forked from OSchip/llvm-project
11364 lines
451 KiB
C++
11364 lines
451 KiB
C++
//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file provides Sema routines for C++ overloading.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Sema/SemaInternal.h"
|
|
#include "clang/Sema/Lookup.h"
|
|
#include "clang/Sema/Initialization.h"
|
|
#include "clang/Sema/Template.h"
|
|
#include "clang/Sema/TemplateDeduction.h"
|
|
#include "clang/Basic/Diagnostic.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/CXXInheritance.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/ExprObjC.h"
|
|
#include "clang/AST/TypeOrdering.h"
|
|
#include "clang/Basic/PartialDiagnostic.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include <algorithm>
|
|
|
|
namespace clang {
|
|
using namespace sema;
|
|
|
|
/// A convenience routine for creating a decayed reference to a
|
|
/// function.
|
|
static ExprResult
|
|
CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, bool HadMultipleCandidates,
|
|
SourceLocation Loc = SourceLocation(),
|
|
const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
|
|
DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, false, Fn->getType(),
|
|
VK_LValue, Loc, LocInfo);
|
|
if (HadMultipleCandidates)
|
|
DRE->setHadMultipleCandidates(true);
|
|
ExprResult E = S.Owned(DRE);
|
|
E = S.DefaultFunctionArrayConversion(E.take());
|
|
if (E.isInvalid())
|
|
return ExprError();
|
|
return move(E);
|
|
}
|
|
|
|
static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
|
|
bool InOverloadResolution,
|
|
StandardConversionSequence &SCS,
|
|
bool CStyle,
|
|
bool AllowObjCWritebackConversion);
|
|
|
|
static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
|
|
QualType &ToType,
|
|
bool InOverloadResolution,
|
|
StandardConversionSequence &SCS,
|
|
bool CStyle);
|
|
static OverloadingResult
|
|
IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
|
|
UserDefinedConversionSequence& User,
|
|
OverloadCandidateSet& Conversions,
|
|
bool AllowExplicit);
|
|
|
|
|
|
static ImplicitConversionSequence::CompareKind
|
|
CompareStandardConversionSequences(Sema &S,
|
|
const StandardConversionSequence& SCS1,
|
|
const StandardConversionSequence& SCS2);
|
|
|
|
static ImplicitConversionSequence::CompareKind
|
|
CompareQualificationConversions(Sema &S,
|
|
const StandardConversionSequence& SCS1,
|
|
const StandardConversionSequence& SCS2);
|
|
|
|
static ImplicitConversionSequence::CompareKind
|
|
CompareDerivedToBaseConversions(Sema &S,
|
|
const StandardConversionSequence& SCS1,
|
|
const StandardConversionSequence& SCS2);
|
|
|
|
|
|
|
|
/// GetConversionCategory - Retrieve the implicit conversion
|
|
/// category corresponding to the given implicit conversion kind.
|
|
ImplicitConversionCategory
|
|
GetConversionCategory(ImplicitConversionKind Kind) {
|
|
static const ImplicitConversionCategory
|
|
Category[(int)ICK_Num_Conversion_Kinds] = {
|
|
ICC_Identity,
|
|
ICC_Lvalue_Transformation,
|
|
ICC_Lvalue_Transformation,
|
|
ICC_Lvalue_Transformation,
|
|
ICC_Identity,
|
|
ICC_Qualification_Adjustment,
|
|
ICC_Promotion,
|
|
ICC_Promotion,
|
|
ICC_Promotion,
|
|
ICC_Conversion,
|
|
ICC_Conversion,
|
|
ICC_Conversion,
|
|
ICC_Conversion,
|
|
ICC_Conversion,
|
|
ICC_Conversion,
|
|
ICC_Conversion,
|
|
ICC_Conversion,
|
|
ICC_Conversion,
|
|
ICC_Conversion,
|
|
ICC_Conversion,
|
|
ICC_Conversion,
|
|
ICC_Conversion
|
|
};
|
|
return Category[(int)Kind];
|
|
}
|
|
|
|
/// GetConversionRank - Retrieve the implicit conversion rank
|
|
/// corresponding to the given implicit conversion kind.
|
|
ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
|
|
static const ImplicitConversionRank
|
|
Rank[(int)ICK_Num_Conversion_Kinds] = {
|
|
ICR_Exact_Match,
|
|
ICR_Exact_Match,
|
|
ICR_Exact_Match,
|
|
ICR_Exact_Match,
|
|
ICR_Exact_Match,
|
|
ICR_Exact_Match,
|
|
ICR_Promotion,
|
|
ICR_Promotion,
|
|
ICR_Promotion,
|
|
ICR_Conversion,
|
|
ICR_Conversion,
|
|
ICR_Conversion,
|
|
ICR_Conversion,
|
|
ICR_Conversion,
|
|
ICR_Conversion,
|
|
ICR_Conversion,
|
|
ICR_Conversion,
|
|
ICR_Conversion,
|
|
ICR_Conversion,
|
|
ICR_Conversion,
|
|
ICR_Complex_Real_Conversion,
|
|
ICR_Conversion,
|
|
ICR_Conversion,
|
|
ICR_Writeback_Conversion
|
|
};
|
|
return Rank[(int)Kind];
|
|
}
|
|
|
|
/// GetImplicitConversionName - Return the name of this kind of
|
|
/// implicit conversion.
|
|
const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
|
|
static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
|
|
"No conversion",
|
|
"Lvalue-to-rvalue",
|
|
"Array-to-pointer",
|
|
"Function-to-pointer",
|
|
"Noreturn adjustment",
|
|
"Qualification",
|
|
"Integral promotion",
|
|
"Floating point promotion",
|
|
"Complex promotion",
|
|
"Integral conversion",
|
|
"Floating conversion",
|
|
"Complex conversion",
|
|
"Floating-integral conversion",
|
|
"Pointer conversion",
|
|
"Pointer-to-member conversion",
|
|
"Boolean conversion",
|
|
"Compatible-types conversion",
|
|
"Derived-to-base conversion",
|
|
"Vector conversion",
|
|
"Vector splat",
|
|
"Complex-real conversion",
|
|
"Block Pointer conversion",
|
|
"Transparent Union Conversion"
|
|
"Writeback conversion"
|
|
};
|
|
return Name[Kind];
|
|
}
|
|
|
|
/// StandardConversionSequence - Set the standard conversion
|
|
/// sequence to the identity conversion.
|
|
void StandardConversionSequence::setAsIdentityConversion() {
|
|
First = ICK_Identity;
|
|
Second = ICK_Identity;
|
|
Third = ICK_Identity;
|
|
DeprecatedStringLiteralToCharPtr = false;
|
|
QualificationIncludesObjCLifetime = false;
|
|
ReferenceBinding = false;
|
|
DirectBinding = false;
|
|
IsLvalueReference = true;
|
|
BindsToFunctionLvalue = false;
|
|
BindsToRvalue = false;
|
|
BindsImplicitObjectArgumentWithoutRefQualifier = false;
|
|
ObjCLifetimeConversionBinding = false;
|
|
CopyConstructor = 0;
|
|
}
|
|
|
|
/// getRank - Retrieve the rank of this standard conversion sequence
|
|
/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
|
|
/// implicit conversions.
|
|
ImplicitConversionRank StandardConversionSequence::getRank() const {
|
|
ImplicitConversionRank Rank = ICR_Exact_Match;
|
|
if (GetConversionRank(First) > Rank)
|
|
Rank = GetConversionRank(First);
|
|
if (GetConversionRank(Second) > Rank)
|
|
Rank = GetConversionRank(Second);
|
|
if (GetConversionRank(Third) > Rank)
|
|
Rank = GetConversionRank(Third);
|
|
return Rank;
|
|
}
|
|
|
|
/// isPointerConversionToBool - Determines whether this conversion is
|
|
/// a conversion of a pointer or pointer-to-member to bool. This is
|
|
/// used as part of the ranking of standard conversion sequences
|
|
/// (C++ 13.3.3.2p4).
|
|
bool StandardConversionSequence::isPointerConversionToBool() const {
|
|
// Note that FromType has not necessarily been transformed by the
|
|
// array-to-pointer or function-to-pointer implicit conversions, so
|
|
// check for their presence as well as checking whether FromType is
|
|
// a pointer.
|
|
if (getToType(1)->isBooleanType() &&
|
|
(getFromType()->isPointerType() ||
|
|
getFromType()->isObjCObjectPointerType() ||
|
|
getFromType()->isBlockPointerType() ||
|
|
getFromType()->isNullPtrType() ||
|
|
First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// isPointerConversionToVoidPointer - Determines whether this
|
|
/// conversion is a conversion of a pointer to a void pointer. This is
|
|
/// used as part of the ranking of standard conversion sequences (C++
|
|
/// 13.3.3.2p4).
|
|
bool
|
|
StandardConversionSequence::
|
|
isPointerConversionToVoidPointer(ASTContext& Context) const {
|
|
QualType FromType = getFromType();
|
|
QualType ToType = getToType(1);
|
|
|
|
// Note that FromType has not necessarily been transformed by the
|
|
// array-to-pointer implicit conversion, so check for its presence
|
|
// and redo the conversion to get a pointer.
|
|
if (First == ICK_Array_To_Pointer)
|
|
FromType = Context.getArrayDecayedType(FromType);
|
|
|
|
if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
|
|
if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
|
|
return ToPtrType->getPointeeType()->isVoidType();
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Skip any implicit casts which could be either part of a narrowing conversion
|
|
/// or after one in an implicit conversion.
|
|
static const Expr *IgnoreNarrowingConversion(const Expr *Converted) {
|
|
while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
|
|
switch (ICE->getCastKind()) {
|
|
case CK_NoOp:
|
|
case CK_IntegralCast:
|
|
case CK_IntegralToBoolean:
|
|
case CK_IntegralToFloating:
|
|
case CK_FloatingToIntegral:
|
|
case CK_FloatingToBoolean:
|
|
case CK_FloatingCast:
|
|
Converted = ICE->getSubExpr();
|
|
continue;
|
|
|
|
default:
|
|
return Converted;
|
|
}
|
|
}
|
|
|
|
return Converted;
|
|
}
|
|
|
|
/// Check if this standard conversion sequence represents a narrowing
|
|
/// conversion, according to C++11 [dcl.init.list]p7.
|
|
///
|
|
/// \param Ctx The AST context.
|
|
/// \param Converted The result of applying this standard conversion sequence.
|
|
/// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the
|
|
/// value of the expression prior to the narrowing conversion.
|
|
/// \param ConstantType If this is an NK_Constant_Narrowing conversion, the
|
|
/// type of the expression prior to the narrowing conversion.
|
|
NarrowingKind
|
|
StandardConversionSequence::getNarrowingKind(ASTContext &Ctx,
|
|
const Expr *Converted,
|
|
APValue &ConstantValue,
|
|
QualType &ConstantType) const {
|
|
assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");
|
|
|
|
// C++11 [dcl.init.list]p7:
|
|
// A narrowing conversion is an implicit conversion ...
|
|
QualType FromType = getToType(0);
|
|
QualType ToType = getToType(1);
|
|
switch (Second) {
|
|
// -- from a floating-point type to an integer type, or
|
|
//
|
|
// -- from an integer type or unscoped enumeration type to a floating-point
|
|
// type, except where the source is a constant expression and the actual
|
|
// value after conversion will fit into the target type and will produce
|
|
// the original value when converted back to the original type, or
|
|
case ICK_Floating_Integral:
|
|
if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
|
|
return NK_Type_Narrowing;
|
|
} else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) {
|
|
llvm::APSInt IntConstantValue;
|
|
const Expr *Initializer = IgnoreNarrowingConversion(Converted);
|
|
if (Initializer &&
|
|
Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
|
|
// Convert the integer to the floating type.
|
|
llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
|
|
Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
|
|
llvm::APFloat::rmNearestTiesToEven);
|
|
// And back.
|
|
llvm::APSInt ConvertedValue = IntConstantValue;
|
|
bool ignored;
|
|
Result.convertToInteger(ConvertedValue,
|
|
llvm::APFloat::rmTowardZero, &ignored);
|
|
// If the resulting value is different, this was a narrowing conversion.
|
|
if (IntConstantValue != ConvertedValue) {
|
|
ConstantValue = APValue(IntConstantValue);
|
|
ConstantType = Initializer->getType();
|
|
return NK_Constant_Narrowing;
|
|
}
|
|
} else {
|
|
// Variables are always narrowings.
|
|
return NK_Variable_Narrowing;
|
|
}
|
|
}
|
|
return NK_Not_Narrowing;
|
|
|
|
// -- from long double to double or float, or from double to float, except
|
|
// where the source is a constant expression and the actual value after
|
|
// conversion is within the range of values that can be represented (even
|
|
// if it cannot be represented exactly), or
|
|
case ICK_Floating_Conversion:
|
|
if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
|
|
Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
|
|
// FromType is larger than ToType.
|
|
const Expr *Initializer = IgnoreNarrowingConversion(Converted);
|
|
if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
|
|
// Constant!
|
|
assert(ConstantValue.isFloat());
|
|
llvm::APFloat FloatVal = ConstantValue.getFloat();
|
|
// Convert the source value into the target type.
|
|
bool ignored;
|
|
llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
|
|
Ctx.getFloatTypeSemantics(ToType),
|
|
llvm::APFloat::rmNearestTiesToEven, &ignored);
|
|
// If there was no overflow, the source value is within the range of
|
|
// values that can be represented.
|
|
if (ConvertStatus & llvm::APFloat::opOverflow) {
|
|
ConstantType = Initializer->getType();
|
|
return NK_Constant_Narrowing;
|
|
}
|
|
} else {
|
|
return NK_Variable_Narrowing;
|
|
}
|
|
}
|
|
return NK_Not_Narrowing;
|
|
|
|
// -- from an integer type or unscoped enumeration type to an integer type
|
|
// that cannot represent all the values of the original type, except where
|
|
// the source is a constant expression and the actual value after
|
|
// conversion will fit into the target type and will produce the original
|
|
// value when converted back to the original type.
|
|
case ICK_Boolean_Conversion: // Bools are integers too.
|
|
if (!FromType->isIntegralOrUnscopedEnumerationType()) {
|
|
// Boolean conversions can be from pointers and pointers to members
|
|
// [conv.bool], and those aren't considered narrowing conversions.
|
|
return NK_Not_Narrowing;
|
|
} // Otherwise, fall through to the integral case.
|
|
case ICK_Integral_Conversion: {
|
|
assert(FromType->isIntegralOrUnscopedEnumerationType());
|
|
assert(ToType->isIntegralOrUnscopedEnumerationType());
|
|
const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
|
|
const unsigned FromWidth = Ctx.getIntWidth(FromType);
|
|
const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
|
|
const unsigned ToWidth = Ctx.getIntWidth(ToType);
|
|
|
|
if (FromWidth > ToWidth ||
|
|
(FromWidth == ToWidth && FromSigned != ToSigned)) {
|
|
// Not all values of FromType can be represented in ToType.
|
|
llvm::APSInt InitializerValue;
|
|
const Expr *Initializer = IgnoreNarrowingConversion(Converted);
|
|
if (Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
|
|
ConstantValue = APValue(InitializerValue);
|
|
|
|
// Add a bit to the InitializerValue so we don't have to worry about
|
|
// signed vs. unsigned comparisons.
|
|
InitializerValue = InitializerValue.extend(
|
|
InitializerValue.getBitWidth() + 1);
|
|
// Convert the initializer to and from the target width and signed-ness.
|
|
llvm::APSInt ConvertedValue = InitializerValue;
|
|
ConvertedValue = ConvertedValue.trunc(ToWidth);
|
|
ConvertedValue.setIsSigned(ToSigned);
|
|
ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
|
|
ConvertedValue.setIsSigned(InitializerValue.isSigned());
|
|
// If the result is different, this was a narrowing conversion.
|
|
if (ConvertedValue != InitializerValue) {
|
|
ConstantType = Initializer->getType();
|
|
return NK_Constant_Narrowing;
|
|
}
|
|
} else {
|
|
// Variables are always narrowings.
|
|
return NK_Variable_Narrowing;
|
|
}
|
|
}
|
|
return NK_Not_Narrowing;
|
|
}
|
|
|
|
default:
|
|
// Other kinds of conversions are not narrowings.
|
|
return NK_Not_Narrowing;
|
|
}
|
|
}
|
|
|
|
/// DebugPrint - Print this standard conversion sequence to standard
|
|
/// error. Useful for debugging overloading issues.
|
|
void StandardConversionSequence::DebugPrint() const {
|
|
raw_ostream &OS = llvm::errs();
|
|
bool PrintedSomething = false;
|
|
if (First != ICK_Identity) {
|
|
OS << GetImplicitConversionName(First);
|
|
PrintedSomething = true;
|
|
}
|
|
|
|
if (Second != ICK_Identity) {
|
|
if (PrintedSomething) {
|
|
OS << " -> ";
|
|
}
|
|
OS << GetImplicitConversionName(Second);
|
|
|
|
if (CopyConstructor) {
|
|
OS << " (by copy constructor)";
|
|
} else if (DirectBinding) {
|
|
OS << " (direct reference binding)";
|
|
} else if (ReferenceBinding) {
|
|
OS << " (reference binding)";
|
|
}
|
|
PrintedSomething = true;
|
|
}
|
|
|
|
if (Third != ICK_Identity) {
|
|
if (PrintedSomething) {
|
|
OS << " -> ";
|
|
}
|
|
OS << GetImplicitConversionName(Third);
|
|
PrintedSomething = true;
|
|
}
|
|
|
|
if (!PrintedSomething) {
|
|
OS << "No conversions required";
|
|
}
|
|
}
|
|
|
|
/// DebugPrint - Print this user-defined conversion sequence to standard
|
|
/// error. Useful for debugging overloading issues.
|
|
void UserDefinedConversionSequence::DebugPrint() const {
|
|
raw_ostream &OS = llvm::errs();
|
|
if (Before.First || Before.Second || Before.Third) {
|
|
Before.DebugPrint();
|
|
OS << " -> ";
|
|
}
|
|
if (ConversionFunction)
|
|
OS << '\'' << *ConversionFunction << '\'';
|
|
else
|
|
OS << "aggregate initialization";
|
|
if (After.First || After.Second || After.Third) {
|
|
OS << " -> ";
|
|
After.DebugPrint();
|
|
}
|
|
}
|
|
|
|
/// DebugPrint - Print this implicit conversion sequence to standard
|
|
/// error. Useful for debugging overloading issues.
|
|
void ImplicitConversionSequence::DebugPrint() const {
|
|
raw_ostream &OS = llvm::errs();
|
|
switch (ConversionKind) {
|
|
case StandardConversion:
|
|
OS << "Standard conversion: ";
|
|
Standard.DebugPrint();
|
|
break;
|
|
case UserDefinedConversion:
|
|
OS << "User-defined conversion: ";
|
|
UserDefined.DebugPrint();
|
|
break;
|
|
case EllipsisConversion:
|
|
OS << "Ellipsis conversion";
|
|
break;
|
|
case AmbiguousConversion:
|
|
OS << "Ambiguous conversion";
|
|
break;
|
|
case BadConversion:
|
|
OS << "Bad conversion";
|
|
break;
|
|
}
|
|
|
|
OS << "\n";
|
|
}
|
|
|
|
void AmbiguousConversionSequence::construct() {
|
|
new (&conversions()) ConversionSet();
|
|
}
|
|
|
|
void AmbiguousConversionSequence::destruct() {
|
|
conversions().~ConversionSet();
|
|
}
|
|
|
|
void
|
|
AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
|
|
FromTypePtr = O.FromTypePtr;
|
|
ToTypePtr = O.ToTypePtr;
|
|
new (&conversions()) ConversionSet(O.conversions());
|
|
}
|
|
|
|
namespace {
|
|
// Structure used by OverloadCandidate::DeductionFailureInfo to store
|
|
// template parameter and template argument information.
|
|
struct DFIParamWithArguments {
|
|
TemplateParameter Param;
|
|
TemplateArgument FirstArg;
|
|
TemplateArgument SecondArg;
|
|
};
|
|
}
|
|
|
|
/// \brief Convert from Sema's representation of template deduction information
|
|
/// to the form used in overload-candidate information.
|
|
OverloadCandidate::DeductionFailureInfo
|
|
static MakeDeductionFailureInfo(ASTContext &Context,
|
|
Sema::TemplateDeductionResult TDK,
|
|
TemplateDeductionInfo &Info) {
|
|
OverloadCandidate::DeductionFailureInfo Result;
|
|
Result.Result = static_cast<unsigned>(TDK);
|
|
Result.HasDiagnostic = false;
|
|
Result.Data = 0;
|
|
switch (TDK) {
|
|
case Sema::TDK_Success:
|
|
case Sema::TDK_InstantiationDepth:
|
|
case Sema::TDK_TooManyArguments:
|
|
case Sema::TDK_TooFewArguments:
|
|
break;
|
|
|
|
case Sema::TDK_Incomplete:
|
|
case Sema::TDK_InvalidExplicitArguments:
|
|
Result.Data = Info.Param.getOpaqueValue();
|
|
break;
|
|
|
|
case Sema::TDK_Inconsistent:
|
|
case Sema::TDK_Underqualified: {
|
|
// FIXME: Should allocate from normal heap so that we can free this later.
