forked from OSchip/llvm-project
2080 lines
62 KiB
C++
2080 lines
62 KiB
C++
//===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the CFG and CFGBuilder classes for representing and
|
|
// building Control-Flow Graphs (CFGs) from ASTs.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Analysis/Support/SaveAndRestore.h"
|
|
#include "clang/Analysis/CFG.h"
|
|
#include "clang/AST/StmtVisitor.h"
|
|
#include "clang/AST/PrettyPrinter.h"
|
|
#include "llvm/Support/GraphWriter.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/Format.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/OwningPtr.h"
|
|
|
|
using namespace clang;
|
|
|
|
namespace {
|
|
|
|
static SourceLocation GetEndLoc(Decl* D) {
|
|
if (VarDecl* VD = dyn_cast<VarDecl>(D))
|
|
if (Expr* Ex = VD->getInit())
|
|
return Ex->getSourceRange().getEnd();
|
|
|
|
return D->getLocation();
|
|
}
|
|
|
|
/// CFGBuilder - This class implements CFG construction from an AST.
|
|
/// The builder is stateful: an instance of the builder should be used to only
|
|
/// construct a single CFG.
|
|
///
|
|
/// Example usage:
|
|
///
|
|
/// CFGBuilder builder;
|
|
/// CFG* cfg = builder.BuildAST(stmt1);
|
|
///
|
|
/// CFG construction is done via a recursive walk of an AST. We actually parse
|
|
/// the AST in reverse order so that the successor of a basic block is
|
|
/// constructed prior to its predecessor. This allows us to nicely capture
|
|
/// implicit fall-throughs without extra basic blocks.
|
|
///
|
|
class VISIBILITY_HIDDEN CFGBuilder {
|
|
ASTContext *Context;
|
|
llvm::OwningPtr<CFG> cfg;
|
|
|
|
CFGBlock* Block;
|
|
CFGBlock* Succ;
|
|
CFGBlock* ContinueTargetBlock;
|
|
CFGBlock* BreakTargetBlock;
|
|
CFGBlock* SwitchTerminatedBlock;
|
|
CFGBlock* DefaultCaseBlock;
|
|
|
|
// LabelMap records the mapping from Label expressions to their blocks.
|
|
typedef llvm::DenseMap<LabelStmt*,CFGBlock*> LabelMapTy;
|
|
LabelMapTy LabelMap;
|
|
|
|
// A list of blocks that end with a "goto" that must be backpatched to their
|
|
// resolved targets upon completion of CFG construction.
|
|
typedef std::vector<CFGBlock*> BackpatchBlocksTy;
|
|
BackpatchBlocksTy BackpatchBlocks;
|
|
|
|
// A list of labels whose address has been taken (for indirect gotos).
|
|
typedef llvm::SmallPtrSet<LabelStmt*,5> LabelSetTy;
|
|
LabelSetTy AddressTakenLabels;
|
|
|
|
public:
|
|
explicit CFGBuilder() : cfg(new CFG()), // crew a new CFG
|
|
Block(NULL), Succ(NULL),
|
|
ContinueTargetBlock(NULL), BreakTargetBlock(NULL),
|
|
SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL) {}
|
|
|
|
// buildCFG - Used by external clients to construct the CFG.
|
|
CFG* buildCFG(Stmt *Statement, ASTContext *C);
|
|
|
|
private:
|
|
// Visitors to walk an AST and construct the CFG.
|
|
CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, bool alwaysAdd);
|
|
CFGBlock *VisitBinaryOperator(BinaryOperator *B, bool alwaysAdd);
|
|
CFGBlock *VisitBlockExpr(BlockExpr* E, bool alwaysAdd);
|
|
CFGBlock *VisitBlockDeclRefExpr(BlockDeclRefExpr* E, bool alwaysAdd);
|
|
CFGBlock *VisitBreakStmt(BreakStmt *B);
|
|
CFGBlock *VisitCallExpr(CallExpr *C, bool alwaysAdd);
|
|
CFGBlock *VisitCaseStmt(CaseStmt *C);
|
|
CFGBlock *VisitChooseExpr(ChooseExpr *C);
|
|
CFGBlock *VisitCompoundStmt(CompoundStmt *C);
|
|
CFGBlock *VisitConditionalOperator(ConditionalOperator *C);
|
|
CFGBlock *VisitContinueStmt(ContinueStmt *C);
|
|
CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
|
|
CFGBlock *VisitDeclStmt(DeclStmt *DS);
|
|
CFGBlock *VisitDeclSubExpr(Decl* D);
|
|
CFGBlock *VisitDefaultStmt(DefaultStmt *D);
|
|
CFGBlock *VisitDoStmt(DoStmt *D);
|
|
CFGBlock *VisitForStmt(ForStmt *F);
|
|
CFGBlock *VisitGotoStmt(GotoStmt* G);
|
|
CFGBlock *VisitIfStmt(IfStmt *I);
|
|
CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
|
|
CFGBlock *VisitLabelStmt(LabelStmt *L);
|
|
CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
|
|
CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
|
|
CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
|
|
CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
|
|
CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
|
|
CFGBlock *VisitReturnStmt(ReturnStmt* R);
|
|
CFGBlock *VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E, bool alwaysAdd);
|
|
CFGBlock *VisitStmtExpr(StmtExpr *S, bool alwaysAdd);
|
|
CFGBlock *VisitSwitchStmt(SwitchStmt *S);
|
|
CFGBlock *VisitWhileStmt(WhileStmt *W);
|
|
|
|
CFGBlock *Visit(Stmt *S, bool alwaysAdd = false);
|
|
CFGBlock *VisitStmt(Stmt *S, bool alwaysAdd);
|
|
CFGBlock *VisitChildren(Stmt* S);
|
|
|
|
// NYS == Not Yet Supported
|
|
CFGBlock* NYS() {
|
|
badCFG = true;
|
|
return Block;
|
|
}
|
|
|
|
void autoCreateBlock() { if (!Block) Block = createBlock(); }
|
|
CFGBlock *createBlock(bool add_successor = true);
|
|
bool FinishBlock(CFGBlock* B);
|
|
CFGBlock *addStmt(Stmt *S) { return Visit(S, true); }
|
|
|
|
void AppendStmt(CFGBlock *B, Stmt *S) {
|
|
B->appendStmt(S, cfg->getBumpVectorContext());
|
|
}
|
|
|
|
void AddSuccessor(CFGBlock *B, CFGBlock *S) {
|
|
B->addSuccessor(S, cfg->getBumpVectorContext());
|
|
}
|
|
|
|
/// TryResult - a class representing a variant over the values
|
|
/// 'true', 'false', or 'unknown'. This is returned by TryEvaluateBool,
|
|
/// and is used by the CFGBuilder to decide if a branch condition
|
|
/// can be decided up front during CFG construction.
|
|
class TryResult {
|
|
int X;
|
|
public:
|
|
TryResult(bool b) : X(b ? 1 : 0) {}
|
|
TryResult() : X(-1) {}
|
|
|
|
bool isTrue() const { return X == 1; }
|
|
bool isFalse() const { return X == 0; }
|
|
bool isKnown() const { return X >= 0; }
|
|
void negate() {
|
|
assert(isKnown());
|
|
X ^= 0x1;
|
|
}
|
|
};
|
|
|
|
/// TryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
|
|
/// if we can evaluate to a known value, otherwise return -1.
|
|
TryResult TryEvaluateBool(Expr *S) {
|
|
Expr::EvalResult Result;
|
|
if (!S->isTypeDependent() && !S->isValueDependent() &&
|
|
S->Evaluate(Result, *Context) && Result.Val.isInt())
|
|
return Result.Val.getInt().getBoolValue();
|
|
|
|
return TryResult();
|
|
}
|
|
|
|
bool badCFG;
|
|
};
|
|
|
|
// FIXME: Add support for dependent-sized array types in C++?
|
|
// Does it even make sense to build a CFG for an uninstantiated template?
|
|
static VariableArrayType* FindVA(Type* t) {
|
|
while (ArrayType* vt = dyn_cast<ArrayType>(t)) {
|
|
if (VariableArrayType* vat = dyn_cast<VariableArrayType>(vt))
|
|
if (vat->getSizeExpr())
|
|
return vat;
|
|
|
|
t = vt->getElementType().getTypePtr();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// BuildCFG - Constructs a CFG from an AST (a Stmt*). The AST can represent an
|
|
/// arbitrary statement. Examples include a single expression or a function
|
|
/// body (compound statement). The ownership of the returned CFG is
|
|
/// transferred to the caller. If CFG construction fails, this method returns
|
|
/// NULL.
|
|
CFG* CFGBuilder::buildCFG(Stmt* Statement, ASTContext* C) {
|
|
Context = C;
|
|
assert(cfg.get());
|
|
if (!Statement)
|
|
return NULL;
|
|
|
|
badCFG = false;
|
|
|
|
// Create an empty block that will serve as the exit block for the CFG. Since
|
|
// this is the first block added to the CFG, it will be implicitly registered
|
|
// as the exit block.
|
|
Succ = createBlock();
|
|
assert(Succ == &cfg->getExit());
|
|
Block = NULL; // the EXIT block is empty. Create all other blocks lazily.
|
|
|
|
// Visit the statements and create the CFG.
|
|
CFGBlock* B = addStmt(Statement);
|
|
if (!B)
|
|
B = Succ;
|
|
|
|
if (B) {
|
|
// Finalize the last constructed block. This usually involves reversing the
|
|
// order of the statements in the block.
|
|
if (Block) FinishBlock(B);
|
|
|
|
// Backpatch the gotos whose label -> block mappings we didn't know when we
|
|
// encountered them.
|
|
for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
|
|
E = BackpatchBlocks.end(); I != E; ++I ) {
|
|
|
|
CFGBlock* B = *I;
|
|
GotoStmt* G = cast<GotoStmt>(B->getTerminator());
|
|
LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
|
|
|
|
// If there is no target for the goto, then we are looking at an
|
|
// incomplete AST. Handle this by not registering a successor.
