forked from OSchip/llvm-project
330 lines
14 KiB
C++
330 lines
14 KiB
C++
//===-- RewriteLoop.cpp ---------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PassDetail.h"
|
|
#include "flang/Optimizer/Dialect/FIRDialect.h"
|
|
#include "flang/Optimizer/Dialect/FIROps.h"
|
|
#include "flang/Optimizer/Transforms/Passes.h"
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
|
|
using namespace fir;
|
|
using namespace mlir;
|
|
|
|
namespace {
|
|
|
|
// Conversion of fir control ops to more primitive control-flow.
|
|
//
|
|
// FIR loops that cannot be converted to the affine dialect will remain as
|
|
// `fir.do_loop` operations. These can be converted to control-flow operations.
|
|
|
|
/// Convert `fir.do_loop` to CFG
|
|
class CfgLoopConv : public mlir::OpRewritePattern<fir::DoLoopOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
CfgLoopConv(mlir::MLIRContext *ctx, bool forceLoopToExecuteOnce)
|
|
: mlir::OpRewritePattern<fir::DoLoopOp>(ctx),
|
|
forceLoopToExecuteOnce(forceLoopToExecuteOnce) {}
|
|
|
|
mlir::LogicalResult
|
|
matchAndRewrite(DoLoopOp loop,
|
|
mlir::PatternRewriter &rewriter) const override {
|
|
auto loc = loop.getLoc();
|
|
|
|
// Create the start and end blocks that will wrap the DoLoopOp with an
|
|
// initalizer and an end point
|
|
auto *initBlock = rewriter.getInsertionBlock();
|
|
auto initPos = rewriter.getInsertionPoint();
|
|
auto *endBlock = rewriter.splitBlock(initBlock, initPos);
|
|
|
|
// Split the first DoLoopOp block in two parts. The part before will be the
|
|
// conditional block since it already has the induction variable and
|
|
// loop-carried values as arguments.
|
|
auto *conditionalBlock = &loop.getRegion().front();
|
|
conditionalBlock->addArgument(rewriter.getIndexType(), loc);
|
|
auto *firstBlock =
|
|
rewriter.splitBlock(conditionalBlock, conditionalBlock->begin());
|
|
auto *lastBlock = &loop.getRegion().back();
|
|
|
|
// Move the blocks from the DoLoopOp between initBlock and endBlock
|
|
rewriter.inlineRegionBefore(loop.getRegion(), endBlock);
|
|
|
|
// Get loop values from the DoLoopOp
|
|
auto low = loop.getLowerBound();
|
|
auto high = loop.getUpperBound();
|
|
assert(low && high && "must be a Value");
|
|
auto step = loop.getStep();
|
|
|
|
// Initalization block
|
|
rewriter.setInsertionPointToEnd(initBlock);
|
|
auto diff = rewriter.create<mlir::arith::SubIOp>(loc, high, low);
|
|
auto distance = rewriter.create<mlir::arith::AddIOp>(loc, diff, step);
|
|
mlir::Value iters =
|
|
rewriter.create<mlir::arith::DivSIOp>(loc, distance, step);
|
|
|
|
if (forceLoopToExecuteOnce) {
|
|
auto zero = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 0);
|
|
auto cond = rewriter.create<mlir::arith::CmpIOp>(
|
|
loc, arith::CmpIPredicate::sle, iters, zero);
|
|
auto one = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 1);
|
|
iters = rewriter.create<mlir::arith::SelectOp>(loc, cond, one, iters);
|
|
}
|
|
|
|
llvm::SmallVector<mlir::Value> loopOperands;
|
|
loopOperands.push_back(low);
|
|
auto operands = loop.getIterOperands();
|
|
loopOperands.append(operands.begin(), operands.end());
|
|
loopOperands.push_back(iters);
|
|
|
|
rewriter.create<mlir::cf::BranchOp>(loc, conditionalBlock, loopOperands);
|
|
|
|
// Last loop block
|
|
auto *terminator = lastBlock->getTerminator();
|
|
rewriter.setInsertionPointToEnd(lastBlock);
|
|
auto iv = conditionalBlock->getArgument(0);
|
|
mlir::Value steppedIndex =
|
|
rewriter.create<mlir::arith::AddIOp>(loc, iv, step);
|
|