|
|
DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
|
|
Saved->Param = Info.Param;
|
|
Saved->FirstArg = Info.FirstArg;
|
|
Saved->SecondArg = Info.SecondArg;
|
|
Result.Data = Saved;
|
|
break;
|
|
}
|
|
|
|
case Sema::TDK_SubstitutionFailure:
|
|
Result.Data = Info.take();
|
|
if (Info.hasSFINAEDiagnostic()) {
|
|
PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
|
|
SourceLocation(), PartialDiagnostic::NullDiagnostic());
|
|
Info.takeSFINAEDiagnostic(*Diag);
|
|
Result.HasDiagnostic = true;
|
|
}
|
|
break;
|
|
|
|
case Sema::TDK_NonDeducedMismatch:
|
|
case Sema::TDK_FailedOverloadResolution:
|
|
break;
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
void OverloadCandidate::DeductionFailureInfo::Destroy() {
|
|
switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
|
|
case Sema::TDK_Success:
|
|
case Sema::TDK_InstantiationDepth:
|
|
case Sema::TDK_Incomplete:
|
|
case Sema::TDK_TooManyArguments:
|
|
case Sema::TDK_TooFewArguments:
|
|
case Sema::TDK_InvalidExplicitArguments:
|
|
break;
|
|
|
|
case Sema::TDK_Inconsistent:
|
|
case Sema::TDK_Underqualified:
|
|
// FIXME: Destroy the data?
|
|
Data = 0;
|
|
break;
|
|
|
|
case Sema::TDK_SubstitutionFailure:
|
|
// FIXME: Destroy the template argument list?
|
|
Data = 0;
|
|
if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
|
|
Diag->~PartialDiagnosticAt();
|
|
HasDiagnostic = false;
|
|
}
|
|
break;
|
|
|
|
// Unhandled
|
|
case Sema::TDK_NonDeducedMismatch:
|
|
case Sema::TDK_FailedOverloadResolution:
|
|
break;
|
|
}
|
|
}
|
|
|
|
PartialDiagnosticAt *
|
|
OverloadCandidate::DeductionFailureInfo::getSFINAEDiagnostic() {
|
|
if (HasDiagnostic)
|
|
return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
|
|
return 0;
|
|
}
|
|
|
|
TemplateParameter
|
|
OverloadCandidate::DeductionFailureInfo::getTemplateParameter() {
|
|
switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
|
|
case Sema::TDK_Success:
|
|
case Sema::TDK_InstantiationDepth:
|
|
case Sema::TDK_TooManyArguments:
|
|
case Sema::TDK_TooFewArguments:
|
|
case Sema::TDK_SubstitutionFailure:
|
|
return TemplateParameter();
|
|
|
|
case Sema::TDK_Incomplete:
|
|
case Sema::TDK_InvalidExplicitArguments:
|
|
return TemplateParameter::getFromOpaqueValue(Data);
|
|
|
|
case Sema::TDK_Inconsistent:
|
|
case Sema::TDK_Underqualified:
|
|
return static_cast<DFIParamWithArguments*>(Data)->Param;
|
|
|
|
// Unhandled
|
|
case Sema::TDK_NonDeducedMismatch:
|
|
case Sema::TDK_FailedOverloadResolution:
|
|
break;
|
|
}
|
|
|
|
return TemplateParameter();
|
|
}
|
|
|
|
TemplateArgumentList *
|
|
OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() {
|
|
switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
|
|
case Sema::TDK_Success:
|
|
case Sema::TDK_InstantiationDepth:
|
|
case Sema::TDK_TooManyArguments:
|
|
case Sema::TDK_TooFewArguments:
|
|
case Sema::TDK_Incomplete:
|
|
case Sema::TDK_InvalidExplicitArguments:
|
|
case Sema::TDK_Inconsistent:
|
|
case Sema::TDK_Underqualified:
|
|
return 0;
|
|
|
|
case Sema::TDK_SubstitutionFailure:
|
|
return static_cast<TemplateArgumentList*>(Data);
|
|
|
|
// Unhandled
|
|
case Sema::TDK_NonDeducedMismatch:
|
|
case Sema::TDK_FailedOverloadResolution:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() {
|
|
switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
|
|
case Sema::TDK_Success:
|
|
case Sema::TDK_InstantiationDepth:
|
|
case Sema::TDK_Incomplete:
|
|
case Sema::TDK_TooManyArguments:
|
|
case Sema::TDK_TooFewArguments:
|
|
case Sema::TDK_InvalidExplicitArguments:
|
|
case Sema::TDK_SubstitutionFailure:
|
|
return 0;
|
|
|
|
case Sema::TDK_Inconsistent:
|
|
case Sema::TDK_Underqualified:
|
|
return &static_cast<DFIParamWithArguments*>(Data)->FirstArg;
|
|
|
|
// Unhandled
|
|
case Sema::TDK_NonDeducedMismatch:
|
|
case Sema::TDK_FailedOverloadResolution:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
const TemplateArgument *
|
|
OverloadCandidate::DeductionFailureInfo::getSecondArg() {
|
|
switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
|
|
case Sema::TDK_Success:
|
|
case Sema::TDK_InstantiationDepth:
|
|
case Sema::TDK_Incomplete:
|
|
case Sema::TDK_TooManyArguments:
|
|
case Sema::TDK_TooFewArguments:
|
|
case Sema::TDK_InvalidExplicitArguments:
|
|
case Sema::TDK_SubstitutionFailure:
|
|
return 0;
|
|
|
|
case Sema::TDK_Inconsistent:
|
|
case Sema::TDK_Underqualified:
|
|
return &static_cast<DFIParamWithArguments*>(Data)->SecondArg;
|
|
|
|
// Unhandled
|
|
case Sema::TDK_NonDeducedMismatch:
|
|
case Sema::TDK_FailedOverloadResolution:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void OverloadCandidateSet::clear() {
|
|
for (iterator i = begin(), e = end(); i != e; ++i)
|
|
for (unsigned ii = 0, ie = i->NumConversions; ii != ie; ++ii)
|
|
i->Conversions[ii].~ImplicitConversionSequence();
|
|
NumInlineSequences = 0;
|
|
Candidates.clear();
|
|
Functions.clear();
|
|
}
|
|
|
|
namespace {
|
|
class UnbridgedCastsSet {
|
|
struct Entry {
|
|
Expr **Addr;
|
|
Expr *Saved;
|
|
};
|
|
SmallVector<Entry, 2> Entries;
|
|
|
|
public:
|
|
void save(Sema &S, Expr *&E) {
|
|
assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
|
|
Entry entry = { &E, E };
|
|
Entries.push_back(entry);
|
|
E = S.stripARCUnbridgedCast(E);
|
|
}
|
|
|
|
void restore() {
|
|
for (SmallVectorImpl<Entry>::iterator
|
|
i = Entries.begin(), e = Entries.end(); i != e; ++i)
|
|
*i->Addr = i->Saved;
|
|
}
|
|
};
|
|
}
|
|
|
|
/// checkPlaceholderForOverload - Do any interesting placeholder-like
|
|
/// preprocessing on the given expression.
|
|
///
|
|
/// \param unbridgedCasts a collection to which to add unbridged casts;
|
|
/// without this, they will be immediately diagnosed as errors
|
|
///
|
|
/// Return true on unrecoverable error.
|
|
static bool checkPlaceholderForOverload(Sema &S, Expr *&E,
|
|
UnbridgedCastsSet *unbridgedCasts = 0) {
|
|
if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) {
|
|
// We can't handle overloaded expressions here because overload
|
|
// resolution might reasonably tweak them.
|
|
if (placeholder->getKind() == BuiltinType::Overload) return false;
|
|
|
|
// If the context potentially accepts unbridged ARC casts, strip
|
|
// the unbridged cast and add it to the collection for later restoration.
|
|
if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
|
|
unbridgedCasts) {
|
|
unbridgedCasts->save(S, E);
|
|
return false;
|
|
}
|
|
|
|
// Go ahead and check everything else.
|
|
ExprResult result = S.CheckPlaceholderExpr(E);
|
|
if (result.isInvalid())
|
|
return true;
|
|
|
|
E = result.take();
|
|
return false;
|
|
}
|
|
|
|
// Nothing to do.
|
|
return false;
|
|
}
|
|
|
|
/// checkArgPlaceholdersForOverload - Check a set of call operands for
|
|
/// placeholders.
|
|
static bool checkArgPlaceholdersForOverload(Sema &S, Expr **args,
|
|
unsigned numArgs,
|
|
UnbridgedCastsSet &unbridged) {
|
|
for (unsigned i = 0; i != numArgs; ++i)
|
|
if (checkPlaceholderForOverload(S, args[i], &unbridged))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// IsOverload - Determine whether the given New declaration is an
|
|
// overload of the declarations in Old. This routine returns false if
|
|
// New and Old cannot be overloaded, e.g., if New has the same
|
|
// signature as some function in Old (C++ 1.3.10) or if the Old
|
|
// declarations aren't functions (or function templates) at all. When
|
|
// it does return false, MatchedDecl will point to the decl that New
|
|
// cannot be overloaded with. This decl may be a UsingShadowDecl on
|
|
// top of the underlying declaration.
|
|
//
|
|
// Example: Given the following input:
|
|
//
|
|
// void f(int, float); // #1
|
|
// void f(int, int); // #2
|
|
// int f(int, int); // #3
|
|
//
|
|
// When we process #1, there is no previous declaration of "f",
|
|
// so IsOverload will not be used.
|
|
//
|
|
// When we process #2, Old contains only the FunctionDecl for #1. By
|
|
// comparing the parameter types, we see that #1 and #2 are overloaded
|
|
// (since they have different signatures), so this routine returns
|
|
// false; MatchedDecl is unchanged.
|
|
//
|
|
// When we process #3, Old is an overload set containing #1 and #2. We
|
|
// compare the signatures of #3 to #1 (they're overloaded, so we do
|
|
// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
|
|
// identical (return types of functions are not part of the
|
|
// signature), IsOverload returns false and MatchedDecl will be set to
|
|
// point to the FunctionDecl for #2.
|
|
//
|
|
// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
|
|
// into a class by a using declaration. The rules for whether to hide
|
|
// shadow declarations ignore some properties which otherwise figure
|
|
// into a function template's signature.
|
|
Sema::OverloadKind
|
|
Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
|
|
NamedDecl *&Match, bool NewIsUsingDecl) {
|
|
for (LookupResult::iterator I = Old.begin(), E = Old.end();
|
|
I != E; ++I) {
|
|
NamedDecl *OldD = *I;
|
|
|
|
bool OldIsUsingDecl = false;
|
|
if (isa<UsingShadowDecl>(OldD)) {
|
|
OldIsUsingDecl = true;
|
|
|
|
// We can always introduce two using declarations into the same
|
|
// context, even if they have identical signatures.
|
|
if (NewIsUsingDecl) continue;
|
|
|
|
OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
|
|
}
|
|
|
|
// If either declaration was introduced by a using declaration,
|
|
// we'll need to use slightly different rules for matching.
|
|
// Essentially, these rules are the normal rules, except that
|
|
// function templates hide function templates with different
|
|
// return types or template parameter lists.
|
|
bool UseMemberUsingDeclRules =
|
|
(OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord();
|
|
|
|
if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
|
|
if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) {
|
|
if (UseMemberUsingDeclRules && OldIsUsingDecl) {
|
|
HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
|
|
continue;
|
|
}
|
|
|
|
Match = *I;
|
|
return Ovl_Match;
|
|
}
|
|
} else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
|
|
if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
|
|
if (UseMemberUsingDeclRules && OldIsUsingDecl) {
|
|
HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
|
|
continue;
|
|
}
|
|
|
|
Match = *I;
|
|
return Ovl_Match;
|
|
}
|
|
} else if (isa<UsingDecl>(OldD)) {
|
|
// We can overload with these, which can show up when doing
|
|
// redeclaration checks for UsingDecls.
|
|
assert(Old.getLookupKind() == LookupUsingDeclName);
|
|
} else if (isa<TagDecl>(OldD)) {
|
|
// We can always overload with tags by hiding them.
|
|
} else if (isa<UnresolvedUsingValueDecl>(OldD)) {
|
|
// Optimistically assume that an unresolved using decl will
|
|
// overload; if it doesn't, we'll have to diagnose during
|
|
// template instantiation.
|
|
} else {
|
|
// (C++ 13p1):
|
|
// Only function declarations can be overloaded; object and type
|
|
// declarations cannot be overloaded.
|
|
Match = *I;
|
|
return Ovl_NonFunction;
|
|
}
|
|
}
|
|
|
|
return Ovl_Overload;
|
|
}
|
|
|
|
bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
|
|
bool UseUsingDeclRules) {
|
|
// If both of the functions are extern "C", then they are not
|
|
// overloads.
|
|
if (Old->isExternC() && New->isExternC())
|
|
return false;
|
|
|
|
FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
|
|
FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
|
|
|
|
// C++ [temp.fct]p2:
|
|
// A function template can be overloaded with other function templates
|
|
// and with normal (non-template) functions.
|
|
if ((OldTemplate == 0) != (NewTemplate == 0))
|
|
return true;
|
|
|
|
// Is the function New an overload of the function Old?
|
|
QualType OldQType = Context.getCanonicalType(Old->getType());
|
|
QualType NewQType = Context.getCanonicalType(New->getType());
|
|
|
|
// Compare the signatures (C++ 1.3.10) of the two functions to
|
|
// determine whether they are overloads. If we find any mismatch
|
|
// in the signature, they are overloads.
|
|
|
|
// If either of these functions is a K&R-style function (no
|
|
// prototype), then we consider them to have matching signatures.
|
|
if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
|
|
isa<FunctionNoProtoType>(NewQType.getTypePtr()))
|
|
return false;
|
|
|
|
const FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
|
|
const FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
|
|
|
|
// The signature of a function includes the types of its
|
|
// parameters (C++ 1.3.10), which includes the presence or absence
|
|
// of the ellipsis; see C++ DR 357).
|
|
if (OldQType != NewQType &&
|
|
(OldType->getNumArgs() != NewType->getNumArgs() ||
|
|
OldType->isVariadic() != NewType->isVariadic() ||
|
|
!FunctionArgTypesAreEqual(OldType, NewType)))
|
|
return true;
|
|
|
|
// C++ [temp.over.link]p4:
|
|
// The signature of a function template consists of its function
|
|
// signature, its return type and its template parameter list. The names
|
|
// of the template parameters are significant only for establishing the
|
|
// relationship between the template parameters and the rest of the
|
|
// signature.
|
|
//
|
|
// We check the return type and template parameter lists for function
|
|
// templates first; the remaining checks follow.
|
|
//
|
|
// However, we don't consider either of these when deciding whether
|
|
// a member introduced by a shadow declaration is hidden.
|
|
if (!UseUsingDeclRules && NewTemplate &&
|
|
(!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
|
|
OldTemplate->getTemplateParameters(),
|
|
false, TPL_TemplateMatch) ||
|
|
OldType->getResultType() != NewType->getResultType()))
|
|
return true;
|
|
|
|
// If the function is a class member, its signature includes the
|
|
// cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
|
|
//
|
|
// As part of this, also check whether one of the member functions
|
|
// is static, in which case they are not overloads (C++
|
|
// 13.1p2). While not part of the definition of the signature,
|
|
// this check is important to determine whether these functions
|
|
// can be overloaded.
|
|
CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
|
|
CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
|
|
if (OldMethod && NewMethod &&
|
|
!OldMethod->isStatic() && !NewMethod->isStatic() &&
|
|
(OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers() ||
|
|
OldMethod->getRefQualifier() != NewMethod->getRefQualifier())) {
|
|
if (!UseUsingDeclRules &&
|
|
OldMethod->getRefQualifier() != NewMethod->getRefQualifier() &&
|
|
(OldMethod->getRefQualifier() == RQ_None ||
|
|
NewMethod->getRefQualifier() == RQ_None)) {
|
|
// C++0x [over.load]p2:
|
|
// - Member function declarations with the same name and the same
|
|
// parameter-type-list as well as member function template
|
|
// declarations with the same name, the same parameter-type-list, and
|
|
// the same template parameter lists cannot be overloaded if any of
|
|
// them, but not all, have a ref-qualifier (8.3.5).
|
|
Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
|
|
<< NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
|
|
Diag(OldMethod->getLocation(), diag::note_previous_declaration);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// The signatures match; this is not an overload.
|
|
return false;
|
|
}
|
|
|
|
/// \brief Checks availability of the function depending on the current
|
|
/// function context. Inside an unavailable function, unavailability is ignored.
|
|
///
|
|
/// \returns true if \arg FD is unavailable and current context is inside
|
|
/// an available function, false otherwise.
|
|
bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) {
|
|
return FD->isUnavailable() && !cast<Decl>(CurContext)->isUnavailable();
|
|
}
|
|
|
|
/// \brief Tries a user-defined conversion from From to ToType.
|
|
///
|
|
/// Produces an implicit conversion sequence for when a standard conversion
|
|
/// is not an option. See TryImplicitConversion for more information.
|
|
static ImplicitConversionSequence
|
|
TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
|
|
bool SuppressUserConversions,
|
|
bool AllowExplicit,
|
|
bool InOverloadResolution,
|
|
bool CStyle,
|
|
bool AllowObjCWritebackConversion) {
|
|
ImplicitConversionSequence ICS;
|
|
|
|
if (SuppressUserConversions) {
|
|
// We're not in the case above, so there is no conversion that
|
|
// we can perform.
|
|
ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
|
|
return ICS;
|
|
}
|
|
|
|
// Attempt user-defined conversion.
|
|
OverloadCandidateSet Conversions(From->getExprLoc());
|
|
OverloadingResult UserDefResult
|
|
= IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions,
|
|
AllowExplicit);
|
|
|
|
if (UserDefResult == OR_Success) {
|
|
ICS.setUserDefined();
|
|
// C++ [over.ics.user]p4:
|
|
// A conversion of an expression of class type to the same class
|
|
// type is given Exact Match rank, and a conversion of an
|
|
// expression of class type to a base class of that type is
|
|
// given Conversion rank, in spite of the fact that a copy
|
|
// constructor (i.e., a user-defined conversion function) is
|
|
// called for those cases.
|
|
if (CXXConstructorDecl *Constructor
|
|
= dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
|
|
QualType FromCanon
|
|
= S.Context.getCanonicalType(From->getType().getUnqualifiedType());
|
|
QualType ToCanon
|
|
= S.Context.getCanonicalType(ToType).getUnqualifiedType();
|
|
if (Constructor->isCopyConstructor() &&
|
|
(FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) {
|
|
// Turn this into a "standard" conversion sequence, so that it
|
|
// gets ranked with standard conversion sequences.
|
|
ICS.setStandard();
|
|
ICS.Standard.setAsIdentityConversion();
|
|
ICS.Standard.setFromType(From->getType());
|
|
ICS.Standard.setAllToTypes(ToType);
|
|
ICS.Standard.CopyConstructor = Constructor;
|
|
if (ToCanon != FromCanon)
|
|
ICS.Standard.Second = ICK_Derived_To_Base;
|
|
}
|
|
}
|
|
|
|
// C++ [over.best.ics]p4:
|
|
// However, when considering the argument of a user-defined
|
|
// conversion function that is a candidate by 13.3.1.3 when
|
|
// invoked for the copying of the temporary in the second step
|
|
// of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
|
|
// 13.3.1.6 in all cases, only standard conversion sequences and
|
|
// ellipsis conversion sequences are allowed.
|
|
if (SuppressUserConversions && ICS.isUserDefined()) {
|
|
ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
|
|
}
|
|
} else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
|
|
ICS.setAmbiguous();
|
|
ICS.Ambiguous.setFromType(From->getType());
|
|
ICS.Ambiguous.setToType(ToType);
|
|
for (OverloadCandidateSet::iterator Cand = Conversions.begin();
|
|
Cand != Conversions.end(); ++Cand)
|
|
if (Cand->Viable)
|
|
ICS.Ambiguous.addConversion(Cand->Function);
|
|
} else {
|
|
ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
|
|
}
|
|
|
|
return ICS;
|
|
}
|
|
|
|
/// TryImplicitConversion - Attempt to perform an implicit conversion
|
|
/// from the given expression (Expr) to the given type (ToType). This
|
|
/// function returns an implicit conversion sequence that can be used
|
|
/// to perform the initialization. Given
|
|
///
|
|
/// void f(float f);
|
|
/// void g(int i) { f(i); }
|
|
///
|
|
/// this routine would produce an implicit conversion sequence to
|
|
/// describe the initialization of f from i, which will be a standard
|
|
/// conversion sequence containing an lvalue-to-rvalue conversion (C++
|
|
/// 4.1) followed by a floating-integral conversion (C++ 4.9).
|
|
//
|
|
/// Note that this routine only determines how the conversion can be
|
|
/// performed; it does not actually perform the conversion. As such,
|
|
/// it will not produce any diagnostics if no conversion is available,
|
|
/// but will instead return an implicit conversion sequence of kind
|
|
/// "BadConversion".
|
|
///
|
|
/// If @p SuppressUserConversions, then user-defined conversions are
|
|
/// not permitted.
|
|
/// If @p AllowExplicit, then explicit user-defined conversions are
|
|
/// permitted.
|
|
///
|
|
/// \param AllowObjCWritebackConversion Whether we allow the Objective-C
|
|
/// writeback conversion, which allows __autoreleasing id* parameters to
|
|
/// be initialized with __strong id* or __weak id* arguments.
|
|
static ImplicitConversionSequence
|
|
TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
|
|
bool SuppressUserConversions,
|
|
bool AllowExplicit,
|
|
bool InOverloadResolution,
|
|
bool CStyle,
|
|
bool AllowObjCWritebackConversion) {
|
|
ImplicitConversionSequence ICS;
|
|
if (IsStandardConversion(S, From, ToType, InOverloadResolution,
|
|
ICS.Standard, CStyle, AllowObjCWritebackConversion)){
|
|
ICS.setStandard();
|
|
return ICS;
|
|
}
|
|
|
|
if (!S.getLangOpts().CPlusPlus) {
|
|
ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
|
|
return ICS;
|
|
}
|
|
|
|
// C++ [over.ics.user]p4:
|
|
// A conversion of an expression of class type to the same class
|
|
// type is given Exact Match rank, and a conversion of an
|
|
// expression of class type to a base class of that type is
|
|
// given Conversion rank, in spite of the fact that a copy/move
|
|
// constructor (i.e., a user-defined conversion function) is
|
|
// called for those cases.
