forked from OSchip/llvm-project
1489 lines
57 KiB
C++
1489 lines
57 KiB
C++
//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Bitcode writer implementation.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Bitcode/ReaderWriter.h"
|
|
#include "llvm/Bitcode/BitstreamWriter.h"
|
|
#include "llvm/Bitcode/LLVMBitCodes.h"
|
|
#include "ValueEnumerator.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/InlineAsm.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/MDNode.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Operator.h"
|
|
#include "llvm/TypeSymbolTable.h"
|
|
#include "llvm/ValueSymbolTable.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/Streams.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/System/Program.h"
|
|
using namespace llvm;
|
|
|
|
/// These are manifest constants used by the bitcode writer. They do not need to
|
|
/// be kept in sync with the reader, but need to be consistent within this file.
|
|
enum {
|
|
CurVersion = 0,
|
|
|
|
// VALUE_SYMTAB_BLOCK abbrev id's.
|
|
VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
|
|
VST_ENTRY_7_ABBREV,
|
|
VST_ENTRY_6_ABBREV,
|
|
VST_BBENTRY_6_ABBREV,
|
|
|
|
// CONSTANTS_BLOCK abbrev id's.
|
|
CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
|
|
CONSTANTS_INTEGER_ABBREV,
|
|
CONSTANTS_CE_CAST_Abbrev,
|
|
CONSTANTS_NULL_Abbrev,
|
|
|
|
// FUNCTION_BLOCK abbrev id's.
|
|
FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
|
|
FUNCTION_INST_BINOP_ABBREV,
|
|
FUNCTION_INST_BINOP_FLAGS_ABBREV,
|
|
FUNCTION_INST_CAST_ABBREV,
|
|
FUNCTION_INST_RET_VOID_ABBREV,
|
|
FUNCTION_INST_RET_VAL_ABBREV,
|
|
FUNCTION_INST_UNREACHABLE_ABBREV
|
|
};
|
|
|
|
|
|
static unsigned GetEncodedCastOpcode(unsigned Opcode) {
|
|
switch (Opcode) {
|
|
default: llvm_unreachable("Unknown cast instruction!");
|
|
case Instruction::Trunc : return bitc::CAST_TRUNC;
|
|
case Instruction::ZExt : return bitc::CAST_ZEXT;
|
|
case Instruction::SExt : return bitc::CAST_SEXT;
|
|
case Instruction::FPToUI : return bitc::CAST_FPTOUI;
|
|
case Instruction::FPToSI : return bitc::CAST_FPTOSI;
|
|
case Instruction::UIToFP : return bitc::CAST_UITOFP;
|
|
case Instruction::SIToFP : return bitc::CAST_SITOFP;
|
|
case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
|
|
case Instruction::FPExt : return bitc::CAST_FPEXT;
|
|
case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
|
|
case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
|
|
case Instruction::BitCast : return bitc::CAST_BITCAST;
|
|
}
|
|
}
|
|
|
|
static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
|
|
switch (Opcode) {
|
|
default: llvm_unreachable("Unknown binary instruction!");
|
|
case Instruction::Add:
|
|
case Instruction::FAdd: return bitc::BINOP_ADD;
|
|
case Instruction::Sub:
|
|
case Instruction::FSub: return bitc::BINOP_SUB;
|
|
case Instruction::Mul:
|
|
case Instruction::FMul: return bitc::BINOP_MUL;
|
|
case Instruction::UDiv: return bitc::BINOP_UDIV;
|
|
case Instruction::FDiv:
|
|
case Instruction::SDiv: return bitc::BINOP_SDIV;
|
|
case Instruction::URem: return bitc::BINOP_UREM;
|
|
case Instruction::FRem:
|
|
case Instruction::SRem: return bitc::BINOP_SREM;
|
|
case Instruction::Shl: return bitc::BINOP_SHL;
|
|
case Instruction::LShr: return bitc::BINOP_LSHR;
|
|
case Instruction::AShr: return bitc::BINOP_ASHR;
|
|
case Instruction::And: return bitc::BINOP_AND;
|
|
case Instruction::Or: return bitc::BINOP_OR;
|
|
case Instruction::Xor: return bitc::BINOP_XOR;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
static void WriteStringRecord(unsigned Code, const std::string &Str,
|
|
unsigned AbbrevToUse, BitstreamWriter &Stream) {
|
|
SmallVector<unsigned, 64> Vals;
|
|
|
|
// Code: [strchar x N]
|
|
for (unsigned i = 0, e = Str.size(); i != e; ++i)
|
|
Vals.push_back(Str[i]);
|
|
|
|
// Emit the finished record.
|
|
Stream.EmitRecord(Code, Vals, AbbrevToUse);
|
|
}
|
|
|
|
// Emit information about parameter attributes.
|
|
static void WriteAttributeTable(const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream) {
|
|
const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
|
|
if (Attrs.empty()) return;
|
|
|
|
Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
|
|
const AttrListPtr &A = Attrs[i];
|
|
for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
|
|
const AttributeWithIndex &PAWI = A.getSlot(i);
|
|
Record.push_back(PAWI.Index);
|
|
|
|
// FIXME: remove in LLVM 3.0
|
|
// Store the alignment in the bitcode as a 16-bit raw value instead of a
|
|
// 5-bit log2 encoded value. Shift the bits above the alignment up by
|
|
// 11 bits.
|
|
uint64_t FauxAttr = PAWI.Attrs & 0xffff;
|
|
if (PAWI.Attrs & Attribute::Alignment)
|
|
FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
|
|
FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
|
|
|
|
Record.push_back(FauxAttr);
|
|
}
|
|
|
|
Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
|
|
Record.clear();
|
|
}
|
|
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
/// WriteTypeTable - Write out the type table for a module.
|
|
static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
|
|
const ValueEnumerator::TypeList &TypeList = VE.getTypes();
|
|
|
|
Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
|
|
SmallVector<uint64_t, 64> TypeVals;
|
|
|
|
// Abbrev for TYPE_CODE_POINTER.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
|
|
Log2_32_Ceil(VE.getTypes().size()+1)));
|
|
Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
|
|
unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
|
|
|
|
// Abbrev for TYPE_CODE_FUNCTION.
|
|
Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
|
|
Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
|
|
Log2_32_Ceil(VE.getTypes().size()+1)));
|
|
unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
|
|
|
|
// Abbrev for TYPE_CODE_STRUCT.
|
|
Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
|
|
Log2_32_Ceil(VE.getTypes().size()+1)));
|
|
unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
|
|
|
|
// Abbrev for TYPE_CODE_ARRAY.