|
|
if (LI == LabelMap.end()) continue;
|
|
|
|
AddSuccessor(B, LI->second);
|
|
}
|
|
|
|
// Add successors to the Indirect Goto Dispatch block (if we have one).
|
|
if (CFGBlock* B = cfg->getIndirectGotoBlock())
|
|
for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
|
|
E = AddressTakenLabels.end(); I != E; ++I ) {
|
|
|
|
// Lookup the target block.
|
|
LabelMapTy::iterator LI = LabelMap.find(*I);
|
|
|
|
// If there is no target block that contains label, then we are looking
|
|
// at an incomplete AST. Handle this by not registering a successor.
|
|
if (LI == LabelMap.end()) continue;
|
|
|
|
AddSuccessor(B, LI->second);
|
|
}
|
|
|
|
Succ = B;
|
|
}
|
|
|
|
// Create an empty entry block that has no predecessors.
|
|
cfg->setEntry(createBlock());
|
|
|
|
if (badCFG)
|
|
return NULL;
|
|
|
|
// NULL out cfg so that repeated calls to the builder will fail and that the
|
|
// ownership of the constructed CFG is passed to the caller.
|
|
return cfg.take();
|
|
}
|
|
|
|
/// createBlock - Used to lazily create blocks that are connected
|
|
/// to the current (global) succcessor.
|
|
CFGBlock* CFGBuilder::createBlock(bool add_successor) {
|
|
CFGBlock* B = cfg->createBlock();
|
|
if (add_successor && Succ)
|
|
AddSuccessor(B, Succ);
|
|
return B;
|
|
}
|
|
|
|
/// FinishBlock - "Finalize" the block by checking if we have a bad CFG.
|
|
bool CFGBuilder::FinishBlock(CFGBlock* B) {
|
|
if (badCFG)
|
|
return false;
|
|
|
|
assert(B);
|
|
return true;
|
|
}
|
|
|
|
/// Visit - Walk the subtree of a statement and add extra
|
|
/// blocks for ternary operators, &&, and ||. We also process "," and
|
|
/// DeclStmts (which may contain nested control-flow).
|
|
CFGBlock* CFGBuilder::Visit(Stmt * S, bool alwaysAdd) {
|
|
tryAgain:
|
|
switch (S->getStmtClass()) {
|
|
default:
|
|
return VisitStmt(S, alwaysAdd);
|
|
|
|
case Stmt::AddrLabelExprClass:
|
|
return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), alwaysAdd);
|
|
|
|
case Stmt::BinaryOperatorClass:
|
|
return VisitBinaryOperator(cast<BinaryOperator>(S), alwaysAdd);
|
|
|
|
case Stmt::BlockExprClass:
|
|
return VisitBlockExpr(cast<BlockExpr>(S), alwaysAdd);
|
|
|
|
case Stmt::BlockDeclRefExprClass:
|
|
return VisitBlockDeclRefExpr(cast<BlockDeclRefExpr>(S), alwaysAdd);
|
|
|
|
case Stmt::BreakStmtClass:
|
|
return VisitBreakStmt(cast<BreakStmt>(S));
|
|
|
|
case Stmt::CallExprClass:
|
|
return VisitCallExpr(cast<CallExpr>(S), alwaysAdd);
|
|
|
|
case Stmt::CaseStmtClass:
|
|
return VisitCaseStmt(cast<CaseStmt>(S));
|
|
|
|
case Stmt::ChooseExprClass:
|
|
return VisitChooseExpr(cast<ChooseExpr>(S));
|
|
|
|
case Stmt::CompoundStmtClass:
|
|
return VisitCompoundStmt(cast<CompoundStmt>(S));
|
|
|
|
case Stmt::ConditionalOperatorClass:
|
|
return VisitConditionalOperator(cast<ConditionalOperator>(S));
|
|
|
|
case Stmt::ContinueStmtClass:
|
|
return VisitContinueStmt(cast<ContinueStmt>(S));
|
|
|
|
case Stmt::DeclStmtClass:
|
|
return VisitDeclStmt(cast<DeclStmt>(S));
|
|
|
|
case Stmt::DefaultStmtClass:
|
|
return VisitDefaultStmt(cast<DefaultStmt>(S));
|
|
|
|
case Stmt::DoStmtClass:
|
|
return VisitDoStmt(cast<DoStmt>(S));
|
|
|
|
case Stmt::ForStmtClass:
|
|
return VisitForStmt(cast<ForStmt>(S));
|
|
|
|
case Stmt::GotoStmtClass:
|
|
return VisitGotoStmt(cast<GotoStmt>(S));
|
|
|
|
case Stmt::IfStmtClass:
|
|
return VisitIfStmt(cast<IfStmt>(S));
|
|
|
|
case Stmt::IndirectGotoStmtClass:
|
|
return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
|
|
|
|
case Stmt::LabelStmtClass:
|
|
return VisitLabelStmt(cast<LabelStmt>(S));
|
|
|
|
case Stmt::ObjCAtCatchStmtClass:
|
|
return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
|
|
|
|
case Stmt::CXXThrowExprClass:
|
|
return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
|
|
|
|
case Stmt::ObjCAtSynchronizedStmtClass:
|
|
return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
|
|
|
|
case Stmt::ObjCAtThrowStmtClass:
|
|
return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
|
|
|
|
case Stmt::ObjCAtTryStmtClass:
|
|
return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
|
|
|
|
case Stmt::ObjCForCollectionStmtClass:
|
|
return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
|
|
|
|
case Stmt::ParenExprClass:
|
|
S = cast<ParenExpr>(S)->getSubExpr();
|
|
goto tryAgain;
|
|
|
|
case Stmt::NullStmtClass:
|
|
return Block;
|
|
|
|
case Stmt::ReturnStmtClass:
|
|
return VisitReturnStmt(cast<ReturnStmt>(S));
|
|
|
|
case Stmt::SizeOfAlignOfExprClass:
|
|
return VisitSizeOfAlignOfExpr(cast<SizeOfAlignOfExpr>(S), alwaysAdd);
|
|
|
|
case Stmt::StmtExprClass:
|
|
return VisitStmtExpr(cast<StmtExpr>(S), alwaysAdd);
|
|
|
|
case Stmt::SwitchStmtClass:
|
|
return VisitSwitchStmt(cast<SwitchStmt>(S));
|
|
|
|
case Stmt::WhileStmtClass:
|
|
return VisitWhileStmt(cast<WhileStmt>(S));
|
|
}
|
|
}
|
|
|
|
CFGBlock *CFGBuilder::VisitStmt(Stmt *S, bool alwaysAdd) {
|
|
if (alwaysAdd) {
|
|
autoCreateBlock();
|
|
AppendStmt(Block, S);
|
|
}
|
|
|
|
return VisitChildren(S);
|
|
}
|
|
|
|
/// VisitChildren - Visit the children of a Stmt.
|
|
CFGBlock *CFGBuilder::VisitChildren(Stmt* Terminator) {
|
|
CFGBlock *B = Block;
|
|
for (Stmt::child_iterator I = Terminator->child_begin(),
|
|
E = Terminator->child_end(); I != E; ++I) {
|
|
if (*I) B = Visit(*I);
|
|
}
|
|
return B;
|
|
}
|
|
|
|
CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A, bool alwaysAdd) {
|
|
AddressTakenLabels.insert(A->getLabel());
|
|
|
|
if (alwaysAdd) {
|
|
autoCreateBlock();
|
|
AppendStmt(Block, A);
|
|
}
|
|
|
|
return Block;
|
|
}
|
|
|
|
CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B, bool alwaysAdd) {
|
|
if (B->isLogicalOp()) { // && or ||
|
|
CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
|
|
AppendStmt(ConfluenceBlock, B);
|
|
|
|
if (!FinishBlock(ConfluenceBlock))
|
|
return 0;
|
|
|
|
// create the block evaluating the LHS
|
|
CFGBlock* LHSBlock = createBlock(false);
|
|
LHSBlock->setTerminator(B);
|
|
|
|
// create the block evaluating the RHS
|
|
Succ = ConfluenceBlock;
|
|
Block = NULL;
|
|
CFGBlock* RHSBlock = addStmt(B->getRHS());
|
|
if (!FinishBlock(RHSBlock))
|
|
return 0;
|
|
|
|
// See if this is a known constant.
|
|
TryResult KnownVal = TryEvaluateBool(B->getLHS());
|
|
if (KnownVal.isKnown() && (B->getOpcode() == BinaryOperator::LOr))
|
|
KnownVal.negate();
|
|
|
|
// Now link the LHSBlock with RHSBlock.
|
|
if (B->getOpcode() == BinaryOperator::LOr) {
|
|
AddSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
|
|
AddSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
|
|
} else {
|
|
assert (B->getOpcode() == BinaryOperator::LAnd);
|
|
AddSuccessor(LHSBlock, KnownVal.isFalse() ? NULL : RHSBlock);
|
|
AddSuccessor(LHSBlock, KnownVal.isTrue() ? NULL : ConfluenceBlock);
|
|
}
|
|
|
|
// Generate the blocks for evaluating the LHS.
|
|
Block = LHSBlock;
|
|
return addStmt(B->getLHS());
|
|
}
|
|
else if (B->getOpcode() == BinaryOperator::Comma) { // ,
|
|
autoCreateBlock();
|
|
AppendStmt(Block, B);
|
|
addStmt(B->getRHS());
|
|
return addStmt(B->getLHS());
|
|
}
|
|
|
|
return VisitStmt(B, alwaysAdd);
|
|
}
|
|
|
|
CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr* E, bool alwaysAdd) {
|
|
// FIXME
|
|
return NYS();
|
|
}
|
|
|
|
CFGBlock *CFGBuilder::VisitBlockDeclRefExpr(BlockDeclRefExpr* E,
|
|
bool alwaysAdd) {
|
|
// FIXME
|
|
return NYS();
|
|
}
|
|
|
|
CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
|
|
// "break" is a control-flow statement. Thus we stop processing the current
|
|
// block.