assert(steppedIndex && "must be a Value");
|
|
auto lastArg = conditionalBlock->getNumArguments() - 1;
|
|
auto itersLeft = conditionalBlock->getArgument(lastArg);
|
|
auto one = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 1);
|
|
mlir::Value itersMinusOne =
|
|
rewriter.create<mlir::arith::SubIOp>(loc, itersLeft, one);
|
|
|
|
llvm::SmallVector<mlir::Value> loopCarried;
|
|
loopCarried.push_back(steppedIndex);
|
|
auto begin = loop.getFinalValue() ? std::next(terminator->operand_begin())
|
|
: terminator->operand_begin();
|
|
loopCarried.append(begin, terminator->operand_end());
|
|
loopCarried.push_back(itersMinusOne);
|
|
rewriter.create<mlir::cf::BranchOp>(loc, conditionalBlock, loopCarried);
|
|
rewriter.eraseOp(terminator);
|
|
|
|
// Conditional block
|
|
rewriter.setInsertionPointToEnd(conditionalBlock);
|
|
auto zero = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 0);
|
|
auto comparison = rewriter.create<mlir::arith::CmpIOp>(
|
|
loc, arith::CmpIPredicate::sgt, itersLeft, zero);
|
|
|
|
rewriter.create<mlir::cf::CondBranchOp>(
|
|
loc, comparison, firstBlock, llvm::ArrayRef<mlir::Value>(), endBlock,
|
|
llvm::ArrayRef<mlir::Value>());
|
|
|
|
// The result of the loop operation is the values of the condition block
|
|
// arguments except the induction variable on the last iteration.
|
|
auto args = loop.getFinalValue()
|
|
? conditionalBlock->getArguments()
|
|
: conditionalBlock->getArguments().drop_front();
|
|
rewriter.replaceOp(loop, args.drop_back());
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
bool forceLoopToExecuteOnce;
|
|
};
|
|
|
|
/// Convert `fir.if` to control-flow
|
|
class CfgIfConv : public mlir::OpRewritePattern<fir::IfOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
CfgIfConv(mlir::MLIRContext *ctx, bool forceLoopToExecuteOnce)
|
|
: mlir::OpRewritePattern<fir::IfOp>(ctx) {}
|
|
|
|
mlir::LogicalResult
|
|
matchAndRewrite(IfOp ifOp, mlir::PatternRewriter &rewriter) const override {
|
|
auto loc = ifOp.getLoc();
|
|
|
|
// Split the block containing the 'fir.if' into two parts. The part before
|
|
// will contain the condition, the part after will be the continuation
|
|
// point.
|
|
auto *condBlock = rewriter.getInsertionBlock();
|
|
auto opPosition = rewriter.getInsertionPoint();
|
|
auto *remainingOpsBlock = rewriter.splitBlock(condBlock, opPosition);
|
|
mlir::Block *continueBlock;
|
|
if (ifOp.getNumResults() == 0) {
|
|
continueBlock = remainingOpsBlock;
|
|
} else {
|
|
continueBlock = rewriter.createBlock(
|
|
remainingOpsBlock, ifOp.getResultTypes(),
|
|
llvm::SmallVector<mlir::Location>(ifOp.getNumResults(), loc));
|
|
rewriter.create<mlir::cf::BranchOp>(loc, remainingOpsBlock);
|
|
}
|
|
|
|
// Move blocks from the "then" region to the region containing 'fir.if',
|
|
// place it before the continuation block, and branch to it.
|
|
auto &ifOpRegion = ifOp.getThenRegion();
|
|
auto *ifOpBlock = &ifOpRegion.front();
|
|
auto *ifOpTerminator = ifOpRegion.back().getTerminator();
|
|
auto ifOpTerminatorOperands = ifOpTerminator->getOperands();
|
|
rewriter.setInsertionPointToEnd(&ifOpRegion.back());
|
|
rewriter.create<mlir::cf::BranchOp>(loc, continueBlock,
|
|
ifOpTerminatorOperands);
|
|
rewriter.eraseOp(ifOpTerminator);
|
|
rewriter.inlineRegionBefore(ifOpRegion, continueBlock);
|
|
|
|
// Move blocks from the "else" region (if present) to the region containing
|
|
// 'fir.if', place it before the continuation block and branch to it. It
|
|
// will be placed after the "then" regions.