|
|
Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
|
|
Log2_32_Ceil(VE.getTypes().size()+1)));
|
|
unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
|
|
|
|
// Emit an entry count so the reader can reserve space.
|
|
TypeVals.push_back(TypeList.size());
|
|
Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
|
|
TypeVals.clear();
|
|
|
|
// Loop over all of the types, emitting each in turn.
|
|
for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
|
|
const Type *T = TypeList[i].first;
|
|
int AbbrevToUse = 0;
|
|
unsigned Code = 0;
|
|
|
|
switch (T->getTypeID()) {
|
|
default: llvm_unreachable("Unknown type!");
|
|
case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
|
|
case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
|
|
case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
|
|
case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
|
|
case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
|
|
case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
|
|
case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
|
|
case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
|
|
case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
|
|
case Type::IntegerTyID:
|
|
// INTEGER: [width]
|
|
Code = bitc::TYPE_CODE_INTEGER;
|
|
TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
|
|
break;
|
|
case Type::PointerTyID: {
|
|
const PointerType *PTy = cast<PointerType>(T);
|
|
// POINTER: [pointee type, address space]
|
|
Code = bitc::TYPE_CODE_POINTER;
|
|
TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
|
|
unsigned AddressSpace = PTy->getAddressSpace();
|
|
TypeVals.push_back(AddressSpace);
|
|
if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
|
|
break;
|
|
}
|
|
case Type::FunctionTyID: {
|
|
const FunctionType *FT = cast<FunctionType>(T);
|
|
// FUNCTION: [isvararg, attrid, retty, paramty x N]
|
|
Code = bitc::TYPE_CODE_FUNCTION;
|
|
TypeVals.push_back(FT->isVarArg());
|
|
TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0
|
|
TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
|
|
for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
|
|
TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
|
|
AbbrevToUse = FunctionAbbrev;
|
|
break;
|
|
}
|
|
case Type::StructTyID: {
|
|
const StructType *ST = cast<StructType>(T);
|
|
// STRUCT: [ispacked, eltty x N]
|
|
Code = bitc::TYPE_CODE_STRUCT;
|
|
TypeVals.push_back(ST->isPacked());
|
|
// Output all of the element types.
|
|
for (StructType::element_iterator I = ST->element_begin(),
|
|
E = ST->element_end(); I != E; ++I)
|
|
TypeVals.push_back(VE.getTypeID(*I));
|
|
AbbrevToUse = StructAbbrev;
|
|
break;
|
|
}
|
|
case Type::ArrayTyID: {
|
|
const ArrayType *AT = cast<ArrayType>(T);
|
|
// ARRAY: [numelts, eltty]
|
|
Code = bitc::TYPE_CODE_ARRAY;
|
|
TypeVals.push_back(AT->getNumElements());
|
|
TypeVals.push_back(VE.getTypeID(AT->getElementType()));
|
|
AbbrevToUse = ArrayAbbrev;
|
|
break;
|
|
}
|
|
case Type::VectorTyID: {
|
|
const VectorType *VT = cast<VectorType>(T);
|
|
// VECTOR [numelts, eltty]
|
|
Code = bitc::TYPE_CODE_VECTOR;
|
|
TypeVals.push_back(VT->getNumElements());
|
|
TypeVals.push_back(VE.getTypeID(VT->getElementType()));
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Emit the finished record.
|
|
Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
|
|
TypeVals.clear();
|
|
}
|
|
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
static unsigned getEncodedLinkage(const GlobalValue *GV) {
|
|
switch (GV->getLinkage()) {
|
|
default: llvm_unreachable("Invalid linkage!");
|
|
case GlobalValue::GhostLinkage: // Map ghost linkage onto external.
|
|
case GlobalValue::ExternalLinkage: return 0;
|
|
case GlobalValue::WeakAnyLinkage: return 1;
|
|
case GlobalValue::AppendingLinkage: return 2;
|
|
case GlobalValue::InternalLinkage: return 3;
|
|
case GlobalValue::LinkOnceAnyLinkage: return 4;
|
|
case GlobalValue::DLLImportLinkage: return 5;
|
|
case GlobalValue::DLLExportLinkage: return 6;
|
|
case GlobalValue::ExternalWeakLinkage: return 7;
|
|
case GlobalValue::CommonLinkage: return 8;
|
|
case GlobalValue::PrivateLinkage: return 9;
|
|
case GlobalValue::WeakODRLinkage: return 10;
|
|
case GlobalValue::LinkOnceODRLinkage: return 11;
|
|
case GlobalValue::AvailableExternallyLinkage: return 12;
|
|
case GlobalValue::LinkerPrivateLinkage: return 13;
|
|
}
|
|
}
|
|
|
|
static unsigned getEncodedVisibility(const GlobalValue *GV) {
|
|
switch (GV->getVisibility()) {
|
|
default: llvm_unreachable("Invalid visibility!");
|
|
case GlobalValue::DefaultVisibility: return 0;
|
|
case GlobalValue::HiddenVisibility: return 1;
|
|
case GlobalValue::ProtectedVisibility: return 2;
|
|
}
|
|
}
|
|
|
|
// Emit top-level description of module, including target triple, inline asm,
|
|
// descriptors for global variables, and function prototype info.
|
|
static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream) {
|
|
// Emit the list of dependent libraries for the Module.
|
|
for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
|
|
WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
|
|
|
|
// Emit various pieces of data attached to a module.
|
|
if (!M->getTargetTriple().empty())
|
|
WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
|
|
0/*TODO*/, Stream);
|
|
if (!M->getDataLayout().empty())
|
|
WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
|
|
0/*TODO*/, Stream);
|
|
if (!M->getModuleInlineAsm().empty())
|
|
WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
|
|
0/*TODO*/, Stream);
|
|
|
|
// Emit information about sections and GC, computing how many there are. Also
|
|
// compute the maximum alignment value.
|
|
std::map<std::string, unsigned> SectionMap;
|
|
std::map<std::string, unsigned> GCMap;
|
|
unsigned MaxAlignment = 0;
|
|
unsigned MaxGlobalType = 0;
|
|
for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
|
|
GV != E; ++GV) {
|
|
MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
|
|
MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
|
|
|
|
if (!GV->hasSection()) continue;
|
|
// Give section names unique ID's.
|
|
unsigned &Entry = SectionMap[GV->getSection()];
|
|
if (Entry != 0) continue;
|
|
WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
|
|
0/*TODO*/, Stream);
|
|
Entry = SectionMap.size();
|
|
}
|
|
for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
|
|
MaxAlignment = std::max(MaxAlignment, F->getAlignment());
|
|
if (F->hasSection()) {
|
|
// Give section names unique ID's.
|
|
unsigned &Entry = SectionMap[F->getSection()];
|
|
if (!Entry) {
|
|
WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
|
|
0/*TODO*/, Stream);
|
|
Entry = SectionMap.size();
|
|
}
|
|
}
|
|
if (F->hasGC()) {
|
|
// Same for GC names.
|
|
unsigned &Entry = GCMap[F->getGC()];
|
|
if (!Entry) {
|
|
WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
|
|
0/*TODO*/, Stream);
|
|
Entry = GCMap.size();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Emit abbrev for globals, now that we know # sections and max alignment.
|
|
unsigned SimpleGVarAbbrev = 0;
|
|
if (!M->global_empty()) {
|
|
// Add an abbrev for common globals with no visibility or thread localness.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
|
|
Log2_32_Ceil(MaxGlobalType+1)));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant.