|
|
if (Block && !FinishBlock(Block))
|
|
return 0;
|
|
|
|
// Now create a new block that ends with the break statement.
|
|
Block = createBlock(false);
|
|
Block->setTerminator(B);
|
|
|
|
// If there is no target for the break, then we are looking at an incomplete
|
|
// AST. This means that the CFG cannot be constructed.
|
|
if (BreakTargetBlock)
|
|
AddSuccessor(Block, BreakTargetBlock);
|
|
else
|
|
badCFG = true;
|
|
|
|
|
|
return Block;
|
|
}
|
|
|
|
CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, bool alwaysAdd) {
|
|
// If this is a call to a no-return function, this stops the block here.
|
|
bool NoReturn = false;
|
|
if (C->getCallee()->getType().getNoReturnAttr()) {
|
|
NoReturn = true;
|
|
}
|
|
|
|
if (FunctionDecl *FD = C->getDirectCallee())
|
|
if (FD->hasAttr<NoReturnAttr>())
|
|
NoReturn = true;
|
|
|
|
if (!NoReturn)
|
|
return VisitStmt(C, alwaysAdd);
|
|
|
|
if (Block && !FinishBlock(Block))
|
|
return 0;
|
|
|
|
// Create new block with no successor for the remaining pieces.
|
|
Block = createBlock(false);
|
|
AppendStmt(Block, C);
|
|
|
|
// Wire this to the exit block directly.
|
|
AddSuccessor(Block, &cfg->getExit());
|
|
|
|
return VisitChildren(C);
|
|
}
|
|
|
|
CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C) {
|
|
CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
|
|
AppendStmt(ConfluenceBlock, C);
|
|
if (!FinishBlock(ConfluenceBlock))
|
|
return 0;
|
|
|
|
Succ = ConfluenceBlock;
|
|
Block = NULL;
|
|
CFGBlock* LHSBlock = addStmt(C->getLHS());
|
|
if (!FinishBlock(LHSBlock))
|
|
return 0;
|
|
|
|
Succ = ConfluenceBlock;
|
|
Block = NULL;
|
|
CFGBlock* RHSBlock = addStmt(C->getRHS());
|
|
if (!FinishBlock(RHSBlock))
|
|
return 0;
|
|
|
|
Block = createBlock(false);
|
|
// See if this is a known constant.
|
|
const TryResult& KnownVal = TryEvaluateBool(C->getCond());
|
|
AddSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
|
|
AddSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
|
|
Block->setTerminator(C);
|
|
return addStmt(C->getCond());
|
|
}
|
|
|
|
|
|
CFGBlock* CFGBuilder::VisitCompoundStmt(CompoundStmt* C) {
|
|
CFGBlock* LastBlock = Block;
|
|
|
|
for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
|
|
I != E; ++I ) {
|
|
LastBlock = addStmt(*I);
|
|
|
|
if (badCFG)
|
|
return NULL;
|
|
}
|
|
return LastBlock;
|
|
}
|
|
|
|
CFGBlock *CFGBuilder::VisitConditionalOperator(ConditionalOperator *C) {
|
|
// Create the confluence block that will "merge" the results of the ternary
|
|
// expression.
|
|
CFGBlock* ConfluenceBlock = Block ? Block : createBlock();
|
|
AppendStmt(ConfluenceBlock, C);
|
|
if (!FinishBlock(ConfluenceBlock))
|
|
return 0;
|
|
|
|
// Create a block for the LHS expression if there is an LHS expression. A
|
|
// GCC extension allows LHS to be NULL, causing the condition to be the
|
|
// value that is returned instead.
|
|
// e.g: x ?: y is shorthand for: x ? x : y;
|
|
Succ = ConfluenceBlock;
|
|
Block = NULL;
|
|
CFGBlock* LHSBlock = NULL;
|
|
if (C->getLHS()) {
|
|
LHSBlock = addStmt(C->getLHS());
|
|
if (!FinishBlock(LHSBlock))
|
|
return 0;
|
|
Block = NULL;
|
|
}
|
|
|
|
// Create the block for the RHS expression.
|
|
Succ = ConfluenceBlock;
|
|
CFGBlock* RHSBlock = addStmt(C->getRHS());
|
|
if (!FinishBlock(RHSBlock))
|
|
return 0;
|
|
|
|
// Create the block that will contain the condition.
|
|
Block = createBlock(false);
|
|
|
|
// See if this is a known constant.
|
|
const TryResult& KnownVal = TryEvaluateBool(C->getCond());
|
|
if (LHSBlock) {
|
|
AddSuccessor(Block, KnownVal.isFalse() ? NULL : LHSBlock);
|
|
} else {
|
|
if (KnownVal.isFalse()) {
|
|
// If we know the condition is false, add NULL as the successor for
|
|
// the block containing the condition. In this case, the confluence
|
|
// block will have just one predecessor.
|
|
AddSuccessor(Block, 0);
|
|
assert(ConfluenceBlock->pred_size() == 1);
|
|
} else {
|
|
// If we have no LHS expression, add the ConfluenceBlock as a direct
|
|
// successor for the block containing the condition. Moreover, we need to
|
|
// reverse the order of the predecessors in the ConfluenceBlock because
|
|
// the RHSBlock will have been added to the succcessors already, and we
|
|
// want the first predecessor to the the block containing the expression
|
|
// for the case when the ternary expression evaluates to true.
|
|
AddSuccessor(Block, ConfluenceBlock);
|
|
assert(ConfluenceBlock->pred_size() == 2);
|
|
std::reverse(ConfluenceBlock->pred_begin(),
|
|
ConfluenceBlock->pred_end());
|
|
}
|
|
}
|
|
|
|
AddSuccessor(Block, KnownVal.isTrue() ? NULL : RHSBlock);
|
|
Block->setTerminator(C);
|
|
return addStmt(C->getCond());
|
|
}
|
|
|
|
CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
|
|
autoCreateBlock();
|
|
|
|
if (DS->isSingleDecl()) {
|
|
AppendStmt(Block, DS);
|
|
return VisitDeclSubExpr(DS->getSingleDecl());
|
|
}
|
|
|
|
CFGBlock *B = 0;
|
|
|
|
// FIXME: Add a reverse iterator for DeclStmt to avoid this extra copy.
|
|
typedef llvm::SmallVector<Decl*,10> BufTy;
|
|
BufTy Buf(DS->decl_begin(), DS->decl_end());
|
|
|
|
for (BufTy::reverse_iterator I = Buf.rbegin(), E = Buf.rend(); I != E; ++I) {
|
|
// Get the alignment of the new DeclStmt, padding out to >=8 bytes.
|
|
unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
|
|
? 8 : llvm::AlignOf<DeclStmt>::Alignment;
|
|
|
|
// Allocate the DeclStmt using the BumpPtrAllocator. It will get
|
|
// automatically freed with the CFG.
|
|
DeclGroupRef DG(*I);
|
|
Decl *D = *I;
|
|
void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
|
|
DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
|
|
|
|
// Append the fake DeclStmt to block.
|
|
AppendStmt(Block, DSNew);
|
|
B = VisitDeclSubExpr(D);
|
|
}
|
|
|
|
return B;
|
|
}
|
|
|
|
/// VisitDeclSubExpr - Utility method to add block-level expressions for
|
|
/// initializers in Decls.
|
|
CFGBlock *CFGBuilder::VisitDeclSubExpr(Decl* D) {
|
|
assert(Block);
|
|
|
|
VarDecl *VD = dyn_cast<VarDecl>(D);
|
|
|
|
if (!VD)
|
|
return Block;
|
|
|
|
Expr *Init = VD->getInit();
|
|
|
|
if (Init) {
|
|
// Optimization: Don't create separate block-level statements for literals.
|
|
switch (Init->getStmtClass()) {
|
|
case Stmt::IntegerLiteralClass:
|
|
case Stmt::CharacterLiteralClass:
|
|
case Stmt::StringLiteralClass:
|
|
break;
|
|
default:
|
|
Block = addStmt(Init);
|
|
}
|
|
}
|
|
|
|
// If the type of VD is a VLA, then we must process its size expressions.
|
|
for (VariableArrayType* VA = FindVA(VD->getType().getTypePtr()); VA != 0;
|
|
VA = FindVA(VA->getElementType().getTypePtr()))
|
|
Block = addStmt(VA->getSizeExpr());
|
|
|
|
return Block;
|
|
}
|
|
|
|
CFGBlock* CFGBuilder::VisitIfStmt(IfStmt* I) {
|
|
// We may see an if statement in the middle of a basic block, or it may be the
|
|
// first statement we are processing. In either case, we create a new basic
|
|
// block. First, we create the blocks for the then...else statements, and
|
|
// then we create the block containing the if statement. If we were in the
|
|
// middle of a block, we stop processing that block. That block is then the
|
|
// implicit successor for the "then" and "else" clauses.
|
|
|
|
// The block we were proccessing is now finished. Make it the successor
|
|
// block.
|
|
if (Block) {
|
|
Succ = Block;
|
|
if (!FinishBlock(Block))
|
|
return 0;
|
|
}
|
|
|
|
// Process the false branch.
|
|
CFGBlock* ElseBlock = Succ;
|
|
|
|
if (Stmt* Else = I->getElse()) {
|
|
SaveAndRestore<CFGBlock*> sv(Succ);
|
|
|
|
// NULL out Block so that the recursive call to Visit will
|
|
// create a new basic block.
|
|
Block = NULL;
|
|
ElseBlock = addStmt(Else);
|
|
|
|
if (!ElseBlock) // Can occur when the Else body has all NullStmts.
|
|
ElseBlock = sv.get();
|
|
else if (Block) {
|
|
if (!FinishBlock(ElseBlock))
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// Process the true branch.
|
|
CFGBlock* ThenBlock;
|
|
{
|
|
Stmt* Then = I->getThen();
|
|
assert (Then);
|
|
SaveAndRestore<CFGBlock*> sv(Succ);
|
|
Block = NULL;
|
|
ThenBlock = addStmt(Then);
|
|
|
|
if (!ThenBlock) {
|
|
// We can reach here if the "then" body has all NullStmts.
