forked from OSchip/llvm-project
867 lines
26 KiB
C++
867 lines
26 KiB
C++
//===-- sanitizer_allocator_test.cc ---------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of ThreadSanitizer/AddressSanitizer runtime.
|
|
// Tests for sanitizer_allocator.h.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "sanitizer_common/sanitizer_allocator.h"
|
|
#include "sanitizer_common/sanitizer_allocator_internal.h"
|
|
#include "sanitizer_common/sanitizer_common.h"
|
|
|
|
#include "sanitizer_test_utils.h"
|
|
#include "sanitizer_pthread_wrappers.h"
|
|
|
|
#include "gtest/gtest.h"
|
|
|
|
#include <stdlib.h>
|
|
#include <algorithm>
|
|
#include <vector>
|
|
#include <set>
|
|
|
|
// Too slow for debug build
|
|
#if !SANITIZER_DEBUG
|
|
|
|
#if SANITIZER_CAN_USE_ALLOCATOR64
|
|
static const uptr kAllocatorSpace = 0x700000000000ULL;
|
|
static const uptr kAllocatorSize = 0x010000000000ULL; // 1T.
|
|
static const u64 kAddressSpaceSize = 1ULL << 47;
|
|
|
|
typedef SizeClassAllocator64<
|
|
kAllocatorSpace, kAllocatorSize, 16, DefaultSizeClassMap> Allocator64;
|
|
|
|
typedef SizeClassAllocator64<
|
|
kAllocatorSpace, kAllocatorSize, 16, CompactSizeClassMap> Allocator64Compact;
|
|
#elif defined(__mips64)
|
|
static const u64 kAddressSpaceSize = 1ULL << 40;
|
|
#elif defined(__aarch64__)
|
|
static const u64 kAddressSpaceSize = 1ULL << 39;
|
|
#elif defined(__s390x__)
|
|
static const u64 kAddressSpaceSize = 1ULL << 53;
|
|
#elif defined(__s390__)
|
|
static const u64 kAddressSpaceSize = 1ULL << 31;
|
|
#else
|
|
static const u64 kAddressSpaceSize = 1ULL << 32;
|
|
#endif
|
|
|
|
static const uptr kRegionSizeLog = FIRST_32_SECOND_64(20, 24);
|
|
static const uptr kFlatByteMapSize = kAddressSpaceSize >> kRegionSizeLog;
|
|
|
|
typedef SizeClassAllocator32<
|
|
0, kAddressSpaceSize,
|
|
/*kMetadataSize*/16,
|
|
CompactSizeClassMap,
|
|
kRegionSizeLog,
|
|
FlatByteMap<kFlatByteMapSize> >
|
|
Allocator32Compact;
|
|
|
|
template <class SizeClassMap>
|
|
void TestSizeClassMap() {
|
|
typedef SizeClassMap SCMap;
|
|
// SCMap::Print();
|
|
SCMap::Validate();
|
|
}
|
|
|
|
TEST(SanitizerCommon, DefaultSizeClassMap) {
|
|
TestSizeClassMap<DefaultSizeClassMap>();
|
|
}
|
|
|
|
TEST(SanitizerCommon, CompactSizeClassMap) {
|
|
TestSizeClassMap<CompactSizeClassMap>();
|
|
}
|
|
|
|
TEST(SanitizerCommon, InternalSizeClassMap) {
|
|
TestSizeClassMap<InternalSizeClassMap>();
|
|
}
|
|
|
|
template <class Allocator>
|
|
void TestSizeClassAllocator() {
|
|
Allocator *a = new Allocator;
|
|
a->Init();
|
|
SizeClassAllocatorLocalCache<Allocator> cache;
|
|
memset(&cache, 0, sizeof(cache));
|
|
cache.Init(0);
|
|
|
|
static const uptr sizes[] = {1, 16, 30, 40, 100, 1000, 10000,
|
|
50000, 60000, 100000, 120000, 300000, 500000, 1000000, 2000000};
|
|
|
|
std::vector<void *> allocated;
|
|
|
|
uptr last_total_allocated = 0;
|
|
for (int i = 0; i < 3; i++) {
|
|
// Allocate a bunch of chunks.
|
|
for (uptr s = 0; s < ARRAY_SIZE(sizes); s++) {
|
|
uptr size = sizes[s];
|
|
if (!a->CanAllocate(size, 1)) continue;
|
|
// printf("s = %ld\n", size);
|
|
uptr n_iter = std::max((uptr)6, 4000000 / size);
|
|
// fprintf(stderr, "size: %ld iter: %ld\n", size, n_iter);
|
|
for (uptr i = 0; i < n_iter; i++) {
|
|
uptr class_id0 = Allocator::SizeClassMapT::ClassID(size);
|
|
char *x = (char*)cache.Allocate(a, class_id0);
|
|
x[0] = 0;
|
|
x[size - 1] = 0;
|
|
x[size / 2] = 0;
|
|
allocated.push_back(x);
|
|
CHECK_EQ(x, a->GetBlockBegin(x));
|
|
CHECK_EQ(x, a->GetBlockBegin(x + size - 1));
|
|
CHECK(a->PointerIsMine(x));
|
|
CHECK(a->PointerIsMine(x + size - 1));
|
|
CHECK(a->PointerIsMine(x + size / 2));
|
|
CHECK_GE(a->GetActuallyAllocatedSize(x), size);
|
|
uptr class_id = a->GetSizeClass(x);
|
|
CHECK_EQ(class_id, Allocator::SizeClassMapT::ClassID(size));
|
|
uptr *metadata = reinterpret_cast<uptr*>(a->GetMetaData(x));
|
|
metadata[0] = reinterpret_cast<uptr>(x) + 1;
|
|
metadata[1] = 0xABCD;
|
|
}
|
|
}
|
|
// Deallocate all.