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage.
|
|
if (MaxAlignment == 0) // Alignment.
|
|
Abbv->Add(BitCodeAbbrevOp(0));
|
|
else {
|
|
unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
|
|
Log2_32_Ceil(MaxEncAlignment+1)));
|
|
}
|
|
if (SectionMap.empty()) // Section.
|
|
Abbv->Add(BitCodeAbbrevOp(0));
|
|
else
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
|
|
Log2_32_Ceil(SectionMap.size()+1)));
|
|
// Don't bother emitting vis + thread local.
|
|
SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
|
|
}
|
|
|
|
// Emit the global variable information.
|
|
SmallVector<unsigned, 64> Vals;
|
|
for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
|
|
GV != E; ++GV) {
|
|
unsigned AbbrevToUse = 0;
|
|
|
|
// GLOBALVAR: [type, isconst, initid,
|
|
// linkage, alignment, section, visibility, threadlocal]
|
|
Vals.push_back(VE.getTypeID(GV->getType()));
|
|
Vals.push_back(GV->isConstant());
|
|
Vals.push_back(GV->isDeclaration() ? 0 :
|
|
(VE.getValueID(GV->getInitializer()) + 1));
|
|
Vals.push_back(getEncodedLinkage(GV));
|
|
Vals.push_back(Log2_32(GV->getAlignment())+1);
|
|
Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
|
|
if (GV->isThreadLocal() ||
|
|
GV->getVisibility() != GlobalValue::DefaultVisibility) {
|
|
Vals.push_back(getEncodedVisibility(GV));
|
|
Vals.push_back(GV->isThreadLocal());
|
|
} else {
|
|
AbbrevToUse = SimpleGVarAbbrev;
|
|
}
|
|
|
|
Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
|
|
Vals.clear();
|
|
}
|
|
|
|
// Emit the function proto information.
|
|
for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
|
|
// FUNCTION: [type, callingconv, isproto, paramattr,
|
|
// linkage, alignment, section, visibility, gc]
|
|
Vals.push_back(VE.getTypeID(F->getType()));
|
|
Vals.push_back(F->getCallingConv());
|
|
Vals.push_back(F->isDeclaration());
|
|
Vals.push_back(getEncodedLinkage(F));
|
|
Vals.push_back(VE.getAttributeID(F->getAttributes()));
|
|
Vals.push_back(Log2_32(F->getAlignment())+1);
|
|
Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
|
|
Vals.push_back(getEncodedVisibility(F));
|
|
Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
|
|
|
|
unsigned AbbrevToUse = 0;
|
|
Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
|
|
Vals.clear();
|
|
}
|
|
|
|
|
|
// Emit the alias information.
|
|
for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
|
|
AI != E; ++AI) {
|
|
Vals.push_back(VE.getTypeID(AI->getType()));
|
|
Vals.push_back(VE.getValueID(AI->getAliasee()));
|
|
Vals.push_back(getEncodedLinkage(AI));
|
|
Vals.push_back(getEncodedVisibility(AI));
|
|
unsigned AbbrevToUse = 0;
|
|
Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
|
|
Vals.clear();
|
|
}
|
|
}
|
|
|
|
static uint64_t GetOptimizationFlags(const Value *V) {
|
|
uint64_t Flags = 0;
|
|
|
|
if (const OverflowingBinaryOperator *OBO =
|
|
dyn_cast<OverflowingBinaryOperator>(V)) {
|
|
if (OBO->hasNoSignedOverflow())
|
|
Flags |= 1 << bitc::OBO_NO_SIGNED_OVERFLOW;
|
|
if (OBO->hasNoUnsignedOverflow())
|
|
Flags |= 1 << bitc::OBO_NO_UNSIGNED_OVERFLOW;
|
|
} else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) {
|
|
if (Div->isExact())
|
|
Flags |= 1 << bitc::SDIV_EXACT;
|
|
}
|
|
|
|
return Flags;
|
|
}
|
|
|
|
static void WriteModuleMetadata(const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream) {
|
|
const ValueEnumerator::ValueList &Vals = VE.getValues();
|
|
bool StartedMetadataBlock = false;
|
|
unsigned MDSAbbrev = 0;
|
|
SmallVector<uint64_t, 64> Record;
|
|
for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
|
|
|
|
if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
|
|
if (!StartedMetadataBlock) {
|
|
Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
|
|
StartedMetadataBlock = true;
|
|
}
|
|
for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) {
|
|
if (N->getElement(i)) {
|
|
Record.push_back(VE.getTypeID(N->getElement(i)->getType()));
|
|
Record.push_back(VE.getValueID(N->getElement(i)));
|
|
} else {
|
|
Record.push_back(VE.getTypeID(Type::VoidTy));
|
|
Record.push_back(0);
|
|
}
|
|
}
|
|
Stream.EmitRecord(bitc::METADATA_NODE, Record, 0);
|
|
Record.clear();
|
|
} else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
|
|
if (!StartedMetadataBlock) {
|
|
Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
|
|
|
|
// Abbrev for METADATA_STRING.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
|
|
MDSAbbrev = Stream.EmitAbbrev(Abbv);
|
|
StartedMetadataBlock = true;
|
|
}
|
|
|
|
// Code: [strchar x N]
|
|
const char *StrBegin = MDS->begin();
|
|
for (unsigned i = 0, e = MDS->length(); i != e; ++i)
|
|
Record.push_back(StrBegin[i]);
|
|
|
|
// Emit the finished record.
|
|
Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
|
|
Record.clear();
|
|
}
|
|
}
|
|
|
|
if (StartedMetadataBlock)
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
|
|
static void WriteConstants(unsigned FirstVal, unsigned LastVal,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream, bool isGlobal) {
|
|
if (FirstVal == LastVal) return;
|
|
|
|
Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
|
|
|
|
unsigned AggregateAbbrev = 0;
|
|
unsigned String8Abbrev = 0;
|
|
unsigned CString7Abbrev = 0;
|
|
unsigned CString6Abbrev = 0;
|
|
// If this is a constant pool for the module, emit module-specific abbrevs.