|
|
// Create an empty block so we can distinguish between true and false
|
|
// branches in path-sensitive analyses.
|
|
ThenBlock = createBlock(false);
|
|
AddSuccessor(ThenBlock, sv.get());
|
|
} else if (Block) {
|
|
if (!FinishBlock(ThenBlock))
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// Now create a new block containing the if statement.
|
|
Block = createBlock(false);
|
|
|
|
// Set the terminator of the new block to the If statement.
|
|
Block->setTerminator(I);
|
|
|
|
// See if this is a known constant.
|
|
const TryResult &KnownVal = TryEvaluateBool(I->getCond());
|
|
|
|
// Now add the successors.
|
|
AddSuccessor(Block, KnownVal.isFalse() ? NULL : ThenBlock);
|
|
AddSuccessor(Block, KnownVal.isTrue()? NULL : ElseBlock);
|
|
|
|
// Add the condition as the last statement in the new block. This may create
|
|
// new blocks as the condition may contain control-flow. Any newly created
|
|
// blocks will be pointed to be "Block".
|
|
return addStmt(I->getCond());
|
|
}
|
|
|
|
|
|
CFGBlock* CFGBuilder::VisitReturnStmt(ReturnStmt* R) {
|
|
// If we were in the middle of a block we stop processing that block.
|
|
//
|
|
// NOTE: If a "return" appears in the middle of a block, this means that the
|
|
// code afterwards is DEAD (unreachable). We still keep a basic block
|
|
// for that code; a simple "mark-and-sweep" from the entry block will be
|
|
// able to report such dead blocks.
|
|
if (Block)
|
|
FinishBlock(Block);
|
|
|
|
// Create the new block.
|
|
Block = createBlock(false);
|
|
|
|
// The Exit block is the only successor.
|
|
AddSuccessor(Block, &cfg->getExit());
|
|
|
|
// Add the return statement to the block. This may create new blocks if R
|
|
// contains control-flow (short-circuit operations).
|
|
return VisitStmt(R, true);
|
|
}
|
|
|
|
CFGBlock* CFGBuilder::VisitLabelStmt(LabelStmt* L) {
|
|
// Get the block of the labeled statement. Add it to our map.
|
|
addStmt(L->getSubStmt());
|
|
CFGBlock* LabelBlock = Block;
|
|
|
|
if (!LabelBlock) // This can happen when the body is empty, i.e.
|
|
LabelBlock = createBlock(); // scopes that only contains NullStmts.
|
|
|
|
assert(LabelMap.find(L) == LabelMap.end() && "label already in map");
|
|
LabelMap[ L ] = LabelBlock;
|
|
|
|
// Labels partition blocks, so this is the end of the basic block we were
|
|
// processing (L is the block's label). Because this is label (and we have
|
|
// already processed the substatement) there is no extra control-flow to worry
|
|
// about.
|
|
LabelBlock->setLabel(L);
|
|
if (!FinishBlock(LabelBlock))
|
|
return 0;
|
|
|
|
// We set Block to NULL to allow lazy creation of a new block (if necessary);
|
|
Block = NULL;
|
|
|
|
// This block is now the implicit successor of other blocks.
|
|
Succ = LabelBlock;
|
|
|
|
return LabelBlock;
|
|
}
|
|
|
|
CFGBlock* CFGBuilder::VisitGotoStmt(GotoStmt* G) {
|
|
// Goto is a control-flow statement. Thus we stop processing the current
|
|
// block and create a new one.
|
|
if (Block)
|
|
FinishBlock(Block);
|
|
|
|
Block = createBlock(false);
|
|
Block->setTerminator(G);
|
|
|
|
// If we already know the mapping to the label block add the successor now.
|
|
LabelMapTy::iterator I = LabelMap.find(G->getLabel());
|
|
|
|
if (I == LabelMap.end())
|
|
// We will need to backpatch this block later.
|
|
BackpatchBlocks.push_back(Block);
|
|
else
|
|
AddSuccessor(Block, I->second);
|
|
|
|
return Block;
|
|
}
|
|
|
|
CFGBlock* CFGBuilder::VisitForStmt(ForStmt* F) {
|
|
CFGBlock* LoopSuccessor = NULL;
|
|
|
|
// "for" is a control-flow statement. Thus we stop processing the current
|
|
// block.
|
|
if (Block) {
|
|
if (!FinishBlock(Block))
|
|
return 0;
|
|
LoopSuccessor = Block;
|
|
} else
|
|
LoopSuccessor = Succ;
|
|
|
|
// Because of short-circuit evaluation, the condition of the loop can span
|
|
// multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
|
|
// evaluate the condition.
|
|
CFGBlock* ExitConditionBlock = createBlock(false);
|
|
CFGBlock* EntryConditionBlock = ExitConditionBlock;
|
|
|
|
// Set the terminator for the "exit" condition block.
|
|
ExitConditionBlock->setTerminator(F);
|
|
|
|
// Now add the actual condition to the condition block. Because the condition
|
|
// itself may contain control-flow, new blocks may be created.
|
|
if (Stmt* C = F->getCond()) {
|
|
Block = ExitConditionBlock;
|
|
EntryConditionBlock = addStmt(C);
|
|
if (Block) {
|
|
if (!FinishBlock(EntryConditionBlock))
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// The condition block is the implicit successor for the loop body as well as
|
|
// any code above the loop.
|
|
Succ = EntryConditionBlock;
|
|
|
|
// See if this is a known constant.
|
|
TryResult KnownVal(true);
|
|
|
|
if (F->getCond())
|
|
KnownVal = TryEvaluateBool(F->getCond());
|
|
|
|
// Now create the loop body.
|
|
{
|
|
assert (F->getBody());
|
|
|
|
// Save the current values for Block, Succ, and continue and break targets
|
|
SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ),
|
|
save_continue(ContinueTargetBlock),
|
|
save_break(BreakTargetBlock);
|
|
|
|
// Create a new block to contain the (bottom) of the loop body.
|
|
Block = NULL;
|
|
|
|
if (Stmt* I = F->getInc()) {
|
|
// Generate increment code in its own basic block. This is the target of
|
|
// continue statements.
|
|
Succ = addStmt(I);
|
|
} else {
|
|
// No increment code. Create a special, empty, block that is used as the
|
|
// target block for "looping back" to the start of the loop.
|
|
assert(Succ == EntryConditionBlock);
|
|
Succ = createBlock();
|
|
}
|
|
|
|
// Finish up the increment (or empty) block if it hasn't been already.
|
|
if (Block) {
|
|
assert(Block == Succ);
|
|
if (!FinishBlock(Block))
|
|
return 0;
|
|
Block = 0;
|
|
}
|
|
|
|
ContinueTargetBlock = Succ;
|
|
|
|
// The starting block for the loop increment is the block that should
|
|
// represent the 'loop target' for looping back to the start of the loop.
|
|
ContinueTargetBlock->setLoopTarget(F);
|
|
|
|
// All breaks should go to the code following the loop.
|
|
BreakTargetBlock = LoopSuccessor;
|
|
|
|
// Now populate the body block, and in the process create new blocks as we
|
|
// walk the body of the loop.
|
|
CFGBlock* BodyBlock = addStmt(F->getBody());
|
|
|
|
if (!BodyBlock)
|
|
BodyBlock = ContinueTargetBlock; // can happen for "for (...;...;...) ;"
|
|
else if (Block && !FinishBlock(BodyBlock))
|
|
return 0;
|
|
|
|
// This new body block is a successor to our "exit" condition block.
|
|
AddSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
|
|
}
|
|
|
|
// Link up the condition block with the code that follows the loop. (the
|
|
// false branch).
|
|
AddSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
|
|
|
|
// If the loop contains initialization, create a new block for those
|
|
// statements. This block can also contain statements that precede the loop.
|
|
if (Stmt* I = F->getInit()) {
|
|
Block = createBlock();
|
|
return addStmt(I);
|
|
} else {
|
|
// There is no loop initialization. We are thus basically a while loop.
|
|
// NULL out Block to force lazy block construction.
|
|
Block = NULL;
|
|
Succ = EntryConditionBlock;
|
|
return EntryConditionBlock;
|
|
}
|
|
}
|
|
|
|
CFGBlock* CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt* S) {
|
|
// Objective-C fast enumeration 'for' statements:
|
|
// http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
|
|
//
|
|
// for ( Type newVariable in collection_expression ) { statements }
|
|
//
|
|
// becomes:
|
|
//
|
|
// prologue:
|
|
// 1. collection_expression
|
|
// T. jump to loop_entry
|
|
// loop_entry:
|
|
// 1. side-effects of element expression
|
|
// 1. ObjCForCollectionStmt [performs binding to newVariable]
|
|
// T. ObjCForCollectionStmt TB, FB [jumps to TB if newVariable != nil]
|
|
// TB:
|
|
// statements
|
|
// T. jump to loop_entry
|
|
// FB:
|
|
// what comes after
|
|
//
|
|
// and
|
|
//
|
|
// Type existingItem;
|
|
// for ( existingItem in expression ) { statements }
|
|
//
|
|
// becomes:
|
|
//
|
|
// the same with newVariable replaced with existingItem; the binding works
|
|
// the same except that for one ObjCForCollectionStmt::getElement() returns
|
|
// a DeclStmt and the other returns a DeclRefExpr.
|
|
//
|
|
|
|
CFGBlock* LoopSuccessor = 0;
|
|
|
|
if (Block) {
|
|
if (!FinishBlock(Block))
|
|
return 0;
|
|
LoopSuccessor = Block;
|
|
Block = 0;
|
|
} else
|
|
LoopSuccessor = Succ;
|
|
|
|
// Build the condition blocks.
|
|
CFGBlock* ExitConditionBlock = createBlock(false);
|
|
CFGBlock* EntryConditionBlock = ExitConditionBlock;
|
|
|
|
// Set the terminator for the "exit" condition block.