|
|
auto *otherwiseBlock = continueBlock;
|
|
auto &otherwiseRegion = ifOp.getElseRegion();
|
|
if (!otherwiseRegion.empty()) {
|
|
otherwiseBlock = &otherwiseRegion.front();
|
|
auto *otherwiseTerm = otherwiseRegion.back().getTerminator();
|
|
auto otherwiseTermOperands = otherwiseTerm->getOperands();
|
|
rewriter.setInsertionPointToEnd(&otherwiseRegion.back());
|
|
rewriter.create<mlir::cf::BranchOp>(loc, continueBlock,
|
|
otherwiseTermOperands);
|
|
rewriter.eraseOp(otherwiseTerm);
|
|
rewriter.inlineRegionBefore(otherwiseRegion, continueBlock);
|
|
}
|
|
|
|
rewriter.setInsertionPointToEnd(condBlock);
|
|
rewriter.create<mlir::cf::CondBranchOp>(
|
|
loc, ifOp.getCondition(), ifOpBlock, llvm::ArrayRef<mlir::Value>(),
|
|
otherwiseBlock, llvm::ArrayRef<mlir::Value>());
|
|
rewriter.replaceOp(ifOp, continueBlock->getArguments());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Convert `fir.iter_while` to control-flow.
|
|
class CfgIterWhileConv : public mlir::OpRewritePattern<fir::IterWhileOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
CfgIterWhileConv(mlir::MLIRContext *ctx, bool forceLoopToExecuteOnce)
|
|
: mlir::OpRewritePattern<fir::IterWhileOp>(ctx) {}
|
|
|
|
mlir::LogicalResult
|
|
matchAndRewrite(fir::IterWhileOp whileOp,
|
|
mlir::PatternRewriter &rewriter) const override {
|
|
auto loc = whileOp.getLoc();
|
|
|
|
// Start by splitting the block containing the 'fir.do_loop' into two parts.
|
|
// The part before will get the init code, the part after will be the end
|
|
// point.
|
|
auto *initBlock = rewriter.getInsertionBlock();
|
|
auto initPosition = rewriter.getInsertionPoint();
|
|
auto *endBlock = rewriter.splitBlock(initBlock, initPosition);
|
|
|
|
// Use the first block of the loop body as the condition block since it is
|
|
// the block that has the induction variable and loop-carried values as
|
|
// arguments. Split out all operations from the first block into a new
|
|
// block. Move all body blocks from the loop body region to the region
|
|
// containing the loop.
|
|
auto *conditionBlock = &whileOp.getRegion().front();
|
|
auto *firstBodyBlock =
|
|
rewriter.splitBlock(conditionBlock, conditionBlock->begin());
|
|
auto *lastBodyBlock = &whileOp.getRegion().back();
|
|
rewriter.inlineRegionBefore(whileOp.getRegion(), endBlock);
|
|
auto iv = conditionBlock->getArgument(0);
|
|
auto iterateVar = conditionBlock->getArgument(1);
|
|
|
|
// Append the induction variable stepping logic to the last body block and
|
|
// branch back to the condition block. Loop-carried values are taken from
|
|
// operands of the loop terminator.
|
|
auto *terminator = lastBodyBlock->getTerminator();
|
|
rewriter.setInsertionPointToEnd(lastBodyBlock);
|
|
auto step = whileOp.getStep();
|
|
mlir::Value stepped = rewriter.create<mlir::arith::AddIOp>(loc, iv, step);
|
|
assert(stepped && "must be a Value");
|
|
|
|
llvm::SmallVector<mlir::Value> loopCarried;
|
|
loopCarried.push_back(stepped);
|
|
auto begin = whileOp.getFinalValue()
|
|
? std::next(terminator->operand_begin())
|
|
: terminator->operand_begin();
|
|
loopCarried.append(begin, terminator->operand_end());
|
|
rewriter.create<mlir::cf::BranchOp>(loc, conditionBlock, loopCarried);
|
|
rewriter.eraseOp(terminator);
|
|
|
|
// Compute loop bounds before branching to the condition.