|
|
if (isGlobal) {
|
|
// Abbrev for CST_CODE_AGGREGATE.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
|
|
AggregateAbbrev = Stream.EmitAbbrev(Abbv);
|
|
|
|
// Abbrev for CST_CODE_STRING.
|
|
Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
|
|
String8Abbrev = Stream.EmitAbbrev(Abbv);
|
|
// Abbrev for CST_CODE_CSTRING.
|
|
Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
|
|
CString7Abbrev = Stream.EmitAbbrev(Abbv);
|
|
// Abbrev for CST_CODE_CSTRING.
|
|
Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
|
|
CString6Abbrev = Stream.EmitAbbrev(Abbv);
|
|
}
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
const ValueEnumerator::ValueList &Vals = VE.getValues();
|
|
const Type *LastTy = 0;
|
|
for (unsigned i = FirstVal; i != LastVal; ++i) {
|
|
const Value *V = Vals[i].first;
|
|
if (isa<MDString>(V) || isa<MDNode>(V))
|
|
continue;
|
|
// If we need to switch types, do so now.
|
|
if (V->getType() != LastTy) {
|
|
LastTy = V->getType();
|
|
Record.push_back(VE.getTypeID(LastTy));
|
|
Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
|
|
CONSTANTS_SETTYPE_ABBREV);
|
|
Record.clear();
|
|
}
|
|
|
|
if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
|
|
Record.push_back(unsigned(IA->hasSideEffects()));
|
|
|
|
// Add the asm string.
|
|
const std::string &AsmStr = IA->getAsmString();
|
|
Record.push_back(AsmStr.size());
|
|
for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
|
|
Record.push_back(AsmStr[i]);
|
|
|
|
// Add the constraint string.
|
|
const std::string &ConstraintStr = IA->getConstraintString();
|
|
Record.push_back(ConstraintStr.size());
|
|
for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
|
|
Record.push_back(ConstraintStr[i]);
|
|
Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
|
|
Record.clear();
|
|
continue;
|
|
}
|
|
const Constant *C = cast<Constant>(V);
|
|
unsigned Code = -1U;
|
|
unsigned AbbrevToUse = 0;
|
|
if (C->isNullValue()) {
|
|
Code = bitc::CST_CODE_NULL;
|
|
} else if (isa<UndefValue>(C)) {
|
|
Code = bitc::CST_CODE_UNDEF;
|
|
} else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
|
|
if (IV->getBitWidth() <= 64) {
|
|
int64_t V = IV->getSExtValue();
|
|
if (V >= 0)
|
|
Record.push_back(V << 1);
|
|
else
|
|
Record.push_back((-V << 1) | 1);
|
|
Code = bitc::CST_CODE_INTEGER;
|
|
AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
|
|
} else { // Wide integers, > 64 bits in size.
|
|
// We have an arbitrary precision integer value to write whose
|
|
// bit width is > 64. However, in canonical unsigned integer
|
|
// format it is likely that the high bits are going to be zero.
|
|
// So, we only write the number of active words.
|
|
unsigned NWords = IV->getValue().getActiveWords();
|
|
const uint64_t *RawWords = IV->getValue().getRawData();
|
|
for (unsigned i = 0; i != NWords; ++i) {
|
|
int64_t V = RawWords[i];
|
|
if (V >= 0)
|
|
Record.push_back(V << 1);
|
|
else
|
|
Record.push_back((-V << 1) | 1);
|
|
}
|
|
Code = bitc::CST_CODE_WIDE_INTEGER;
|
|
}
|
|
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
|
|
Code = bitc::CST_CODE_FLOAT;
|
|
const Type *Ty = CFP->getType();
|
|
if (Ty == Type::FloatTy || Ty == Type::DoubleTy) {
|
|
Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
|
|
} else if (Ty == Type::X86_FP80Ty) {
|
|
// api needed to prevent premature destruction
|
|
// bits are not in the same order as a normal i80 APInt, compensate.
|
|
APInt api = CFP->getValueAPF().bitcastToAPInt();
|
|
const uint64_t *p = api.getRawData();
|
|
Record.push_back((p[1] << 48) | (p[0] >> 16));
|
|
Record.push_back(p[0] & 0xffffLL);
|
|
} else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) {
|
|
APInt api = CFP->getValueAPF().bitcastToAPInt();
|
|
const uint64_t *p = api.getRawData();
|
|
Record.push_back(p[0]);
|
|
Record.push_back(p[1]);
|
|
} else {
|
|
assert (0 && "Unknown FP type!");
|
|
}
|
|
} else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
|
|
// Emit constant strings specially.
|
|
unsigned NumOps = C->getNumOperands();
|
|
// If this is a null-terminated string, use the denser CSTRING encoding.
|
|
if (C->getOperand(NumOps-1)->isNullValue()) {
|
|
Code = bitc::CST_CODE_CSTRING;
|
|
--NumOps; // Don't encode the null, which isn't allowed by char6.