|
|
ExitConditionBlock->setTerminator(S);
|
|
|
|
// The last statement in the block should be the ObjCForCollectionStmt, which
|
|
// performs the actual binding to 'element' and determines if there are any
|
|
// more items in the collection.
|
|
AppendStmt(ExitConditionBlock, S);
|
|
Block = ExitConditionBlock;
|
|
|
|
// Walk the 'element' expression to see if there are any side-effects. We
|
|
// generate new blocks as necesary. We DON'T add the statement by default to
|
|
// the CFG unless it contains control-flow.
|
|
EntryConditionBlock = Visit(S->getElement(), false);
|
|
if (Block) {
|
|
if (!FinishBlock(EntryConditionBlock))
|
|
return 0;
|
|
Block = 0;
|
|
}
|
|
|
|
// The condition block is the implicit successor for the loop body as well as
|
|
// any code above the loop.
|
|
Succ = EntryConditionBlock;
|
|
|
|
// Now create the true branch.
|
|
{
|
|
// Save the current values for Succ, continue and break targets.
|
|
SaveAndRestore<CFGBlock*> save_Succ(Succ),
|
|
save_continue(ContinueTargetBlock), save_break(BreakTargetBlock);
|
|
|
|
BreakTargetBlock = LoopSuccessor;
|
|
ContinueTargetBlock = EntryConditionBlock;
|
|
|
|
CFGBlock* BodyBlock = addStmt(S->getBody());
|
|
|
|
if (!BodyBlock)
|
|
BodyBlock = EntryConditionBlock; // can happen for "for (X in Y) ;"
|
|
else if (Block) {
|
|
if (!FinishBlock(BodyBlock))
|
|
return 0;
|
|
}
|
|
|
|
// This new body block is a successor to our "exit" condition block.
|
|
AddSuccessor(ExitConditionBlock, BodyBlock);
|
|
}
|
|
|
|
// Link up the condition block with the code that follows the loop.
|
|
// (the false branch).
|
|
AddSuccessor(ExitConditionBlock, LoopSuccessor);
|
|
|
|
// Now create a prologue block to contain the collection expression.
|
|
Block = createBlock();
|
|
return addStmt(S->getCollection());
|
|
}
|
|
|
|
CFGBlock* CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt* S) {
|
|
// FIXME: Add locking 'primitives' to CFG for @synchronized.
|
|
|
|
// Inline the body.
|
|
CFGBlock *SyncBlock = addStmt(S->getSynchBody());
|
|
|
|
// The sync body starts its own basic block. This makes it a little easier
|
|
// for diagnostic clients.
|
|
if (SyncBlock) {
|
|
if (!FinishBlock(SyncBlock))
|
|
return 0;
|
|
|
|
Block = 0;
|
|
}
|
|
|
|
Succ = SyncBlock;
|
|
|
|
// Inline the sync expression.
|
|
return addStmt(S->getSynchExpr());
|
|
}
|
|
|
|
CFGBlock* CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt* S) {
|
|
// FIXME
|
|
return NYS();
|
|
}
|
|
|
|
CFGBlock* CFGBuilder::VisitWhileStmt(WhileStmt* W) {
|
|
CFGBlock* LoopSuccessor = NULL;
|
|
|
|
// "while" is a control-flow statement. Thus we stop processing the current
|
|
// block.
|
|
if (Block) {
|
|
if (!FinishBlock(Block))
|
|
return 0;
|
|
LoopSuccessor = Block;
|
|
} else
|
|
LoopSuccessor = Succ;
|
|
|
|
// Because of short-circuit evaluation, the condition of the loop can span
|
|
// multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
|
|
// evaluate the condition.
|
|
CFGBlock* ExitConditionBlock = createBlock(false);
|
|
CFGBlock* EntryConditionBlock = ExitConditionBlock;
|
|
|
|
// Set the terminator for the "exit" condition block.
|
|
ExitConditionBlock->setTerminator(W);
|
|
|
|
// Now add the actual condition to the condition block. Because the condition
|
|
// itself may contain control-flow, new blocks may be created. Thus we update
|
|
// "Succ" after adding the condition.
|
|
if (Stmt* C = W->getCond()) {
|
|
Block = ExitConditionBlock;
|
|
EntryConditionBlock = addStmt(C);
|
|
assert(Block == EntryConditionBlock);
|
|
if (Block) {
|
|
if (!FinishBlock(EntryConditionBlock))
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// The condition block is the implicit successor for the loop body as well as
|
|
// any code above the loop.
|
|
Succ = EntryConditionBlock;
|
|
|
|
// See if this is a known constant.
|
|
const TryResult& KnownVal = TryEvaluateBool(W->getCond());
|
|
|
|
// Process the loop body.
|
|
{
|
|
assert(W->getBody());
|
|
|
|
// Save the current values for Block, Succ, and continue and break targets
|
|
SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ),
|
|
save_continue(ContinueTargetBlock),
|
|
save_break(BreakTargetBlock);
|
|
|
|
// Create an empty block to represent the transition block for looping back
|
|
// to the head of the loop.
|
|
Block = 0;
|
|
assert(Succ == EntryConditionBlock);
|
|
Succ = createBlock();
|
|
Succ->setLoopTarget(W);
|
|
ContinueTargetBlock = Succ;
|
|
|
|
// All breaks should go to the code following the loop.
|
|
BreakTargetBlock = LoopSuccessor;
|
|
|
|
// NULL out Block to force lazy instantiation of blocks for the body.
|
|
Block = NULL;
|
|
|
|
// Create the body. The returned block is the entry to the loop body.
|
|
CFGBlock* BodyBlock = addStmt(W->getBody());
|
|
|
|
if (!BodyBlock)
|
|
BodyBlock = ContinueTargetBlock; // can happen for "while(...) ;"
|
|
else if (Block) {
|
|
if (!FinishBlock(BodyBlock))
|
|
return 0;
|
|
}
|
|
|
|
// Add the loop body entry as a successor to the condition.
|
|
AddSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : BodyBlock);
|
|
}
|
|
|
|
// Link up the condition block with the code that follows the loop. (the
|
|
// false branch).
|
|
AddSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
|
|
|
|
// There can be no more statements in the condition block since we loop back
|
|
// to this block. NULL out Block to force lazy creation of another block.
|
|
Block = NULL;
|
|
|
|
// Return the condition block, which is the dominating block for the loop.
|
|
Succ = EntryConditionBlock;
|
|
return EntryConditionBlock;
|
|
}
|
|
|
|
|
|
CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt* S) {
|
|
// FIXME: For now we pretend that @catch and the code it contains does not
|
|
// exit.
|
|
return Block;
|
|
}
|
|
|
|
CFGBlock* CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt* S) {
|
|
// FIXME: This isn't complete. We basically treat @throw like a return
|
|
// statement.
|
|
|
|
// If we were in the middle of a block we stop processing that block.
|
|
if (Block && !FinishBlock(Block))
|
|
return 0;
|
|
|
|
// Create the new block.
|
|
Block = createBlock(false);
|
|
|
|
// The Exit block is the only successor.
|
|
AddSuccessor(Block, &cfg->getExit());
|
|
|
|
// Add the statement to the block. This may create new blocks if S contains
|
|
// control-flow (short-circuit operations).
|
|
return VisitStmt(S, true);
|
|
}
|
|
|
|
CFGBlock* CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr* T) {
|
|
// If we were in the middle of a block we stop processing that block.
|
|
if (Block && !FinishBlock(Block))
|
|
return 0;
|
|
|
|
// Create the new block.
|
|
Block = createBlock(false);
|
|
|
|
// The Exit block is the only successor.
|
|
AddSuccessor(Block, &cfg->getExit());
|
|
|
|
// Add the statement to the block. This may create new blocks if S contains
|
|
// control-flow (short-circuit operations).
|
|
return VisitStmt(T, true);
|
|
}
|
|
|
|
CFGBlock *CFGBuilder::VisitDoStmt(DoStmt* D) {
|
|
CFGBlock* LoopSuccessor = NULL;
|
|
|
|
// "do...while" is a control-flow statement. Thus we stop processing the
|
|
// current block.
|
|
if (Block) {
|
|
if (!FinishBlock(Block))
|
|
return 0;
|
|
LoopSuccessor = Block;
|
|
} else
|
|
LoopSuccessor = Succ;
|
|
|
|
// Because of short-circuit evaluation, the condition of the loop can span
|
|
// multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
|
|
// evaluate the condition.
|
|
CFGBlock* ExitConditionBlock = createBlock(false);
|
|
CFGBlock* EntryConditionBlock = ExitConditionBlock;
|
|
|
|
// Set the terminator for the "exit" condition block.
|
|
ExitConditionBlock->setTerminator(D);
|
|
|
|
// Now add the actual condition to the condition block. Because the condition
|
|
// itself may contain control-flow, new blocks may be created.
|
|
if (Stmt* C = D->getCond()) {
|
|
Block = ExitConditionBlock;
|
|
EntryConditionBlock = addStmt(C);
|
|
if (Block) {
|
|
if (!FinishBlock(EntryConditionBlock))
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// The condition block is the implicit successor for the loop body.
|
|
Succ = EntryConditionBlock;
|
|
|
|
// See if this is a known constant.
|
|
const TryResult &KnownVal = TryEvaluateBool(D->getCond());
|
|
|
|
// Process the loop body.
|
|
CFGBlock* BodyBlock = NULL;
|
|
{
|
|
assert (D->getBody());
|
|
|
|
// Save the current values for Block, Succ, and continue and break targets
|
|
SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ),
|
|
save_continue(ContinueTargetBlock),
|
|
save_break(BreakTargetBlock);
|
|
|
|
// All continues within this loop should go to the condition block
|
|
ContinueTargetBlock = EntryConditionBlock;
|
|
|
|
// All breaks should go to the code following the loop.
|
|
BreakTargetBlock = LoopSuccessor;
|
|
|
|
// NULL out Block to force lazy instantiation of blocks for the body.
|
|
Block = NULL;
|
|
|
|
// Create the body. The returned block is the entry to the loop body.
