llvm-project/clang/lib/StaticAnalyzer/Core/ProgramState.cpp

645 lines
22 KiB
C++

//= ProgramState.cpp - Path-Sensitive "State" for tracking values --*- C++ -*--=
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements ProgramState and ProgramStateManager.
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/Analysis/CFG.h"
#include "clang/Basic/JsonSupport.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
using namespace ento;
namespace clang { namespace ento {
/// Increments the number of times this state is referenced.
void ProgramStateRetain(const ProgramState *state) {
++const_cast<ProgramState*>(state)->refCount;
}
/// Decrement the number of times this state is referenced.
void ProgramStateRelease(const ProgramState *state) {
assert(state->refCount > 0);
ProgramState *s = const_cast<ProgramState*>(state);
if (--s->refCount == 0) {
ProgramStateManager &Mgr = s->getStateManager();
Mgr.StateSet.RemoveNode(s);
s->~ProgramState();
Mgr.freeStates.push_back(s);
}
}
}}
ProgramState::ProgramState(ProgramStateManager *mgr, const Environment& env,
StoreRef st, GenericDataMap gdm)
: stateMgr(mgr),
Env(env),
store(st.getStore()),
GDM(gdm),
refCount(0) {
stateMgr->getStoreManager().incrementReferenceCount(store);
}
ProgramState::ProgramState(const ProgramState &RHS)
: llvm::FoldingSetNode(),
stateMgr(RHS.stateMgr),
Env(RHS.Env),
store(RHS.store),
GDM(RHS.GDM),
refCount(0) {
stateMgr->getStoreManager().incrementReferenceCount(store);
}
ProgramState::~ProgramState() {
if (store)
stateMgr->getStoreManager().decrementReferenceCount(store);
}
int64_t ProgramState::getID() const {
return getStateManager().Alloc.identifyKnownAlignedObject<ProgramState>(this);
}
ProgramStateManager::ProgramStateManager(ASTContext &Ctx,
StoreManagerCreator CreateSMgr,
ConstraintManagerCreator CreateCMgr,
llvm::BumpPtrAllocator &alloc,
SubEngine *SubEng)
: Eng(SubEng), EnvMgr(alloc), GDMFactory(alloc),
svalBuilder(createSimpleSValBuilder(alloc, Ctx, *this)),
CallEventMgr(new CallEventManager(alloc)), Alloc(alloc) {
StoreMgr = (*CreateSMgr)(*this);
ConstraintMgr = (*CreateCMgr)(*this, SubEng);
}
ProgramStateManager::~ProgramStateManager() {
for (GDMContextsTy::iterator I=GDMContexts.begin(), E=GDMContexts.end();
I!=E; ++I)
I->second.second(I->second.first);
}
ProgramStateRef ProgramStateManager::removeDeadBindingsFromEnvironmentAndStore(
ProgramStateRef state, const StackFrameContext *LCtx,
SymbolReaper &SymReaper) {
// This code essentially performs a "mark-and-sweep" of the VariableBindings.
// The roots are any Block-level exprs and Decls that our liveness algorithm
// tells us are live. We then see what Decls they may reference, and keep
// those around. This code more than likely can be made faster, and the
// frequency of which this method is called should be experimented with
// for optimum performance.
ProgramState NewState = *state;
NewState.Env = EnvMgr.removeDeadBindings(NewState.Env, SymReaper, state);
// Clean up the store.