|
|
} else {
|
|
Code = bitc::CST_CODE_STRING;
|
|
AbbrevToUse = String8Abbrev;
|
|
}
|
|
bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
|
|
bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
|
|
for (unsigned i = 0; i != NumOps; ++i) {
|
|
unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
|
|
Record.push_back(V);
|
|
isCStr7 &= (V & 128) == 0;
|
|
if (isCStrChar6)
|
|
isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
|
|
}
|
|
|
|
if (isCStrChar6)
|
|
AbbrevToUse = CString6Abbrev;
|
|
else if (isCStr7)
|
|
AbbrevToUse = CString7Abbrev;
|
|
} else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
|
|
isa<ConstantVector>(V)) {
|
|
Code = bitc::CST_CODE_AGGREGATE;
|
|
for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
|
|
Record.push_back(VE.getValueID(C->getOperand(i)));
|
|
AbbrevToUse = AggregateAbbrev;
|
|
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
|
|
switch (CE->getOpcode()) {
|
|
default:
|
|
if (Instruction::isCast(CE->getOpcode())) {
|
|
Code = bitc::CST_CODE_CE_CAST;
|
|
Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
|
|
Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
|
|
Record.push_back(VE.getValueID(C->getOperand(0)));
|
|
AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
|
|
} else {
|
|
assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
|
|
Code = bitc::CST_CODE_CE_BINOP;
|
|
Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
|
|
Record.push_back(VE.getValueID(C->getOperand(0)));
|
|
Record.push_back(VE.getValueID(C->getOperand(1)));
|
|
uint64_t Flags = GetOptimizationFlags(CE);
|
|
if (Flags != 0)
|
|
Record.push_back(Flags);
|
|
}
|
|
break;
|
|
case Instruction::GetElementPtr:
|
|
Code = bitc::CST_CODE_CE_GEP;
|
|
for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
|
|
Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
|
|
Record.push_back(VE.getValueID(C->getOperand(i)));
|
|
}
|
|
break;
|
|
case Instruction::Select:
|
|
Code = bitc::CST_CODE_CE_SELECT;
|
|
Record.push_back(VE.getValueID(C->getOperand(0)));
|
|
Record.push_back(VE.getValueID(C->getOperand(1)));
|
|
Record.push_back(VE.getValueID(C->getOperand(2)));
|
|
break;
|
|
case Instruction::ExtractElement:
|
|
Code = bitc::CST_CODE_CE_EXTRACTELT;
|
|
Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
|
|
Record.push_back(VE.getValueID(C->getOperand(0)));
|
|
Record.push_back(VE.getValueID(C->getOperand(1)));
|
|
break;
|
|
case Instruction::InsertElement:
|
|
Code = bitc::CST_CODE_CE_INSERTELT;
|
|
Record.push_back(VE.getValueID(C->getOperand(0)));
|
|
Record.push_back(VE.getValueID(C->getOperand(1)));
|
|
Record.push_back(VE.getValueID(C->getOperand(2)));
|
|
break;
|
|
case Instruction::ShuffleVector:
|
|
// If the return type and argument types are the same, this is a
|
|
// standard shufflevector instruction. If the types are different,
|
|
// then the shuffle is widening or truncating the input vectors, and
|
|
// the argument type must also be encoded.
|
|
if (C->getType() == C->getOperand(0)->getType()) {
|
|
Code = bitc::CST_CODE_CE_SHUFFLEVEC;
|
|
} else {
|
|
Code = bitc::CST_CODE_CE_SHUFVEC_EX;
|
|
Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
|
|
}
|
|
Record.push_back(VE.getValueID(C->getOperand(0)));
|
|
Record.push_back(VE.getValueID(C->getOperand(1)));
|
|
Record.push_back(VE.getValueID(C->getOperand(2)));
|
|
break;
|
|
case Instruction::ICmp:
|
|
case Instruction::FCmp:
|
|
Code = bitc::CST_CODE_CE_CMP;
|
|
Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
|
|
Record.push_back(VE.getValueID(C->getOperand(0)));
|
|
Record.push_back(VE.getValueID(C->getOperand(1)));
|
|
Record.push_back(CE->getPredicate());
|
|
break;
|
|
}
|
|
} else {
|
|
llvm_unreachable("Unknown constant!");
|
|
}
|
|
Stream.EmitRecord(Code, Record, AbbrevToUse);
|
|
Record.clear();
|
|
}
|
|
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
static void WriteModuleConstants(const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream) {
|
|
const ValueEnumerator::ValueList &Vals = VE.getValues();
|
|
|
|
// Find the first constant to emit, which is the first non-globalvalue value.
|
|
// We know globalvalues have been emitted by WriteModuleInfo.
|
|
for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
|
|
if (!isa<GlobalValue>(Vals[i].first)) {
|
|
WriteConstants(i, Vals.size(), VE, Stream, true);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// PushValueAndType - The file has to encode both the value and type id for
|
|
/// many values, because we need to know what type to create for forward
|
|
/// references. However, most operands are not forward references, so this type
|
|
/// field is not needed.
|
|
///
|
|
/// This function adds V's value ID to Vals. If the value ID is higher than the
|
|
/// instruction ID, then it is a forward reference, and it also includes the
|
|
/// type ID.
|
|
static bool PushValueAndType(const Value *V, unsigned InstID,
|
|
SmallVector<unsigned, 64> &Vals,
|
|
ValueEnumerator &VE) {
|
|
unsigned ValID = VE.getValueID(V);
|
|
Vals.push_back(ValID);
|
|
if (ValID >= InstID) {
|
|
Vals.push_back(VE.getTypeID(V->getType()));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// WriteInstruction - Emit an instruction to the specified stream.
|
|
static void WriteInstruction(const Instruction &I, unsigned InstID,
|
|
ValueEnumerator &VE, BitstreamWriter &Stream,
|
|
SmallVector<unsigned, 64> &Vals) {
|
|
unsigned Code = 0;
|
|
unsigned AbbrevToUse = 0;
|
|
switch (I.getOpcode()) {
|
|
default:
|
|
if (Instruction::isCast(I.getOpcode())) {
|
|
Code = bitc::FUNC_CODE_INST_CAST;
|
|
if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
|
|
AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
|
|
Vals.push_back(VE.getTypeID(I.getType()));
|
|
Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
|
|
} else {
|
|
assert(isa<BinaryOperator>(I) && "Unknown instruction!");
|
|
Code = bitc::FUNC_CODE_INST_BINOP;
|
|
if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
|
|
AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
|
|
Vals.push_back(VE.getValueID(I.getOperand(1)));
|
|
Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
|
|
uint64_t Flags = GetOptimizationFlags(&I);
|
|
if (Flags != 0) {
|
|
if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
|
|
AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
|
|
Vals.push_back(Flags);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case Instruction::GetElementPtr:
|
|
Code = bitc::FUNC_CODE_INST_GEP;
|
|
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
|
|
PushValueAndType(I.getOperand(i), InstID, Vals, VE);
|
|
break;
|
|
case Instruction::ExtractValue: {
|
|
Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
|
|
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
|
|
const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
|
|
for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
|
|
Vals.push_back(*i);
|
|
break;
|
|
}
|
|
case Instruction::InsertValue: {
|
|