|
|
BodyBlock = addStmt(D->getBody());
|
|
|
|
if (!BodyBlock)
|
|
BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
|
|
else if (Block) {
|
|
if (!FinishBlock(BodyBlock))
|
|
return 0;
|
|
}
|
|
|
|
// Add an intermediate block between the BodyBlock and the
|
|
// ExitConditionBlock to represent the "loop back" transition. Create an
|
|
// empty block to represent the transition block for looping back to the
|
|
// head of the loop.
|
|
// FIXME: Can we do this more efficiently without adding another block?
|
|
Block = NULL;
|
|
Succ = BodyBlock;
|
|
CFGBlock *LoopBackBlock = createBlock();
|
|
LoopBackBlock->setLoopTarget(D);
|
|
|
|
// Add the loop body entry as a successor to the condition.
|
|
AddSuccessor(ExitConditionBlock, KnownVal.isFalse() ? NULL : LoopBackBlock);
|
|
}
|
|
|
|
// Link up the condition block with the code that follows the loop.
|
|
// (the false branch).
|
|
AddSuccessor(ExitConditionBlock, KnownVal.isTrue() ? NULL : LoopSuccessor);
|
|
|
|
// There can be no more statements in the body block(s) since we loop back to
|
|
// the body. NULL out Block to force lazy creation of another block.
|
|
Block = NULL;
|
|
|
|
// Return the loop body, which is the dominating block for the loop.
|
|
Succ = BodyBlock;
|
|
return BodyBlock;
|
|
}
|
|
|
|
CFGBlock* CFGBuilder::VisitContinueStmt(ContinueStmt* C) {
|
|
// "continue" is a control-flow statement. Thus we stop processing the
|
|
// current block.
|
|
if (Block && !FinishBlock(Block))
|
|
return 0;
|
|
|
|
// Now create a new block that ends with the continue statement.
|
|
Block = createBlock(false);
|
|
Block->setTerminator(C);
|
|
|
|
// If there is no target for the continue, then we are looking at an
|
|
// incomplete AST. This means the CFG cannot be constructed.
|
|
if (ContinueTargetBlock)
|
|
AddSuccessor(Block, ContinueTargetBlock);
|
|
else
|
|
badCFG = true;
|
|
|
|
return Block;
|
|
}
|
|
|
|
CFGBlock *CFGBuilder::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E,
|
|
bool alwaysAdd) {
|
|
|
|
if (alwaysAdd) {
|
|
autoCreateBlock();
|
|
AppendStmt(Block, E);
|
|
}
|
|
|
|
// VLA types have expressions that must be evaluated.
|
|
if (E->isArgumentType()) {
|
|
for (VariableArrayType* VA = FindVA(E->getArgumentType().getTypePtr());
|
|
VA != 0; VA = FindVA(VA->getElementType().getTypePtr()))
|
|
addStmt(VA->getSizeExpr());
|
|
}
|
|
|
|
return Block;
|
|
}
|
|
|
|
/// VisitStmtExpr - Utility method to handle (nested) statement
|
|
/// expressions (a GCC extension).
|
|
CFGBlock* CFGBuilder::VisitStmtExpr(StmtExpr *SE, bool alwaysAdd) {
|
|
if (alwaysAdd) {
|
|
autoCreateBlock();
|
|
AppendStmt(Block, SE);
|
|
}
|
|
return VisitCompoundStmt(SE->getSubStmt());
|
|
}
|
|
|
|
CFGBlock* CFGBuilder::VisitSwitchStmt(SwitchStmt* Terminator) {
|
|
// "switch" is a control-flow statement. Thus we stop processing the current
|
|
// block.
|
|
CFGBlock* SwitchSuccessor = NULL;
|
|
|
|
if (Block) {
|
|
if (!FinishBlock(Block))
|
|
return 0;
|
|
SwitchSuccessor = Block;
|
|
} else SwitchSuccessor = Succ;
|
|
|
|
// Save the current "switch" context.
|
|
SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
|
|
save_break(BreakTargetBlock),
|
|
save_default(DefaultCaseBlock);
|
|
|
|
// Set the "default" case to be the block after the switch statement. If the
|
|
// switch statement contains a "default:", this value will be overwritten with
|
|
// the block for that code.
|
|
DefaultCaseBlock = SwitchSuccessor;
|
|
|
|
// Create a new block that will contain the switch statement.
|
|
SwitchTerminatedBlock = createBlock(false);
|
|
|
|
// Now process the switch body. The code after the switch is the implicit
|
|
// successor.
|
|
Succ = SwitchSuccessor;
|
|
BreakTargetBlock = SwitchSuccessor;
|
|
|
|
// When visiting the body, the case statements should automatically get linked
|
|
// up to the switch. We also don't keep a pointer to the body, since all
|
|
// control-flow from the switch goes to case/default statements.
|
|
assert (Terminator->getBody() && "switch must contain a non-NULL body");
|
|
Block = NULL;
|
|
CFGBlock *BodyBlock = addStmt(Terminator->getBody());
|
|
if (Block) {
|
|
if (!FinishBlock(BodyBlock))
|
|
return 0;
|
|
}
|
|
|
|
// If we have no "default:" case, the default transition is to the code
|
|
// following the switch body.
|
|
AddSuccessor(SwitchTerminatedBlock, DefaultCaseBlock);
|
|
|
|
// Add the terminator and condition in the switch block.
|
|
SwitchTerminatedBlock->setTerminator(Terminator);
|
|
assert (Terminator->getCond() && "switch condition must be non-NULL");
|
|
Block = SwitchTerminatedBlock;
|
|
|
|
return addStmt(Terminator->getCond());
|
|
}
|
|
|
|
CFGBlock* CFGBuilder::VisitCaseStmt(CaseStmt* CS) {
|
|
// CaseStmts are essentially labels, so they are the first statement in a
|
|
// block.
|
|
|
|
if (CS->getSubStmt())
|
|
addStmt(CS->getSubStmt());
|
|
|
|
CFGBlock* CaseBlock = Block;
|
|
if (!CaseBlock)
|
|
CaseBlock = createBlock();
|
|
|
|
// Cases statements partition blocks, so this is the top of the basic block we
|
|
// were processing (the "case XXX:" is the label).
|
|
CaseBlock->setLabel(CS);
|
|
|
|
if (!FinishBlock(CaseBlock))
|
|
return 0;
|
|
|
|
// Add this block to the list of successors for the block with the switch
|
|
// statement.
|
|
assert(SwitchTerminatedBlock);
|
|
AddSuccessor(SwitchTerminatedBlock, CaseBlock);
|
|
|
|
// We set Block to NULL to allow lazy creation of a new block (if necessary)
|
|
Block = NULL;
|
|
|
|
// This block is now the implicit successor of other blocks.
|
|
Succ = CaseBlock;
|
|
|
|
return CaseBlock;
|
|
}
|
|
|
|
CFGBlock* CFGBuilder::VisitDefaultStmt(DefaultStmt* Terminator) {
|
|
if (Terminator->getSubStmt())
|
|
addStmt(Terminator->getSubStmt());
|
|
|
|
DefaultCaseBlock = Block;
|
|
|
|
if (!DefaultCaseBlock)
|
|
DefaultCaseBlock = createBlock();
|
|
|
|
// Default statements partition blocks, so this is the top of the basic block
|
|
// we were processing (the "default:" is the label).
|
|
DefaultCaseBlock->setLabel(Terminator);
|
|
|
|
if (!FinishBlock(DefaultCaseBlock))
|
|
return 0;
|
|
|
|
// Unlike case statements, we don't add the default block to the successors
|
|
// for the switch statement immediately. This is done when we finish
|
|
// processing the switch statement. This allows for the default case
|
|
// (including a fall-through to the code after the switch statement) to always
|
|
// be the last successor of a switch-terminated block.
|
|
|
|
// We set Block to NULL to allow lazy creation of a new block (if necessary)
|
|
Block = NULL;
|
|
|
|
// This block is now the implicit successor of other blocks.
|
|
Succ = DefaultCaseBlock;
|
|
|
|
return DefaultCaseBlock;
|
|
}
|
|
|
|
CFGBlock* CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt* I) {
|
|
// Lazily create the indirect-goto dispatch block if there isn't one already.
|
|
CFGBlock* IBlock = cfg->getIndirectGotoBlock();
|
|
|
|
if (!IBlock) {
|
|
IBlock = createBlock(false);
|
|
cfg->setIndirectGotoBlock(IBlock);
|
|
}
|
|
|
|
// IndirectGoto is a control-flow statement. Thus we stop processing the
|
|
// current block and create a new one.
|
|
if (Block && !FinishBlock(Block))
|
|
return 0;
|
|
|
|
Block = createBlock(false);
|
|
Block->setTerminator(I);
|
|
AddSuccessor(Block, IBlock);
|
|
return addStmt(I->getTarget());
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// createBlock - Constructs and adds a new CFGBlock to the CFG. The block has
|
|
/// no successors or predecessors. If this is the first block created in the
|
|
/// CFG, it is automatically set to be the Entry and Exit of the CFG.
|
|
CFGBlock* CFG::createBlock() {
|
|
bool first_block = begin() == end();
|
|
|
|
// Create the block.
|
|
CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
|
|
new (Mem) CFGBlock(NumBlockIDs++, BlkBVC);
|
|
Blocks.push_back(Mem, BlkBVC);
|
|
|
|
// If this is the first block, set it as the Entry and Exit.
|
|
if (first_block)
|
|
Entry = Exit = &back();
|
|
|
|
// Return the block.
|
|
return &back();
|
|
}
|
|
|
|
/// buildCFG - Constructs a CFG from an AST. Ownership of the returned
|
|
/// CFG is returned to the caller.