|
|
for (uptr i = 0; i < allocated.size(); i++) {
|
|
void *x = allocated[i];
|
|
uptr *metadata = reinterpret_cast<uptr*>(a->GetMetaData(x));
|
|
CHECK_EQ(metadata[0], reinterpret_cast<uptr>(x) + 1);
|
|
CHECK_EQ(metadata[1], 0xABCD);
|
|
cache.Deallocate(a, a->GetSizeClass(x), x);
|
|
}
|
|
allocated.clear();
|
|
uptr total_allocated = a->TotalMemoryUsed();
|
|
if (last_total_allocated == 0)
|
|
last_total_allocated = total_allocated;
|
|
CHECK_EQ(last_total_allocated, total_allocated);
|
|
}
|
|
|
|
// Check that GetBlockBegin never crashes.
|
|
for (uptr x = 0, step = kAddressSpaceSize / 100000;
|
|
x < kAddressSpaceSize - step; x += step)
|
|
if (a->PointerIsMine(reinterpret_cast<void *>(x)))
|
|
Ident(a->GetBlockBegin(reinterpret_cast<void *>(x)));
|
|
|
|
a->TestOnlyUnmap();
|
|
delete a;
|
|
}
|
|
|
|
#if SANITIZER_CAN_USE_ALLOCATOR64
|
|
TEST(SanitizerCommon, SizeClassAllocator64) {
|
|
TestSizeClassAllocator<Allocator64>();
|
|
}
|
|
|
|
TEST(SanitizerCommon, SizeClassAllocator64Compact) {
|
|
TestSizeClassAllocator<Allocator64Compact>();
|
|
}
|
|
#endif
|
|
|
|
TEST(SanitizerCommon, SizeClassAllocator32Compact) {
|
|
TestSizeClassAllocator<Allocator32Compact>();
|
|
}
|
|
|
|
template <class Allocator>
|
|
void SizeClassAllocatorMetadataStress() {
|
|
Allocator *a = new Allocator;
|
|
a->Init();
|
|
SizeClassAllocatorLocalCache<Allocator> cache;
|
|
memset(&cache, 0, sizeof(cache));
|
|
cache.Init(0);
|
|
|
|
const uptr kNumAllocs = 1 << 13;
|
|
void *allocated[kNumAllocs];
|
|
void *meta[kNumAllocs];
|
|
for (uptr i = 0; i < kNumAllocs; i++) {
|
|
void *x = cache.Allocate(a, 1 + i % 50);
|
|
allocated[i] = x;
|
|
meta[i] = a->GetMetaData(x);
|
|
}
|
|
// Get Metadata kNumAllocs^2 times.
|
|
for (uptr i = 0; i < kNumAllocs * kNumAllocs; i++) {
|
|
uptr idx = i % kNumAllocs;
|
|
void *m = a->GetMetaData(allocated[idx]);
|
|
EXPECT_EQ(m, meta[idx]);
|
|
}
|
|
for (uptr i = 0; i < kNumAllocs; i++) {
|
|
cache.Deallocate(a, 1 + i % 50, allocated[i]);
|
|
}
|
|
|
|
a->TestOnlyUnmap();
|
|
delete a;
|
|
}
|
|
|
|
#if SANITIZER_CAN_USE_ALLOCATOR64
|
|
TEST(SanitizerCommon, SizeClassAllocator64MetadataStress) {
|
|
SizeClassAllocatorMetadataStress<Allocator64>();
|
|
}
|
|
|
|
TEST(SanitizerCommon, SizeClassAllocator64CompactMetadataStress) {
|
|
SizeClassAllocatorMetadataStress<Allocator64Compact>();
|
|
}
|
|
#endif // SANITIZER_CAN_USE_ALLOCATOR64
|
|
TEST(SanitizerCommon, SizeClassAllocator32CompactMetadataStress) {
|
|
SizeClassAllocatorMetadataStress<Allocator32Compact>();
|
|
}
|
|
|
|
template <class Allocator>
|
|
void SizeClassAllocatorGetBlockBeginStress() {
|
|
Allocator *a = new Allocator;
|
|
a->Init();
|
|
SizeClassAllocatorLocalCache<Allocator> cache;
|
|
memset(&cache, 0, sizeof(cache));
|
|
cache.Init(0);
|
|
|
|
uptr max_size_class = Allocator::kNumClasses - 1;
|
|
uptr size = Allocator::SizeClassMapT::Size(max_size_class);
|
|
u64 G8 = 1ULL << 33;
|
|
// Make sure we correctly compute GetBlockBegin() w/o overflow.