|
|
QualType FromType = From->getType();
|
|
if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
|
|
(S.Context.hasSameUnqualifiedType(FromType, ToType) ||
|
|
S.IsDerivedFrom(FromType, ToType))) {
|
|
ICS.setStandard();
|
|
ICS.Standard.setAsIdentityConversion();
|
|
ICS.Standard.setFromType(FromType);
|
|
ICS.Standard.setAllToTypes(ToType);
|
|
|
|
// We don't actually check at this point whether there is a valid
|
|
// copy/move constructor, since overloading just assumes that it
|
|
// exists. When we actually perform initialization, we'll find the
|
|
// appropriate constructor to copy the returned object, if needed.
|
|
ICS.Standard.CopyConstructor = 0;
|
|
|
|
// Determine whether this is considered a derived-to-base conversion.
|
|
if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
|
|
ICS.Standard.Second = ICK_Derived_To_Base;
|
|
|
|
return ICS;
|
|
}
|
|
|
|
return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
|
|
AllowExplicit, InOverloadResolution, CStyle,
|
|
AllowObjCWritebackConversion);
|
|
}
|
|
|
|
ImplicitConversionSequence
|
|
Sema::TryImplicitConversion(Expr *From, QualType ToType,
|
|
bool SuppressUserConversions,
|
|
bool AllowExplicit,
|
|
bool InOverloadResolution,
|
|
bool CStyle,
|
|
bool AllowObjCWritebackConversion) {
|
|
return clang::TryImplicitConversion(*this, From, ToType,
|
|
SuppressUserConversions, AllowExplicit,
|
|
InOverloadResolution, CStyle,
|
|
AllowObjCWritebackConversion);
|
|
}
|
|
|
|
/// PerformImplicitConversion - Perform an implicit conversion of the
|
|
/// expression From to the type ToType. Returns the
|
|
/// converted expression. Flavor is the kind of conversion we're
|
|
/// performing, used in the error message. If @p AllowExplicit,
|
|
/// explicit user-defined conversions are permitted.
|
|
ExprResult
|
|
Sema::PerformImplicitConversion(Expr *From, QualType ToType,
|
|
AssignmentAction Action, bool AllowExplicit) {
|
|
ImplicitConversionSequence ICS;
|
|
return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
|
|
}
|
|
|
|
ExprResult
|
|
Sema::PerformImplicitConversion(Expr *From, QualType ToType,
|
|
AssignmentAction Action, bool AllowExplicit,
|
|
ImplicitConversionSequence& ICS) {
|
|
if (checkPlaceholderForOverload(*this, From))
|
|
return ExprError();
|
|
|
|
// Objective-C ARC: Determine whether we will allow the writeback conversion.
|
|
bool AllowObjCWritebackConversion
|
|
= getLangOpts().ObjCAutoRefCount &&
|
|
(Action == AA_Passing || Action == AA_Sending);
|
|
|
|
ICS = clang::TryImplicitConversion(*this, From, ToType,
|
|
/*SuppressUserConversions=*/false,
|
|
AllowExplicit,
|
|
/*InOverloadResolution=*/false,
|
|
/*CStyle=*/false,
|
|
AllowObjCWritebackConversion);
|
|
return PerformImplicitConversion(From, ToType, ICS, Action);
|
|
}
|
|
|
|
/// \brief Determine whether the conversion from FromType to ToType is a valid
|
|
/// conversion that strips "noreturn" off the nested function type.
|
|
bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType,
|
|
QualType &ResultTy) {
|
|
if (Context.hasSameUnqualifiedType(FromType, ToType))
|
|
return false;
|
|
|
|
// Permit the conversion F(t __attribute__((noreturn))) -> F(t)
|
|
// where F adds one of the following at most once:
|
|
// - a pointer
|
|
// - a member pointer
|
|
// - a block pointer
|
|
CanQualType CanTo = Context.getCanonicalType(ToType);
|
|
CanQualType CanFrom = Context.getCanonicalType(FromType);
|
|
Type::TypeClass TyClass = CanTo->getTypeClass();
|
|
if (TyClass != CanFrom->getTypeClass()) return false;
|
|
if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
|
|
if (TyClass == Type::Pointer) {
|
|
CanTo = CanTo.getAs<PointerType>()->getPointeeType();
|
|
CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
|
|
} else if (TyClass == Type::BlockPointer) {
|
|
CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
|
|
CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
|
|
} else if (TyClass == Type::MemberPointer) {
|
|
CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType();
|
|
CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType();
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
TyClass = CanTo->getTypeClass();
|
|
if (TyClass != CanFrom->getTypeClass()) return false;
|
|
if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
|
|
return false;
|
|
}
|
|
|
|
const FunctionType *FromFn = cast<FunctionType>(CanFrom);
|
|
FunctionType::ExtInfo EInfo = FromFn->getExtInfo();
|
|
if (!EInfo.getNoReturn()) return false;
|
|
|
|
FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false));
|
|
assert(QualType(FromFn, 0).isCanonical());
|
|
if (QualType(FromFn, 0) != CanTo) return false;
|
|
|
|
ResultTy = ToType;
|
|
return true;
|
|
}
|
|
|
|
/// \brief Determine whether the conversion from FromType to ToType is a valid
|
|
/// vector conversion.
|
|
///
|
|
/// \param ICK Will be set to the vector conversion kind, if this is a vector
|
|
/// conversion.
|
|
static bool IsVectorConversion(ASTContext &Context, QualType FromType,
|
|
QualType ToType, ImplicitConversionKind &ICK) {
|
|
// We need at least one of these types to be a vector type to have a vector
|
|
// conversion.
|
|
if (!ToType->isVectorType() && !FromType->isVectorType())
|
|
return false;
|
|
|
|
// Identical types require no conversions.
|
|
if (Context.hasSameUnqualifiedType(FromType, ToType))
|
|
return false;
|
|
|
|
// There are no conversions between extended vector types, only identity.
|
|
if (ToType->isExtVectorType()) {
|
|
// There are no conversions between extended vector types other than the
|
|
// identity conversion.
|
|
if (FromType->isExtVectorType())
|
|
return false;
|
|
|
|
// Vector splat from any arithmetic type to a vector.
|
|
if (FromType->isArithmeticType()) {
|
|
ICK = ICK_Vector_Splat;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// We can perform the conversion between vector types in the following cases:
|
|
// 1)vector types are equivalent AltiVec and GCC vector types
|
|
// 2)lax vector conversions are permitted and the vector types are of the
|
|
// same size
|
|
if (ToType->isVectorType() && FromType->isVectorType()) {
|
|
if (Context.areCompatibleVectorTypes(FromType, ToType) ||
|
|
(Context.getLangOpts().LaxVectorConversions &&
|
|
(Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) {
|
|
ICK = ICK_Vector_Conversion;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
|
|
bool InOverloadResolution,
|
|
StandardConversionSequence &SCS,
|
|
bool CStyle);
|
|
|
|
/// IsStandardConversion - Determines whether there is a standard
|
|
/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
|
|
/// expression From to the type ToType. Standard conversion sequences
|
|
/// only consider non-class types; for conversions that involve class
|
|
/// types, use TryImplicitConversion. If a conversion exists, SCS will
|
|
/// contain the standard conversion sequence required to perform this
|
|
/// conversion and this routine will return true. Otherwise, this
|
|
/// routine will return false and the value of SCS is unspecified.
|
|
static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
|
|
bool InOverloadResolution,
|
|
StandardConversionSequence &SCS,
|
|
bool CStyle,
|
|
bool AllowObjCWritebackConversion) {
|
|
QualType FromType = From->getType();
|
|
|
|
// Standard conversions (C++ [conv])
|
|
SCS.setAsIdentityConversion();
|
|
SCS.DeprecatedStringLiteralToCharPtr = false;
|
|
SCS.IncompatibleObjC = false;
|
|
SCS.setFromType(FromType);
|
|
SCS.CopyConstructor = 0;
|
|
|
|
// There are no standard conversions for class types in C++, so
|
|
// abort early. When overloading in C, however, we do permit
|
|
if (FromType->isRecordType() || ToType->isRecordType()) {
|
|
if (S.getLangOpts().CPlusPlus)
|
|
return false;
|
|
|
|
// When we're overloading in C, we allow, as standard conversions,
|
|
}
|
|
|
|
// The first conversion can be an lvalue-to-rvalue conversion,
|
|
// array-to-pointer conversion, or function-to-pointer conversion
|
|
// (C++ 4p1).
|
|
|
|
if (FromType == S.Context.OverloadTy) {
|
|
DeclAccessPair AccessPair;
|
|
if (FunctionDecl *Fn
|
|
= S.ResolveAddressOfOverloadedFunction(From, ToType, false,
|
|
AccessPair)) {
|
|
// We were able to resolve the address of the overloaded function,
|
|
// so we can convert to the type of that function.
|
|
FromType = Fn->getType();
|
|
|
|
// we can sometimes resolve &foo<int> regardless of ToType, so check
|
|
// if the type matches (identity) or we are converting to bool
|
|
if (!S.Context.hasSameUnqualifiedType(
|
|
S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
|
|
QualType resultTy;
|
|
// if the function type matches except for [[noreturn]], it's ok
|
|
if (!S.IsNoReturnConversion(FromType,
|
|
S.ExtractUnqualifiedFunctionType(ToType), resultTy))
|
|
// otherwise, only a boolean conversion is standard
|
|
if (!ToType->isBooleanType())
|
|
return false;
|
|
}
|
|
|
|
// Check if the "from" expression is taking the address of an overloaded
|
|
// function and recompute the FromType accordingly. Take advantage of the
|
|
// fact that non-static member functions *must* have such an address-of
|
|
// expression.
|
|
CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
|
|
if (Method && !Method->isStatic()) {
|
|
assert(isa<UnaryOperator>(From->IgnoreParens()) &&
|
|
"Non-unary operator on non-static member address");
|
|
assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
|
|
== UO_AddrOf &&
|
|
"Non-address-of operator on non-static member address");
|
|
const Type *ClassType
|
|
= S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
|
|
FromType = S.Context.getMemberPointerType(FromType, ClassType);
|
|
} else if (isa<UnaryOperator>(From->IgnoreParens())) {
|
|
assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
|
|
UO_AddrOf &&
|
|
"Non-address-of operator for overloaded function expression");
|
|
FromType = S.Context.getPointerType(FromType);
|
|
}
|
|
|
|
// Check that we've computed the proper type after overload resolution.
|
|
assert(S.Context.hasSameType(
|
|
FromType,
|
|
S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
// Lvalue-to-rvalue conversion (C++11 4.1):
|
|
// A glvalue (3.10) of a non-function, non-array type T can
|
|
// be converted to a prvalue.
|
|
bool argIsLValue = From->isGLValue();
|
|
if (argIsLValue &&
|
|
!FromType->isFunctionType() && !FromType->isArrayType() &&
|
|
S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
|
|
SCS.First = ICK_Lvalue_To_Rvalue;
|
|
|
|
// C11 6.3.2.1p2:
|
|
// ... if the lvalue has atomic type, the value has the non-atomic version
|
|
// of the type of the lvalue ...
|
|
if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
|
|
FromType = Atomic->getValueType();
|
|
|
|
// If T is a non-class type, the type of the rvalue is the
|
|
// cv-unqualified version of T. Otherwise, the type of the rvalue
|
|
// is T (C++ 4.1p1). C++ can't get here with class types; in C, we
|
|
// just strip the qualifiers because they don't matter.
|
|
FromType = FromType.getUnqualifiedType();
|
|
} else if (FromType->isArrayType()) {
|
|
// Array-to-pointer conversion (C++ 4.2)
|
|
SCS.First = ICK_Array_To_Pointer;
|
|
|
|
// An lvalue or rvalue of type "array of N T" or "array of unknown
|
|
// bound of T" can be converted to an rvalue of type "pointer to
|
|
// T" (C++ 4.2p1).
|
|
FromType = S.Context.getArrayDecayedType(FromType);
|
|
|
|
if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
|
|
// This conversion is deprecated. (C++ D.4).
|
|
SCS.DeprecatedStringLiteralToCharPtr = true;
|
|
|
|
// For the purpose of ranking in overload resolution
|
|
// (13.3.3.1.1), this conversion is considered an
|
|
// array-to-pointer conversion followed by a qualification
|
|
// conversion (4.4). (C++ 4.2p2)
|
|
SCS.Second = ICK_Identity;
|
|
SCS.Third = ICK_Qualification;
|
|
SCS.QualificationIncludesObjCLifetime = false;
|
|
SCS.setAllToTypes(FromType);
|
|
return true;
|
|
}
|
|
} else if (FromType->isFunctionType() && argIsLValue) {
|
|
// Function-to-pointer conversion (C++ 4.3).
|
|
SCS.First = ICK_Function_To_Pointer;
|
|
|
|
// An lvalue of function type T can be converted to an rvalue of
|
|
// type "pointer to T." The result is a pointer to the
|
|
// function. (C++ 4.3p1).
|
|
FromType = S.Context.getPointerType(FromType);
|
|
} else {
|
|
// We don't require any conversions for the first step.
|
|
SCS.First = ICK_Identity;
|
|
}
|
|
SCS.setToType(0, FromType);
|
|
|
|
// The second conversion can be an integral promotion, floating
|
|
// point promotion, integral conversion, floating point conversion,
|
|
// floating-integral conversion, pointer conversion,
|
|
// pointer-to-member conversion, or boolean conversion (C++ 4p1).
|
|
// For overloading in C, this can also be a "compatible-type"
|
|
// conversion.
|
|
bool IncompatibleObjC = false;
|
|
ImplicitConversionKind SecondICK = ICK_Identity;
|
|
if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
|
|
// The unqualified versions of the types are the same: there's no
|
|
// conversion to do.
|
|
SCS.Second = ICK_Identity;
|
|
} else if (S.IsIntegralPromotion(From, FromType, ToType)) {
|
|
// Integral promotion (C++ 4.5).
|
|
SCS.Second = ICK_Integral_Promotion;
|
|
FromType = ToType.getUnqualifiedType();
|
|
} else if (S.IsFloatingPointPromotion(FromType, ToType)) {
|
|
// Floating point promotion (C++ 4.6).
|
|
SCS.Second = ICK_Floating_Promotion;
|
|
FromType = ToType.getUnqualifiedType();
|
|
} else if (S.IsComplexPromotion(FromType, ToType)) {
|
|
// Complex promotion (Clang extension)
|
|
SCS.Second = ICK_Complex_Promotion;
|
|
FromType = ToType.getUnqualifiedType();
|
|
} else if (ToType->isBooleanType() &&
|
|
(FromType->isArithmeticType() ||
|
|
FromType->isAnyPointerType() ||
|
|
FromType->isBlockPointerType() ||
|
|
FromType->isMemberPointerType() ||
|
|
FromType->isNullPtrType())) {
|
|
// Boolean conversions (C++ 4.12).
|
|
SCS.Second = ICK_Boolean_Conversion;
|
|
FromType = S.Context.BoolTy;
|
|
} else if (FromType->isIntegralOrUnscopedEnumerationType() &&
|
|
ToType->isIntegralType(S.Context)) {
|
|
// Integral conversions (C++ 4.7).
|
|
SCS.Second = ICK_Integral_Conversion;
|
|
FromType = ToType.getUnqualifiedType();
|
|
} else if (FromType->isAnyComplexType() && ToType->isComplexType()) {
|
|
// Complex conversions (C99 6.3.1.6)
|
|
SCS.Second = ICK_Complex_Conversion;
|
|
FromType = ToType.getUnqualifiedType();
|
|
} else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
|
|
(ToType->isAnyComplexType() && FromType->isArithmeticType())) {
|
|
// Complex-real conversions (C99 6.3.1.7)
|
|
SCS.Second = ICK_Complex_Real;
|
|
FromType = ToType.getUnqualifiedType();
|
|
} else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
|
|
// Floating point conversions (C++ 4.8).
|
|
SCS.Second = ICK_Floating_Conversion;
|
|
FromType = ToType.getUnqualifiedType();
|
|
} else if ((FromType->isRealFloatingType() &&
|
|
ToType->isIntegralType(S.Context)) ||
|
|
(FromType->isIntegralOrUnscopedEnumerationType() &&
|
|
ToType->isRealFloatingType())) {
|
|
// Floating-integral conversions (C++ 4.9).
|
|
SCS.Second = ICK_Floating_Integral;
|
|
FromType = ToType.getUnqualifiedType();
|
|
} else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
|
|
SCS.Second = ICK_Block_Pointer_Conversion;
|
|
} else if (AllowObjCWritebackConversion &&
|
|
S.isObjCWritebackConversion(FromType, ToType, FromType)) {
|
|
SCS.Second = ICK_Writeback_Conversion;
|
|
} else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
|
|
FromType, IncompatibleObjC)) {
|
|
// Pointer conversions (C++ 4.10).
|
|
SCS.Second = ICK_Pointer_Conversion;
|
|
SCS.IncompatibleObjC = IncompatibleObjC;
|
|
FromType = FromType.getUnqualifiedType();
|
|
} else if (S.IsMemberPointerConversion(From, FromType, ToType,
|
|
InOverloadResolution, FromType)) {
|
|
// Pointer to member conversions (4.11).
|
|
SCS.Second = ICK_Pointer_Member;
|
|
} else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) {
|
|
SCS.Second = SecondICK;
|
|
FromType = ToType.getUnqualifiedType();
|
|
} else if (!S.getLangOpts().CPlusPlus &&
|
|
S.Context.typesAreCompatible(ToType, FromType)) {
|
|
// Compatible conversions (Clang extension for C function overloading)
|
|
SCS.Second = ICK_Compatible_Conversion;
|
|
FromType = ToType.getUnqualifiedType();
|
|
} else if (S.IsNoReturnConversion(FromType, ToType, FromType)) {
|
|
// Treat a conversion that strips "noreturn" as an identity conversion.
|
|
SCS.Second = ICK_NoReturn_Adjustment;
|
|
} else if (IsTransparentUnionStandardConversion(S, From, ToType,
|
|
InOverloadResolution,
|
|
SCS, CStyle)) {
|
|
SCS.Second = ICK_TransparentUnionConversion;
|
|
FromType = ToType;
|
|
} else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
|
|
CStyle)) {
|
|
// tryAtomicConversion has updated the standard conversion sequence
|
|
// appropriately.
|
|
return true;
|
|
} else {
|
|
// No second conversion required.
|
|
SCS.Second = ICK_Identity;
|
|
}
|
|
SCS.setToType(1, FromType);
|
|
|
|
QualType CanonFrom;
|
|
QualType CanonTo;
|
|
// The third conversion can be a qualification conversion (C++ 4p1).
|
|
bool ObjCLifetimeConversion;
|
|
if (S.IsQualificationConversion(FromType, ToType, CStyle,
|
|
ObjCLifetimeConversion)) {
|
|
SCS.Third = ICK_Qualification;
|
|
SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
|
|
FromType = ToType;
|
|
CanonFrom = S.Context.getCanonicalType(FromType);
|
|
CanonTo = S.Context.getCanonicalType(ToType);
|
|
} else {
|
|
// No conversion required
|
|
SCS.Third = ICK_Identity;
|
|
|
|
// C++ [over.best.ics]p6:
|
|
// [...] Any difference in top-level cv-qualification is
|
|
// subsumed by the initialization itself and does not constitute
|
|
// a conversion. [...]
|
|
CanonFrom = S.Context.getCanonicalType(FromType);
|
|
CanonTo = S.Context.getCanonicalType(ToType);
|
|
if (CanonFrom.getLocalUnqualifiedType()
|
|
== CanonTo.getLocalUnqualifiedType() &&
|
|
(CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()
|
|
|| CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr()
|
|
|| CanonFrom.getObjCLifetime() != CanonTo.getObjCLifetime())) {
|
|
FromType = ToType;
|
|
CanonFrom = CanonTo;
|
|
}
|
|
}
|
|
SCS.setToType(2, FromType);
|
|
|
|
// If we have not converted the argument type to the parameter type,
|
|
// this is a bad conversion sequence.
|
|
if (CanonFrom != CanonTo)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
IsTransparentUnionStandardConversion(Sema &S, Expr* From,
|
|
QualType &ToType,
|
|
bool InOverloadResolution,
|
|
StandardConversionSequence &SCS,
|
|
bool CStyle) {
|
|
|
|
const RecordType *UT = ToType->getAsUnionType();
|
|
if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
|
|
return false;
|
|
// The field to initialize within the transparent union.
|
|
RecordDecl *UD = UT->getDecl();
|
|
// It's compatible if the expression matches any of the fields.
|
|
for (RecordDecl::field_iterator it = UD->field_begin(),
|
|
itend = UD->field_end();
|
|
it != itend; ++it) {
|
|
if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
|
|
CStyle, /*ObjCWritebackConversion=*/false)) {
|
|
ToType = it->getType();
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// IsIntegralPromotion - Determines whether the conversion from the
|
|
/// expression From (whose potentially-adjusted type is FromType) to
|
|
/// ToType is an integral promotion (C++ 4.5). If so, returns true and
|
|
/// sets PromotedType to the promoted type.
|
|
bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
|
|
const BuiltinType *To = ToType->getAs<BuiltinType>();
|
|
// All integers are built-in.
|
|
if (!To) {
|
|
return false;
|
|
}
|
|
|
|
// An rvalue of type char, signed char, unsigned char, short int, or
|
|
// unsigned short int can be converted to an rvalue of type int if
|
|
// int can represent all the values of the source type; otherwise,
|
|
// the source rvalue can be converted to an rvalue of type unsigned
|
|
// int (C++ 4.5p1).