StoreRef newStore = StoreMgr->removeDeadBindings(NewState.getStore(), LCtx,
SymReaper);
NewState.setStore(newStore);
SymReaper.setReapedStore(newStore);
return getPersistentState(NewState);
}
ProgramStateRef ProgramState::bindLoc(Loc LV,
SVal V,
const LocationContext *LCtx,
bool notifyChanges) const {
ProgramStateManager &Mgr = getStateManager();
ProgramStateRef newState = makeWithStore(Mgr.StoreMgr->Bind(getStore(),
LV, V));
const MemRegion *MR = LV.getAsRegion();
if (MR && notifyChanges)
return Mgr.getOwningEngine().processRegionChange(newState, MR, LCtx);
return newState;
}
ProgramStateRef
ProgramState::bindDefaultInitial(SVal loc, SVal V,
const LocationContext *LCtx) const {
ProgramStateManager &Mgr = getStateManager();
const MemRegion *R = loc.castAs<loc::MemRegionVal>().getRegion();
const StoreRef &newStore = Mgr.StoreMgr->BindDefaultInitial(getStore(), R, V);
ProgramStateRef new_state = makeWithStore(newStore);
return Mgr.getOwningEngine().processRegionChange(new_state, R, LCtx);
}
ProgramStateRef
ProgramState::bindDefaultZero(SVal loc, const LocationContext *LCtx) const {
ProgramStateManager &Mgr = getStateManager();
const MemRegion *R = loc.castAs<loc::MemRegionVal>().getRegion();
const StoreRef &newStore = Mgr.StoreMgr->BindDefaultZero(getStore(), R);
ProgramStateRef new_state = makeWithStore(newStore);
return Mgr.getOwningEngine().processRegionChange(new_state, R, LCtx);
}
typedef ArrayRef<const MemRegion *> RegionList;
typedef ArrayRef<SVal> ValueList;
ProgramStateRef
ProgramState::invalidateRegions(RegionList Regions,
const Expr *E, unsigned Count,
const LocationContext *LCtx,
bool CausedByPointerEscape,
InvalidatedSymbols *IS,
const CallEvent *Call,
RegionAndSymbolInvalidationTraits *ITraits) const {
SmallVector<SVal, 8> Values;
for (RegionList::const_iterator I = Regions.begin(),
End = Regions.end(); I != End; ++I)
Values.push_back(loc::MemRegionVal(*I));
return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape,
IS, ITraits, Call);
}
ProgramStateRef
ProgramState::invalidateRegions(ValueList Values,
const Expr *E, unsigned Count,
const LocationContext *LCtx,
bool CausedByPointerEscape,
InvalidatedSymbols *IS,
const CallEvent *Call,
RegionAndSymbolInvalidationTraits *ITraits) const {
return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape,
IS, ITraits, Call);
}
ProgramStateRef
ProgramState::invalidateRegionsImpl(ValueList Values,
const Expr *E, unsigned Count,
const LocationContext *LCtx,
bool CausedByPointerEscape,
InvalidatedSymbols *IS,
RegionAndSymbolInvalidationTraits *ITraits,
const CallEvent *Call) const {
ProgramStateManager &Mgr = getStateManager();
SubEngine &Eng = Mgr.getOwningEngine();
InvalidatedSymbols InvalidatedSyms;
if (!IS)
IS = &InvalidatedSyms;
RegionAndSymbolInvalidationTraits ITraitsLocal;
if (!ITraits)
ITraits = &ITraitsLocal;
StoreManager::InvalidatedRegions TopLevelInvalidated;
StoreManager::InvalidatedRegions Invalidated;
const StoreRef &newStore
= Mgr.StoreMgr->invalidateRegions(getStore(), Values, E, Count, LCtx, Call,
*IS, *ITraits, &TopLevelInvalidated,
&Invalidated);
ProgramStateRef newState = makeWithStore(newStore);
if (CausedByPointerEscape) {
newState = Eng.notifyCheckersOfPointerEscape(newState, IS,
TopLevelInvalidated,
Call,
*ITraits);
}
return Eng.processRegionChanges(newState, IS, TopLevelInvalidated,
Invalidated, LCtx, Call);
}
ProgramStateRef ProgramState::killBinding(Loc LV) const {
assert(!LV.getAs<loc::MemRegionVal>() && "Use invalidateRegion instead.");
Store OldStore = getStore();
const StoreRef &newStore =
getStateManager().StoreMgr->killBinding(OldStore, LV);
if (newStore.getStore() == OldStore)
return this;
return makeWithStore(newStore);
}
ProgramStateRef
ProgramState::enterStackFrame(const CallEvent &Call,
const StackFrameContext *CalleeCtx) const {
const StoreRef &NewStore =
getStateManager().StoreMgr->enterStackFrame(getStore(), Call, CalleeCtx);
return makeWithStore(NewStore);
}
SVal ProgramState::getSValAsScalarOrLoc(const MemRegion *R) const {
// We only want to do fetches from regions that we can actually bind
// values. For example, SymbolicRegions of type 'id<...>' cannot
// have direct bindings (but their can be bindings on their subregions).
if (!R->isBoundable())
return UnknownVal();
if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
QualType T = TR->getValueType();
if (Loc::isLocType(T) || T->isIntegralOrEnumerationType())
return getSVal(R);
}
return UnknownVal();
}
SVal ProgramState::getSVal(Loc location, QualType T) const {
SVal V = getRawSVal(location, T);
// If 'V' is a symbolic value that is *perfectly* constrained to
// be a constant value, use that value instead to lessen the burden
// on later analysis stages (so we have less symbolic values to reason
// about).