|
|
for (size_t i = 0; i <= G8 / size; i++) {
|
|
void *x = cache.Allocate(a, max_size_class);
|
|
void *beg = a->GetBlockBegin(x);
|
|
// if ((i & (i - 1)) == 0)
|
|
// fprintf(stderr, "[%zd] %p %p\n", i, x, beg);
|
|
EXPECT_EQ(x, beg);
|
|
}
|
|
|
|
a->TestOnlyUnmap();
|
|
delete a;
|
|
}
|
|
|
|
#if SANITIZER_CAN_USE_ALLOCATOR64
|
|
TEST(SanitizerCommon, SizeClassAllocator64GetBlockBegin) {
|
|
SizeClassAllocatorGetBlockBeginStress<Allocator64>();
|
|
}
|
|
TEST(SanitizerCommon, SizeClassAllocator64CompactGetBlockBegin) {
|
|
SizeClassAllocatorGetBlockBeginStress<Allocator64Compact>();
|
|
}
|
|
TEST(SanitizerCommon, SizeClassAllocator32CompactGetBlockBegin) {
|
|
SizeClassAllocatorGetBlockBeginStress<Allocator32Compact>();
|
|
}
|
|
#endif // SANITIZER_CAN_USE_ALLOCATOR64
|
|
|
|
struct TestMapUnmapCallback {
|
|
static int map_count, unmap_count;
|
|
void OnMap(uptr p, uptr size) const { map_count++; }
|
|
void OnUnmap(uptr p, uptr size) const { unmap_count++; }
|
|
};
|
|
int TestMapUnmapCallback::map_count;
|
|
int TestMapUnmapCallback::unmap_count;
|
|
|
|
#if SANITIZER_CAN_USE_ALLOCATOR64
|
|
TEST(SanitizerCommon, SizeClassAllocator64MapUnmapCallback) {
|
|
TestMapUnmapCallback::map_count = 0;
|
|
TestMapUnmapCallback::unmap_count = 0;
|
|
typedef SizeClassAllocator64<
|
|
kAllocatorSpace, kAllocatorSize, 16, DefaultSizeClassMap,
|
|
TestMapUnmapCallback> Allocator64WithCallBack;
|
|
Allocator64WithCallBack *a = new Allocator64WithCallBack;
|
|
a->Init();
|
|
EXPECT_EQ(TestMapUnmapCallback::map_count, 1); // Allocator state.
|
|
SizeClassAllocatorLocalCache<Allocator64WithCallBack> cache;
|
|
memset(&cache, 0, sizeof(cache));
|
|
cache.Init(0);
|
|
AllocatorStats stats;
|
|
stats.Init();
|
|
a->AllocateBatch(&stats, &cache, 32);
|
|
EXPECT_EQ(TestMapUnmapCallback::map_count, 3); // State + alloc + metadata.
|
|
a->TestOnlyUnmap();
|
|
EXPECT_EQ(TestMapUnmapCallback::unmap_count, 1); // The whole thing.
|
|
delete a;
|
|
}
|
|
#endif
|
|
|
|
TEST(SanitizerCommon, SizeClassAllocator32MapUnmapCallback) {
|
|
TestMapUnmapCallback::map_count = 0;
|
|
TestMapUnmapCallback::unmap_count = 0;
|
|
typedef SizeClassAllocator32<
|
|
0, kAddressSpaceSize,
|
|
/*kMetadataSize*/16,
|
|
CompactSizeClassMap,
|
|
kRegionSizeLog,
|
|
FlatByteMap<kFlatByteMapSize>,
|
|
TestMapUnmapCallback>
|
|
Allocator32WithCallBack;
|
|
Allocator32WithCallBack *a = new Allocator32WithCallBack;
|
|
a->Init();
|
|
EXPECT_EQ(TestMapUnmapCallback::map_count, 0);
|
|
SizeClassAllocatorLocalCache<Allocator32WithCallBack> cache;
|
|
memset(&cache, 0, sizeof(cache));
|
|
cache.Init(0);
|
|
AllocatorStats stats;
|
|
stats.Init();
|
|
a->AllocateBatch(&stats, &cache, 32);
|
|
EXPECT_EQ(TestMapUnmapCallback::map_count, 1);
|
|
a->TestOnlyUnmap();
|
|
EXPECT_EQ(TestMapUnmapCallback::unmap_count, 1);
|
|
delete a;
|
|
// fprintf(stderr, "Map: %d Unmap: %d\n",
|
|
// TestMapUnmapCallback::map_count,
|
|
// TestMapUnmapCallback::unmap_count);
|
|
}
|
|
|
|
TEST(SanitizerCommon, LargeMmapAllocatorMapUnmapCallback) {
|
|
TestMapUnmapCallback::map_count = 0;
|
|
TestMapUnmapCallback::unmap_count = 0;
|
|
LargeMmapAllocator<TestMapUnmapCallback> a;
|
|
a.Init(/* may_return_null */ false);
|
|
AllocatorStats stats;
|
|
stats.Init();
|
|
void *x = a.Allocate(&stats, 1 << 20, 1);
|
|
EXPECT_EQ(TestMapUnmapCallback::map_count, 1);
|
|
a.Deallocate(&stats, x);
|
|
EXPECT_EQ(TestMapUnmapCallback::unmap_count, 1);
|
|
}
|
|
|
|
template<class Allocator>
|
|
void FailInAssertionOnOOM() {
|
|
Allocator a;
|
|
a.Init();
|
|
SizeClassAllocatorLocalCache<Allocator> cache;
|
|
memset(&cache, 0, sizeof(cache));
|
|
cache.Init(0);
|
|
AllocatorStats stats;
|
|
stats.Init();
|
|
for (int i = 0; i < 1000000; i++) {
|
|
a.AllocateBatch(&stats, &cache, 52);
|
|
}
|
|
|
|
a.TestOnlyUnmap();
|
|
}
|
|
|
|
#if SANITIZER_CAN_USE_ALLOCATOR64
|
|
TEST(SanitizerCommon, SizeClassAllocator64Overflow) {
|
|
EXPECT_DEATH(FailInAssertionOnOOM<Allocator64>(), "Out of memory");
|
|
}
|
|
#endif
|
|
|
|
#if !defined(_WIN32) // FIXME: This currently fails on Windows.