|
|
if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
|
|
!FromType->isEnumeralType()) {
|
|
if (// We can promote any signed, promotable integer type to an int
|
|
(FromType->isSignedIntegerType() ||
|
|
// We can promote any unsigned integer type whose size is
|
|
// less than int to an int.
|
|
(!FromType->isSignedIntegerType() &&
|
|
Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
|
|
return To->getKind() == BuiltinType::Int;
|
|
}
|
|
|
|
return To->getKind() == BuiltinType::UInt;
|
|
}
|
|
|
|
// C++0x [conv.prom]p3:
|
|
// A prvalue of an unscoped enumeration type whose underlying type is not
|
|
// fixed (7.2) can be converted to an rvalue a prvalue of the first of the
|
|
// following types that can represent all the values of the enumeration
|
|
// (i.e., the values in the range bmin to bmax as described in 7.2): int,
|
|
// unsigned int, long int, unsigned long int, long long int, or unsigned
|
|
// long long int. If none of the types in that list can represent all the
|
|
// values of the enumeration, an rvalue a prvalue of an unscoped enumeration
|
|
// type can be converted to an rvalue a prvalue of the extended integer type
|
|
// with lowest integer conversion rank (4.13) greater than the rank of long
|
|
// long in which all the values of the enumeration can be represented. If
|
|
// there are two such extended types, the signed one is chosen.
|
|
if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
|
|
// C++0x 7.2p9: Note that this implicit enum to int conversion is not
|
|
// provided for a scoped enumeration.
|
|
if (FromEnumType->getDecl()->isScoped())
|
|
return false;
|
|
|
|
// We have already pre-calculated the promotion type, so this is trivial.
|
|
if (ToType->isIntegerType() &&
|
|
!RequireCompleteType(From->getLocStart(), FromType, 0))
|
|
return Context.hasSameUnqualifiedType(ToType,
|
|
FromEnumType->getDecl()->getPromotionType());
|
|
}
|
|
|
|
// C++0x [conv.prom]p2:
|
|
// A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
|
|
// to an rvalue a prvalue of the first of the following types that can
|
|
// represent all the values of its underlying type: int, unsigned int,
|
|
// long int, unsigned long int, long long int, or unsigned long long int.
|
|
// If none of the types in that list can represent all the values of its
|
|
// underlying type, an rvalue a prvalue of type char16_t, char32_t,
|
|
// or wchar_t can be converted to an rvalue a prvalue of its underlying
|
|
// type.
|
|
if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
|
|
ToType->isIntegerType()) {
|
|
// Determine whether the type we're converting from is signed or
|
|
// unsigned.
|
|
bool FromIsSigned = FromType->isSignedIntegerType();
|
|
uint64_t FromSize = Context.getTypeSize(FromType);
|
|
|
|
// The types we'll try to promote to, in the appropriate
|
|
// order. Try each of these types.
|
|
QualType PromoteTypes[6] = {
|
|
Context.IntTy, Context.UnsignedIntTy,
|
|
Context.LongTy, Context.UnsignedLongTy ,
|
|
Context.LongLongTy, Context.UnsignedLongLongTy
|
|
};
|
|
for (int Idx = 0; Idx < 6; ++Idx) {
|
|
uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
|
|
if (FromSize < ToSize ||
|
|
(FromSize == ToSize &&
|
|
FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
|
|
// We found the type that we can promote to. If this is the
|
|
// type we wanted, we have a promotion. Otherwise, no
|
|
// promotion.
|
|
return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// An rvalue for an integral bit-field (9.6) can be converted to an
|
|
// rvalue of type int if int can represent all the values of the
|
|
// bit-field; otherwise, it can be converted to unsigned int if
|
|
// unsigned int can represent all the values of the bit-field. If
|
|
// the bit-field is larger yet, no integral promotion applies to
|
|
// it. If the bit-field has an enumerated type, it is treated as any
|
|
// other value of that type for promotion purposes (C++ 4.5p3).
|
|
// FIXME: We should delay checking of bit-fields until we actually perform the
|
|
// conversion.
|
|
using llvm::APSInt;
|
|
if (From)
|
|
if (FieldDecl *MemberDecl = From->getBitField()) {
|
|
APSInt BitWidth;
|
|
if (FromType->isIntegralType(Context) &&
|
|
MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
|
|
APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
|
|
ToSize = Context.getTypeSize(ToType);
|
|
|
|
// Are we promoting to an int from a bitfield that fits in an int?
|
|
if (BitWidth < ToSize ||
|
|
(FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
|
|
return To->getKind() == BuiltinType::Int;
|
|
}
|
|
|
|
// Are we promoting to an unsigned int from an unsigned bitfield
|
|
// that fits into an unsigned int?
|
|
if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
|
|
return To->getKind() == BuiltinType::UInt;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// An rvalue of type bool can be converted to an rvalue of type int,
|
|
// with false becoming zero and true becoming one (C++ 4.5p4).
|
|
if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// IsFloatingPointPromotion - Determines whether the conversion from
|
|
/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
|
|
/// returns true and sets PromotedType to the promoted type.
|
|
bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
|
|
if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
|
|
if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
|
|
/// An rvalue of type float can be converted to an rvalue of type
|
|
/// double. (C++ 4.6p1).
|
|
if (FromBuiltin->getKind() == BuiltinType::Float &&
|
|
ToBuiltin->getKind() == BuiltinType::Double)
|
|
return true;
|
|
|
|
// C99 6.3.1.5p1:
|
|
// When a float is promoted to double or long double, or a
|
|
// double is promoted to long double [...].
|
|
if (!getLangOpts().CPlusPlus &&
|
|
(FromBuiltin->getKind() == BuiltinType::Float ||
|
|
FromBuiltin->getKind() == BuiltinType::Double) &&
|
|
(ToBuiltin->getKind() == BuiltinType::LongDouble))
|
|
return true;
|
|
|
|
// Half can be promoted to float.
|
|
if (FromBuiltin->getKind() == BuiltinType::Half &&
|
|
ToBuiltin->getKind() == BuiltinType::Float)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief Determine if a conversion is a complex promotion.
|
|
///
|
|
/// A complex promotion is defined as a complex -> complex conversion
|
|
/// where the conversion between the underlying real types is a
|
|
/// floating-point or integral promotion.
|
|
bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
|
|
const ComplexType *FromComplex = FromType->getAs<ComplexType>();
|
|
if (!FromComplex)
|
|
return false;
|
|
|
|
const ComplexType *ToComplex = ToType->getAs<ComplexType>();
|
|
if (!ToComplex)
|
|
return false;
|
|
|
|
return IsFloatingPointPromotion(FromComplex->getElementType(),
|
|
ToComplex->getElementType()) ||
|
|
IsIntegralPromotion(0, FromComplex->getElementType(),
|
|
ToComplex->getElementType());
|
|
}
|
|
|
|
/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
|
|
/// the pointer type FromPtr to a pointer to type ToPointee, with the
|
|
/// same type qualifiers as FromPtr has on its pointee type. ToType,
|
|
/// if non-empty, will be a pointer to ToType that may or may not have
|
|
/// the right set of qualifiers on its pointee.
|
|
///
|
|
static QualType
|
|
BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
|
|
QualType ToPointee, QualType ToType,
|
|
ASTContext &Context,
|
|
bool StripObjCLifetime = false) {
|
|
assert((FromPtr->getTypeClass() == Type::Pointer ||
|
|
FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
|
|
"Invalid similarly-qualified pointer type");
|
|
|
|
/// Conversions to 'id' subsume cv-qualifier conversions.
|
|
if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
|
|
return ToType.getUnqualifiedType();
|
|
|
|
QualType CanonFromPointee
|
|
= Context.getCanonicalType(FromPtr->getPointeeType());
|
|
QualType CanonToPointee = Context.getCanonicalType(ToPointee);
|
|
Qualifiers Quals = CanonFromPointee.getQualifiers();
|
|
|
|
if (StripObjCLifetime)
|
|
Quals.removeObjCLifetime();
|
|
|
|
// Exact qualifier match -> return the pointer type we're converting to.
|
|
if (CanonToPointee.getLocalQualifiers() == Quals) {
|
|
// ToType is exactly what we need. Return it.
|
|
if (!ToType.isNull())
|
|
return ToType.getUnqualifiedType();
|
|
|
|
// Build a pointer to ToPointee. It has the right qualifiers
|
|
// already.
|
|
if (isa<ObjCObjectPointerType>(ToType))
|
|
return Context.getObjCObjectPointerType(ToPointee);
|
|
return Context.getPointerType(ToPointee);
|
|
}
|
|
|
|
// Just build a canonical type that has the right qualifiers.
|
|
QualType QualifiedCanonToPointee
|
|
= Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
|
|
|
|
if (isa<ObjCObjectPointerType>(ToType))
|
|
return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
|
|
return Context.getPointerType(QualifiedCanonToPointee);
|
|
}
|
|
|
|
static bool isNullPointerConstantForConversion(Expr *Expr,
|
|
bool InOverloadResolution,
|
|
ASTContext &Context) {
|
|
// Handle value-dependent integral null pointer constants correctly.
|
|
// http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
|
|
if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
|
|
Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
|
|
return !InOverloadResolution;
|
|
|
|
return Expr->isNullPointerConstant(Context,
|
|
InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
|
|
: Expr::NPC_ValueDependentIsNull);
|
|
}
|
|
|
|
/// IsPointerConversion - Determines whether the conversion of the
|
|
/// expression From, which has the (possibly adjusted) type FromType,
|
|
/// can be converted to the type ToType via a pointer conversion (C++
|
|
/// 4.10). If so, returns true and places the converted type (that
|
|
/// might differ from ToType in its cv-qualifiers at some level) into
|
|
/// ConvertedType.
|
|
///
|
|
/// This routine also supports conversions to and from block pointers
|
|
/// and conversions with Objective-C's 'id', 'id<protocols...>', and
|
|
/// pointers to interfaces. FIXME: Once we've determined the
|
|
/// appropriate overloading rules for Objective-C, we may want to
|
|
/// split the Objective-C checks into a different routine; however,
|
|
/// GCC seems to consider all of these conversions to be pointer
|
|
/// conversions, so for now they live here. IncompatibleObjC will be
|
|
/// set if the conversion is an allowed Objective-C conversion that
|
|
/// should result in a warning.
|
|
bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
|
|
bool InOverloadResolution,
|
|
QualType& ConvertedType,
|
|
bool &IncompatibleObjC) {
|
|
IncompatibleObjC = false;
|
|
if (isObjCPointerConversion(FromType, ToType, ConvertedType,
|
|
IncompatibleObjC))
|
|
return true;
|
|
|
|
// Conversion from a null pointer constant to any Objective-C pointer type.
|
|
if (ToType->isObjCObjectPointerType() &&
|
|
isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
|
|
ConvertedType = ToType;
|
|
return true;
|
|
}
|
|
|
|
// Blocks: Block pointers can be converted to void*.
|
|
if (FromType->isBlockPointerType() && ToType->isPointerType() &&
|
|
ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
|
|
ConvertedType = ToType;
|
|
return true;
|
|
}
|
|
// Blocks: A null pointer constant can be converted to a block
|
|
// pointer type.
|
|
if (ToType->isBlockPointerType() &&
|
|
isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
|
|
ConvertedType = ToType;
|
|
return true;
|
|
}
|
|
|
|
// If the left-hand-side is nullptr_t, the right side can be a null
|
|
// pointer constant.
|
|
if (ToType->isNullPtrType() &&
|
|
isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
|
|
ConvertedType = ToType;
|
|
return true;
|
|
}
|
|
|
|
const PointerType* ToTypePtr = ToType->getAs<PointerType>();
|
|
if (!ToTypePtr)
|
|
return false;
|
|
|
|
// A null pointer constant can be converted to a pointer type (C++ 4.10p1).
|
|
if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
|
|
ConvertedType = ToType;
|
|
return true;
|
|
}
|
|
|
|
// Beyond this point, both types need to be pointers
|
|
// , including objective-c pointers.
|
|
QualType ToPointeeType = ToTypePtr->getPointeeType();
|
|
if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
|
|
!getLangOpts().ObjCAutoRefCount) {
|
|
ConvertedType = BuildSimilarlyQualifiedPointerType(
|
|
FromType->getAs<ObjCObjectPointerType>(),
|
|
ToPointeeType,
|
|
ToType, Context);
|
|
return true;
|
|
}
|
|
const PointerType *FromTypePtr = FromType->getAs<PointerType>();
|
|
if (!FromTypePtr)
|
|
return false;
|
|
|
|
QualType FromPointeeType = FromTypePtr->getPointeeType();
|
|
|
|
// If the unqualified pointee types are the same, this can't be a
|
|
// pointer conversion, so don't do all of the work below.
|
|
if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
|
|
return false;
|
|
|
|
// An rvalue of type "pointer to cv T," where T is an object type,
|
|
// can be converted to an rvalue of type "pointer to cv void" (C++
|
|
// 4.10p2).
|
|
if (FromPointeeType->isIncompleteOrObjectType() &&
|
|
ToPointeeType->isVoidType()) {
|
|
ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
|
|
ToPointeeType,
|
|
ToType, Context,
|
|
/*StripObjCLifetime=*/true);
|
|
return true;
|
|
}
|
|
|
|
// MSVC allows implicit function to void* type conversion.
|
|
if (getLangOpts().MicrosoftExt && FromPointeeType->isFunctionType() &&
|
|
ToPointeeType->isVoidType()) {
|
|
ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
|
|
ToPointeeType,
|
|
ToType, Context);
|
|
return true;
|
|
}
|
|
|
|
// When we're overloading in C, we allow a special kind of pointer
|
|
// conversion for compatible-but-not-identical pointee types.
|
|
if (!getLangOpts().CPlusPlus &&
|
|
Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
|
|
ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
|
|
ToPointeeType,
|
|
ToType, Context);
|
|
return true;
|
|
}
|
|
|
|
// C++ [conv.ptr]p3:
|
|
//
|
|
// An rvalue of type "pointer to cv D," where D is a class type,
|
|
// can be converted to an rvalue of type "pointer to cv B," where
|
|
// B is a base class (clause 10) of D. If B is an inaccessible
|
|
// (clause 11) or ambiguous (10.2) base class of D, a program that
|
|
// necessitates this conversion is ill-formed. The result of the
|
|
// conversion is a pointer to the base class sub-object of the
|
|
// derived class object. The null pointer value is converted to
|
|
// the null pointer value of the destination type.
|
|
//
|
|
// Note that we do not check for ambiguity or inaccessibility
|
|
// here. That is handled by CheckPointerConversion.
|
|
if (getLangOpts().CPlusPlus &&
|
|
FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
|
|
!Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
|
|
!RequireCompleteType(From->getLocStart(), FromPointeeType, 0) &&
|
|
IsDerivedFrom(FromPointeeType, ToPointeeType)) {
|
|
ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
|
|
ToPointeeType,
|
|
ToType, Context);
|
|
return true;
|
|
}
|
|
|
|
if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
|
|
Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
|
|
ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
|
|
ToPointeeType,
|
|
ToType, Context);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief Adopt the given qualifiers for the given type.
|
|
static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
|
|
Qualifiers TQs = T.getQualifiers();
|
|
|
|
// Check whether qualifiers already match.
|
|
if (TQs == Qs)
|
|
return T;
|
|
|
|
if (Qs.compatiblyIncludes(TQs))
|
|
return Context.getQualifiedType(T, Qs);
|
|
|
|
return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
|
|
}
|
|
|
|
/// isObjCPointerConversion - Determines whether this is an
|
|
/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
|
|
/// with the same arguments and return values.
|
|
bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
|
|
QualType& ConvertedType,
|
|
bool &IncompatibleObjC) {
|
|
if (!getLangOpts().ObjC1)
|
|
return false;
|
|
|
|
// The set of qualifiers on the type we're converting from.
|
|
Qualifiers FromQualifiers = FromType.getQualifiers();
|
|
|
|
// First, we handle all conversions on ObjC object pointer types.
|
|
const ObjCObjectPointerType* ToObjCPtr =
|
|
ToType->getAs<ObjCObjectPointerType>();
|
|
const ObjCObjectPointerType *FromObjCPtr =
|
|
FromType->getAs<ObjCObjectPointerType>();
|
|
|
|
if (ToObjCPtr && FromObjCPtr) {
|
|
// If the pointee types are the same (ignoring qualifications),
|
|
// then this is not a pointer conversion.
|
|
if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
|
|
FromObjCPtr->getPointeeType()))
|
|
return false;
|
|
|
|
// Check for compatible
|
|
// Objective C++: We're able to convert between "id" or "Class" and a
|
|
// pointer to any interface (in both directions).
|
|
if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
|
|
ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
|
|
return true;
|
|
}
|
|
// Conversions with Objective-C's id<...>.
|
|
if ((FromObjCPtr->isObjCQualifiedIdType() ||
|
|
ToObjCPtr->isObjCQualifiedIdType()) &&
|
|
Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
|
|
/*compare=*/false)) {
|
|
ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
|
|
return true;
|
|
}
|
|
// Objective C++: We're able to convert from a pointer to an
|
|
// interface to a pointer to a different interface.
|
|
if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
|
|
const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
|
|
const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
|
|
if (getLangOpts().CPlusPlus && LHS && RHS &&
|
|
!ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
|
|
FromObjCPtr->getPointeeType()))
|
|
return false;
|
|
ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
|
|
ToObjCPtr->getPointeeType(),
|
|
ToType, Context);
|
|
ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
|
|
return true;
|
|
}
|
|
|
|
if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
|
|
// Okay: this is some kind of implicit downcast of Objective-C
|
|
// interfaces, which is permitted. However, we're going to
|
|
// complain about it.
|
|
IncompatibleObjC = true;
|
|
ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
|
|
ToObjCPtr->getPointeeType(),
|
|
ToType, Context);
|
|
ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
|
|
return true;
|
|
}
|
|
}
|
|
// Beyond this point, both types need to be C pointers or block pointers.
|
|
QualType ToPointeeType;
|
|
if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
|
|
ToPointeeType = ToCPtr->getPointeeType();
|
|
else if (const BlockPointerType *ToBlockPtr =
|
|
ToType->getAs<BlockPointerType>()) {
|
|
// Objective C++: We're able to convert from a pointer to any object
|
|
// to a block pointer type.
|
|
if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
|
|
ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
|
|
return true;
|
|
}
|
|
ToPointeeType = ToBlockPtr->getPointeeType();
|
|
}
|
|
else if (FromType->getAs<BlockPointerType>() &&
|
|
ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
|
|
// Objective C++: We're able to convert from a block pointer type to a
|
|
// pointer to any object.
|
|
ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
|
|
return true;
|
|
}
|
|
else
|
|
return false;
|
|
|
|
QualType FromPointeeType;
|
|
if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
|
|
FromPointeeType = FromCPtr->getPointeeType();
|
|
else if (const BlockPointerType *FromBlockPtr =
|
|
FromType->getAs<BlockPointerType>())
|
|
FromPointeeType = FromBlockPtr->getPointeeType();
|
|
else
|
|
return false;
|
|
|
|
// If we have pointers to pointers, recursively check whether this
|
|
// is an Objective-C conversion.
|
|
if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
|
|
isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
|
|
IncompatibleObjC)) {
|
|
// We always complain about this conversion.
|
|
IncompatibleObjC = true;
|
|
ConvertedType = Context.getPointerType(ConvertedType);
|
|
ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
|
|
return true;
|
|
}
|
|
// Allow conversion of pointee being objective-c pointer to another one;
|
|
// as in I* to id.
|
|
if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
|
|
ToPointeeType->getAs<ObjCObjectPointerType>() &&
|
|
isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
|
|
IncompatibleObjC)) {
|
|
|
|
ConvertedType = Context.getPointerType(ConvertedType);
|
|
ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
|
|
return true;
|
|
}
|
|
|
|
// If we have pointers to functions or blocks, check whether the only
|
|
// differences in the argument and result types are in Objective-C
|
|
// pointer conversions. If so, we permit the conversion (but
|
|
// complain about it).
|
|
const FunctionProtoType *FromFunctionType
|
|
= FromPointeeType->getAs<FunctionProtoType>();
|
|
const FunctionProtoType *ToFunctionType
|
|
= ToPointeeType->getAs<FunctionProtoType>();
|
|
if (FromFunctionType && ToFunctionType) {
|
|
// If the function types are exactly the same, this isn't an
|
|
// Objective-C pointer conversion.
|
|
if (Context.getCanonicalType(FromPointeeType)
|
|
== Context.getCanonicalType(ToPointeeType))
|
|
return false;
|
|
|
|
// Perform the quick checks that will tell us whether these
|
|
// function types are obviously different.
|
|
if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
|
|
FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
|
|
FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
|
|
return false;
|
|
|
|
bool HasObjCConversion = false;
|
|
if (Context.getCanonicalType(FromFunctionType->getResultType())
|
|
== Context.getCanonicalType(ToFunctionType->getResultType())) {
|
|
// Okay, the types match exactly. Nothing to do.
|
|
} else if (isObjCPointerConversion(FromFunctionType->getResultType(),
|
|
ToFunctionType->getResultType(),
|
|
ConvertedType, IncompatibleObjC)) {
|
|
// Okay, we have an Objective-C pointer conversion.
|
|
HasObjCConversion = true;
|
|
} else {
|
|
// Function types are too different. Abort.
|
|
return false;
|
|
}
|
|
|
|
// Check argument types.
|
|
for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
|
|
ArgIdx != NumArgs; ++ArgIdx) {
|
|
QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
|
|
QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
|
|
if (Context.getCanonicalType(FromArgType)
|
|
== Context.getCanonicalType(ToArgType)) {
|
|
// Okay, the types match exactly. Nothing to do.
|
|
} else if (isObjCPointerConversion(FromArgType, ToArgType,
|
|
ConvertedType, IncompatibleObjC)) {
|
|
// Okay, we have an Objective-C pointer conversion.
