llvm-project/llvm/lib/VMCore/LLVMContextImpl.cpp

358 lines
11 KiB
C++

//===--------------- LLVMContextImpl.cpp - Implementation ------*- C++ -*--===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements LLVMContextImpl, the opaque implementation
// of LLVMContext.
//
//===----------------------------------------------------------------------===//
#include "LLVMContextImpl.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/LLVMContext.h"
#include "llvm/MDNode.h"
using namespace llvm;
static char getValType(ConstantAggregateZero *CPZ) { return 0; }
static std::vector<Constant*> getValType(ConstantArray *CA) {
std::vector<Constant*> Elements;
Elements.reserve(CA->getNumOperands());
for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
Elements.push_back(cast<Constant>(CA->getOperand(i)));
return Elements;
}
static std::vector<Constant*> getValType(ConstantStruct *CS) {
std::vector<Constant*> Elements;
Elements.reserve(CS->getNumOperands());
for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i)
Elements.push_back(cast<Constant>(CS->getOperand(i)));
return Elements;
}
static std::vector<Constant*> getValType(ConstantVector *CP) {
std::vector<Constant*> Elements;
Elements.reserve(CP->getNumOperands());
for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
Elements.push_back(CP->getOperand(i));
return Elements;
}
LLVMContextImpl::LLVMContextImpl(LLVMContext &C) :
Context(C), TheTrueVal(0), TheFalseVal(0) { }
ConstantFP *LLVMContextImpl::getConstantFP(const APFloat &V) {
DenseMapAPFloatKeyInfo::KeyTy Key(V);
ConstantsLock.reader_acquire();
ConstantFP *&Slot = FPConstants[Key];
ConstantsLock.reader_release();
if (!Slot) {
sys::SmartScopedWriter<true> Writer(ConstantsLock);
ConstantFP *&NewSlot = FPConstants[Key];
if (!NewSlot) {
const Type *Ty;
if (&V.getSemantics() == &APFloat::IEEEsingle)
Ty = Type::FloatTy;
else if (&V.getSemantics() == &APFloat::IEEEdouble)
Ty = Type::DoubleTy;
else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
Ty = Type::X86_FP80Ty;
else if (&V.getSemantics() == &APFloat::IEEEquad)
Ty = Type::FP128Ty;
else {
assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
"Unknown FP format");
Ty = Type::PPC_FP128Ty;
}
NewSlot = new ConstantFP(Ty, V);
}
return NewSlot;
}
return Slot;
}
MDString *LLVMContextImpl::getMDString(const char *StrBegin,
unsigned StrLength) {
sys::SmartScopedWriter<true> Writer(ConstantsLock);
StringMapEntry<MDString *> &Entry =
MDStringCache.GetOrCreateValue(StringRef(StrBegin, StrLength));
MDString *&S = Entry.getValue();
if (!S) S = new MDString(Entry.getKeyData(),
Entry.getKeyLength());
return S;
}
MDNode *LLVMContextImpl::getMDNode(Value*const* Vals, unsigned NumVals) {
FoldingSetNodeID ID;
for (unsigned i = 0; i != NumVals; ++i)
ID.AddPointer(Vals[i]);
ConstantsLock.reader_acquire();
void *InsertPoint;
MDNode *N = MDNodeSet.FindNodeOrInsertPos(ID, InsertPoint);
ConstantsLock.reader_release();
if (!N) {
sys::SmartScopedWriter<true> Writer(ConstantsLock);
N = MDNodeSet.FindNodeOrInsertPos(ID, InsertPoint);
if (!N) {
// InsertPoint will have been set by the FindNodeOrInsertPos call.
N = new MDNode(Vals, NumVals);
MDNodeSet.InsertNode(N, InsertPoint);
}
}
return N;
}
ConstantAggregateZero*
LLVMContextImpl::getConstantAggregateZero(const Type *Ty) {
assert((isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) &&
"Cannot create an aggregate zero of non-aggregate type!");
// Implicitly locked.
return AggZeroConstants.getOrCreate(Ty, 0);
}
Constant *LLVMContextImpl::getConstantArray(const ArrayType *Ty,
const std::vector<Constant*> &V) {
// If this is an all-zero array, return a ConstantAggregateZero object
if (!V.empty()) {
Constant *C = V[0];
if (!C->isNullValue()) {
// Implicitly locked.
return ArrayConstants.getOrCreate(Ty, V);
}
for (unsigned i = 1, e = V.size(); i != e; ++i)
if (V[i] != C) {
// Implicitly locked.
return ArrayConstants.getOrCreate(Ty, V);
}
}
return Context.getConstantAggregateZero(Ty);
}
Constant *LLVMContextImpl::getConstantStruct(const StructType *Ty,
const std::vector<Constant*> &V) {
// Create a ConstantAggregateZero value if all elements are zeros...
for (unsigned i = 0, e = V.size(); i != e; ++i)
if (!V[i]->isNullValue())
// Implicitly locked.
return StructConstants.getOrCreate(Ty, V);
return Context.getConstantAggregateZero(Ty);
}
Constant *LLVMContextImpl::getConstantVector(const VectorType *Ty,
const std::vector<Constant*> &V) {
assert(!V.empty() && "Vectors can't be empty");
// If this is an all-undef or alll-zero vector, return a
// ConstantAggregateZero or UndefValue.