Code = bitc::FUNC_CODE_INST_INSERTVAL;
|
|
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
|
|
PushValueAndType(I.getOperand(1), InstID, Vals, VE);
|
|
const InsertValueInst *IVI = cast<InsertValueInst>(&I);
|
|
for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
|
|
Vals.push_back(*i);
|
|
break;
|
|
}
|
|
case Instruction::Select:
|
|
Code = bitc::FUNC_CODE_INST_VSELECT;
|
|
PushValueAndType(I.getOperand(1), InstID, Vals, VE);
|
|
Vals.push_back(VE.getValueID(I.getOperand(2)));
|
|
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
|
|
break;
|
|
case Instruction::ExtractElement:
|
|
Code = bitc::FUNC_CODE_INST_EXTRACTELT;
|
|
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
|
|
Vals.push_back(VE.getValueID(I.getOperand(1)));
|
|
break;
|
|
case Instruction::InsertElement:
|
|
Code = bitc::FUNC_CODE_INST_INSERTELT;
|
|
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
|
|
Vals.push_back(VE.getValueID(I.getOperand(1)));
|
|
Vals.push_back(VE.getValueID(I.getOperand(2)));
|
|
break;
|
|
case Instruction::ShuffleVector:
|
|
Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
|
|
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
|
|
Vals.push_back(VE.getValueID(I.getOperand(1)));
|
|
Vals.push_back(VE.getValueID(I.getOperand(2)));
|
|
break;
|
|
case Instruction::ICmp:
|
|
case Instruction::FCmp:
|
|
// compare returning Int1Ty or vector of Int1Ty
|
|
Code = bitc::FUNC_CODE_INST_CMP2;
|
|
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
|
|
Vals.push_back(VE.getValueID(I.getOperand(1)));
|
|
Vals.push_back(cast<CmpInst>(I).getPredicate());
|
|
break;
|
|
|
|
case Instruction::Ret:
|
|
{
|
|
Code = bitc::FUNC_CODE_INST_RET;
|
|
unsigned NumOperands = I.getNumOperands();
|
|
if (NumOperands == 0)
|
|
AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
|
|
else if (NumOperands == 1) {
|
|
if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
|
|
AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
|
|
} else {
|
|
for (unsigned i = 0, e = NumOperands; i != e; ++i)
|
|
PushValueAndType(I.getOperand(i), InstID, Vals, VE);
|
|
}
|
|
}
|
|
break;
|
|
case Instruction::Br:
|
|
{
|
|
Code = bitc::FUNC_CODE_INST_BR;
|
|
BranchInst &II(cast<BranchInst>(I));
|
|
Vals.push_back(VE.getValueID(II.getSuccessor(0)));
|
|
if (II.isConditional()) {
|
|
Vals.push_back(VE.getValueID(II.getSuccessor(1)));
|
|
Vals.push_back(VE.getValueID(II.getCondition()));
|
|
}
|
|
}
|
|
break;
|
|
case Instruction::Switch:
|
|
Code = bitc::FUNC_CODE_INST_SWITCH;
|
|
Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
|
|
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
|
|
Vals.push_back(VE.getValueID(I.getOperand(i)));
|
|
break;
|
|
case Instruction::Invoke: {
|
|
const InvokeInst *II = cast<InvokeInst>(&I);
|
|
const Value *Callee(II->getCalledValue());
|
|
const PointerType *PTy = cast<PointerType>(Callee->getType());
|
|
const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
|
|
Code = bitc::FUNC_CODE_INST_INVOKE;
|
|
|
|
Vals.push_back(VE.getAttributeID(II->getAttributes()));
|
|
Vals.push_back(II->getCallingConv());
|
|
Vals.push_back(VE.getValueID(II->getNormalDest()));
|
|
Vals.push_back(VE.getValueID(II->getUnwindDest()));
|
|
PushValueAndType(Callee, InstID, Vals, VE);
|
|
|
|
// Emit value #'s for the fixed parameters.
|
|
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
|
|
Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param.
|
|
|
|
// Emit type/value pairs for varargs params.
|
|
if (FTy->isVarArg()) {
|
|
for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
|
|
i != e; ++i)
|
|
PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
|
|
}
|
|
break;
|
|
}
|
|
case Instruction::Unwind:
|
|
Code = bitc::FUNC_CODE_INST_UNWIND;
|
|
break;
|
|
case Instruction::Unreachable:
|
|
Code = bitc::FUNC_CODE_INST_UNREACHABLE;
|
|
AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
|
|
break;
|
|
|
|
case Instruction::PHI:
|
|
Code = bitc::FUNC_CODE_INST_PHI;
|
|
Vals.push_back(VE.getTypeID(I.getType()));
|
|
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
|
|
Vals.push_back(VE.getValueID(I.getOperand(i)));
|
|
break;
|
|
|
|
case Instruction::Malloc:
|
|
Code = bitc::FUNC_CODE_INST_MALLOC;
|
|
Vals.push_back(VE.getTypeID(I.getType()));
|
|
Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
|
|
Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
|
|
break;
|
|
|
|
case Instruction::Free:
|
|
Code = bitc::FUNC_CODE_INST_FREE;
|
|
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
|
|
break;
|
|
|
|
case Instruction::Alloca:
|
|
Code = bitc::FUNC_CODE_INST_ALLOCA;
|
|
Vals.push_back(VE.getTypeID(I.getType()));
|
|
Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
|
|
Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
|
|
break;
|
|
|
|
case Instruction::Load:
|
|
Code = bitc::FUNC_CODE_INST_LOAD;
|
|
if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr
|
|
AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
|
|
|
|
Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
|
|
Vals.push_back(cast<LoadInst>(I).isVolatile());
|
|
break;
|
|
case Instruction::Store:
|
|
Code = bitc::FUNC_CODE_INST_STORE2;
|
|
PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr
|
|
Vals.push_back(VE.getValueID(I.getOperand(0))); // val.
|
|
Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
|
|
Vals.push_back(cast<StoreInst>(I).isVolatile());
|
|
break;
|
|
case Instruction::Call: {
|
|
const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
|
|
const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
|
|
|
|
Code = bitc::FUNC_CODE_INST_CALL;
|
|
|
|
const CallInst *CI = cast<CallInst>(&I);
|
|
Vals.push_back(VE.getAttributeID(CI->getAttributes()));
|
|
Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
|
|
PushValueAndType(CI->getOperand(0), InstID, Vals, VE); // Callee
|
|
|
|
// Emit value #'s for the fixed parameters.
|
|
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
|
|
Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param.
|
|
|
|
// Emit type/value pairs for varargs params.
|
|
if (FTy->isVarArg()) {
|
|
unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
|
|
for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
|
|
i != e; ++i)
|
|
PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs
|
|
}
|
|
break;
|
|
}
|
|
case Instruction::VAArg:
|
|
Code = bitc::FUNC_CODE_INST_VAARG;
|
|
Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
|
|
Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
|
|
Vals.push_back(VE.getTypeID(I.getType())); // restype.
|
|
break;
|
|
}
|
|
|
|
Stream.EmitRecord(Code, Vals, AbbrevToUse);
|
|
Vals.clear();
|
|
}
|
|
|
|
// Emit names for globals/functions etc.
|
|
static void WriteValueSymbolTable(const ValueSymbolTable &VST,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream) {
|
|
if (VST.empty()) return;
|
|
Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
|
|
|
|
// FIXME: Set up the abbrev, we know how many values there are!