|
|
HasObjCConversion = true;
|
|
} else {
|
|
// Argument types are too different. Abort.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (HasObjCConversion) {
|
|
// We had an Objective-C conversion. Allow this pointer
|
|
// conversion, but complain about it.
|
|
ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
|
|
IncompatibleObjC = true;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief Determine whether this is an Objective-C writeback conversion,
|
|
/// used for parameter passing when performing automatic reference counting.
|
|
///
|
|
/// \param FromType The type we're converting form.
|
|
///
|
|
/// \param ToType The type we're converting to.
|
|
///
|
|
/// \param ConvertedType The type that will be produced after applying
|
|
/// this conversion.
|
|
bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
|
|
QualType &ConvertedType) {
|
|
if (!getLangOpts().ObjCAutoRefCount ||
|
|
Context.hasSameUnqualifiedType(FromType, ToType))
|
|
return false;
|
|
|
|
// Parameter must be a pointer to __autoreleasing (with no other qualifiers).
|
|
QualType ToPointee;
|
|
if (const PointerType *ToPointer = ToType->getAs<PointerType>())
|
|
ToPointee = ToPointer->getPointeeType();
|
|
else
|
|
return false;
|
|
|
|
Qualifiers ToQuals = ToPointee.getQualifiers();
|
|
if (!ToPointee->isObjCLifetimeType() ||
|
|
ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
|
|
!ToQuals.withoutObjCLifetime().empty())
|
|
return false;
|
|
|
|
// Argument must be a pointer to __strong to __weak.
|
|
QualType FromPointee;
|
|
if (const PointerType *FromPointer = FromType->getAs<PointerType>())
|
|
FromPointee = FromPointer->getPointeeType();
|
|
else
|
|
return false;
|
|
|
|
Qualifiers FromQuals = FromPointee.getQualifiers();
|
|
if (!FromPointee->isObjCLifetimeType() ||
|
|
(FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
|
|
FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
|
|
return false;
|
|
|
|
// Make sure that we have compatible qualifiers.
|
|
FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
|
|
if (!ToQuals.compatiblyIncludes(FromQuals))
|
|
return false;
|
|
|
|
// Remove qualifiers from the pointee type we're converting from; they
|
|
// aren't used in the compatibility check belong, and we'll be adding back
|
|
// qualifiers (with __autoreleasing) if the compatibility check succeeds.
|
|
FromPointee = FromPointee.getUnqualifiedType();
|
|
|
|
// The unqualified form of the pointee types must be compatible.
|
|
ToPointee = ToPointee.getUnqualifiedType();
|
|
bool IncompatibleObjC;
|
|
if (Context.typesAreCompatible(FromPointee, ToPointee))
|
|
FromPointee = ToPointee;
|
|
else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
|
|
IncompatibleObjC))
|
|
return false;
|
|
|
|
/// \brief Construct the type we're converting to, which is a pointer to
|
|
/// __autoreleasing pointee.
|
|
FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
|
|
ConvertedType = Context.getPointerType(FromPointee);
|
|
return true;
|
|
}
|
|
|
|
bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
|
|
QualType& ConvertedType) {
|
|
QualType ToPointeeType;
|
|
if (const BlockPointerType *ToBlockPtr =
|
|
ToType->getAs<BlockPointerType>())
|
|
ToPointeeType = ToBlockPtr->getPointeeType();
|
|
else
|
|
return false;
|
|
|
|
QualType FromPointeeType;
|
|
if (const BlockPointerType *FromBlockPtr =
|
|
FromType->getAs<BlockPointerType>())
|
|
FromPointeeType = FromBlockPtr->getPointeeType();
|
|
else
|
|
return false;
|
|
// We have pointer to blocks, check whether the only
|
|
// differences in the argument and result types are in Objective-C
|
|
// pointer conversions. If so, we permit the conversion.
|
|
|
|
const FunctionProtoType *FromFunctionType
|
|
= FromPointeeType->getAs<FunctionProtoType>();
|
|
const FunctionProtoType *ToFunctionType
|
|
= ToPointeeType->getAs<FunctionProtoType>();
|
|
|
|
if (!FromFunctionType || !ToFunctionType)
|
|
return false;
|
|
|
|
if (Context.hasSameType(FromPointeeType, ToPointeeType))
|
|
return true;
|
|
|
|
// Perform the quick checks that will tell us whether these
|
|
// function types are obviously different.
|
|
if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
|
|
FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
|
|
return false;
|
|
|
|
FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
|
|
FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
|
|
if (FromEInfo != ToEInfo)
|
|
return false;
|
|
|
|
bool IncompatibleObjC = false;
|
|
if (Context.hasSameType(FromFunctionType->getResultType(),
|
|
ToFunctionType->getResultType())) {
|
|
// Okay, the types match exactly. Nothing to do.
|
|
} else {
|
|
QualType RHS = FromFunctionType->getResultType();
|
|
QualType LHS = ToFunctionType->getResultType();
|
|
if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
|
|
!RHS.hasQualifiers() && LHS.hasQualifiers())
|
|
LHS = LHS.getUnqualifiedType();
|
|
|
|
if (Context.hasSameType(RHS,LHS)) {
|
|
// OK exact match.
|
|
} else if (isObjCPointerConversion(RHS, LHS,
|
|
ConvertedType, IncompatibleObjC)) {
|
|
if (IncompatibleObjC)
|
|
return false;
|
|
// Okay, we have an Objective-C pointer conversion.
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
|
|
// Check argument types.
|
|
for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
|
|
ArgIdx != NumArgs; ++ArgIdx) {
|
|
IncompatibleObjC = false;
|
|
QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
|
|
QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
|
|
if (Context.hasSameType(FromArgType, ToArgType)) {
|
|
// Okay, the types match exactly. Nothing to do.
|
|
} else if (isObjCPointerConversion(ToArgType, FromArgType,
|
|
ConvertedType, IncompatibleObjC)) {
|
|
if (IncompatibleObjC)
|
|
return false;
|
|
// Okay, we have an Objective-C pointer conversion.
|
|
} else
|
|
// Argument types are too different. Abort.
|
|
return false;
|
|
}
|
|
if (LangOpts.ObjCAutoRefCount &&
|
|
!Context.FunctionTypesMatchOnNSConsumedAttrs(FromFunctionType,
|
|
ToFunctionType))
|
|
return false;
|
|
|
|
ConvertedType = ToType;
|
|
return true;
|
|
}
|
|
|
|
enum {
|
|
ft_default,
|
|
ft_different_class,
|
|
ft_parameter_arity,
|
|
ft_parameter_mismatch,
|
|
ft_return_type,
|
|
ft_qualifer_mismatch
|
|
};
|
|
|
|
/// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
|
|
/// function types. Catches different number of parameter, mismatch in
|
|
/// parameter types, and different return types.
|
|
void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
|
|
QualType FromType, QualType ToType) {
|
|
// If either type is not valid, include no extra info.
|
|
if (FromType.isNull() || ToType.isNull()) {
|
|
PDiag << ft_default;
|
|
return;
|
|
}
|
|
|
|
// Get the function type from the pointers.
|
|
if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
|
|
const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
|
|
*ToMember = ToType->getAs<MemberPointerType>();
|
|
if (FromMember->getClass() != ToMember->getClass()) {
|
|
PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
|
|
<< QualType(FromMember->getClass(), 0);
|
|
return;
|
|
}
|
|
FromType = FromMember->getPointeeType();
|
|
ToType = ToMember->getPointeeType();
|
|
}
|
|
|
|
if (FromType->isPointerType())
|
|
FromType = FromType->getPointeeType();
|
|
if (ToType->isPointerType())
|
|
ToType = ToType->getPointeeType();
|
|
|
|
// Remove references.
|
|
FromType = FromType.getNonReferenceType();
|
|
ToType = ToType.getNonReferenceType();
|
|
|
|
// Don't print extra info for non-specialized template functions.
|
|
if (FromType->isInstantiationDependentType() &&
|
|
!FromType->getAs<TemplateSpecializationType>()) {
|
|
PDiag << ft_default;
|
|
return;
|
|
}
|
|
|
|
// No extra info for same types.
|
|
if (Context.hasSameType(FromType, ToType)) {
|
|
PDiag << ft_default;
|
|
return;
|
|
}
|
|
|
|
const FunctionProtoType *FromFunction = FromType->getAs<FunctionProtoType>(),
|
|
*ToFunction = ToType->getAs<FunctionProtoType>();
|
|
|
|
// Both types need to be function types.
|
|
if (!FromFunction || !ToFunction) {
|
|
PDiag << ft_default;
|
|
return;
|
|
}
|
|
|
|
if (FromFunction->getNumArgs() != ToFunction->getNumArgs()) {
|
|
PDiag << ft_parameter_arity << ToFunction->getNumArgs()
|
|
<< FromFunction->getNumArgs();
|
|
return;
|
|
}
|
|
|
|
// Handle different parameter types.
|
|
unsigned ArgPos;
|
|
if (!FunctionArgTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
|
|
PDiag << ft_parameter_mismatch << ArgPos + 1
|
|
<< ToFunction->getArgType(ArgPos)
|
|
<< FromFunction->getArgType(ArgPos);
|
|
return;
|
|
}
|
|
|
|
// Handle different return type.
|
|
if (!Context.hasSameType(FromFunction->getResultType(),
|
|
ToFunction->getResultType())) {
|
|
PDiag << ft_return_type << ToFunction->getResultType()
|
|
<< FromFunction->getResultType();
|
|
return;
|
|
}
|
|
|
|
unsigned FromQuals = FromFunction->getTypeQuals(),
|
|
ToQuals = ToFunction->getTypeQuals();
|
|
if (FromQuals != ToQuals) {
|
|
PDiag << ft_qualifer_mismatch << ToQuals << FromQuals;
|
|
return;
|
|
}
|
|
|
|
// Unable to find a difference, so add no extra info.
|
|
PDiag << ft_default;
|
|
}
|
|
|
|
/// FunctionArgTypesAreEqual - This routine checks two function proto types
|
|
/// for equality of their argument types. Caller has already checked that
|
|
/// they have same number of arguments. This routine assumes that Objective-C
|
|
/// pointer types which only differ in their protocol qualifiers are equal.
|
|
/// If the parameters are different, ArgPos will have the the parameter index
|
|
/// of the first different parameter.
|
|
bool Sema::FunctionArgTypesAreEqual(const FunctionProtoType *OldType,
|
|
const FunctionProtoType *NewType,
|
|
unsigned *ArgPos) {
|
|
if (!getLangOpts().ObjC1) {
|
|
for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
|
|
N = NewType->arg_type_begin(),
|
|
E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
|
|
if (!Context.hasSameType(*O, *N)) {
|
|
if (ArgPos) *ArgPos = O - OldType->arg_type_begin();
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
|
|
N = NewType->arg_type_begin(),
|
|
E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
|
|
QualType ToType = (*O);
|
|
QualType FromType = (*N);
|
|
if (!Context.hasSameType(ToType, FromType)) {
|
|
if (const PointerType *PTTo = ToType->getAs<PointerType>()) {
|
|
if (const PointerType *PTFr = FromType->getAs<PointerType>())
|
|
if ((PTTo->getPointeeType()->isObjCQualifiedIdType() &&
|
|
PTFr->getPointeeType()->isObjCQualifiedIdType()) ||
|
|
(PTTo->getPointeeType()->isObjCQualifiedClassType() &&
|
|
PTFr->getPointeeType()->isObjCQualifiedClassType()))
|
|
continue;
|
|
}
|
|
else if (const ObjCObjectPointerType *PTTo =
|
|
ToType->getAs<ObjCObjectPointerType>()) {
|
|
if (const ObjCObjectPointerType *PTFr =
|
|
FromType->getAs<ObjCObjectPointerType>())
|
|
if (Context.hasSameUnqualifiedType(
|
|
PTTo->getObjectType()->getBaseType(),
|
|
PTFr->getObjectType()->getBaseType()))
|
|
continue;
|
|
}
|
|
if (ArgPos) *ArgPos = O - OldType->arg_type_begin();
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// CheckPointerConversion - Check the pointer conversion from the
|
|
/// expression From to the type ToType. This routine checks for
|
|
/// ambiguous or inaccessible derived-to-base pointer
|
|
/// conversions for which IsPointerConversion has already returned
|
|
/// true. It returns true and produces a diagnostic if there was an
|
|
/// error, or returns false otherwise.
|
|
bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
|
|
CastKind &Kind,
|
|
CXXCastPath& BasePath,
|
|
bool IgnoreBaseAccess) {
|
|
QualType FromType = From->getType();
|
|
bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
|
|
|
|
Kind = CK_BitCast;
|
|
|
|
if (!IsCStyleOrFunctionalCast &&
|
|
Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy) &&
|
|
From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
|
|
DiagRuntimeBehavior(From->getExprLoc(), From,
|
|
PDiag(diag::warn_impcast_bool_to_null_pointer)
|
|
<< ToType << From->getSourceRange());
|
|
|
|
if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
|
|
if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
|
|
QualType FromPointeeType = FromPtrType->getPointeeType(),
|
|
ToPointeeType = ToPtrType->getPointeeType();
|
|
|
|
if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
|
|
!Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
|
|
// We must have a derived-to-base conversion. Check an
|
|
// ambiguous or inaccessible conversion.
|
|
if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
|
|
From->getExprLoc(),
|
|
From->getSourceRange(), &BasePath,
|
|
IgnoreBaseAccess))
|
|
return true;
|
|
|
|
// The conversion was successful.
|
|
Kind = CK_DerivedToBase;
|
|
}
|
|
}
|
|
} else if (const ObjCObjectPointerType *ToPtrType =
|
|
ToType->getAs<ObjCObjectPointerType>()) {
|
|
if (const ObjCObjectPointerType *FromPtrType =
|
|
FromType->getAs<ObjCObjectPointerType>()) {
|
|
// Objective-C++ conversions are always okay.
|
|
// FIXME: We should have a different class of conversions for the
|
|
// Objective-C++ implicit conversions.
|
|
if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
|
|
return false;
|
|
} else if (FromType->isBlockPointerType()) {
|
|
Kind = CK_BlockPointerToObjCPointerCast;
|
|
} else {
|
|
Kind = CK_CPointerToObjCPointerCast;
|
|
}
|
|
} else if (ToType->isBlockPointerType()) {
|
|
if (!FromType->isBlockPointerType())
|
|
Kind = CK_AnyPointerToBlockPointerCast;
|
|
}
|
|
|
|
// We shouldn't fall into this case unless it's valid for other
|
|
// reasons.
|
|
if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
|
|
Kind = CK_NullToPointer;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// IsMemberPointerConversion - Determines whether the conversion of the
|
|
/// expression From, which has the (possibly adjusted) type FromType, can be
|
|
/// converted to the type ToType via a member pointer conversion (C++ 4.11).
|
|
/// If so, returns true and places the converted type (that might differ from
|
|
/// ToType in its cv-qualifiers at some level) into ConvertedType.
|
|
bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
|
|
QualType ToType,
|
|
bool InOverloadResolution,
|
|
QualType &ConvertedType) {
|
|
const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
|
|
if (!ToTypePtr)
|
|
return false;
|
|
|
|
// A null pointer constant can be converted to a member pointer (C++ 4.11p1)
|
|
if (From->isNullPointerConstant(Context,
|
|
InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
|
|
: Expr::NPC_ValueDependentIsNull)) {
|
|
ConvertedType = ToType;
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, both types have to be member pointers.
|
|
const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
|
|
if (!FromTypePtr)
|
|
return false;
|
|
|
|
// A pointer to member of B can be converted to a pointer to member of D,
|
|
// where D is derived from B (C++ 4.11p2).
|
|
QualType FromClass(FromTypePtr->getClass(), 0);
|
|
QualType ToClass(ToTypePtr->getClass(), 0);
|
|
|
|
if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
|
|
!RequireCompleteType(From->getLocStart(), ToClass, 0) &&
|
|
IsDerivedFrom(ToClass, FromClass)) {
|
|
ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
|
|
ToClass.getTypePtr());
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// CheckMemberPointerConversion - Check the member pointer conversion from the
|
|
/// expression From to the type ToType. This routine checks for ambiguous or
|
|
/// virtual or inaccessible base-to-derived member pointer conversions
|
|
/// for which IsMemberPointerConversion has already returned true. It returns
|
|
/// true and produces a diagnostic if there was an error, or returns false
|
|
/// otherwise.
|
|
bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
|
|
CastKind &Kind,
|
|
CXXCastPath &BasePath,
|
|
bool IgnoreBaseAccess) {
|
|
QualType FromType = From->getType();
|
|
const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
|
|
if (!FromPtrType) {
|
|
// This must be a null pointer to member pointer conversion
|
|
assert(From->isNullPointerConstant(Context,
|
|
Expr::NPC_ValueDependentIsNull) &&
|
|
"Expr must be null pointer constant!");
|
|
Kind = CK_NullToMemberPointer;
|
|
return false;
|
|
}
|
|
|
|
const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
|
|
assert(ToPtrType && "No member pointer cast has a target type "
|
|
"that is not a member pointer.");
|
|
|
|
QualType FromClass = QualType(FromPtrType->getClass(), 0);
|
|
QualType ToClass = QualType(ToPtrType->getClass(), 0);
|
|
|
|
// FIXME: What about dependent types?
|
|
assert(FromClass->isRecordType() && "Pointer into non-class.");
|
|
assert(ToClass->isRecordType() && "Pointer into non-class.");
|
|
|
|
CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
|
|
/*DetectVirtual=*/true);
|
|
bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
|
|
assert(DerivationOkay &&
|
|
"Should not have been called if derivation isn't OK.");
|
|
(void)DerivationOkay;
|
|
|
|
if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
|
|
getUnqualifiedType())) {
|
|
std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
|
|
Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
|
|
<< 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
if (const RecordType *VBase = Paths.getDetectedVirtual()) {
|
|
Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
|
|
<< FromClass << ToClass << QualType(VBase, 0)
|
|
<< From->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
if (!IgnoreBaseAccess)
|
|
CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
|
|
Paths.front(),
|
|
diag::err_downcast_from_inaccessible_base);
|
|
|
|
// Must be a base to derived member conversion.
|
|
BuildBasePathArray(Paths, BasePath);
|
|
Kind = CK_BaseToDerivedMemberPointer;
|
|
return false;
|
|
}
|
|
|
|
/// IsQualificationConversion - Determines whether the conversion from
|
|
/// an rvalue of type FromType to ToType is a qualification conversion
|
|
/// (C++ 4.4).
|
|
///
|
|
/// \param ObjCLifetimeConversion Output parameter that will be set to indicate
|
|
/// when the qualification conversion involves a change in the Objective-C
|
|
/// object lifetime.
|
|
bool
|
|
Sema::IsQualificationConversion(QualType FromType, QualType ToType,
|
|
bool CStyle, bool &ObjCLifetimeConversion) {
|
|
FromType = Context.getCanonicalType(FromType);
|
|
ToType = Context.getCanonicalType(ToType);
|
|
ObjCLifetimeConversion = false;
|
|
|
|
// If FromType and ToType are the same type, this is not a
|
|
// qualification conversion.
|
|
if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
|
|
return false;
|
|
|
|
// (C++ 4.4p4):
|
|
// A conversion can add cv-qualifiers at levels other than the first
|
|
// in multi-level pointers, subject to the following rules: [...]
|
|
bool PreviousToQualsIncludeConst = true;
|
|
bool UnwrappedAnyPointer = false;
|
|
while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
|
|
// Within each iteration of the loop, we check the qualifiers to
|
|
// determine if this still looks like a qualification
|
|
// conversion. Then, if all is well, we unwrap one more level of
|
|
// pointers or pointers-to-members and do it all again
|
|
// until there are no more pointers or pointers-to-members left to
|
|
// unwrap.
|
|
UnwrappedAnyPointer = true;
|
|
|
|
Qualifiers FromQuals = FromType.getQualifiers();
|
|
Qualifiers ToQuals = ToType.getQualifiers();
|
|
|
|
// Objective-C ARC:
|
|
// Check Objective-C lifetime conversions.
|
|
if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
|
|
UnwrappedAnyPointer) {
|
|
if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
|
|
ObjCLifetimeConversion = true;
|
|
FromQuals.removeObjCLifetime();
|
|
ToQuals.removeObjCLifetime();
|
|
} else {
|
|
// Qualification conversions cannot cast between different
|
|
// Objective-C lifetime qualifiers.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Allow addition/removal of GC attributes but not changing GC attributes.
|
|
if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
|
|
(!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
|
|
FromQuals.removeObjCGCAttr();
|
|
ToQuals.removeObjCGCAttr();
|
|
}
|
|
|
|
// -- for every j > 0, if const is in cv 1,j then const is in cv
|
|
// 2,j, and similarly for volatile.
|
|
if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
|
|
return false;
|
|
|
|
// -- if the cv 1,j and cv 2,j are different, then const is in
|
|
// every cv for 0 < k < j.
|
|
if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
|
|
&& !PreviousToQualsIncludeConst)
|
|
return false;
|
|
|
|
// Keep track of whether all prior cv-qualifiers in the "to" type
|
|
// include const.
|
|
PreviousToQualsIncludeConst
|
|
= PreviousToQualsIncludeConst && ToQuals.hasConst();
|
|
}
|
|
|
|
// We are left with FromType and ToType being the pointee types
|
|
// after unwrapping the original FromType and ToType the same number
|
|
// of types. If we unwrapped any pointers, and if FromType and
|
|
// ToType have the same unqualified type (since we checked
|
|
// qualifiers above), then this is a qualification conversion.
|
|
return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
|
|
}
|
|
|
|
/// \brief - Determine whether this is a conversion from a scalar type to an
|
|
/// atomic type.
|
|
///
|
|
/// If successful, updates \c SCS's second and third steps in the conversion
|
|
/// sequence to finish the conversion.