|
|
TEST(SanitizerCommon, LargeMmapAllocator) {
|
|
LargeMmapAllocator<> a;
|
|
a.Init(/* may_return_null */ false);
|
|
AllocatorStats stats;
|
|
stats.Init();
|
|
|
|
static const int kNumAllocs = 1000;
|
|
char *allocated[kNumAllocs];
|
|
static const uptr size = 4000;
|
|
// Allocate some.
|
|
for (int i = 0; i < kNumAllocs; i++) {
|
|
allocated[i] = (char *)a.Allocate(&stats, size, 1);
|
|
CHECK(a.PointerIsMine(allocated[i]));
|
|
}
|
|
// Deallocate all.
|
|
CHECK_GT(a.TotalMemoryUsed(), size * kNumAllocs);
|
|
for (int i = 0; i < kNumAllocs; i++) {
|
|
char *p = allocated[i];
|
|
CHECK(a.PointerIsMine(p));
|
|
a.Deallocate(&stats, p);
|
|
}
|
|
// Check that non left.
|
|
CHECK_EQ(a.TotalMemoryUsed(), 0);
|
|
|
|
// Allocate some more, also add metadata.
|
|
for (int i = 0; i < kNumAllocs; i++) {
|
|
char *x = (char *)a.Allocate(&stats, size, 1);
|
|
CHECK_GE(a.GetActuallyAllocatedSize(x), size);
|
|
uptr *meta = reinterpret_cast<uptr*>(a.GetMetaData(x));
|
|
*meta = i;
|
|
allocated[i] = x;
|
|
}
|
|
for (int i = 0; i < kNumAllocs * kNumAllocs; i++) {
|
|
char *p = allocated[i % kNumAllocs];
|
|
CHECK(a.PointerIsMine(p));
|
|
CHECK(a.PointerIsMine(p + 2000));
|
|
}
|
|
CHECK_GT(a.TotalMemoryUsed(), size * kNumAllocs);
|
|
// Deallocate all in reverse order.
|
|
for (int i = 0; i < kNumAllocs; i++) {
|
|
int idx = kNumAllocs - i - 1;
|
|
char *p = allocated[idx];
|
|
uptr *meta = reinterpret_cast<uptr*>(a.GetMetaData(p));
|
|
CHECK_EQ(*meta, idx);
|
|
CHECK(a.PointerIsMine(p));
|
|
a.Deallocate(&stats, p);
|
|
}
|
|
CHECK_EQ(a.TotalMemoryUsed(), 0);
|
|
|
|
// Test alignments.
|
|
uptr max_alignment = SANITIZER_WORDSIZE == 64 ? (1 << 28) : (1 << 24);
|
|
for (uptr alignment = 8; alignment <= max_alignment; alignment *= 2) {
|
|
const uptr kNumAlignedAllocs = 100;
|
|
for (uptr i = 0; i < kNumAlignedAllocs; i++) {
|
|
uptr size = ((i % 10) + 1) * 4096;
|
|
char *p = allocated[i] = (char *)a.Allocate(&stats, size, alignment);
|
|
CHECK_EQ(p, a.GetBlockBegin(p));
|
|
CHECK_EQ(p, a.GetBlockBegin(p + size - 1));
|
|
CHECK_EQ(p, a.GetBlockBegin(p + size / 2));
|
|
CHECK_EQ(0, (uptr)allocated[i] % alignment);
|
|
p[0] = p[size - 1] = 0;
|
|
}
|
|
for (uptr i = 0; i < kNumAlignedAllocs; i++) {
|
|
a.Deallocate(&stats, allocated[i]);
|
|
}
|
|
}
|
|
|
|
// Regression test for boundary condition in GetBlockBegin().
