries of the same type.
typename MapTy::iterator TmpIt = ATMEntryIt;
// First check the entry before this one...
if (TmpIt != Map.begin()) {
--TmpIt;
if (TmpIt->first.first != Ty) // Not the same type, move back...
++TmpIt;
}
// If we didn't find the same type, try to move forward...
if (TmpIt == ATMEntryIt) {
++TmpIt;
if (TmpIt == Map.end() || TmpIt->first.first != Ty)
--TmpIt; // No entry afterwards with the same type
}
// If there is another entry in the map of the same abstract type,
// update the AbstractTypeMap entry now.
if (TmpIt != ATMEntryIt) {
ATMEntryIt = TmpIt;
} else {
// Otherwise, we are removing the last instance of this type
// from the table. Remove from the ATM, and from user list.
cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
AbstractTypeMap.erase(Ty);
}
}
}
Map.erase(I);
}
/// MoveConstantToNewSlot - If we are about to change C to be the element
/// specified by I, update our internal data structures to reflect this
/// fact.
/// NOTE: This function is not locked. It is the responsibility of the
/// caller to enforce proper synchronization if using this method.
void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
// First, remove the old location of the specified constant in the map.
typename MapTy::iterator OldI = FindExistingElement(C);
assert(OldI != Map.end() && "Constant not found in constant table!");
assert(OldI->second == C && "Didn't find correct element?");
// If this constant is the representative element for its abstract type,
// update the AbstractTypeMap so that the representative element is I.
if (C->getType()->isAbstract()) {
typename AbstractTypeMapTy::iterator ATI =
AbstractTypeMap.find(C->getType());
assert(ATI != AbstractTypeMap.end() &&
"Abstract type not in AbstractTypeMap?");
if (ATI->second == OldI)
ATI->second = I;
}
// Remove the old entry from the map.
Map.erase(OldI);
// Update the inverse map so that we know that this constant is now
// located at descriptor I.
if (HasLargeKey) {
assert(I->second == C && "Bad inversemap entry!");
InverseMap[C] = I;
}
}
void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
sys::SmartScopedLock<true> Lock(ValueMapLock);
typename AbstractTypeMapTy::iterator I =
AbstractTypeMap.find(cast<Type>(OldTy));
assert(I != AbstractTypeMap.end() &&
"Abstract type not in AbstractTypeMap?");
// Convert a constant at a time until the last one is gone. The last one
// leaving will remove() itself, causing the AbstractTypeMapEntry to be
// eliminated eventually.
do {
ConvertConstantType<ConstantClass,
TypeClass>::convert(
static_cast<ConstantClass *>(I->second->second),
cast<TypeClass>(NewTy));
I = AbstractTypeMap.find(cast<Type>(OldTy));
} while (I != AbstractTypeMap.end());
}
// If the type became concrete without being refined to any other existing
// type, we just remove ourselves from the ATU list.