|
|
static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
|
|
bool InOverloadResolution,
|
|
StandardConversionSequence &SCS,
|
|
bool CStyle) {
|
|
const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
|
|
if (!ToAtomic)
|
|
return false;
|
|
|
|
StandardConversionSequence InnerSCS;
|
|
if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
|
|
InOverloadResolution, InnerSCS,
|
|
CStyle, /*AllowObjCWritebackConversion=*/false))
|
|
return false;
|
|
|
|
SCS.Second = InnerSCS.Second;
|
|
SCS.setToType(1, InnerSCS.getToType(1));
|
|
SCS.Third = InnerSCS.Third;
|
|
SCS.QualificationIncludesObjCLifetime
|
|
= InnerSCS.QualificationIncludesObjCLifetime;
|
|
SCS.setToType(2, InnerSCS.getToType(2));
|
|
return true;
|
|
}
|
|
|
|
static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
|
|
CXXConstructorDecl *Constructor,
|
|
QualType Type) {
|
|
const FunctionProtoType *CtorType =
|
|
Constructor->getType()->getAs<FunctionProtoType>();
|
|
if (CtorType->getNumArgs() > 0) {
|
|
QualType FirstArg = CtorType->getArgType(0);
|
|
if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static OverloadingResult
|
|
IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
|
|
CXXRecordDecl *To,
|
|
UserDefinedConversionSequence &User,
|
|
OverloadCandidateSet &CandidateSet,
|
|
bool AllowExplicit) {
|
|
DeclContext::lookup_iterator Con, ConEnd;
|
|
for (llvm::tie(Con, ConEnd) = S.LookupConstructors(To);
|
|
Con != ConEnd; ++Con) {
|
|
NamedDecl *D = *Con;
|
|
DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
|
|
|
|
// Find the constructor (which may be a template).
|
|
CXXConstructorDecl *Constructor = 0;
|
|
FunctionTemplateDecl *ConstructorTmpl
|
|
= dyn_cast<FunctionTemplateDecl>(D);
|
|
if (ConstructorTmpl)
|
|
Constructor
|
|
= cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
|
|
else
|
|
Constructor = cast<CXXConstructorDecl>(D);
|
|
|
|
bool Usable = !Constructor->isInvalidDecl() &&
|
|
S.isInitListConstructor(Constructor) &&
|
|
(AllowExplicit || !Constructor->isExplicit());
|
|
if (Usable) {
|
|
// If the first argument is (a reference to) the target type,
|
|
// suppress conversions.
|
|
bool SuppressUserConversions =
|
|
isFirstArgumentCompatibleWithType(S.Context, Constructor, ToType);
|
|
if (ConstructorTmpl)
|
|
S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
|
|
/*ExplicitArgs*/ 0,
|
|
From, CandidateSet,
|
|
SuppressUserConversions);
|
|
else
|
|
S.AddOverloadCandidate(Constructor, FoundDecl,
|
|
From, CandidateSet,
|
|
SuppressUserConversions);
|
|
}
|
|
}
|
|
|
|
bool HadMultipleCandidates = (CandidateSet.size() > 1);
|
|
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
|
|
case OR_Success: {
|
|
// Record the standard conversion we used and the conversion function.
|
|
CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
|
|
S.MarkFunctionReferenced(From->getLocStart(), Constructor);
|
|
|
|
QualType ThisType = Constructor->getThisType(S.Context);
|
|
// Initializer lists don't have conversions as such.
|
|
User.Before.setAsIdentityConversion();
|
|
User.HadMultipleCandidates = HadMultipleCandidates;
|
|
User.ConversionFunction = Constructor;
|
|
User.FoundConversionFunction = Best->FoundDecl;
|
|
User.After.setAsIdentityConversion();
|
|
User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
|
|
User.After.setAllToTypes(ToType);
|
|
return OR_Success;
|
|
}
|
|
|
|
case OR_No_Viable_Function:
|
|
return OR_No_Viable_Function;
|
|
case OR_Deleted:
|
|
return OR_Deleted;
|
|
case OR_Ambiguous:
|
|
return OR_Ambiguous;
|
|
}
|
|
|
|
llvm_unreachable("Invalid OverloadResult!");
|
|
}
|
|
|
|
/// Determines whether there is a user-defined conversion sequence
|
|
/// (C++ [over.ics.user]) that converts expression From to the type
|
|
/// ToType. If such a conversion exists, User will contain the
|
|
/// user-defined conversion sequence that performs such a conversion
|
|
/// and this routine will return true. Otherwise, this routine returns
|
|
/// false and User is unspecified.
|
|
///
|
|
/// \param AllowExplicit true if the conversion should consider C++0x
|
|
/// "explicit" conversion functions as well as non-explicit conversion
|
|
/// functions (C++0x [class.conv.fct]p2).
|
|
static OverloadingResult
|
|
IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
|
|
UserDefinedConversionSequence &User,
|
|
OverloadCandidateSet &CandidateSet,
|
|
bool AllowExplicit) {
|
|
// Whether we will only visit constructors.
|
|
bool ConstructorsOnly = false;
|
|
|
|
// If the type we are conversion to is a class type, enumerate its
|
|
// constructors.
|
|
if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
|
|
// C++ [over.match.ctor]p1:
|
|
// When objects of class type are direct-initialized (8.5), or
|
|
// copy-initialized from an expression of the same or a
|
|
// derived class type (8.5), overload resolution selects the
|
|
// constructor. [...] For copy-initialization, the candidate
|
|
// functions are all the converting constructors (12.3.1) of
|
|
// that class. The argument list is the expression-list within
|
|
// the parentheses of the initializer.
|
|
if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
|
|
(From->getType()->getAs<RecordType>() &&
|
|
S.IsDerivedFrom(From->getType(), ToType)))
|
|
ConstructorsOnly = true;
|
|
|
|
S.RequireCompleteType(From->getLocStart(), ToType, 0);
|
|
// RequireCompleteType may have returned true due to some invalid decl
|
|
// during template instantiation, but ToType may be complete enough now
|
|
// to try to recover.
|
|
if (ToType->isIncompleteType()) {
|
|
// We're not going to find any constructors.
|
|
} else if (CXXRecordDecl *ToRecordDecl
|
|
= dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
|
|
|
|
Expr **Args = &From;
|
|
unsigned NumArgs = 1;
|
|
bool ListInitializing = false;
|
|
if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
|
|
// But first, see if there is an init-list-contructor that will work.
|
|
OverloadingResult Result = IsInitializerListConstructorConversion(
|
|
S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit);
|
|
if (Result != OR_No_Viable_Function)
|
|
return Result;
|
|
// Never mind.
|
|
CandidateSet.clear();
|
|
|
|
// If we're list-initializing, we pass the individual elements as
|
|
// arguments, not the entire list.
|
|
Args = InitList->getInits();
|
|
NumArgs = InitList->getNumInits();
|
|
ListInitializing = true;
|
|
}
|
|
|
|
DeclContext::lookup_iterator Con, ConEnd;
|
|
for (llvm::tie(Con, ConEnd) = S.LookupConstructors(ToRecordDecl);
|
|
Con != ConEnd; ++Con) {
|
|
NamedDecl *D = *Con;
|
|
DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
|
|
|
|
// Find the constructor (which may be a template).
|
|
CXXConstructorDecl *Constructor = 0;
|
|
FunctionTemplateDecl *ConstructorTmpl
|
|
= dyn_cast<FunctionTemplateDecl>(D);
|
|
if (ConstructorTmpl)
|
|
Constructor
|
|
= cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
|
|
else
|
|
Constructor = cast<CXXConstructorDecl>(D);
|
|
|
|
bool Usable = !Constructor->isInvalidDecl();
|
|
if (ListInitializing)
|
|
Usable = Usable && (AllowExplicit || !Constructor->isExplicit());
|
|
else
|
|
Usable = Usable &&Constructor->isConvertingConstructor(AllowExplicit);
|
|
if (Usable) {
|
|
bool SuppressUserConversions = !ConstructorsOnly;
|
|
if (SuppressUserConversions && ListInitializing) {
|
|
SuppressUserConversions = false;
|
|
if (NumArgs == 1) {
|
|
// If the first argument is (a reference to) the target type,
|
|
// suppress conversions.
|
|
SuppressUserConversions = isFirstArgumentCompatibleWithType(
|
|
S.Context, Constructor, ToType);
|
|
}
|
|
}
|
|
if (ConstructorTmpl)
|
|
S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
|
|
/*ExplicitArgs*/ 0,
|
|
llvm::makeArrayRef(Args, NumArgs),
|
|
CandidateSet, SuppressUserConversions);
|
|
else
|
|
// Allow one user-defined conversion when user specifies a
|
|
// From->ToType conversion via an static cast (c-style, etc).
|
|
S.AddOverloadCandidate(Constructor, FoundDecl,
|
|
llvm::makeArrayRef(Args, NumArgs),
|
|
CandidateSet, SuppressUserConversions);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Enumerate conversion functions, if we're allowed to.
|
|
if (ConstructorsOnly || isa<InitListExpr>(From)) {
|
|
} else if (S.RequireCompleteType(From->getLocStart(), From->getType(), 0)) {
|
|
// No conversion functions from incomplete types.
|
|
} else if (const RecordType *FromRecordType
|
|
= From->getType()->getAs<RecordType>()) {
|
|
if (CXXRecordDecl *FromRecordDecl
|
|
= dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
|
|
// Add all of the conversion functions as candidates.
|
|
const UnresolvedSetImpl *Conversions
|
|
= FromRecordDecl->getVisibleConversionFunctions();
|
|
for (UnresolvedSetImpl::iterator I = Conversions->begin(),
|
|
E = Conversions->end(); I != E; ++I) {
|
|
DeclAccessPair FoundDecl = I.getPair();
|
|
NamedDecl *D = FoundDecl.getDecl();
|
|
CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
|
|
if (isa<UsingShadowDecl>(D))
|
|
D = cast<UsingShadowDecl>(D)->getTargetDecl();
|
|
|
|
CXXConversionDecl *Conv;
|
|
FunctionTemplateDecl *ConvTemplate;
|
|
if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
|
|
Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
|
|
else
|
|
Conv = cast<CXXConversionDecl>(D);
|
|
|
|
if (AllowExplicit || !Conv->isExplicit()) {
|
|
if (ConvTemplate)
|
|
S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
|
|
ActingContext, From, ToType,
|
|
CandidateSet);
|
|
else
|
|
S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
|
|
From, ToType, CandidateSet);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool HadMultipleCandidates = (CandidateSet.size() > 1);
|
|
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
|
|
case OR_Success:
|
|
// Record the standard conversion we used and the conversion function.
|
|
if (CXXConstructorDecl *Constructor
|
|
= dyn_cast<CXXConstructorDecl>(Best->Function)) {
|
|
S.MarkFunctionReferenced(From->getLocStart(), Constructor);
|
|
|
|
// C++ [over.ics.user]p1:
|
|
// If the user-defined conversion is specified by a
|
|
// constructor (12.3.1), the initial standard conversion
|
|
// sequence converts the source type to the type required by
|
|
// the argument of the constructor.
|
|
//
|
|
QualType ThisType = Constructor->getThisType(S.Context);
|
|
if (isa<InitListExpr>(From)) {
|
|
// Initializer lists don't have conversions as such.
|
|
User.Before.setAsIdentityConversion();
|
|
} else {
|
|
if (Best->Conversions[0].isEllipsis())
|
|
User.EllipsisConversion = true;
|
|
else {
|
|
User.Before = Best->Conversions[0].Standard;
|
|
User.EllipsisConversion = false;
|
|
}
|
|
}
|
|
User.HadMultipleCandidates = HadMultipleCandidates;
|
|
User.ConversionFunction = Constructor;
|
|
User.FoundConversionFunction = Best->FoundDecl;
|
|
User.After.setAsIdentityConversion();
|
|
User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
|
|
User.After.setAllToTypes(ToType);
|
|
return OR_Success;
|
|
}
|
|
if (CXXConversionDecl *Conversion
|
|
= dyn_cast<CXXConversionDecl>(Best->Function)) {
|
|
S.MarkFunctionReferenced(From->getLocStart(), Conversion);
|
|
|
|
// C++ [over.ics.user]p1:
|
|
//
|
|
// [...] If the user-defined conversion is specified by a
|
|
// conversion function (12.3.2), the initial standard
|
|
// conversion sequence converts the source type to the
|
|
// implicit object parameter of the conversion function.
|
|
User.Before = Best->Conversions[0].Standard;
|
|
User.HadMultipleCandidates = HadMultipleCandidates;
|
|
User.ConversionFunction = Conversion;
|
|
User.FoundConversionFunction = Best->FoundDecl;
|
|
User.EllipsisConversion = false;
|
|
|
|
// C++ [over.ics.user]p2:
|
|
// The second standard conversion sequence converts the
|
|
// result of the user-defined conversion to the target type
|
|
// for the sequence. Since an implicit conversion sequence
|
|
// is an initialization, the special rules for
|
|
// initialization by user-defined conversion apply when
|
|
// selecting the best user-defined conversion for a
|
|
// user-defined conversion sequence (see 13.3.3 and
|
|
// 13.3.3.1).
|
|
User.After = Best->FinalConversion;
|
|
return OR_Success;
|
|
}
|
|
llvm_unreachable("Not a constructor or conversion function?");
|
|
|
|
case OR_No_Viable_Function:
|
|
return OR_No_Viable_Function;
|
|
case OR_Deleted:
|
|
// No conversion here! We're done.
|
|
return OR_Deleted;
|
|
|
|
case OR_Ambiguous:
|
|
return OR_Ambiguous;
|
|
}
|
|
|
|
llvm_unreachable("Invalid OverloadResult!");
|
|
}
|
|
|
|
bool
|
|
Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
|
|
ImplicitConversionSequence ICS;
|
|
OverloadCandidateSet CandidateSet(From->getExprLoc());
|
|
OverloadingResult OvResult =
|
|
IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
|
|
CandidateSet, false);
|
|
if (OvResult == OR_Ambiguous)
|
|
Diag(From->getLocStart(),
|
|
diag::err_typecheck_ambiguous_condition)
|
|
<< From->getType() << ToType << From->getSourceRange();
|
|
else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
|
|
Diag(From->getLocStart(),
|
|
diag::err_typecheck_nonviable_condition)
|
|
<< From->getType() << ToType << From->getSourceRange();
|
|
else
|
|
return false;
|
|
CandidateSet.NoteCandidates(*this, OCD_AllCandidates, From);
|
|
return true;
|
|
}
|
|
|
|
/// \brief Compare the user-defined conversion functions or constructors
|
|
/// of two user-defined conversion sequences to determine whether any ordering
|
|
/// is possible.
|
|
static ImplicitConversionSequence::CompareKind
|
|
compareConversionFunctions(Sema &S,
|
|
FunctionDecl *Function1,
|
|
FunctionDecl *Function2) {
|
|
if (!S.getLangOpts().ObjC1 || !S.getLangOpts().CPlusPlus0x)
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
|
|
// Objective-C++:
|
|
// If both conversion functions are implicitly-declared conversions from
|
|
// a lambda closure type to a function pointer and a block pointer,
|
|
// respectively, always prefer the conversion to a function pointer,
|
|
// because the function pointer is more lightweight and is more likely
|
|
// to keep code working.
|
|
CXXConversionDecl *Conv1 = dyn_cast<CXXConversionDecl>(Function1);
|
|
if (!Conv1)
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
|
|
CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2);
|
|
if (!Conv2)
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
|
|
if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) {
|
|
bool Block1 = Conv1->getConversionType()->isBlockPointerType();
|
|
bool Block2 = Conv2->getConversionType()->isBlockPointerType();
|
|
if (Block1 != Block2)
|
|
return Block1? ImplicitConversionSequence::Worse
|
|
: ImplicitConversionSequence::Better;
|
|
}
|
|
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
}
|
|
|
|
/// CompareImplicitConversionSequences - Compare two implicit
|
|
/// conversion sequences to determine whether one is better than the
|
|
/// other or if they are indistinguishable (C++ 13.3.3.2).
|
|
static ImplicitConversionSequence::CompareKind
|
|
CompareImplicitConversionSequences(Sema &S,
|
|
const ImplicitConversionSequence& ICS1,
|
|
const ImplicitConversionSequence& ICS2)
|
|
{
|
|
// (C++ 13.3.3.2p2): When comparing the basic forms of implicit
|
|
// conversion sequences (as defined in 13.3.3.1)
|
|
// -- a standard conversion sequence (13.3.3.1.1) is a better
|
|
// conversion sequence than a user-defined conversion sequence or
|
|
// an ellipsis conversion sequence, and
|
|
// -- a user-defined conversion sequence (13.3.3.1.2) is a better
|
|
// conversion sequence than an ellipsis conversion sequence
|
|
// (13.3.3.1.3).
|
|
//
|
|
// C++0x [over.best.ics]p10:
|
|
// For the purpose of ranking implicit conversion sequences as
|
|
// described in 13.3.3.2, the ambiguous conversion sequence is
|
|
// treated as a user-defined sequence that is indistinguishable
|
|
// from any other user-defined conversion sequence.
|
|
if (ICS1.getKindRank() < ICS2.getKindRank())
|
|
return ImplicitConversionSequence::Better;
|
|
if (ICS2.getKindRank() < ICS1.getKindRank())
|
|
return ImplicitConversionSequence::Worse;
|
|
|
|
// The following checks require both conversion sequences to be of
|
|
// the same kind.
|
|
if (ICS1.getKind() != ICS2.getKind())
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
|
|
ImplicitConversionSequence::CompareKind Result =
|
|
ImplicitConversionSequence::Indistinguishable;
|
|
|
|
// Two implicit conversion sequences of the same form are
|
|
// indistinguishable conversion sequences unless one of the
|
|
// following rules apply: (C++ 13.3.3.2p3):
|
|
if (ICS1.isStandard())
|
|
Result = CompareStandardConversionSequences(S,
|
|
ICS1.Standard, ICS2.Standard);
|
|
else if (ICS1.isUserDefined()) {
|
|
// User-defined conversion sequence U1 is a better conversion
|
|
// sequence than another user-defined conversion sequence U2 if
|
|
// they contain the same user-defined conversion function or
|
|
// constructor and if the second standard conversion sequence of
|
|
// U1 is better than the second standard conversion sequence of
|
|
// U2 (C++ 13.3.3.2p3).
|
|
if (ICS1.UserDefined.ConversionFunction ==
|
|
ICS2.UserDefined.ConversionFunction)
|
|
Result = CompareStandardConversionSequences(S,
|
|
ICS1.UserDefined.After,
|
|
ICS2.UserDefined.After);
|
|
else
|
|
Result = compareConversionFunctions(S,
|
|
ICS1.UserDefined.ConversionFunction,
|
|
ICS2.UserDefined.ConversionFunction);
|
|
}
|
|
|
|
// List-initialization sequence L1 is a better conversion sequence than
|
|
// list-initialization sequence L2 if L1 converts to std::initializer_list<X>
|
|
// for some X and L2 does not.
|
|
if (Result == ImplicitConversionSequence::Indistinguishable &&
|
|
!ICS1.isBad() &&
|
|
ICS1.isListInitializationSequence() &&
|
|
ICS2.isListInitializationSequence()) {
|
|
if (ICS1.isStdInitializerListElement() &&
|
|
!ICS2.isStdInitializerListElement())
|
|
return ImplicitConversionSequence::Better;
|
|
if (!ICS1.isStdInitializerListElement() &&
|
|
ICS2.isStdInitializerListElement())
|
|
return ImplicitConversionSequence::Worse;
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
|
|
while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
|
|
Qualifiers Quals;
|
|
T1 = Context.getUnqualifiedArrayType(T1, Quals);
|
|
T2 = Context.getUnqualifiedArrayType(T2, Quals);
|
|
}
|
|
|
|
return Context.hasSameUnqualifiedType(T1, T2);
|
|
}
|
|
|
|
// Per 13.3.3.2p3, compare the given standard conversion sequences to
|
|
// determine if one is a proper subset of the other.
|
|
static ImplicitConversionSequence::CompareKind
|
|
compareStandardConversionSubsets(ASTContext &Context,
|
|
const StandardConversionSequence& SCS1,
|
|
const StandardConversionSequence& SCS2) {
|
|
ImplicitConversionSequence::CompareKind Result
|
|
= ImplicitConversionSequence::Indistinguishable;
|
|
|
|
// the identity conversion sequence is considered to be a subsequence of
|
|
// any non-identity conversion sequence
|
|
if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
|
|
return ImplicitConversionSequence::Better;
|
|
else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
|
|
return ImplicitConversionSequence::Worse;
|
|
|
|
if (SCS1.Second != SCS2.Second) {
|
|
if (SCS1.Second == ICK_Identity)
|
|
Result = ImplicitConversionSequence::Better;
|
|
else if (SCS2.Second == ICK_Identity)
|
|
Result = ImplicitConversionSequence::Worse;
|
|
else
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
} else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
|
|
if (SCS1.Third == SCS2.Third) {
|
|
return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
|
|
: ImplicitConversionSequence::Indistinguishable;
|
|
}
|
|
|
|
if (SCS1.Third == ICK_Identity)
|
|
return Result == ImplicitConversionSequence::Worse
|
|
? ImplicitConversionSequence::Indistinguishable
|
|
: ImplicitConversionSequence::Better;
|
|
|
|
if (SCS2.Third == ICK_Identity)
|
|
return Result == ImplicitConversionSequence::Better
|
|
? ImplicitConversionSequence::Indistinguishable
|
|
: ImplicitConversionSequence::Worse;
|
|
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
}
|
|
|
|
/// \brief Determine whether one of the given reference bindings is better
|
|
/// than the other based on what kind of bindings they are.