Constant *C = V[0];
bool isZero = C->isNullValue();
bool isUndef = isa<UndefValue>(C);
if (isZero || isUndef) {
for (unsigned i = 1, e = V.size(); i != e; ++i)
if (V[i] != C) {
isZero = isUndef = false;
break;
}
}
if (isZero)
return Context.getConstantAggregateZero(Ty);
if (isUndef)
return Context.getUndef(Ty);
// Implicitly locked.
return VectorConstants.getOrCreate(Ty, V);
}
// *** erase methods ***
void LLVMContextImpl::erase(MDString *M) {
sys::SmartScopedWriter<true> Writer(ConstantsLock);
MDStringCache.erase(MDStringCache.find(M->getString()));
}
void LLVMContextImpl::erase(MDNode *M) {
sys::SmartScopedWriter<true> Writer(ConstantsLock);
MDNodeSet.RemoveNode(M);
}
void LLVMContextImpl::erase(ConstantAggregateZero *Z) {
AggZeroConstants.remove(Z);
}
void LLVMContextImpl::erase(ConstantArray *C) {
ArrayConstants.remove(C);
}
void LLVMContextImpl::erase(ConstantStruct *S) {
StructConstants.remove(S);
}
void LLVMContextImpl::erase(ConstantVector *V) {
VectorConstants.remove(V);
}
// *** RAUW helpers ***
Constant *LLVMContextImpl::replaceUsesOfWithOnConstant(ConstantArray *CA,
Value *From, Value *To, Use *U) {
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
Constant *ToC = cast<Constant>(To);
std::pair<ArrayConstantsTy::MapKey, Constant*> Lookup;
Lookup.first.first = CA->getType();
Lookup.second = CA;
std::vector<Constant*> &Values = Lookup.first.second;
Values.reserve(CA->getNumOperands()); // Build replacement array.
// Fill values with the modified operands of the constant array. Also,
// compute whether this turns into an all-zeros array.
bool isAllZeros = false;
unsigned NumUpdated = 0;
if (!ToC->isNullValue()) {
for (Use *O = CA->OperandList, *E = CA->OperandList + CA->getNumOperands();
O != E; ++O) {
Constant *Val = cast<Constant>(O->get());
if (Val == From) {
Val = ToC;
++NumUpdated;
}
Values.push_back(Val);
}
} else {
isAllZeros = true;
for (Use *O = CA->OperandList, *E = CA->OperandList + CA->getNumOperands();
O != E; ++O) {
Constant *Val = cast<Constant>(O->get());
if (Val == From) {
Val = ToC;
++NumUpdated;
}
Values.push_back(Val);
if (isAllZeros) isAllZeros = Val->isNullValue();
}
}
Constant *Replacement = 0;
if (isAllZeros) {
Replacement = Context.getConstantAggregateZero(CA->getType());
} else {
// Check to see if we have this array type already.
sys::SmartScopedWriter<true> Writer(ConstantsLock);
bool Exists;
ArrayConstantsTy::MapTy::iterator I =
ArrayConstants.InsertOrGetItem(Lookup, Exists);
if (Exists) {
Replacement = I->second;
} else {
// Okay, the new shape doesn't exist in the system yet. Instead of
// creating a new constant array, inserting it, replaceallusesof'ing the
// old with the new, then deleting the old... just update the current one
// in place!
ArrayConstants.MoveConstantToNewSlot(CA, I);
// Update to the new value. Optimize for the case when we have a single
// operand that we're changing, but handle bulk updates efficiently.
if (NumUpdated == 1) {
unsigned OperandToUpdate = U - CA->OperandList;
assert(CA->getOperand(OperandToUpdate) == From &&
"ReplaceAllUsesWith broken!");
CA->setOperand(OperandToUpdate, ToC);
} else {
for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
if (CA->getOperand(i) == From)
CA->setOperand(i, ToC);
}
return 0;
}
}
return Replacement;
}
Constant *LLVMContextImpl::replaceUsesOfWithOnConstant(ConstantStruct *CS,
Value *From, Value *To, Use *U) {
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
Constant *ToC = cast<Constant>(To);
unsigned OperandToUpdate = U - CS->OperandList;
assert(CS->getOperand(OperandToUpdate) == From &&
"ReplaceAllUsesWith broken!");
std::pair<StructConstantsTy::MapKey, Constant*> Lookup;
Lookup.first.first = CS->getType();
Lookup.second = CS;
std::vector<Constant*> &Values = Lookup.first.second;
Values.reserve(CS->getNumOperands()); // Build replacement struct.
// Fill values with the modified operands of the constant struct. Also,
// compute whether this turns into an all-zeros struct.
bool isAllZeros = false;
if (!ToC->isNullValue()) {
for (Use *O = CS->OperandList, *E = CS->OperandList + CS->getNumOperands();
O != E; ++O)
Values.push_back(cast<Constant>(O->get()));
} else {
isAllZeros = true;
for (Use *O = CS->OperandList, *E = CS->OperandList + CS->getNumOperands();
O != E; ++O) {
Constant *Val = cast<Constant>(O->get());
Values.push_back(Val);
if (isAllZeros) isAllZeros = Val->isNullValue();
}
}
Values[OperandToUpdate] = ToC;
Constant *Replacement = 0;
if (isAllZeros) {
Replacement = Context.getConstantAggregateZero(CS->getType());
} else {
// Check to see if we have this array type already.
sys::SmartScopedWriter<true> Writer(ConstantsLock);
bool Exists;
StructConstantsTy::MapTy::iterator I =
StructConstants.InsertOrGetItem(Lookup, Exists);
if (Exists) {
Replacement = I->second;
} else {
// Okay, the new shape doesn't exist in the system yet. Instead of
// creating a new constant struct, inserting it, replaceallusesof'ing the
// old with the new, then deleting the old... just update the current one
// in place!
StructConstants.MoveConstantToNewSlot(CS, I);
// Update to the new value.
CS->setOperand(OperandToUpdate, ToC);
return 0;
}
}
assert(Replacement != CS && "I didn't contain From!");
return Replacement;
}