|
|
uptr page_size = GetPageSizeCached();
|
|
char *p = (char *)a.Allocate(&stats, page_size, 1);
|
|
CHECK_EQ(p, a.GetBlockBegin(p));
|
|
CHECK_EQ(p, (char *)a.GetBlockBegin(p + page_size - 1));
|
|
CHECK_NE(p, (char *)a.GetBlockBegin(p + page_size));
|
|
a.Deallocate(&stats, p);
|
|
}
|
|
#endif
|
|
|
|
template
|
|
<class PrimaryAllocator, class SecondaryAllocator, class AllocatorCache>
|
|
void TestCombinedAllocator() {
|
|
typedef
|
|
CombinedAllocator<PrimaryAllocator, AllocatorCache, SecondaryAllocator>
|
|
Allocator;
|
|
Allocator *a = new Allocator;
|
|
a->Init(/* may_return_null */ true);
|
|
|
|
AllocatorCache cache;
|
|
memset(&cache, 0, sizeof(cache));
|
|
a->InitCache(&cache);
|
|
|
|
EXPECT_EQ(a->Allocate(&cache, -1, 1), (void*)0);
|
|
EXPECT_EQ(a->Allocate(&cache, -1, 1024), (void*)0);
|
|
EXPECT_EQ(a->Allocate(&cache, (uptr)-1 - 1024, 1), (void*)0);
|
|
EXPECT_EQ(a->Allocate(&cache, (uptr)-1 - 1024, 1024), (void*)0);
|
|
EXPECT_EQ(a->Allocate(&cache, (uptr)-1 - 1023, 1024), (void*)0);
|
|
|
|
// Set to false
|
|
a->SetMayReturnNull(false);
|
|
EXPECT_DEATH(a->Allocate(&cache, -1, 1),
|
|
"allocator is terminating the process");
|
|
|
|
const uptr kNumAllocs = 100000;
|
|
const uptr kNumIter = 10;
|
|
for (uptr iter = 0; iter < kNumIter; iter++) {
|
|
std::vector<void*> allocated;
|
|
for (uptr i = 0; i < kNumAllocs; i++) {
|
|
uptr size = (i % (1 << 14)) + 1;
|
|
if ((i % 1024) == 0)
|
|
size = 1 << (10 + (i % 14));
|
|
void *x = a->Allocate(&cache, size, 1);
|
|
uptr *meta = reinterpret_cast<uptr*>(a->GetMetaData(x));
|
|
CHECK_EQ(*meta, 0);
|
|
*meta = size;
|
|
allocated.push_back(x);
|
|
}
|
|
|
|
random_shuffle(allocated.begin(), allocated.end());
|
|
|
|
for (uptr i = 0; i < kNumAllocs; i++) {
|
|
void *x = allocated[i];
|
|
uptr *meta = reinterpret_cast<uptr*>(a->GetMetaData(x));
|
|
CHECK_NE(*meta, 0);
|
|
CHECK(a->PointerIsMine(x));
|
|
*meta = 0;
|
|
a->Deallocate(&cache, x);
|
|
}
|
|
allocated.clear();
|
|
a->SwallowCache(&cache);
|
|
}
|
|
a->DestroyCache(&cache);
|
|
a->TestOnlyUnmap();
|
|
}
|
|
|
|
#if SANITIZER_CAN_USE_ALLOCATOR64
|
|
TEST(SanitizerCommon, CombinedAllocator64) {
|
|
TestCombinedAllocator<Allocator64,
|
|
LargeMmapAllocator<>,
|
|
SizeClassAllocatorLocalCache<Allocator64> > ();
|
|
}
|
|
|
|
TEST(SanitizerCommon, CombinedAllocator64Compact) {
|
|
TestCombinedAllocator<Allocator64Compact,
|
|
LargeMmapAllocator<>,
|
|
SizeClassAllocatorLocalCache<Allocator64Compact> > ();
|
|
}
|
|
#endif
|
|
|
|
#if !defined(_WIN32) // FIXME: This currently fails on Windows.
|
|
TEST(SanitizerCommon, CombinedAllocator32Compact) {
|
|
TestCombinedAllocator<Allocator32Compact,
|
|
LargeMmapAllocator<>,
|
|
SizeClassAllocatorLocalCache<Allocator32Compact> > ();
|
|
}
|
|
#endif
|
|
|
|
template <class AllocatorCache>
|
|
void TestSizeClassAllocatorLocalCache() {
|
|
AllocatorCache cache;
|
|
typedef typename AllocatorCache::Allocator Allocator;
|
|
Allocator *a = new Allocator();
|
|
|
|
a->Init();
|
|
memset(&cache, 0, sizeof(cache));
|
|
cache.Init(0);
|
|
|
|
const uptr kNumAllocs = 10000;
|
|
const int kNumIter = 100;
|
|
uptr saved_total = 0;
|
|
for (int class_id = 1; class_id <= 5; class_id++) {
|
|
for (int it = 0; it < kNumIter; it++) {
|
|
void *allocated[kNumAllocs];
|
|
for (uptr i = 0; i < kNumAllocs; i++) {
|
|
allocated[i] = cache.Allocate(a, class_id);
|
|
}
|
|
for (uptr i = 0; i < kNumAllocs; i++) {
|
|
cache.Deallocate(a, class_id, allocated[i]);
|
|
}
|
|
cache.Drain(a);
|
|
uptr total_allocated = a->TotalMemoryUsed();
|
|
if (it)
|
|
CHECK_EQ(saved_total, total_allocated);
|
|
saved_total = total_allocated;
|
|
}
|
|
}
|
|
|
|
a->TestOnlyUnmap();
|
|
delete a;
|
|
}
|
|
|
|
#if SANITIZER_CAN_USE_ALLOCATOR64
|
|
TEST(SanitizerCommon, SizeClassAllocator64LocalCache) {
|
|
TestSizeClassAllocatorLocalCache<
|
|
SizeClassAllocatorLocalCache<Allocator64> >();
|
|
}
|
|
|
|
TEST(SanitizerCommon, SizeClassAllocator64CompactLocalCache) {
|
|
TestSizeClassAllocatorLocalCache<
|
|
SizeClassAllocatorLocalCache<Allocator64Compact> >();
|
|
}
|
|
#endif
|
|
|
|