|
|
// FIXME: We know if the type names can use 7-bit ascii.
|
|
SmallVector<unsigned, 64> NameVals;
|
|
|
|
for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
|
|
SI != SE; ++SI) {
|
|
|
|
const ValueName &Name = *SI;
|
|
|
|
// Figure out the encoding to use for the name.
|
|
bool is7Bit = true;
|
|
bool isChar6 = true;
|
|
for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
|
|
C != E; ++C) {
|
|
if (isChar6)
|
|
isChar6 = BitCodeAbbrevOp::isChar6(*C);
|
|
if ((unsigned char)*C & 128) {
|
|
is7Bit = false;
|
|
break; // don't bother scanning the rest.
|
|
}
|
|
}
|
|
|
|
unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
|
|
|
|
// VST_ENTRY: [valueid, namechar x N]
|
|
// VST_BBENTRY: [bbid, namechar x N]
|
|
unsigned Code;
|
|
if (isa<BasicBlock>(SI->getValue())) {
|
|
Code = bitc::VST_CODE_BBENTRY;
|
|
if (isChar6)
|
|
AbbrevToUse = VST_BBENTRY_6_ABBREV;
|
|
} else {
|
|
Code = bitc::VST_CODE_ENTRY;
|
|
if (isChar6)
|
|
AbbrevToUse = VST_ENTRY_6_ABBREV;
|
|
else if (is7Bit)
|
|
AbbrevToUse = VST_ENTRY_7_ABBREV;
|
|
}
|
|
|
|
NameVals.push_back(VE.getValueID(SI->getValue()));
|
|
for (const char *P = Name.getKeyData(),
|
|
*E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
|
|
NameVals.push_back((unsigned char)*P);
|
|
|
|
// Emit the finished record.
|
|
Stream.EmitRecord(Code, NameVals, AbbrevToUse);
|
|
NameVals.clear();
|
|
}
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
/// WriteFunction - Emit a function body to the module stream.
|
|
static void WriteFunction(const Function &F, ValueEnumerator &VE,
|
|
BitstreamWriter &Stream) {
|
|
Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
|
|
VE.incorporateFunction(F);
|
|
|
|
SmallVector<unsigned, 64> Vals;
|
|
|
|
// Emit the number of basic blocks, so the reader can create them ahead of
|
|
// time.
|
|
Vals.push_back(VE.getBasicBlocks().size());
|
|
Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
|
|
Vals.clear();
|
|
|
|
// If there are function-local constants, emit them now.
|
|
unsigned CstStart, CstEnd;
|
|
VE.getFunctionConstantRange(CstStart, CstEnd);
|
|
WriteConstants(CstStart, CstEnd, VE, Stream, false);
|
|
|
|
// Keep a running idea of what the instruction ID is.
|
|
unsigned InstID = CstEnd;
|
|
|
|
// Finally, emit all the instructions, in order.
|
|
for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
|
|
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
|
|
I != E; ++I) {
|
|
WriteInstruction(*I, InstID, VE, Stream, Vals);
|
|
if (I->getType() != Type::VoidTy)
|
|
++InstID;
|
|
}
|
|
|
|
// Emit names for all the instructions etc.
|
|
WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
|
|
|
|
VE.purgeFunction();
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
/// WriteTypeSymbolTable - Emit a block for the specified type symtab.
|
|
static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
|
|
const ValueEnumerator &VE,
|
|
BitstreamWriter &Stream) {
|
|
if (TST.empty()) return;
|
|
|
|
Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
|
|
|
|
// 7-bit fixed width VST_CODE_ENTRY strings.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
|
|
Log2_32_Ceil(VE.getTypes().size()+1)));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
|
|
unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
|
|
|
|
SmallVector<unsigned, 64> NameVals;
|
|
|
|
for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
|
|
TI != TE; ++TI) {
|
|
// TST_ENTRY: [typeid, namechar x N]
|
|
NameVals.push_back(VE.getTypeID(TI->second));
|
|
|
|
const std::string &Str = TI->first;
|
|
bool is7Bit = true;
|
|
for (unsigned i = 0, e = Str.size(); i != e; ++i) {
|
|
NameVals.push_back((unsigned char)Str[i]);
|
|
if (Str[i] & 128)
|
|
is7Bit = false;
|
|
}
|
|
|
|
// Emit the finished record.
|
|
Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
|
|
NameVals.clear();
|
|
}
|
|
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
// Emit blockinfo, which defines the standard abbreviations etc.
|
|
static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
|
|
// We only want to emit block info records for blocks that have multiple
|
|
// instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other
|
|
// blocks can defined their abbrevs inline.
|
|
Stream.EnterBlockInfoBlock(2);
|
|
|
|
{ // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
|
|
Abbv) != VST_ENTRY_8_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
|
|
{ // 7-bit fixed width VST_ENTRY strings.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
|
|
Abbv) != VST_ENTRY_7_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
{ // 6-bit char6 VST_ENTRY strings.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
|
|
Abbv) != VST_ENTRY_6_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
{ // 6-bit char6 VST_BBENTRY strings.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
|
|
Abbv) != VST_BBENTRY_6_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
|
|
|
|
|
|
{ // SETTYPE abbrev for CONSTANTS_BLOCK.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
|
|
Log2_32_Ceil(VE.getTypes().size()+1)));
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
|
|
Abbv) != CONSTANTS_SETTYPE_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
|
|
{ // INTEGER abbrev for CONSTANTS_BLOCK.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
|
|
Abbv) != CONSTANTS_INTEGER_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
|
|
{ // CE_CAST abbrev for CONSTANTS_BLOCK.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
|
|
Log2_32_Ceil(VE.getTypes().size()+1)));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
|
|
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
|
|
Abbv) != CONSTANTS_CE_CAST_Abbrev)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
{ // NULL abbrev for CONSTANTS_BLOCK.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
|
|
Abbv) != CONSTANTS_NULL_Abbrev)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
|
|
// FIXME: This should only use space for first class types!
|
|
|
|
{ // INST_LOAD abbrev for FUNCTION_BLOCK.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
|
|
Abbv) != FUNCTION_INST_LOAD_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
{ // INST_BINOP abbrev for FUNCTION_BLOCK.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
|
|
Abbv) != FUNCTION_INST_BINOP_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
{ // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
|
|
Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
{ // INST_CAST abbrev for FUNCTION_BLOCK.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
|
|
Log2_32_Ceil(VE.getTypes().size()+1)));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
|
|
Abbv) != FUNCTION_INST_CAST_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
|
|
{ // INST_RET abbrev for FUNCTION_BLOCK.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
|
|
Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
{ // INST_RET abbrev for FUNCTION_BLOCK.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
|
|
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
|
|
Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
{ // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
|
|
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
|
|
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
|
|
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
|
|
Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
|
|
llvm_unreachable("Unexpected abbrev ordering!");
|
|
}
|
|
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
|
|
/// WriteModule - Emit the specified module to the bitstream.