|
|
static bool isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
|
|
const StandardConversionSequence &SCS2) {
|
|
// C++0x [over.ics.rank]p3b4:
|
|
// -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
|
|
// implicit object parameter of a non-static member function declared
|
|
// without a ref-qualifier, and *either* S1 binds an rvalue reference
|
|
// to an rvalue and S2 binds an lvalue reference *or S1 binds an
|
|
// lvalue reference to a function lvalue and S2 binds an rvalue
|
|
// reference*.
|
|
//
|
|
// FIXME: Rvalue references. We're going rogue with the above edits,
|
|
// because the semantics in the current C++0x working paper (N3225 at the
|
|
// time of this writing) break the standard definition of std::forward
|
|
// and std::reference_wrapper when dealing with references to functions.
|
|
// Proposed wording changes submitted to CWG for consideration.
|
|
if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
|
|
SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
|
|
return false;
|
|
|
|
return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
|
|
SCS2.IsLvalueReference) ||
|
|
(SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
|
|
!SCS2.IsLvalueReference);
|
|
}
|
|
|
|
/// CompareStandardConversionSequences - Compare two standard
|
|
/// conversion sequences to determine whether one is better than the
|
|
/// other or if they are indistinguishable (C++ 13.3.3.2p3).
|
|
static ImplicitConversionSequence::CompareKind
|
|
CompareStandardConversionSequences(Sema &S,
|
|
const StandardConversionSequence& SCS1,
|
|
const StandardConversionSequence& SCS2)
|
|
{
|
|
// Standard conversion sequence S1 is a better conversion sequence
|
|
// than standard conversion sequence S2 if (C++ 13.3.3.2p3):
|
|
|
|
// -- S1 is a proper subsequence of S2 (comparing the conversion
|
|
// sequences in the canonical form defined by 13.3.3.1.1,
|
|
// excluding any Lvalue Transformation; the identity conversion
|
|
// sequence is considered to be a subsequence of any
|
|
// non-identity conversion sequence) or, if not that,
|
|
if (ImplicitConversionSequence::CompareKind CK
|
|
= compareStandardConversionSubsets(S.Context, SCS1, SCS2))
|
|
return CK;
|
|
|
|
// -- the rank of S1 is better than the rank of S2 (by the rules
|
|
// defined below), or, if not that,
|
|
ImplicitConversionRank Rank1 = SCS1.getRank();
|
|
ImplicitConversionRank Rank2 = SCS2.getRank();
|
|
if (Rank1 < Rank2)
|
|
return ImplicitConversionSequence::Better;
|
|
else if (Rank2 < Rank1)
|
|
return ImplicitConversionSequence::Worse;
|
|
|
|
// (C++ 13.3.3.2p4): Two conversion sequences with the same rank
|
|
// are indistinguishable unless one of the following rules
|
|
// applies:
|
|
|
|
// A conversion that is not a conversion of a pointer, or
|
|
// pointer to member, to bool is better than another conversion
|
|
// that is such a conversion.
|
|
if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
|
|
return SCS2.isPointerConversionToBool()
|
|
? ImplicitConversionSequence::Better
|
|
: ImplicitConversionSequence::Worse;
|
|
|
|
// C++ [over.ics.rank]p4b2:
|
|
//
|
|
// If class B is derived directly or indirectly from class A,
|
|
// conversion of B* to A* is better than conversion of B* to
|
|
// void*, and conversion of A* to void* is better than conversion
|
|
// of B* to void*.
|
|
bool SCS1ConvertsToVoid
|
|
= SCS1.isPointerConversionToVoidPointer(S.Context);
|
|
bool SCS2ConvertsToVoid
|
|
= SCS2.isPointerConversionToVoidPointer(S.Context);
|
|
if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
|
|
// Exactly one of the conversion sequences is a conversion to
|
|
// a void pointer; it's the worse conversion.
|
|
return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
|
|
: ImplicitConversionSequence::Worse;
|
|
} else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
|
|
// Neither conversion sequence converts to a void pointer; compare
|
|
// their derived-to-base conversions.
|
|
if (ImplicitConversionSequence::CompareKind DerivedCK
|
|
= CompareDerivedToBaseConversions(S, SCS1, SCS2))
|
|
return DerivedCK;
|
|
} else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
|
|
!S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
|
|
// Both conversion sequences are conversions to void
|
|
// pointers. Compare the source types to determine if there's an
|
|
// inheritance relationship in their sources.
|
|
QualType FromType1 = SCS1.getFromType();
|
|
QualType FromType2 = SCS2.getFromType();
|
|
|
|
// Adjust the types we're converting from via the array-to-pointer
|
|
// conversion, if we need to.
|
|
if (SCS1.First == ICK_Array_To_Pointer)
|
|
FromType1 = S.Context.getArrayDecayedType(FromType1);
|
|
if (SCS2.First == ICK_Array_To_Pointer)
|
|
FromType2 = S.Context.getArrayDecayedType(FromType2);
|
|
|
|
QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
|
|
QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
|
|
|
|
if (S.IsDerivedFrom(FromPointee2, FromPointee1))
|
|
return ImplicitConversionSequence::Better;
|
|
else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
|
|
return ImplicitConversionSequence::Worse;
|
|
|
|
// Objective-C++: If one interface is more specific than the
|
|
// other, it is the better one.
|
|
const ObjCObjectPointerType* FromObjCPtr1
|
|
= FromType1->getAs<ObjCObjectPointerType>();
|
|
const ObjCObjectPointerType* FromObjCPtr2
|
|
= FromType2->getAs<ObjCObjectPointerType>();
|
|
if (FromObjCPtr1 && FromObjCPtr2) {
|
|
bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
|
|
FromObjCPtr2);
|
|
bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
|
|
FromObjCPtr1);
|
|
if (AssignLeft != AssignRight) {
|
|
return AssignLeft? ImplicitConversionSequence::Better
|
|
: ImplicitConversionSequence::Worse;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compare based on qualification conversions (C++ 13.3.3.2p3,
|
|
// bullet 3).
|
|
if (ImplicitConversionSequence::CompareKind QualCK
|
|
= CompareQualificationConversions(S, SCS1, SCS2))
|
|
return QualCK;
|
|
|
|
if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
|
|
// Check for a better reference binding based on the kind of bindings.
|
|
if (isBetterReferenceBindingKind(SCS1, SCS2))
|
|
return ImplicitConversionSequence::Better;
|
|
else if (isBetterReferenceBindingKind(SCS2, SCS1))
|
|
return ImplicitConversionSequence::Worse;
|
|
|
|
// C++ [over.ics.rank]p3b4:
|
|
// -- S1 and S2 are reference bindings (8.5.3), and the types to
|
|
// which the references refer are the same type except for
|
|
// top-level cv-qualifiers, and the type to which the reference
|
|
// initialized by S2 refers is more cv-qualified than the type
|
|
// to which the reference initialized by S1 refers.
|
|
QualType T1 = SCS1.getToType(2);
|
|
QualType T2 = SCS2.getToType(2);
|
|
T1 = S.Context.getCanonicalType(T1);
|
|
T2 = S.Context.getCanonicalType(T2);
|
|
Qualifiers T1Quals, T2Quals;
|
|
QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
|
|
QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
|
|
if (UnqualT1 == UnqualT2) {
|
|
// Objective-C++ ARC: If the references refer to objects with different
|
|
// lifetimes, prefer bindings that don't change lifetime.
|
|
if (SCS1.ObjCLifetimeConversionBinding !=
|
|
SCS2.ObjCLifetimeConversionBinding) {
|
|
return SCS1.ObjCLifetimeConversionBinding
|
|
? ImplicitConversionSequence::Worse
|
|
: ImplicitConversionSequence::Better;
|
|
}
|
|
|
|
// If the type is an array type, promote the element qualifiers to the
|
|
// type for comparison.
|
|
if (isa<ArrayType>(T1) && T1Quals)
|
|
T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
|
|
if (isa<ArrayType>(T2) && T2Quals)
|
|
T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
|
|
if (T2.isMoreQualifiedThan(T1))
|
|
return ImplicitConversionSequence::Better;
|
|
else if (T1.isMoreQualifiedThan(T2))
|
|
return ImplicitConversionSequence::Worse;
|
|
}
|
|
}
|
|
|
|
// In Microsoft mode, prefer an integral conversion to a
|
|
// floating-to-integral conversion if the integral conversion
|
|
// is between types of the same size.
|
|
// For example:
|
|
// void f(float);
|
|
// void f(int);
|
|
// int main {
|
|
// long a;
|
|
// f(a);
|
|
// }
|
|
// Here, MSVC will call f(int) instead of generating a compile error
|
|
// as clang will do in standard mode.
|
|
if (S.getLangOpts().MicrosoftMode &&
|
|
SCS1.Second == ICK_Integral_Conversion &&
|
|
SCS2.Second == ICK_Floating_Integral &&
|
|
S.Context.getTypeSize(SCS1.getFromType()) ==
|
|
S.Context.getTypeSize(SCS1.getToType(2)))
|
|
return ImplicitConversionSequence::Better;
|
|
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
}
|
|
|
|
/// CompareQualificationConversions - Compares two standard conversion
|
|
/// sequences to determine whether they can be ranked based on their
|
|
/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
|
|
ImplicitConversionSequence::CompareKind
|
|
CompareQualificationConversions(Sema &S,
|
|
const StandardConversionSequence& SCS1,
|
|
const StandardConversionSequence& SCS2) {
|
|
// C++ 13.3.3.2p3:
|
|
// -- S1 and S2 differ only in their qualification conversion and
|
|
// yield similar types T1 and T2 (C++ 4.4), respectively, and the
|
|
// cv-qualification signature of type T1 is a proper subset of
|
|
// the cv-qualification signature of type T2, and S1 is not the
|
|
// deprecated string literal array-to-pointer conversion (4.2).
|
|
if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
|
|
SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
|
|
// FIXME: the example in the standard doesn't use a qualification
|
|
// conversion (!)
|
|
QualType T1 = SCS1.getToType(2);
|
|
QualType T2 = SCS2.getToType(2);
|
|
T1 = S.Context.getCanonicalType(T1);
|
|
T2 = S.Context.getCanonicalType(T2);
|
|
Qualifiers T1Quals, T2Quals;
|
|
QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
|
|
QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
|
|
|
|
// If the types are the same, we won't learn anything by unwrapped
|
|
// them.
|
|
if (UnqualT1 == UnqualT2)
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
|
|
// If the type is an array type, promote the element qualifiers to the type
|
|
// for comparison.
|
|
if (isa<ArrayType>(T1) && T1Quals)
|
|
T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
|
|
if (isa<ArrayType>(T2) && T2Quals)
|
|
T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
|
|
|
|
ImplicitConversionSequence::CompareKind Result
|
|
= ImplicitConversionSequence::Indistinguishable;
|
|
|
|
// Objective-C++ ARC:
|
|
// Prefer qualification conversions not involving a change in lifetime
|
|
// to qualification conversions that do not change lifetime.
|
|
if (SCS1.QualificationIncludesObjCLifetime !=
|
|
SCS2.QualificationIncludesObjCLifetime) {
|
|
Result = SCS1.QualificationIncludesObjCLifetime
|
|
? ImplicitConversionSequence::Worse
|
|
: ImplicitConversionSequence::Better;
|
|
}
|
|
|
|
while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) {
|
|
// Within each iteration of the loop, we check the qualifiers to
|
|
// determine if this still looks like a qualification
|
|
// conversion. Then, if all is well, we unwrap one more level of
|
|
// pointers or pointers-to-members and do it all again
|
|
// until there are no more pointers or pointers-to-members left
|
|
// to unwrap. This essentially mimics what
|
|
// IsQualificationConversion does, but here we're checking for a
|
|
// strict subset of qualifiers.
|
|
if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
|
|
// The qualifiers are the same, so this doesn't tell us anything
|
|
// about how the sequences rank.
|
|
;
|
|
else if (T2.isMoreQualifiedThan(T1)) {
|
|
// T1 has fewer qualifiers, so it could be the better sequence.
|
|
if (Result == ImplicitConversionSequence::Worse)
|
|
// Neither has qualifiers that are a subset of the other's
|
|
// qualifiers.
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
|
|
Result = ImplicitConversionSequence::Better;
|
|
} else if (T1.isMoreQualifiedThan(T2)) {
|
|
// T2 has fewer qualifiers, so it could be the better sequence.
|
|
if (Result == ImplicitConversionSequence::Better)
|
|
// Neither has qualifiers that are a subset of the other's
|
|
// qualifiers.
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
|
|
Result = ImplicitConversionSequence::Worse;
|
|
} else {
|
|
// Qualifiers are disjoint.
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
}
|
|
|
|
// If the types after this point are equivalent, we're done.
|
|
if (S.Context.hasSameUnqualifiedType(T1, T2))
|
|
break;
|
|
}
|
|
|
|
// Check that the winning standard conversion sequence isn't using
|
|
// the deprecated string literal array to pointer conversion.
|
|
switch (Result) {
|
|
case ImplicitConversionSequence::Better:
|
|
if (SCS1.DeprecatedStringLiteralToCharPtr)
|
|
Result = ImplicitConversionSequence::Indistinguishable;
|
|
break;
|
|
|
|
case ImplicitConversionSequence::Indistinguishable:
|
|
break;
|
|
|
|
case ImplicitConversionSequence::Worse:
|
|
if (SCS2.DeprecatedStringLiteralToCharPtr)
|
|
Result = ImplicitConversionSequence::Indistinguishable;
|
|
break;
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// CompareDerivedToBaseConversions - Compares two standard conversion
|
|
/// sequences to determine whether they can be ranked based on their
|
|
/// various kinds of derived-to-base conversions (C++
|
|
/// [over.ics.rank]p4b3). As part of these checks, we also look at
|
|
/// conversions between Objective-C interface types.
|
|
ImplicitConversionSequence::CompareKind
|
|
CompareDerivedToBaseConversions(Sema &S,
|
|
const StandardConversionSequence& SCS1,
|
|
const StandardConversionSequence& SCS2) {
|
|
QualType FromType1 = SCS1.getFromType();
|
|
QualType ToType1 = SCS1.getToType(1);
|
|
QualType FromType2 = SCS2.getFromType();
|
|
QualType ToType2 = SCS2.getToType(1);
|
|
|
|
// Adjust the types we're converting from via the array-to-pointer
|
|
// conversion, if we need to.
|
|
if (SCS1.First == ICK_Array_To_Pointer)
|
|
FromType1 = S.Context.getArrayDecayedType(FromType1);
|
|
if (SCS2.First == ICK_Array_To_Pointer)
|
|
FromType2 = S.Context.getArrayDecayedType(FromType2);
|
|
|
|
// Canonicalize all of the types.
|
|
FromType1 = S.Context.getCanonicalType(FromType1);
|
|
ToType1 = S.Context.getCanonicalType(ToType1);
|
|
FromType2 = S.Context.getCanonicalType(FromType2);
|
|
ToType2 = S.Context.getCanonicalType(ToType2);
|
|
|
|
// C++ [over.ics.rank]p4b3:
|
|
//
|
|
// If class B is derived directly or indirectly from class A and
|
|
// class C is derived directly or indirectly from B,
|
|
//
|
|
// Compare based on pointer conversions.
|
|
if (SCS1.Second == ICK_Pointer_Conversion &&
|
|
SCS2.Second == ICK_Pointer_Conversion &&
|
|
/*FIXME: Remove if Objective-C id conversions get their own rank*/
|
|
FromType1->isPointerType() && FromType2->isPointerType() &&
|
|
ToType1->isPointerType() && ToType2->isPointerType()) {
|
|
QualType FromPointee1
|
|
= FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
|
|
QualType ToPointee1
|
|
= ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
|
|
QualType FromPointee2
|
|
= FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
|
|
QualType ToPointee2
|
|
= ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
|
|
|
|
// -- conversion of C* to B* is better than conversion of C* to A*,
|
|
if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
|
|
if (S.IsDerivedFrom(ToPointee1, ToPointee2))
|
|
return ImplicitConversionSequence::Better;
|
|
else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
|
|
return ImplicitConversionSequence::Worse;
|
|
}
|
|
|
|
// -- conversion of B* to A* is better than conversion of C* to A*,
|
|
if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
|
|
if (S.IsDerivedFrom(FromPointee2, FromPointee1))
|
|
return ImplicitConversionSequence::Better;
|
|
else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
|
|
return ImplicitConversionSequence::Worse;
|
|
}
|
|
} else if (SCS1.Second == ICK_Pointer_Conversion &&
|
|
SCS2.Second == ICK_Pointer_Conversion) {
|
|
const ObjCObjectPointerType *FromPtr1
|
|
= FromType1->getAs<ObjCObjectPointerType>();
|
|
const ObjCObjectPointerType *FromPtr2
|
|
= FromType2->getAs<ObjCObjectPointerType>();
|
|
const ObjCObjectPointerType *ToPtr1
|
|
= ToType1->getAs<ObjCObjectPointerType>();
|
|
const ObjCObjectPointerType *ToPtr2
|
|
= ToType2->getAs<ObjCObjectPointerType>();
|
|
|
|
if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
|
|
// Apply the same conversion ranking rules for Objective-C pointer types
|
|
// that we do for C++ pointers to class types. However, we employ the
|
|
// Objective-C pseudo-subtyping relationship used for assignment of
|
|
// Objective-C pointer types.
|
|
bool FromAssignLeft
|
|
= S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
|
|
bool FromAssignRight
|
|
= S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
|
|
bool ToAssignLeft
|
|
= S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
|
|
bool ToAssignRight
|
|
= S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
|
|
|
|
// A conversion to an a non-id object pointer type or qualified 'id'
|
|
// type is better than a conversion to 'id'.
|
|
if (ToPtr1->isObjCIdType() &&
|
|
(ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
|
|
return ImplicitConversionSequence::Worse;
|
|
if (ToPtr2->isObjCIdType() &&
|
|
(ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
|
|
return ImplicitConversionSequence::Better;
|
|
|
|
// A conversion to a non-id object pointer type is better than a
|
|
// conversion to a qualified 'id' type
|
|
if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
|
|
return ImplicitConversionSequence::Worse;
|
|
if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
|
|
return ImplicitConversionSequence::Better;
|
|
|
|
// A conversion to an a non-Class object pointer type or qualified 'Class'
|
|
// type is better than a conversion to 'Class'.
|
|
if (ToPtr1->isObjCClassType() &&
|
|
(ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
|
|
return ImplicitConversionSequence::Worse;
|
|
if (ToPtr2->isObjCClassType() &&
|
|
(ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
|
|
return ImplicitConversionSequence::Better;
|
|
|
|
// A conversion to a non-Class object pointer type is better than a
|
|
// conversion to a qualified 'Class' type.
|
|
if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
|
|
return ImplicitConversionSequence::Worse;
|
|
if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
|
|
return ImplicitConversionSequence::Better;
|
|
|
|
// -- "conversion of C* to B* is better than conversion of C* to A*,"
|
|
if (S.Context.hasSameType(FromType1, FromType2) &&
|
|
!FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
|
|
(ToAssignLeft != ToAssignRight))
|
|
return ToAssignLeft? ImplicitConversionSequence::Worse
|
|
: ImplicitConversionSequence::Better;
|
|
|
|
// -- "conversion of B* to A* is better than conversion of C* to A*,"
|
|
if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
|
|
(FromAssignLeft != FromAssignRight))
|
|
return FromAssignLeft? ImplicitConversionSequence::Better
|
|
: ImplicitConversionSequence::Worse;
|
|
}
|
|
}
|
|
|
|
// Ranking of member-pointer types.
|
|
if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
|
|
FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
|
|
ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
|
|
const MemberPointerType * FromMemPointer1 =
|
|
FromType1->getAs<MemberPointerType>();
|
|
const MemberPointerType * ToMemPointer1 =
|
|
ToType1->getAs<MemberPointerType>();
|
|
const MemberPointerType * FromMemPointer2 =
|
|
FromType2->getAs<MemberPointerType>();
|
|
const MemberPointerType * ToMemPointer2 =
|
|
ToType2->getAs<MemberPointerType>();
|
|
const Type *FromPointeeType1 = FromMemPointer1->getClass();
|
|
const Type *ToPointeeType1 = ToMemPointer1->getClass();
|
|
const Type *FromPointeeType2 = FromMemPointer2->getClass();
|
|
const Type *ToPointeeType2 = ToMemPointer2->getClass();
|
|
QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
|
|
QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
|
|
QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
|
|
QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
|
|
// conversion of A::* to B::* is better than conversion of A::* to C::*,
|
|
if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
|
|
if (S.IsDerivedFrom(ToPointee1, ToPointee2))
|
|
return ImplicitConversionSequence::Worse;
|
|
else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
|
|
return ImplicitConversionSequence::Better;
|
|
}
|
|
// conversion of B::* to C::* is better than conversion of A::* to C::*
|
|
if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
|
|
if (S.IsDerivedFrom(FromPointee1, FromPointee2))
|
|
return ImplicitConversionSequence::Better;
|
|
else if (S.IsDerivedFrom(FromPointee2, FromPointee1))
|
|
return ImplicitConversionSequence::Worse;
|
|
}
|
|
}
|
|
|
|
if (SCS1.Second == ICK_Derived_To_Base) {
|
|
// -- conversion of C to B is better than conversion of C to A,
|
|
// -- binding of an expression of type C to a reference of type
|
|
// B& is better than binding an expression of type C to a
|
|
// reference of type A&,
|
|
if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
|
|
!S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
|
|
if (S.IsDerivedFrom(ToType1, ToType2))
|
|
return ImplicitConversionSequence::Better;
|
|
else if (S.IsDerivedFrom(ToType2, ToType1))
|
|
return ImplicitConversionSequence::Worse;
|
|
}
|
|
|
|
// -- conversion of B to A is better than conversion of C to A.