// We only go into this branch if we can convert the APSInt value we have
// to the type of T, which is not always the case (e.g. for void).
if (!T.isNull() && (T->isIntegralOrEnumerationType() || Loc::isLocType(T))) {
if (SymbolRef sym = V.getAsSymbol()) {
if (const llvm::APSInt *Int = getStateManager()
.getConstraintManager()
.getSymVal(this, sym)) {
// FIXME: Because we don't correctly model (yet) sign-extension
// and truncation of symbolic values, we need to convert
// the integer value to the correct signedness and bitwidth.
//
// This shows up in the following:
//
// char foo();
// unsigned x = foo();
// if (x == 54)
// ...
//
// The symbolic value stored to 'x' is actually the conjured
// symbol for the call to foo(); the type of that symbol is 'char',
// not unsigned.
const llvm::APSInt &NewV = getBasicVals().Convert(T, *Int);
if (V.getAs<Loc>())
return loc::ConcreteInt(NewV);
else
return nonloc::ConcreteInt(NewV);
}
}
}
return V;
}
ProgramStateRef ProgramState::BindExpr(const Stmt *S,
const LocationContext *LCtx,
SVal V, bool Invalidate) const{
Environment NewEnv =
getStateManager().EnvMgr.bindExpr(Env, EnvironmentEntry(S, LCtx), V,
Invalidate);
if (NewEnv == Env)
return this;
ProgramState NewSt = *this;
NewSt.Env = NewEnv;
return getStateManager().getPersistentState(NewSt);
}
ProgramStateRef ProgramState::assumeInBound(DefinedOrUnknownSVal Idx,
DefinedOrUnknownSVal UpperBound,
bool Assumption,
QualType indexTy) const {
if (Idx.isUnknown() || UpperBound.isUnknown())
return this;
// Build an expression for 0 <= Idx < UpperBound.
// This is the same as Idx + MIN < UpperBound + MIN, if overflow is allowed.
// FIXME: This should probably be part of SValBuilder.
ProgramStateManager &SM = getStateManager();
SValBuilder &svalBuilder = SM.getSValBuilder();
ASTContext &Ctx = svalBuilder.getContext();
// Get the offset: the minimum value of the array index type.
BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
if (indexTy.isNull())
indexTy = svalBuilder.getArrayIndexType();
nonloc::ConcreteInt Min(BVF.getMinValue(indexTy));
// Adjust the index.
SVal newIdx = svalBuilder.evalBinOpNN(this, BO_Add,
Idx.castAs<NonLoc>(), Min, indexTy);
if (newIdx.isUnknownOrUndef())
return this;
// Adjust the upper bound.
SVal newBound =
svalBuilder.evalBinOpNN(this, BO_Add, UpperBound.castAs<NonLoc>(),
Min, indexTy);
if (newBound.isUnknownOrUndef())
return this;
// Build the actual comparison.
SVal inBound = svalBuilder.evalBinOpNN(this, BO_LT, newIdx.castAs<NonLoc>(),
newBound.castAs<NonLoc>(), Ctx.IntTy);
if (inBound.isUnknownOrUndef())
return this;
// Finally, let the constraint manager take care of it.