|
|
static void WriteModule(const Module *M, BitstreamWriter &Stream) {
|
|
Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
|
|
|
|
// Emit the version number if it is non-zero.
|
|
if (CurVersion) {
|
|
SmallVector<unsigned, 1> Vals;
|
|
Vals.push_back(CurVersion);
|
|
Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
|
|
}
|
|
|
|
// Analyze the module, enumerating globals, functions, etc.
|
|
ValueEnumerator VE(M);
|
|
|
|
// Emit blockinfo, which defines the standard abbreviations etc.
|
|
WriteBlockInfo(VE, Stream);
|
|
|
|
// Emit information about parameter attributes.
|
|
WriteAttributeTable(VE, Stream);
|
|
|
|
// Emit information describing all of the types in the module.
|
|
WriteTypeTable(VE, Stream);
|
|
|
|
// Emit top-level description of module, including target triple, inline asm,
|
|
// descriptors for global variables, and function prototype info.
|
|
WriteModuleInfo(M, VE, Stream);
|
|
|
|
// Emit constants.
|
|
WriteModuleConstants(VE, Stream);
|
|
|
|
// Emit metadata.
|
|
WriteModuleMetadata(VE, Stream);
|
|
|
|
// Emit function bodies.
|
|
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
|
|
if (!I->isDeclaration())
|
|
WriteFunction(*I, VE, Stream);
|
|
|
|
// Emit the type symbol table information.
|
|
WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
|
|
|
|
// Emit names for globals/functions etc.
|
|
WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
|
|
|
|
Stream.ExitBlock();
|
|
}
|
|
|
|
/// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
|
|
/// header and trailer to make it compatible with the system archiver. To do
|
|
/// this we emit the following header, and then emit a trailer that pads the
|
|
/// file out to be a multiple of 16 bytes.
|
|
///
|
|
/// struct bc_header {
|
|
/// uint32_t Magic; // 0x0B17C0DE
|
|
/// uint32_t Version; // Version, currently always 0.
|
|
/// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
|
|
/// uint32_t BitcodeSize; // Size of traditional bitcode file.
|
|
/// uint32_t CPUType; // CPU specifier.
|
|
/// ... potentially more later ...
|
|
/// };
|
|
enum {
|
|
DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
|
|
DarwinBCHeaderSize = 5*4
|
|
};
|
|
|
|
static void EmitDarwinBCHeader(BitstreamWriter &Stream,
|
|
const std::string &TT) {
|
|
unsigned CPUType = ~0U;
|
|
|
|
// Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*. The CPUType is a
|
|
// magic number from /usr/include/mach/machine.h. It is ok to reproduce the
|
|
// specific constants here because they are implicitly part of the Darwin ABI.
|
|
enum {
|
|
DARWIN_CPU_ARCH_ABI64 = 0x01000000,
|
|
DARWIN_CPU_TYPE_X86 = 7,
|
|
DARWIN_CPU_TYPE_POWERPC = 18
|
|
};
|
|
|
|
if (TT.find("x86_64-") == 0)
|
|
CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
|
|
else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
|
|
TT[4] == '-' && TT[1] - '3' < 6)
|
|
CPUType = DARWIN_CPU_TYPE_X86;
|
|
else if (TT.find("powerpc-") == 0)
|
|
CPUType = DARWIN_CPU_TYPE_POWERPC;
|
|
else if (TT.find("powerpc64-") == 0)
|
|
CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
|
|
|
|
// Traditional Bitcode starts after header.
|
|
unsigned BCOffset = DarwinBCHeaderSize;
|
|
|
|
Stream.Emit(0x0B17C0DE, 32);
|
|
Stream.Emit(0 , 32); // Version.
|
|
Stream.Emit(BCOffset , 32);
|
|
Stream.Emit(0 , 32); // Filled in later.
|
|
Stream.Emit(CPUType , 32);
|
|
}
|
|
|
|
/// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
|
|
/// finalize the header.
|
|
static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
|
|
// Update the size field in the header.
|
|
Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
|
|
|
|
// If the file is not a multiple of 16 bytes, insert dummy padding.
|
|
while (BufferSize & 15) {
|
|
Stream.Emit(0, 8);
|
|
++BufferSize;
|
|
}
|
|
}
|
|
|
|
|
|
/// WriteBitcodeToFile - Write the specified module to the specified output
|
|
/// stream.
|
|
void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
|
|
raw_os_ostream RawOut(Out);
|
|
// If writing to stdout, set binary mode.
|
|
if (llvm::cout == Out)
|
|
sys::Program::ChangeStdoutToBinary();
|
|
WriteBitcodeToFile(M, RawOut);
|
|
}
|
|
|
|
/// WriteBitcodeToFile - Write the specified module to the specified output
|
|
/// stream.
|
|
void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
|
|
std::vector<unsigned char> Buffer;
|
|
BitstreamWriter Stream(Buffer);
|
|
|
|
Buffer.reserve(256*1024);
|
|
|
|
WriteBitcodeToStream( M, Stream );
|
|
|
|
// If writing to stdout, set binary mode.
|
|
if (&llvm::outs() == &Out)
|
|
sys::Program::ChangeStdoutToBinary();
|
|
|
|
// Write the generated bitstream to "Out".
|
|
Out.write((char*)&Buffer.front(), Buffer.size());
|
|
|
|
// Make sure it hits disk now.
|
|
Out.flush();
|
|
}
|
|
|
|
/// WriteBitcodeToStream - Write the specified module to the specified output
|
|
/// stream.
|
|
void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
|
|
// If this is darwin, emit a file header and trailer if needed.
|
|
bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
|
|
if (isDarwin)
|
|
EmitDarwinBCHeader(Stream, M->getTargetTriple());
|
|
|
|
// Emit the file header.
|
|
Stream.Emit((unsigned)'B', 8);
|
|
Stream.Emit((unsigned)'C', 8);
|
|
Stream.Emit(0x0, 4);
|
|
Stream.Emit(0xC, 4);
|
|
Stream.Emit(0xE, 4);
|
|
Stream.Emit(0xD, 4);
|
|
|
|
// Emit the module.
|
|
WriteModule(M, Stream);
|
|
|
|
if (isDarwin)
|
|
EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());
|
|
}
|