TEST(SanitizerCommon, SizeClassAllocator32CompactLocalCache) {
|
|
TestSizeClassAllocatorLocalCache<
|
|
SizeClassAllocatorLocalCache<Allocator32Compact> >();
|
|
}
|
|
|
|
#if SANITIZER_CAN_USE_ALLOCATOR64
|
|
typedef SizeClassAllocatorLocalCache<Allocator64> AllocatorCache;
|
|
static AllocatorCache static_allocator_cache;
|
|
|
|
void *AllocatorLeakTestWorker(void *arg) {
|
|
typedef AllocatorCache::Allocator Allocator;
|
|
Allocator *a = (Allocator*)(arg);
|
|
static_allocator_cache.Allocate(a, 10);
|
|
static_allocator_cache.Drain(a);
|
|
return 0;
|
|
}
|
|
|
|
TEST(SanitizerCommon, AllocatorLeakTest) {
|
|
typedef AllocatorCache::Allocator Allocator;
|
|
Allocator a;
|
|
a.Init();
|
|
uptr total_used_memory = 0;
|
|
for (int i = 0; i < 100; i++) {
|
|
pthread_t t;
|
|
PTHREAD_CREATE(&t, 0, AllocatorLeakTestWorker, &a);
|
|
PTHREAD_JOIN(t, 0);
|
|
if (i == 0)
|
|
total_used_memory = a.TotalMemoryUsed();
|
|
EXPECT_EQ(a.TotalMemoryUsed(), total_used_memory);
|
|
}
|
|
|
|
a.TestOnlyUnmap();
|
|
}
|
|
|
|
// Struct which is allocated to pass info to new threads. The new thread frees
|
|
// it.
|
|
struct NewThreadParams {
|
|
AllocatorCache *thread_cache;
|
|
AllocatorCache::Allocator *allocator;
|
|
uptr class_id;
|
|
};
|
|
|
|
// Called in a new thread. Just frees its argument.
|
|
static void *DeallocNewThreadWorker(void *arg) {
|
|
NewThreadParams *params = reinterpret_cast<NewThreadParams*>(arg);
|
|
params->thread_cache->Deallocate(params->allocator, params->class_id, params);
|
|
return NULL;
|
|
}
|
|
|
|
// The allocator cache is supposed to be POD and zero initialized. We should be
|
|
// able to call Deallocate on a zeroed cache, and it will self-initialize.
|
|
TEST(Allocator, AllocatorCacheDeallocNewThread) {
|
|
AllocatorCache::Allocator allocator;
|
|
allocator.Init();
|
|
AllocatorCache main_cache;
|
|
AllocatorCache child_cache;
|
|
memset(&main_cache, 0, sizeof(main_cache));
|
|
memset(&child_cache, 0, sizeof(child_cache));
|
|
|
|
uptr class_id = DefaultSizeClassMap::ClassID(sizeof(NewThreadParams));
|
|
NewThreadParams *params = reinterpret_cast<NewThreadParams*>(
|
|
main_cache.Allocate(&allocator, class_id));
|
|
params->thread_cache = &child_cache;
|
|
params->allocator = &allocator;
|
|
params->class_id = class_id;
|
|
pthread_t t;
|
|
PTHREAD_CREATE(&t, 0, DeallocNewThreadWorker, params);
|
|
PTHREAD_JOIN(t, 0);
|
|
}
|
|
#endif
|
|
|
|
TEST(Allocator, Basic) {
|
|
char *p = (char*)InternalAlloc(10);
|
|
EXPECT_NE(p, (char*)0);
|
|
char *p2 = (char*)InternalAlloc(20);
|
|
EXPECT_NE(p2, (char*)0);
|
|
EXPECT_NE(p2, p);
|
|
InternalFree(p);
|
|
InternalFree(p2);
|
|
}
|
|
|
|
TEST(Allocator, Stress) {
|
|
const int kCount = 1000;
|
|
char *ptrs[kCount];
|
|
unsigned rnd = 42;
|
|
for (int i = 0; i < kCount; i++) {
|
|
uptr sz = my_rand_r(&rnd) % 1000;
|
|
char *p = (char*)InternalAlloc(sz);
|
|
EXPECT_NE(p, (char*)0);
|
|
ptrs[i] = p;
|
|
}
|
|
for (int i = 0; i < kCount; i++) {
|
|
InternalFree(ptrs[i]);
|
|
}
|
|
}
|
|
|
|
TEST(Allocator, LargeAlloc) {
|
|
void *p = InternalAlloc(10 << 20);
|
|
InternalFree(p);
|
|
}
|
|
|
|
TEST(Allocator, ScopedBuffer) {
|
|
const int kSize = 512;
|
|
{
|
|
InternalScopedBuffer<int> int_buf(kSize);
|
|
EXPECT_EQ(sizeof(int) * kSize, int_buf.size()); // NOLINT
|
|
}
|
|
InternalScopedBuffer<char> char_buf(kSize);
|
|
EXPECT_EQ(sizeof(char) * kSize, char_buf.size()); // NOLINT
|
|
internal_memset(char_buf.data(), 'c', kSize);
|
|
for (int i = 0; i < kSize; i++) {
|
|
EXPECT_EQ('c', char_buf[i]);
|
|
}
|
|
}
|
|
|
|
void IterationTestCallback(uptr chunk, void *arg) {
|
|
reinterpret_cast<std::set<uptr> *>(arg)->insert(chunk);
|
|
}
|
|
|
|
template <class Allocator>
|
|
void TestSizeClassAllocatorIteration() {
|
|
Allocator *a = new Allocator;
|
|
a->Init();
|
|
SizeClassAllocatorLocalCache<Allocator> cache;
|
|
memset(&cache, 0, sizeof(cache));
|
|
cache.Init(0);
|
|
|
|
static const uptr sizes[] = {1, 16, 30, 40, 100, 1000, 10000,
|
|
50000, 60000, 100000, 120000, 300000, 500000, 1000000, 2000000};
|
|
|
|
std::vector<void *> allocated;
|
|
|
|
// Allocate a bunch of chunks.