ConstraintManager &CM = SM.getConstraintManager();
return CM.assume(this, inBound.castAs<DefinedSVal>(), Assumption);
}
ConditionTruthVal ProgramState::isNonNull(SVal V) const {
ConditionTruthVal IsNull = isNull(V);
if (IsNull.isUnderconstrained())
return IsNull;
return ConditionTruthVal(!IsNull.getValue());
}
ConditionTruthVal ProgramState::areEqual(SVal Lhs, SVal Rhs) const {
return stateMgr->getSValBuilder().areEqual(this, Lhs, Rhs);
}
ConditionTruthVal ProgramState::isNull(SVal V) const {
if (V.isZeroConstant())
return true;
if (V.isConstant())
return false;
SymbolRef Sym = V.getAsSymbol(/* IncludeBaseRegion */ true);
if (!Sym)
return ConditionTruthVal();
return getStateManager().ConstraintMgr->isNull(this, Sym);
}
ProgramStateRef ProgramStateManager::getInitialState(const LocationContext *InitLoc) {
ProgramState State(this,
EnvMgr.getInitialEnvironment(),
StoreMgr->getInitialStore(InitLoc),
GDMFactory.getEmptyMap());
return getPersistentState(State);
}
ProgramStateRef ProgramStateManager::getPersistentStateWithGDM(
ProgramStateRef FromState,
ProgramStateRef GDMState) {
ProgramState NewState(*FromState);
NewState.GDM = GDMState->GDM;
return getPersistentState(NewState);
}
ProgramStateRef ProgramStateManager::getPersistentState(ProgramState &State) {
llvm::FoldingSetNodeID ID;
State.Profile(ID);
void *InsertPos;
if (ProgramState *I = StateSet.FindNodeOrInsertPos(ID, InsertPos))
return I;
ProgramState *newState = nullptr;
if (!freeStates.empty()) {
newState = freeStates.back();
freeStates.pop_back();
}
else {
newState = (ProgramState*) Alloc.Allocate<ProgramState>();
}
new (newState) ProgramState(State);
StateSet.InsertNode(newState, InsertPos);
return newState;
}
ProgramStateRef ProgramState::makeWithStore(const StoreRef &store) const {
ProgramState NewSt(*this);
NewSt.setStore(store);
return getStateManager().getPersistentState(NewSt);
}
void ProgramState::setStore(const StoreRef &newStore) {
Store newStoreStore = newStore.getStore();
if (newStoreStore)
stateMgr->getStoreManager().incrementReferenceCount(newStoreStore);
if (store)
stateMgr->getStoreManager().decrementReferenceCount(store);
store = newStoreStore;
}
//===----------------------------------------------------------------------===//
// State pretty-printing.
//===----------------------------------------------------------------------===//
void ProgramState::printJson(raw_ostream &Out, const LocationContext *LCtx,
const char *NL, unsigned int Space,
bool IsDot) const {
Indent(Out, Space, IsDot) << "\"program_state\": {" << NL;
++Space;
ProgramStateManager &Mgr = getStateManager();
// Print the store.
Mgr.getStoreManager().printJson(Out, getStore(), NL, Space, IsDot);
// Print out the environment.
Env.printJson(Out, Mgr.getContext(), LCtx, NL, Space, IsDot);
// Print out the constraints.
Mgr.getConstraintManager().printJson(Out, this, NL, Space, IsDot);
// Print out the tracked dynamic types.
printDynamicTypeInfoJson(Out, this, NL, Space, IsDot);
// Print checker-specific data.
Mgr.getOwningEngine().printJson(Out, this, LCtx, NL, Space, IsDot);
--Space;
Indent(Out, Space, IsDot) << '}';
}
void ProgramState::printDOT(raw_ostream &Out, const LocationContext *LCtx,
unsigned int Space) const {
printJson(Out, LCtx, /*NL=*/"\\l", Space, /*IsDot=*/true);
}
LLVM_DUMP_METHOD void ProgramState::dump() const {
printJson(llvm::errs());
}
AnalysisManager& ProgramState::getAnalysisManager() const {
return stateMgr->getOwningEngine().getAnalysisManager();
}
//===----------------------------------------------------------------------===//
// Generic Data Map.