|
|
rewriter.setInsertionPointToEnd(initBlock);
|
|
auto lowerBound = whileOp.getLowerBound();
|
|
auto upperBound = whileOp.getUpperBound();
|
|
assert(lowerBound && upperBound && "must be a Value");
|
|
|
|
// The initial values of loop-carried values is obtained from the operands
|
|
// of the loop operation.
|
|
llvm::SmallVector<mlir::Value> destOperands;
|
|
destOperands.push_back(lowerBound);
|
|
auto iterOperands = whileOp.getIterOperands();
|
|
destOperands.append(iterOperands.begin(), iterOperands.end());
|
|
rewriter.create<mlir::cf::BranchOp>(loc, conditionBlock, destOperands);
|
|
|
|
// With the body block done, we can fill in the condition block.
|
|
rewriter.setInsertionPointToEnd(conditionBlock);
|
|
// The comparison depends on the sign of the step value. We fully expect
|
|
// this expression to be folded by the optimizer or LLVM. This expression
|
|
// is written this way so that `step == 0` always returns `false`.
|
|
auto zero = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 0);
|
|
auto compl0 = rewriter.create<mlir::arith::CmpIOp>(
|
|
loc, arith::CmpIPredicate::slt, zero, step);
|
|
auto compl1 = rewriter.create<mlir::arith::CmpIOp>(
|
|
loc, arith::CmpIPredicate::sle, iv, upperBound);
|
|
auto compl2 = rewriter.create<mlir::arith::CmpIOp>(
|
|
loc, arith::CmpIPredicate::slt, step, zero);
|
|
auto compl3 = rewriter.create<mlir::arith::CmpIOp>(
|
|
loc, arith::CmpIPredicate::sle, upperBound, iv);
|
|
auto cmp0 = rewriter.create<mlir::arith::AndIOp>(loc, compl0, compl1);
|
|
auto cmp1 = rewriter.create<mlir::arith::AndIOp>(loc, compl2, compl3);
|
|
auto cmp2 = rewriter.create<mlir::arith::OrIOp>(loc, cmp0, cmp1);
|
|
// Remember to AND in the early-exit bool.
|
|
auto comparison =
|
|
rewriter.create<mlir::arith::AndIOp>(loc, iterateVar, cmp2);
|
|
rewriter.create<mlir::cf::CondBranchOp>(
|
|
loc, comparison, firstBodyBlock, llvm::ArrayRef<mlir::Value>(),
|
|
endBlock, llvm::ArrayRef<mlir::Value>());
|
|
// The result of the loop operation is the values of the condition block
|
|
// arguments except the induction variable on the last iteration.
|
|
auto args = whileOp.getFinalValue()
|
|
? conditionBlock->getArguments()
|
|
: conditionBlock->getArguments().drop_front();
|
|
rewriter.replaceOp(whileOp, args);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Convert FIR structured control flow ops to CFG ops.
|
|
class CfgConversion : public CFGConversionBase<CfgConversion> {
|
|
public:
|
|
void runOnOperation() override {
|
|
auto *context = &getContext();
|
|
mlir::RewritePatternSet patterns(context);
|
|
patterns.insert<CfgLoopConv, CfgIfConv, CfgIterWhileConv>(
|
|
context, forceLoopToExecuteOnce);
|
|
mlir::ConversionTarget target(*context);
|
|
target.addLegalDialect<mlir::AffineDialect, mlir::cf::ControlFlowDialect,
|
|
FIROpsDialect, mlir::func::FuncDialect>();
|
|
|
|
// apply the patterns
|
|
target.addIllegalOp<ResultOp, DoLoopOp, IfOp, IterWhileOp>();
|
|
target.markUnknownOpDynamicallyLegal([](Operation *) { return true; });
|
|
if (mlir::failed(mlir::applyPartialConversion(getOperation(), target,
|
|
std::move(patterns)))) {
|
|
mlir::emitError(mlir::UnknownLoc::get(context),
|
|
"error in converting to CFG\n");
|
|
signalPassFailure();
|
|
}
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
/// Convert FIR's structured control flow ops to CFG ops. This
|
|
/// conversion enables the `createLowerToCFGPass` to transform these to CFG
|
|
/// form.
|
|
std::unique_ptr<mlir::Pass> fir::createFirToCfgPass() {
|
|
return std::make_unique<CfgConversion>();
|
|
}
|