|
|
for (uptr s = 0; s < ARRAY_SIZE(sizes); s++) {
|
|
uptr size = sizes[s];
|
|
if (!a->CanAllocate(size, 1)) continue;
|
|
// printf("s = %ld\n", size);
|
|
uptr n_iter = std::max((uptr)6, 80000 / size);
|
|
// fprintf(stderr, "size: %ld iter: %ld\n", size, n_iter);
|
|
for (uptr j = 0; j < n_iter; j++) {
|
|
uptr class_id0 = Allocator::SizeClassMapT::ClassID(size);
|
|
void *x = cache.Allocate(a, class_id0);
|
|
allocated.push_back(x);
|
|
}
|
|
}
|
|
|
|
std::set<uptr> reported_chunks;
|
|
a->ForceLock();
|
|
a->ForEachChunk(IterationTestCallback, &reported_chunks);
|
|
a->ForceUnlock();
|
|
|
|
for (uptr i = 0; i < allocated.size(); i++) {
|
|
// Don't use EXPECT_NE. Reporting the first mismatch is enough.
|
|
ASSERT_NE(reported_chunks.find(reinterpret_cast<uptr>(allocated[i])),
|
|
reported_chunks.end());
|
|
}
|
|
|
|
a->TestOnlyUnmap();
|
|
delete a;
|
|
}
|
|
|
|
#if SANITIZER_CAN_USE_ALLOCATOR64
|
|
TEST(SanitizerCommon, SizeClassAllocator64Iteration) {
|
|
TestSizeClassAllocatorIteration<Allocator64>();
|
|
}
|
|
#endif
|
|
|
|
TEST(SanitizerCommon, SizeClassAllocator32Iteration) {
|
|
TestSizeClassAllocatorIteration<Allocator32Compact>();
|
|
}
|
|
|
|
TEST(SanitizerCommon, LargeMmapAllocatorIteration) {
|
|
LargeMmapAllocator<> a;
|
|
a.Init(/* may_return_null */ false);
|
|
AllocatorStats stats;
|
|
stats.Init();
|
|
|
|
static const uptr kNumAllocs = 1000;
|
|
char *allocated[kNumAllocs];
|
|
static const uptr size = 40;
|
|
// Allocate some.
|
|
for (uptr i = 0; i < kNumAllocs; i++)
|
|
allocated[i] = (char *)a.Allocate(&stats, size, 1);
|
|
|
|
std::set<uptr> reported_chunks;
|
|
a.ForceLock();
|
|
a.ForEachChunk(IterationTestCallback, &reported_chunks);
|
|
a.ForceUnlock();
|
|
|
|
for (uptr i = 0; i < kNumAllocs; i++) {
|
|
// Don't use EXPECT_NE. Reporting the first mismatch is enough.
|
|
ASSERT_NE(reported_chunks.find(reinterpret_cast<uptr>(allocated[i])),
|
|
reported_chunks.end());
|
|
}
|
|
for (uptr i = 0; i < kNumAllocs; i++)
|
|
a.Deallocate(&stats, allocated[i]);
|
|
}
|
|
|
|
TEST(SanitizerCommon, LargeMmapAllocatorBlockBegin) {
|
|
LargeMmapAllocator<> a;
|
|
a.Init(/* may_return_null */ false);
|
|
AllocatorStats stats;
|
|
stats.Init();
|
|
|
|
static const uptr kNumAllocs = 1024;
|
|
static const uptr kNumExpectedFalseLookups = 10000000;
|
|
char *allocated[kNumAllocs];
|
|
static const uptr size = 4096;
|
|
// Allocate some.