//===----------------------------------------------------------------------===//
void *const* ProgramState::FindGDM(void *K) const {
return GDM.lookup(K);
}
void*
ProgramStateManager::FindGDMContext(void *K,
void *(*CreateContext)(llvm::BumpPtrAllocator&),
void (*DeleteContext)(void*)) {
std::pair<void*, void (*)(void*)>& p = GDMContexts[K];
if (!p.first) {
p.first = CreateContext(Alloc);
p.second = DeleteContext;
}
return p.first;
}
ProgramStateRef ProgramStateManager::addGDM(ProgramStateRef St, void *Key, void *Data){
ProgramState::GenericDataMap M1 = St->getGDM();
ProgramState::GenericDataMap M2 = GDMFactory.add(M1, Key, Data);
if (M1 == M2)
return St;
ProgramState NewSt = *St;
NewSt.GDM = M2;
return getPersistentState(NewSt);
}
ProgramStateRef ProgramStateManager::removeGDM(ProgramStateRef state, void *Key) {
ProgramState::GenericDataMap OldM = state->getGDM();
ProgramState::GenericDataMap NewM = GDMFactory.remove(OldM, Key);
if (NewM == OldM)
return state;
ProgramState NewState = *state;
NewState.GDM = NewM;
return getPersistentState(NewState);
}
bool ScanReachableSymbols::scan(nonloc::LazyCompoundVal val) {
bool wasVisited = !visited.insert(val.getCVData()).second;
if (wasVisited)
return true;
StoreManager &StoreMgr = state->getStateManager().getStoreManager();
// FIXME: We don't really want to use getBaseRegion() here because pointer
// arithmetic doesn't apply, but scanReachableSymbols only accepts base
// regions right now.
const MemRegion *R = val.getRegion()->getBaseRegion();
return StoreMgr.scanReachableSymbols(val.getStore(), R, *this);
}
bool ScanReachableSymbols::scan(nonloc::CompoundVal val) {
for (nonloc::CompoundVal::iterator I=val.begin(), E=val.end(); I!=E; ++I)
if (!scan(*I))
return false;
return true;
}
bool ScanReachableSymbols::scan(const SymExpr *sym) {
for (SymExpr::symbol_iterator SI = sym->symbol_begin(),
SE = sym->symbol_end();
SI != SE; ++SI) {
bool wasVisited = !visited.insert(*SI).second;
if (wasVisited)
continue;
if (!visitor.VisitSymbol(*SI))
return false;
}
return true;
}
bool ScanReachableSymbols::scan(SVal val) {
if (Optional<loc::MemRegionVal> X = val.getAs<loc::MemRegionVal>())
return scan(X->getRegion());
if (Optional<nonloc::LazyCompoundVal> X =
val.getAs<nonloc::LazyCompoundVal>())
return scan(*X);
if (Optional<nonloc::LocAsInteger> X = val.getAs<nonloc::LocAsInteger>())
return scan(X->getLoc());
if (SymbolRef Sym = val.getAsSymbol())
return scan(Sym);
if (const SymExpr *Sym = val.getAsSymbolicExpression())
return scan(Sym);
if (Optional<nonloc::CompoundVal> X = val.getAs<nonloc::CompoundVal>())
return scan(*X);
return true;
}
bool ScanReachableSymbols::scan(const MemRegion *R) {
if (isa<MemSpaceRegion>(R))
return true;
bool wasVisited = !visited.insert(R).second;
if (wasVisited)
return true;
if (!visitor.VisitMemRegion(R))
return false;
// If this is a symbolic region, visit the symbol for the region.
if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
if (!visitor.VisitSymbol(SR->getSymbol()))
return false;
// If this is a subregion, also visit the parent regions.
if (const SubRegion *SR = dyn_cast<SubRegion>(R)) {
const MemRegion *Super = SR->getSuperRegion();
if (!scan(Super))
return false;
// When we reach the topmost region, scan all symbols in it.
if (isa<MemSpaceRegion>(Super)) {
StoreManager &StoreMgr = state->getStateManager().getStoreManager();
if (!StoreMgr.scanReachableSymbols(state->getStore(), SR, *this))
return false;
}
}
// Regions captured by a block are also implicitly reachable.
if (const BlockDataRegion *BDR = dyn_cast<BlockDataRegion>(R)) {
BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
E = BDR->referenced_vars_end();
for ( ; I != E; ++I) {
if (!scan(I.getCapturedRegion()))
return false;
}
}
return true;
}
bool ProgramState::scanReachableSymbols(SVal val, SymbolVisitor& visitor) const {
ScanReachableSymbols S(this, visitor);
return S.scan(val);
}
bool ProgramState::scanReachableSymbols(
llvm::iterator_range<region_iterator> Reachable,
SymbolVisitor &visitor) const {
ScanReachableSymbols S(this, visitor);
for (const MemRegion *R : Reachable) {
if (!S.scan(R))
return false;
}
return true;
}