|
|
CFG* CFG::buildCFG(Stmt* Statement, ASTContext *C) {
|
|
CFGBuilder Builder;
|
|
return Builder.buildCFG(Statement, C);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CFG: Queries for BlkExprs.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
typedef llvm::DenseMap<const Stmt*,unsigned> BlkExprMapTy;
|
|
}
|
|
|
|
static void FindSubExprAssignments(Stmt* Terminator, llvm::SmallPtrSet<Expr*,50>& Set) {
|
|
if (!Terminator)
|
|
return;
|
|
|
|
for (Stmt::child_iterator I=Terminator->child_begin(), E=Terminator->child_end(); I!=E; ++I) {
|
|
if (!*I) continue;
|
|
|
|
if (BinaryOperator* B = dyn_cast<BinaryOperator>(*I))
|
|
if (B->isAssignmentOp()) Set.insert(B);
|
|
|
|
FindSubExprAssignments(*I, Set);
|
|
}
|
|
}
|
|
|
|
static BlkExprMapTy* PopulateBlkExprMap(CFG& cfg) {
|
|
BlkExprMapTy* M = new BlkExprMapTy();
|
|
|
|
// Look for assignments that are used as subexpressions. These are the only
|
|
// assignments that we want to *possibly* register as a block-level
|
|
// expression. Basically, if an assignment occurs both in a subexpression and
|
|
// at the block-level, it is a block-level expression.
|
|
llvm::SmallPtrSet<Expr*,50> SubExprAssignments;
|
|
|
|
for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I)
|
|
for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI)
|
|
FindSubExprAssignments(*BI, SubExprAssignments);
|
|
|
|
for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) {
|
|
|
|
// Iterate over the statements again on identify the Expr* and Stmt* at the
|
|
// block-level that are block-level expressions.
|
|
|
|
for (CFGBlock::iterator BI=(*I)->begin(), EI=(*I)->end(); BI != EI; ++BI)
|
|
if (Expr* Exp = dyn_cast<Expr>(*BI)) {
|
|
|
|
if (BinaryOperator* B = dyn_cast<BinaryOperator>(Exp)) {
|
|
// Assignment expressions that are not nested within another
|
|
// expression are really "statements" whose value is never used by
|
|
// another expression.
|
|
if (B->isAssignmentOp() && !SubExprAssignments.count(Exp))
|
|
continue;
|
|
} else if (const StmtExpr* Terminator = dyn_cast<StmtExpr>(Exp)) {
|
|
// Special handling for statement expressions. The last statement in
|
|
// the statement expression is also a block-level expr.
|
|
const CompoundStmt* C = Terminator->getSubStmt();
|
|
if (!C->body_empty()) {
|
|
unsigned x = M->size();
|
|
(*M)[C->body_back()] = x;
|
|
}
|
|
}
|
|
|
|
unsigned x = M->size();
|
|
(*M)[Exp] = x;
|
|
}
|
|
|
|
// Look at terminators. The condition is a block-level expression.
|
|
|
|
Stmt* S = (*I)->getTerminatorCondition();
|
|
|
|
if (S && M->find(S) == M->end()) {
|
|
unsigned x = M->size();
|
|
(*M)[S] = x;
|
|
}
|
|
}
|
|
|
|
return M;
|
|
}
|
|
|
|
CFG::BlkExprNumTy CFG::getBlkExprNum(const Stmt* S) {
|
|
assert(S != NULL);
|
|
if (!BlkExprMap) { BlkExprMap = (void*) PopulateBlkExprMap(*this); }
|
|
|
|
BlkExprMapTy* M = reinterpret_cast<BlkExprMapTy*>(BlkExprMap);
|
|
BlkExprMapTy::iterator I = M->find(S);
|
|
|
|
if (I == M->end()) return CFG::BlkExprNumTy();
|
|
else return CFG::BlkExprNumTy(I->second);
|
|
}
|
|
|
|
unsigned CFG::getNumBlkExprs() {
|
|
if (const BlkExprMapTy* M = reinterpret_cast<const BlkExprMapTy*>(BlkExprMap))
|
|
return M->size();
|
|
else {
|
|
// We assume callers interested in the number of BlkExprs will want
|
|
// the map constructed if it doesn't already exist.
|
|
BlkExprMap = (void*) PopulateBlkExprMap(*this);
|
|
return reinterpret_cast<BlkExprMapTy*>(BlkExprMap)->size();
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Cleanup: CFG dstor.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
CFG::~CFG() {
|
|
delete reinterpret_cast<const BlkExprMapTy*>(BlkExprMap);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CFG pretty printing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class VISIBILITY_HIDDEN StmtPrinterHelper : public PrinterHelper {
|
|
|
|
typedef llvm::DenseMap<Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
|
|
StmtMapTy StmtMap;
|
|
signed CurrentBlock;
|
|
unsigned CurrentStmt;
|
|
const LangOptions &LangOpts;
|
|
public:
|
|
|
|
StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
|
|
: CurrentBlock(0), CurrentStmt(0), LangOpts(LO) {
|
|
for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
|
|
unsigned j = 1;
|
|
for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
|
|
BI != BEnd; ++BI, ++j )
|
|
StmtMap[*BI] = std::make_pair((*I)->getBlockID(),j);
|
|
}
|
|
}
|
|
|
|
virtual ~StmtPrinterHelper() {}
|
|
|
|
const LangOptions &getLangOpts() const { return LangOpts; }
|
|
void setBlockID(signed i) { CurrentBlock = i; }
|
|
void setStmtID(unsigned i) { CurrentStmt = i; }
|
|
|
|
virtual bool handledStmt(Stmt* Terminator, llvm::raw_ostream& OS) {
|
|
|
|
StmtMapTy::iterator I = StmtMap.find(Terminator);
|
|
|
|
if (I == StmtMap.end())
|
|
return false;
|
|
|
|
if (CurrentBlock >= 0 && I->second.first == (unsigned) CurrentBlock
|
|
&& I->second.second == CurrentStmt)
|
|
return false;
|
|
|
|
OS << "[B" << I->second.first << "." << I->second.second << "]";
|
|
return true;
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
|
|
namespace {
|
|
class VISIBILITY_HIDDEN CFGBlockTerminatorPrint
|
|
: public StmtVisitor<CFGBlockTerminatorPrint,void> {
|
|
|
|
llvm::raw_ostream& OS;
|
|
StmtPrinterHelper* Helper;
|
|
PrintingPolicy Policy;
|
|
|
|
public:
|
|
CFGBlockTerminatorPrint(llvm::raw_ostream& os, StmtPrinterHelper* helper,
|
|
const PrintingPolicy &Policy)
|
|
: OS(os), Helper(helper), Policy(Policy) {}
|
|
|
|
void VisitIfStmt(IfStmt* I) {
|
|
OS << "if ";
|
|
I->getCond()->printPretty(OS,Helper,Policy);
|
|
}
|
|
|
|
// Default case.
|
|
void VisitStmt(Stmt* Terminator) {
|
|
Terminator->printPretty(OS, Helper, Policy);
|
|
}
|
|
|
|
void VisitForStmt(ForStmt* F) {
|
|
OS << "for (" ;
|
|
if (F->getInit()) OS << "...";
|
|
OS << "; ";
|
|
if (Stmt* C = F->getCond()) C->printPretty(OS, Helper, Policy);
|
|
OS << "; ";
|
|
if (F->getInc()) OS << "...";
|
|
OS << ")";
|
|
}
|
|
|
|
void VisitWhileStmt(WhileStmt* W) {
|
|
OS << "while " ;
|
|
if (Stmt* C = W->getCond()) C->printPretty(OS, Helper, Policy);
|
|
}
|
|
|
|
void VisitDoStmt(DoStmt* D) {
|
|
OS << "do ... while ";
|
|
if (Stmt* C = D->getCond()) C->printPretty(OS, Helper, Policy);
|
|
}
|
|
|
|
void VisitSwitchStmt(SwitchStmt* Terminator) {
|
|
OS << "switch ";
|
|
Terminator->getCond()->printPretty(OS, Helper, Policy);
|
|
}
|
|
|
|
void VisitConditionalOperator(ConditionalOperator* C) {
|
|
C->getCond()->printPretty(OS, Helper, Policy);
|
|
OS << " ? ... : ...";
|
|
}
|
|
|
|
void VisitChooseExpr(ChooseExpr* C) {
|
|
OS << "__builtin_choose_expr( ";
|
|
C->getCond()->printPretty(OS, Helper, Policy);
|
|
OS << " )";
|
|
}
|
|
|
|
void VisitIndirectGotoStmt(IndirectGotoStmt* I) {
|
|
OS << "goto *";
|
|
I->getTarget()->printPretty(OS, Helper, Policy);
|
|
}
|
|
|
|
void VisitBinaryOperator(BinaryOperator* B) {
|
|
if (!B->isLogicalOp()) {
|
|
VisitExpr(B);
|
|
return;
|
|
}
|
|
|
|
B->getLHS()->printPretty(OS, Helper, Policy);
|
|
|
|
switch (B->getOpcode()) {
|
|
case BinaryOperator::LOr:
|
|
OS << " || ...";
|
|
return;
|
|
case BinaryOperator::LAnd:
|
|
OS << " && ...";
|
|
return;
|
|
default:
|
|
assert(false && "Invalid logical operator.");
|
|
}
|
|
}
|
|
|
|
void VisitExpr(Expr* E) {
|
|
E->printPretty(OS, Helper, Policy);
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
|
|
static void print_stmt(llvm::raw_ostream &OS, StmtPrinterHelper* Helper,
|
|
Stmt* Terminator) {
|
|
if (Helper) {
|
|
// special printing for statement-expressions.
|
|
if (StmtExpr* SE = dyn_cast<StmtExpr>(Terminator)) {
|
|
CompoundStmt* Sub = SE->getSubStmt();
|
|
|
|
if (Sub->child_begin() != Sub->child_end()) {
|
|
OS << "({ ... ; ";
|
|
Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
|
|
OS << " })\n";
|
|
return;
|
|
}
|
|
}
|
|
|
|
// special printing for comma expressions.
|
|
if (BinaryOperator* B = dyn_cast<BinaryOperator>(Terminator)) {
|
|
if (B->getOpcode() == BinaryOperator::Comma) {
|
|
OS << "... , ";
|
|
Helper->handledStmt(B->getRHS(),OS);
|
|
OS << '\n';
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
Terminator->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts()));
|
|
|
|
// Expressions need a newline.