|
|
for (uptr i = 0; i < kNumAllocs; i++) {
|
|
allocated[i] = (char *)a.Allocate(&stats, size, 1);
|
|
}
|
|
|
|
a.ForceLock();
|
|
for (uptr i = 0; i < kNumAllocs * kNumAllocs; i++) {
|
|
// if ((i & (i - 1)) == 0) fprintf(stderr, "[%zd]\n", i);
|
|
char *p1 = allocated[i % kNumAllocs];
|
|
EXPECT_EQ(p1, a.GetBlockBeginFastLocked(p1));
|
|
EXPECT_EQ(p1, a.GetBlockBeginFastLocked(p1 + size / 2));
|
|
EXPECT_EQ(p1, a.GetBlockBeginFastLocked(p1 + size - 1));
|
|
EXPECT_EQ(p1, a.GetBlockBeginFastLocked(p1 - 100));
|
|
}
|
|
|
|
for (uptr i = 0; i < kNumExpectedFalseLookups; i++) {
|
|
void *p = reinterpret_cast<void *>(i % 1024);
|
|
EXPECT_EQ((void *)0, a.GetBlockBeginFastLocked(p));
|
|
p = reinterpret_cast<void *>(~0L - (i % 1024));
|
|
EXPECT_EQ((void *)0, a.GetBlockBeginFastLocked(p));
|
|
}
|
|
a.ForceUnlock();
|
|
|
|
for (uptr i = 0; i < kNumAllocs; i++)
|
|
a.Deallocate(&stats, allocated[i]);
|
|
}
|
|
|
|
|
|
#if SANITIZER_CAN_USE_ALLOCATOR64
|
|
// Regression test for out-of-memory condition in PopulateFreeList().
|
|
TEST(SanitizerCommon, SizeClassAllocator64PopulateFreeListOOM) {
|
|
// In a world where regions are small and chunks are huge...
|
|
typedef SizeClassMap<63, 128, 16> SpecialSizeClassMap;
|
|
typedef SizeClassAllocator64<kAllocatorSpace, kAllocatorSize, 0,
|
|
SpecialSizeClassMap> SpecialAllocator64;
|
|
const uptr kRegionSize =
|
|
kAllocatorSize / SpecialSizeClassMap::kNumClassesRounded;
|
|
SpecialAllocator64 *a = new SpecialAllocator64;
|
|
a->Init();
|
|
SizeClassAllocatorLocalCache<SpecialAllocator64> cache;
|
|
memset(&cache, 0, sizeof(cache));
|
|
cache.Init(0);
|
|
|
|
// ...one man is on a mission to overflow a region with a series of
|
|
// successive allocations.
|
|
const uptr kClassID = 107;
|
|
const uptr kAllocationSize = DefaultSizeClassMap::Size(kClassID);
|
|
ASSERT_LT(2 * kAllocationSize, kRegionSize);
|
|
ASSERT_GT(3 * kAllocationSize, kRegionSize);
|
|
cache.Allocate(a, kClassID);
|
|
EXPECT_DEATH(cache.Allocate(a, kClassID) && cache.Allocate(a, kClassID),
|
|
"The process has exhausted");
|
|
a->TestOnlyUnmap();
|
|
delete a;
|
|
}
|
|
#endif
|
|
|
|
TEST(SanitizerCommon, TwoLevelByteMap) {
|
|
const u64 kSize1 = 1 << 6, kSize2 = 1 << 12;
|
|
const u64 n = kSize1 * kSize2;
|
|
TwoLevelByteMap<kSize1, kSize2> m;
|
|
m.TestOnlyInit();
|
|
for (u64 i = 0; i < n; i += 7) {
|
|
m.set(i, (i % 100) + 1);
|
|
}
|
|
for (u64 j = 0; j < n; j++) {
|
|
if (j % 7)
|
|
EXPECT_EQ(m[j], 0);
|
|
else
|
|
EXPECT_EQ(m[j], (j % 100) + 1);
|
|
}
|
|
|
|
m.TestOnlyUnmap();
|
|
}
|
|
|
|
|
|
typedef TwoLevelByteMap<1 << 12, 1 << 13, TestMapUnmapCallback> TestByteMap;
|
|
|
|
struct TestByteMapParam {
|
|
TestByteMap *m;
|
|
size_t shard;
|
|
size_t num_shards;
|
|
};
|
|
|
|
void *TwoLevelByteMapUserThread(void *param) {
|
|
TestByteMapParam *p = (TestByteMapParam*)param;
|
|
for (size_t i = p->shard; i < p->m->size(); i += p->num_shards) {
|
|
size_t val = (i % 100) + 1;
|
|
p->m->set(i, val);
|
|
EXPECT_EQ((*p->m)[i], val);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
TEST(SanitizerCommon, ThreadedTwoLevelByteMap) {
|
|
TestByteMap m;
|
|
m.TestOnlyInit();
|
|
TestMapUnmapCallback::map_count = 0;
|
|
TestMapUnmapCallback::unmap_count = 0;
|
|
static const int kNumThreads = 4;
|
|
pthread_t t[kNumThreads];
|
|
TestByteMapParam p[kNumThreads];
|
|
for (int i = 0; i < kNumThreads; i++) {
|
|
p[i].m = &m;
|
|
p[i].shard = i;
|
|
p[i].num_shards = kNumThreads;
|
|
PTHREAD_CREATE(&t[i], 0, TwoLevelByteMapUserThread, &p[i]);
|
|
}
|
|
for (int i = 0; i < kNumThreads; i++) {
|
|
PTHREAD_JOIN(t[i], 0);
|
|
}
|
|
EXPECT_EQ((uptr)TestMapUnmapCallback::map_count, m.size1());
|
|
EXPECT_EQ((uptr)TestMapUnmapCallback::unmap_count, 0UL);
|
|
m.TestOnlyUnmap();
|
|
EXPECT_EQ((uptr)TestMapUnmapCallback::map_count, m.size1());
|
|
EXPECT_EQ((uptr)TestMapUnmapCallback::unmap_count, m.size1());
|
|
}
|
|
|
|
#endif // #if !SANITIZER_DEBUG
|