void typeBecameConcrete(const DerivedType *AbsTy) {
AbsTy->removeAbstractTypeUser(this);
}
void dump() const {
DOUT << "Constant.cpp: ValueMap\n";
}
};
class ConstantInt;
class ConstantFP;
class MDString;
class MDNode;
class LLVMContext;
class Type;
class Value;
struct DenseMapAPIntKeyInfo {
struct KeyTy {
APInt val;
const Type* type;
KeyTy(const APInt& V, const Type* Ty) : val(V), type(Ty) {}
KeyTy(const KeyTy& that) : val(that.val), type(that.type) {}
bool operator==(const KeyTy& that) const {
return type == that.type && this->val == that.val;
}
bool operator!=(const KeyTy& that) const {
return !this->operator==(that);
}
};
static inline KeyTy getEmptyKey() { return KeyTy(APInt(1,0), 0); }
static inline KeyTy getTombstoneKey() { return KeyTy(APInt(1,1), 0); }
static unsigned getHashValue(const KeyTy &Key) {
return DenseMapInfo<void*>::getHashValue(Key.type) ^
Key.val.getHashValue();
}
static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) {
return LHS == RHS;
}
static bool isPod() { return false; }
};
struct DenseMapAPFloatKeyInfo {
struct KeyTy {
APFloat val;
KeyTy(const APFloat& V) : val(V){}
KeyTy(const KeyTy& that) : val(that.val) {}
bool operator==(const KeyTy& that) const {
return this->val.bitwiseIsEqual(that.val);
}
bool operator!=(const KeyTy& that) const {
return !this->operator==(that);
}
};
static inline KeyTy getEmptyKey() {
return KeyTy(APFloat(APFloat::Bogus,1));
}
static inline KeyTy getTombstoneKey() {
return KeyTy(APFloat(APFloat::Bogus,2));
}
static unsigned getHashValue(const KeyTy &Key) {
return Key.val.getHashValue();
}
static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) {
return LHS == RHS;
}
static bool isPod() { return false; }
};
class LLVMContextImpl {
sys::SmartRWMutex<true> ConstantsLock;
typedef DenseMap<DenseMapAPIntKeyInfo::KeyTy, ConstantInt*,
DenseMapAPIntKeyInfo> IntMapTy;
IntMapTy IntConstants;
typedef DenseMap<DenseMapAPFloatKeyInfo::KeyTy, ConstantFP*,
DenseMapAPFloatKeyInfo> FPMapTy;
FPMapTy FPConstants;
StringMap<MDString*> MDStringCache;
FoldingSet<MDNode> MDNodeSet;
ValueMap<char, Type, ConstantAggregateZero> AggZeroConstants;
typedef ValueMap<std::vector<Constant*>, ArrayType,
ConstantArray, true /*largekey*/> ArrayConstantsTy;
ArrayConstantsTy ArrayConstants;
typedef ValueMap<std::vector<Constant*>, StructType,
ConstantStruct, true /*largekey*/> StructConstantsTy;
StructConstantsTy StructConstants;
typedef ValueMap<std::vector<Constant*>, VectorType,
ConstantVector> VectorConstantsTy;
VectorConstantsTy VectorConstants;
LLVMContext &Context;
ConstantInt *TheTrueVal;
ConstantInt *TheFalseVal;
LLVMContextImpl();
LLVMContextImpl(const LLVMContextImpl&);
friend class ConstantInt;
public:
LLVMContextImpl(LLVMContext &C);
ConstantFP *getConstantFP(const APFloat &V);
MDString *getMDString(const char *StrBegin, unsigned StrLength);
MDNode *getMDNode(Value*const* Vals, unsigned NumVals);
ConstantAggregateZero *getConstantAggregateZero(const Type *Ty);
Constant *getConstantArray(const ArrayType *Ty,
const std::vector<Constant*> &V);
Constant *getConstantStruct(const StructType *Ty,
const std::vector<Constant*> &V);
Constant *getConstantVector(const VectorType *Ty,
const std::vector<Constant*> &V);
ConstantInt *getTrue() {
if (TheTrueVal)
return TheTrueVal;
else
return (TheTrueVal = ConstantInt::get(IntegerType::get(1), 1));
}
ConstantInt *getFalse() {
if (TheFalseVal)
return TheFalseVal;
else
return (TheFalseVal = ConstantInt::get(IntegerType::get(1), 0));
}
void erase(MDString *M);
void erase(MDNode *M);
void erase(ConstantAggregateZero *Z);
void erase(ConstantArray *C);
void erase(ConstantStruct *S);
void erase(ConstantVector *V);
// RAUW helpers
Constant *replaceUsesOfWithOnConstant(ConstantArray *CA, Value *From,
Value *To, Use *U);
Constant *replaceUsesOfWithOnConstant(ConstantStruct *CS, Value *From,
Value *To, Use *U);
};
}
#endif