|
|
if (isa<Expr>(Terminator)) OS << '\n';
|
|
}
|
|
|
|
static void print_block(llvm::raw_ostream& OS, const CFG* cfg,
|
|
const CFGBlock& B,
|
|
StmtPrinterHelper* Helper, bool print_edges) {
|
|
|
|
if (Helper) Helper->setBlockID(B.getBlockID());
|
|
|
|
// Print the header.
|
|
OS << "\n [ B" << B.getBlockID();
|
|
|
|
if (&B == &cfg->getEntry())
|
|
OS << " (ENTRY) ]\n";
|
|
else if (&B == &cfg->getExit())
|
|
OS << " (EXIT) ]\n";
|
|
else if (&B == cfg->getIndirectGotoBlock())
|
|
OS << " (INDIRECT GOTO DISPATCH) ]\n";
|
|
else
|
|
OS << " ]\n";
|
|
|
|
// Print the label of this block.
|
|
if (Stmt* Terminator = const_cast<Stmt*>(B.getLabel())) {
|
|
|
|
if (print_edges)
|
|
OS << " ";
|
|
|
|
if (LabelStmt* L = dyn_cast<LabelStmt>(Terminator))
|
|
OS << L->getName();
|
|
else if (CaseStmt* C = dyn_cast<CaseStmt>(Terminator)) {
|
|
OS << "case ";
|
|
C->getLHS()->printPretty(OS, Helper,
|
|
PrintingPolicy(Helper->getLangOpts()));
|
|
if (C->getRHS()) {
|
|
OS << " ... ";
|
|
C->getRHS()->printPretty(OS, Helper,
|
|
PrintingPolicy(Helper->getLangOpts()));
|
|
}
|
|
} else if (isa<DefaultStmt>(Terminator))
|
|
OS << "default";
|
|
else
|
|
assert(false && "Invalid label statement in CFGBlock.");
|
|
|
|
OS << ":\n";
|
|
}
|
|
|
|
// Iterate through the statements in the block and print them.
|
|
unsigned j = 1;
|
|
|
|
for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
|
|
I != E ; ++I, ++j ) {
|
|
|
|
// Print the statement # in the basic block and the statement itself.
|
|
if (print_edges)
|
|
OS << " ";
|
|
|
|
OS << llvm::format("%3d", j) << ": ";
|
|
|
|
if (Helper)
|
|
Helper->setStmtID(j);
|
|
|
|
print_stmt(OS,Helper,*I);
|
|
}
|
|
|
|
// Print the terminator of this block.
|
|
if (B.getTerminator()) {
|
|
if (print_edges)
|
|
OS << " ";
|
|
|
|
OS << " T: ";
|
|
|
|
if (Helper) Helper->setBlockID(-1);
|
|
|
|
CFGBlockTerminatorPrint TPrinter(OS, Helper,
|
|
PrintingPolicy(Helper->getLangOpts()));
|
|
TPrinter.Visit(const_cast<Stmt*>(B.getTerminator()));
|
|
OS << '\n';
|
|
}
|
|
|
|
if (print_edges) {
|
|
// Print the predecessors of this block.
|
|
OS << " Predecessors (" << B.pred_size() << "):";
|
|
unsigned i = 0;
|
|
|
|
for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
|
|
I != E; ++I, ++i) {
|
|
|
|
if (i == 8 || (i-8) == 0)
|
|
OS << "\n ";
|
|
|
|
OS << " B" << (*I)->getBlockID();
|
|
}
|
|
|
|
OS << '\n';
|
|
|
|
// Print the successors of this block.
|
|
OS << " Successors (" << B.succ_size() << "):";
|
|
i = 0;
|
|
|
|
for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
|
|
I != E; ++I, ++i) {
|
|
|
|
if (i == 8 || (i-8) % 10 == 0)
|
|
OS << "\n ";
|
|
|
|
if (*I)
|
|
OS << " B" << (*I)->getBlockID();
|
|
else
|
|
OS << " NULL";
|
|
}
|
|
|
|
OS << '\n';
|
|
}
|
|
}
|
|
|
|
|
|
/// dump - A simple pretty printer of a CFG that outputs to stderr.
|
|
void CFG::dump(const LangOptions &LO) const { print(llvm::errs(), LO); }
|
|
|
|
/// print - A simple pretty printer of a CFG that outputs to an ostream.
|
|
void CFG::print(llvm::raw_ostream &OS, const LangOptions &LO) const {
|
|
StmtPrinterHelper Helper(this, LO);
|
|
|
|
// Print the entry block.
|
|
print_block(OS, this, getEntry(), &Helper, true);
|
|
|
|
// Iterate through the CFGBlocks and print them one by one.
|
|
for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
|
|
// Skip the entry block, because we already printed it.
|
|
if (&(**I) == &getEntry() || &(**I) == &getExit())
|
|
continue;
|
|
|
|
print_block(OS, this, **I, &Helper, true);
|
|
}
|
|
|
|
// Print the exit block.
|
|
print_block(OS, this, getExit(), &Helper, true);
|
|
OS.flush();
|
|
}
|
|
|
|
/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
|
|
void CFGBlock::dump(const CFG* cfg, const LangOptions &LO) const {
|
|
print(llvm::errs(), cfg, LO);
|
|
}
|
|
|
|
/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
|
|
/// Generally this will only be called from CFG::print.
|
|
void CFGBlock::print(llvm::raw_ostream& OS, const CFG* cfg,
|
|
const LangOptions &LO) const {
|
|
StmtPrinterHelper Helper(cfg, LO);
|
|
print_block(OS, cfg, *this, &Helper, true);
|
|
}
|
|
|
|
/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
|
|
void CFGBlock::printTerminator(llvm::raw_ostream &OS,
|
|
const LangOptions &LO) const {
|
|
CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO));
|
|
TPrinter.Visit(const_cast<Stmt*>(getTerminator()));
|
|
}
|
|
|
|
Stmt* CFGBlock::getTerminatorCondition() {
|
|
|
|
if (!Terminator)
|
|
return NULL;
|
|
|
|
Expr* E = NULL;
|
|
|
|
switch (Terminator->getStmtClass()) {
|
|
default:
|
|
break;
|
|
|
|
case Stmt::ForStmtClass:
|
|
E = cast<ForStmt>(Terminator)->getCond();
|
|
break;
|
|
|
|
case Stmt::WhileStmtClass:
|
|
E = cast<WhileStmt>(Terminator)->getCond();
|
|
break;
|
|
|
|
case Stmt::DoStmtClass:
|
|
E = cast<DoStmt>(Terminator)->getCond();
|
|
break;
|
|
|
|
case Stmt::IfStmtClass:
|
|
E = cast<IfStmt>(Terminator)->getCond();
|
|
break;
|
|
|
|
case Stmt::ChooseExprClass:
|
|
E = cast<ChooseExpr>(Terminator)->getCond();
|
|
break;
|
|
|
|
case Stmt::IndirectGotoStmtClass:
|
|
E = cast<IndirectGotoStmt>(Terminator)->getTarget();
|
|
break;
|
|
|
|
case Stmt::SwitchStmtClass:
|
|
E = cast<SwitchStmt>(Terminator)->getCond();
|
|
break;
|
|
|
|
case Stmt::ConditionalOperatorClass:
|
|
E = cast<ConditionalOperator>(Terminator)->getCond();
|
|
break;
|
|
|
|
case Stmt::BinaryOperatorClass: // '&&' and '||'
|
|
E = cast<BinaryOperator>(Terminator)->getLHS();
|
|
break;
|
|
|
|
case Stmt::ObjCForCollectionStmtClass:
|
|
return Terminator;
|
|
}
|
|
|
|
return E ? E->IgnoreParens() : NULL;
|
|
}
|
|
|
|
bool CFGBlock::hasBinaryBranchTerminator() const {
|
|
|
|
if (!Terminator)
|
|
return false;
|
|
|
|
Expr* E = NULL;
|
|
|
|
switch (Terminator->getStmtClass()) {
|
|
default:
|
|
return false;
|
|
|
|
case Stmt::ForStmtClass:
|
|
case Stmt::WhileStmtClass:
|
|
case Stmt::DoStmtClass:
|
|
case Stmt::IfStmtClass:
|
|
case Stmt::ChooseExprClass:
|
|
case Stmt::ConditionalOperatorClass:
|
|
case Stmt::BinaryOperatorClass:
|
|
return true;
|
|
}
|
|
|
|
return E ? E->IgnoreParens() : NULL;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CFG Graphviz Visualization
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
#ifndef NDEBUG
|
|
static StmtPrinterHelper* GraphHelper;
|
|
#endif
|
|
|
|
void CFG::viewCFG(const LangOptions &LO) const {
|
|
#ifndef NDEBUG
|
|
StmtPrinterHelper H(this, LO);
|
|
GraphHelper = &H;
|
|
llvm::ViewGraph(this,"CFG");
|
|
GraphHelper = NULL;
|
|
#endif
|
|
}
|
|
|
|
namespace llvm {
|
|
template<>
|
|
struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
|
|
static std::string getNodeLabel(const CFGBlock* Node, const CFG* Graph,
|
|
bool ShortNames) {
|
|
|
|
#ifndef NDEBUG
|
|
std::string OutSStr;
|
|
llvm::raw_string_ostream Out(OutSStr);
|
|
print_block(Out,Graph, *Node, GraphHelper, false);
|
|
std::string& OutStr = Out.str();
|
|
|
|
if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
|
|
|
|
// Process string output to make it nicer...
|
|
for (unsigned i = 0; i != OutStr.length(); ++i)
|
|
if (OutStr[i] == '\n') { // Left justify
|
|
OutStr[i] = '\\';
|
|
OutStr.insert(OutStr.begin()+i+1, 'l');
|
|
}
|
|
|
|
return OutStr;
|
|
#else
|
|
return "";
|
|
#endif
|
|
}
|
|
};
|
|
} // end namespace llvm
|