|
|
// -- binding of an expression of type B to a reference of type
|
|
// A& is better than binding an expression of type C to a
|
|
// reference of type A&,
|
|
if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
|
|
S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
|
|
if (S.IsDerivedFrom(FromType2, FromType1))
|
|
return ImplicitConversionSequence::Better;
|
|
else if (S.IsDerivedFrom(FromType1, FromType2))
|
|
return ImplicitConversionSequence::Worse;
|
|
}
|
|
}
|
|
|
|
return ImplicitConversionSequence::Indistinguishable;
|
|
}
|
|
|
|
/// CompareReferenceRelationship - Compare the two types T1 and T2 to
|
|
/// determine whether they are reference-related,
|
|
/// reference-compatible, reference-compatible with added
|
|
/// qualification, or incompatible, for use in C++ initialization by
|
|
/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
|
|
/// type, and the first type (T1) is the pointee type of the reference
|
|
/// type being initialized.
|
|
Sema::ReferenceCompareResult
|
|
Sema::CompareReferenceRelationship(SourceLocation Loc,
|
|
QualType OrigT1, QualType OrigT2,
|
|
bool &DerivedToBase,
|
|
bool &ObjCConversion,
|
|
bool &ObjCLifetimeConversion) {
|
|
assert(!OrigT1->isReferenceType() &&
|
|
"T1 must be the pointee type of the reference type");
|
|
assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
|
|
|
|
QualType T1 = Context.getCanonicalType(OrigT1);
|
|
QualType T2 = Context.getCanonicalType(OrigT2);
|
|
Qualifiers T1Quals, T2Quals;
|
|
QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
|
|
QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
|
|
|
|
// C++ [dcl.init.ref]p4:
|
|
// Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
|
|
// reference-related to "cv2 T2" if T1 is the same type as T2, or
|
|
// T1 is a base class of T2.
|
|
DerivedToBase = false;
|
|
ObjCConversion = false;
|
|
ObjCLifetimeConversion = false;
|
|
if (UnqualT1 == UnqualT2) {
|
|
// Nothing to do.
|
|
} else if (!RequireCompleteType(Loc, OrigT2, 0) &&
|
|
IsDerivedFrom(UnqualT2, UnqualT1))
|
|
DerivedToBase = true;
|
|
else if (UnqualT1->isObjCObjectOrInterfaceType() &&
|
|
UnqualT2->isObjCObjectOrInterfaceType() &&
|
|
Context.canBindObjCObjectType(UnqualT1, UnqualT2))
|
|
ObjCConversion = true;
|
|
else
|
|
return Ref_Incompatible;
|
|
|
|
// At this point, we know that T1 and T2 are reference-related (at
|
|
// least).
|
|
|
|
// If the type is an array type, promote the element qualifiers to the type
|
|
// for comparison.
|
|
if (isa<ArrayType>(T1) && T1Quals)
|
|
T1 = Context.getQualifiedType(UnqualT1, T1Quals);
|
|
if (isa<ArrayType>(T2) && T2Quals)
|
|
T2 = Context.getQualifiedType(UnqualT2, T2Quals);
|
|
|
|
// C++ [dcl.init.ref]p4:
|
|
// "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
|
|
// reference-related to T2 and cv1 is the same cv-qualification
|
|
// as, or greater cv-qualification than, cv2. For purposes of
|
|
// overload resolution, cases for which cv1 is greater
|
|
// cv-qualification than cv2 are identified as
|
|
// reference-compatible with added qualification (see 13.3.3.2).
|
|
//
|
|
// Note that we also require equivalence of Objective-C GC and address-space
|
|
// qualifiers when performing these computations, so that e.g., an int in
|
|
// address space 1 is not reference-compatible with an int in address
|
|
// space 2.
|
|
if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
|
|
T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
|
|
T1Quals.removeObjCLifetime();
|
|
T2Quals.removeObjCLifetime();
|
|
ObjCLifetimeConversion = true;
|
|
}
|
|
|
|
if (T1Quals == T2Quals)
|
|
return Ref_Compatible;
|
|
else if (T1Quals.compatiblyIncludes(T2Quals))
|
|
return Ref_Compatible_With_Added_Qualification;
|
|
else
|
|
return Ref_Related;
|
|
}
|
|
|
|
/// \brief Look for a user-defined conversion to an value reference-compatible
|
|
/// with DeclType. Return true if something definite is found.
|
|
static bool
|
|
FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
|
|
QualType DeclType, SourceLocation DeclLoc,
|
|
Expr *Init, QualType T2, bool AllowRvalues,
|
|
bool AllowExplicit) {
|
|
assert(T2->isRecordType() && "Can only find conversions of record types.");
|
|
CXXRecordDecl *T2RecordDecl
|
|
= dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
|
|
|
|
OverloadCandidateSet CandidateSet(DeclLoc);
|
|
const UnresolvedSetImpl *Conversions
|
|
= T2RecordDecl->getVisibleConversionFunctions();
|
|
for (UnresolvedSetImpl::iterator I = Conversions->begin(),
|
|
E = Conversions->end(); I != E; ++I) {
|
|
NamedDecl *D = *I;
|
|
CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
|
|
if (isa<UsingShadowDecl>(D))
|
|
D = cast<UsingShadowDecl>(D)->getTargetDecl();
|
|
|
|
FunctionTemplateDecl *ConvTemplate
|
|
= dyn_cast<FunctionTemplateDecl>(D);
|
|
CXXConversionDecl *Conv;
|
|
if (ConvTemplate)
|
|
Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
|
|
else
|
|
Conv = cast<CXXConversionDecl>(D);
|
|
|
|
// If this is an explicit conversion, and we're not allowed to consider
|
|
// explicit conversions, skip it.
|
|
if (!AllowExplicit && Conv->isExplicit())
|
|
continue;
|
|
|
|
if (AllowRvalues) {
|
|
bool DerivedToBase = false;
|
|
bool ObjCConversion = false;
|
|
bool ObjCLifetimeConversion = false;
|
|
|
|
// If we are initializing an rvalue reference, don't permit conversion
|
|
// functions that return lvalues.
|
|
if (!ConvTemplate && DeclType->isRValueReferenceType()) {
|
|
const ReferenceType *RefType
|
|
= Conv->getConversionType()->getAs<LValueReferenceType>();
|
|
if (RefType && !RefType->getPointeeType()->isFunctionType())
|
|
continue;
|
|
}
|
|
|
|
if (!ConvTemplate &&
|
|
S.CompareReferenceRelationship(
|
|
DeclLoc,
|
|
Conv->getConversionType().getNonReferenceType()
|
|
.getUnqualifiedType(),
|
|
DeclType.getNonReferenceType().getUnqualifiedType(),
|
|
DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
|
|
Sema::Ref_Incompatible)
|
|
continue;
|
|
} else {
|
|
// If the conversion function doesn't return a reference type,
|
|
// it can't be considered for this conversion. An rvalue reference
|
|
// is only acceptable if its referencee is a function type.
|
|
|
|
const ReferenceType *RefType =
|
|
Conv->getConversionType()->getAs<ReferenceType>();
|
|
if (!RefType ||
|
|
(!RefType->isLValueReferenceType() &&
|
|
!RefType->getPointeeType()->isFunctionType()))
|
|
continue;
|
|
}
|
|
|
|
if (ConvTemplate)
|
|
S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
|
|
Init, DeclType, CandidateSet);
|
|
else
|
|
S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
|
|
DeclType, CandidateSet);
|
|
}
|
|
|
|
bool HadMultipleCandidates = (CandidateSet.size() > 1);
|
|
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
|
|
case OR_Success:
|
|
// C++ [over.ics.ref]p1:
|
|
//
|
|
// [...] If the parameter binds directly to the result of
|
|
// applying a conversion function to the argument
|
|
// expression, the implicit conversion sequence is a
|
|
// user-defined conversion sequence (13.3.3.1.2), with the
|
|
// second standard conversion sequence either an identity
|
|
// conversion or, if the conversion function returns an
|
|
// entity of a type that is a derived class of the parameter
|
|
// type, a derived-to-base Conversion.
|
|
if (!Best->FinalConversion.DirectBinding)
|
|
return false;
|
|
|
|
if (Best->Function)
|
|
S.MarkFunctionReferenced(DeclLoc, Best->Function);
|
|
ICS.setUserDefined();
|
|
ICS.UserDefined.Before = Best->Conversions[0].Standard;
|
|
ICS.UserDefined.After = Best->FinalConversion;
|
|
ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
|
|
ICS.UserDefined.ConversionFunction = Best->Function;
|
|
ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
|
|
ICS.UserDefined.EllipsisConversion = false;
|
|
assert(ICS.UserDefined.After.ReferenceBinding &&
|
|
ICS.UserDefined.After.DirectBinding &&
|
|
"Expected a direct reference binding!");
|
|
return true;
|
|
|
|
case OR_Ambiguous:
|
|
ICS.setAmbiguous();
|
|
for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
|
|
Cand != CandidateSet.end(); ++Cand)
|
|
if (Cand->Viable)
|
|
ICS.Ambiguous.addConversion(Cand->Function);
|
|
return true;
|
|
|
|
case OR_No_Viable_Function:
|
|
case OR_Deleted:
|
|
// There was no suitable conversion, or we found a deleted
|
|
// conversion; continue with other checks.
|
|
return false;
|
|
}
|
|
|
|
llvm_unreachable("Invalid OverloadResult!");
|
|
}
|
|
|
|
/// \brief Compute an implicit conversion sequence for reference
|
|
/// initialization.
|
|
static ImplicitConversionSequence
|
|
TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
|
|
SourceLocation DeclLoc,
|
|
bool SuppressUserConversions,
|
|
bool AllowExplicit) {
|
|
assert(DeclType->isReferenceType() && "Reference init needs a reference");
|
|
|
|
// Most paths end in a failed conversion.
|
|
ImplicitConversionSequence ICS;
|
|
ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
|
|
|
|
QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
|
|
QualType T2 = Init->getType();
|
|
|
|
// If the initializer is the address of an overloaded function, try
|
|
// to resolve the overloaded function. If all goes well, T2 is the
|
|
// type of the resulting function.
|
|
if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
|
|
DeclAccessPair Found;
|
|
if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
|
|
false, Found))
|
|
T2 = Fn->getType();
|
|
}
|
|
|
|
// Compute some basic properties of the types and the initializer.
|
|
bool isRValRef = DeclType->isRValueReferenceType();
|
|
bool DerivedToBase = false;
|
|
bool ObjCConversion = false;
|
|
bool ObjCLifetimeConversion = false;
|
|
Expr::Classification InitCategory = Init->Classify(S.Context);
|
|
Sema::ReferenceCompareResult RefRelationship
|
|
= S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
|
|
ObjCConversion, ObjCLifetimeConversion);
|
|
|
|
|
|
// C++0x [dcl.init.ref]p5:
|
|
// A reference to type "cv1 T1" is initialized by an expression
|
|
// of type "cv2 T2" as follows:
|
|
|
|
// -- If reference is an lvalue reference and the initializer expression
|
|
if (!isRValRef) {
|
|
// -- is an lvalue (but is not a bit-field), and "cv1 T1" is
|
|
// reference-compatible with "cv2 T2," or
|
|
//
|
|
// Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
|
|
if (InitCategory.isLValue() &&
|
|
RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
|
|
// C++ [over.ics.ref]p1:
|
|
// When a parameter of reference type binds directly (8.5.3)
|
|
// to an argument expression, the implicit conversion sequence
|
|
// is the identity conversion, unless the argument expression
|
|
// has a type that is a derived class of the parameter type,
|
|
// in which case the implicit conversion sequence is a
|
|
// derived-to-base Conversion (13.3.3.1).
|
|
ICS.setStandard();
|
|
ICS.Standard.First = ICK_Identity;
|
|
ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
|
|
: ObjCConversion? ICK_Compatible_Conversion
|
|
: ICK_Identity;
|
|
ICS.Standard.Third = ICK_Identity;
|
|
ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
|
|
ICS.Standard.setToType(0, T2);
|
|
ICS.Standard.setToType(1, T1);
|
|
ICS.Standard.setToType(2, T1);
|
|
ICS.Standard.ReferenceBinding = true;
|
|
ICS.Standard.DirectBinding = true;
|
|
ICS.Standard.IsLvalueReference = !isRValRef;
|
|
ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
|
|
ICS.Standard.BindsToRvalue = false;
|
|
ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
|
|
ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
|
|
ICS.Standard.CopyConstructor = 0;
|
|
|
|
// Nothing more to do: the inaccessibility/ambiguity check for
|
|
// derived-to-base conversions is suppressed when we're
|
|
// computing the implicit conversion sequence (C++
|
|
// [over.best.ics]p2).
|
|
return ICS;
|
|
}
|
|
|
|
// -- has a class type (i.e., T2 is a class type), where T1 is
|
|
// not reference-related to T2, and can be implicitly
|
|
// converted to an lvalue of type "cv3 T3," where "cv1 T1"
|
|
// is reference-compatible with "cv3 T3" 92) (this
|
|
// conversion is selected by enumerating the applicable
|
|
// conversion functions (13.3.1.6) and choosing the best
|
|
// one through overload resolution (13.3)),
|
|
if (!SuppressUserConversions && T2->isRecordType() &&
|
|
!S.RequireCompleteType(DeclLoc, T2, 0) &&
|
|
RefRelationship == Sema::Ref_Incompatible) {
|
|
if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
|
|
Init, T2, /*AllowRvalues=*/false,
|
|
AllowExplicit))
|
|
return ICS;
|
|
}
|
|
}
|
|
|
|
// -- Otherwise, the reference shall be an lvalue reference to a
|
|
// non-volatile const type (i.e., cv1 shall be const), or the reference
|
|
// shall be an rvalue reference.
|
|
//
|
|
// We actually handle one oddity of C++ [over.ics.ref] at this
|
|
// point, which is that, due to p2 (which short-circuits reference
|
|
// binding by only attempting a simple conversion for non-direct
|
|
// bindings) and p3's strange wording, we allow a const volatile
|
|
// reference to bind to an rvalue. Hence the check for the presence
|
|
// of "const" rather than checking for "const" being the only
|
|
// qualifier.
|
|
// This is also the point where rvalue references and lvalue inits no longer
|
|
// go together.
|
|
if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified()))
|
|
return ICS;
|
|
|
|
// -- If the initializer expression
|
|
//
|
|
// -- is an xvalue, class prvalue, array prvalue or function
|
|
// lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
|
|
if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification &&
|
|
(InitCategory.isXValue() ||
|
|
(InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
|
|
(InitCategory.isLValue() && T2->isFunctionType()))) {
|
|
ICS.setStandard();
|
|
ICS.Standard.First = ICK_Identity;
|
|
ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
|
|
: ObjCConversion? ICK_Compatible_Conversion
|
|
: ICK_Identity;
|
|
ICS.Standard.Third = ICK_Identity;
|
|
ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
|
|
ICS.Standard.setToType(0, T2);
|
|
ICS.Standard.setToType(1, T1);
|
|
ICS.Standard.setToType(2, T1);
|
|
ICS.Standard.ReferenceBinding = true;
|
|
// In C++0x, this is always a direct binding. In C++98/03, it's a direct
|
|
// binding unless we're binding to a class prvalue.
|
|
// Note: Although xvalues wouldn't normally show up in C++98/03 code, we
|
|
// allow the use of rvalue references in C++98/03 for the benefit of
|
|
// standard library implementors; therefore, we need the xvalue check here.
|
|
ICS.Standard.DirectBinding =
|
|
S.getLangOpts().CPlusPlus0x ||
|
|
(InitCategory.isPRValue() && !T2->isRecordType());
|
|
ICS.Standard.IsLvalueReference = !isRValRef;
|
|
ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
|
|
ICS.Standard.BindsToRvalue = InitCategory.isRValue();
|
|
ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
|
|
ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
|
|
ICS.Standard.CopyConstructor = 0;
|
|
return ICS;
|
|
}
|
|
|
|
// -- has a class type (i.e., T2 is a class type), where T1 is not
|
|
// reference-related to T2, and can be implicitly converted to
|
|
// an xvalue, class prvalue, or function lvalue of type
|
|
// "cv3 T3", where "cv1 T1" is reference-compatible with
|
|
// "cv3 T3",
|
|
//
|
|
// then the reference is bound to the value of the initializer
|
|
// expression in the first case and to the result of the conversion
|
|
// in the second case (or, in either case, to an appropriate base
|
|
// class subobject).
|
|
if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
|
|
T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) &&
|
|
FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
|
|
Init, T2, /*AllowRvalues=*/true,
|
|
AllowExplicit)) {
|
|
// In the second case, if the reference is an rvalue reference
|
|
// and the second standard conversion sequence of the
|
|
// user-defined conversion sequence includes an lvalue-to-rvalue
|
|
// conversion, the program is ill-formed.
|
|
if (ICS.isUserDefined() && isRValRef &&
|
|
ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
|
|
ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
|
|
|
|
return ICS;
|
|
}
|
|
|
|
// -- Otherwise, a temporary of type "cv1 T1" is created and
|
|
// initialized from the initializer expression using the
|
|
// rules for a non-reference copy initialization (8.5). The
|
|
// reference is then bound to the temporary. If T1 is
|
|
// reference-related to T2, cv1 must be the same
|
|
// cv-qualification as, or greater cv-qualification than,
|
|
// cv2; otherwise, the program is ill-formed.
|
|
if (RefRelationship == Sema::Ref_Related) {
|
|
// If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
|
|
// we would be reference-compatible or reference-compatible with
|
|
// added qualification. But that wasn't the case, so the reference
|
|
// initialization fails.
|
|
//
|
|
// Note that we only want to check address spaces and cvr-qualifiers here.
|
|
// ObjC GC and lifetime qualifiers aren't important.
|
|
Qualifiers T1Quals = T1.getQualifiers();
|
|
Qualifiers T2Quals = T2.getQualifiers();
|
|
T1Quals.removeObjCGCAttr();
|
|
T1Quals.removeObjCLifetime();
|
|
T2Quals.removeObjCGCAttr();
|
|
T2Quals.removeObjCLifetime();
|
|
if (!T1Quals.compatiblyIncludes(T2Quals))
|
|
return ICS;
|
|
}
|
|
|
|
// If at least one of the types is a class type, the types are not
|
|
// related, and we aren't allowed any user conversions, the
|
|
// reference binding fails. This case is important for breaking
|
|
// recursion, since TryImplicitConversion below will attempt to
|
|
// create a temporary through the use of a copy constructor.
|
|
if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
|
|
(T1->isRecordType() || T2->isRecordType()))
|
|
return ICS;
|
|
|
|
// If T1 is reference-related to T2 and the reference is an rvalue
|
|
// reference, the initializer expression shall not be an lvalue.
|
|
if (RefRelationship >= Sema::Ref_Related &&
|
|
isRValRef && Init->Classify(S.Context).isLValue())
|
|
return ICS;
|
|
|
|
// C++ [over.ics.ref]p2:
|
|
// When a parameter of reference type is not bound directly to
|
|
// an argument expression, the conversion sequence is the one
|
|
// required to convert the argument expression to the
|
|
// underlying type of the reference according to
|
|
// 13.3.3.1. Conceptually, this conversion sequence corresponds
|
|
// to copy-initializing a temporary of the underlying type with
|
|
// the argument expression. Any difference in top-level
|
|
// cv-qualification is subsumed by the initialization itself
|
|
// and does not constitute a conversion.
|
|
ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
|
|
/*AllowExplicit=*/false,
|
|
/*InOverloadResolution=*/false,
|
|
/*CStyle=*/false,
|
|
/*AllowObjCWritebackConversion=*/false);
|
|
|
|
// Of course, that's still a reference binding.
|
|
if (ICS.isStandard()) {
|
|
ICS.Standard.ReferenceBinding = true;
|
|
ICS.Standard.IsLvalueReference = !isRValRef;
|
|
ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
|
|
ICS.Standard.BindsToRvalue = true;
|
|
ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
|
|
ICS.Standard.ObjCLifetimeConversionBinding = false;
|
|
} else if (ICS.isUserDefined()) {
|
|
// Don't allow rvalue references to bind to lvalues.
|
|
if (DeclType->isRValueReferenceType()) {
|
|
if (const ReferenceType *RefType
|
|
= ICS.UserDefined.ConversionFunction->getResultType()
|
|
->getAs<LValueReferenceType>()) {
|
|
if (!RefType->getPointeeType()->isFunctionType()) {
|
|
ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init,
|
|
DeclType);
|
|
return ICS;
|
|
}
|
|
}
|
|
}
|
|
|
|
ICS.UserDefined.After.ReferenceBinding = true;
|
|
ICS.UserDefined.After.IsLvalueReference = !isRValRef;
|
|
ICS.UserDefined.After.BindsToFunctionLvalue = T2->isFunctionType();
|
|
ICS.UserDefined.After.BindsToRvalue = true;
|
|
ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
|
|
ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
|
|
}
|
|
|
|
return ICS;
|
|
}
|
|
|
|
static ImplicitConversionSequence
|
|
TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
|
|
bool SuppressUserConversions,
|
|
bool InOverloadResolution,
|
|
bool AllowObjCWritebackConversion,
|
|
bool AllowExplicit = false);
|
|
|
|
/// TryListConversion - Try to copy-initialize a value of type ToType from the
|
|
/// initializer list From.
|
|
static ImplicitConversionSequence
|
|
TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
|
|
bool SuppressUserConversions,
|
|
bool InOverloadResolution,
|
|
bool AllowObjCWritebackConversion) {
|
|
// C++11 [over.ics.list]p1:
|
|
// When an argument is an initializer list, it is not an expression and
|
|
// special rules apply for converting it to a parameter type.
|
|
|
|
ImplicitConversionSequence Result;
|
|
Result.setBad(BadConversionSequence::no_conversion, From, ToType);
|
|
Result.setListInitializationSequence();
|
|
|
|
// We need a complete type for what follows. Incomplete types can never be
|
|
// initialized from init lists.
|
|
if (S.RequireCompleteType(From->getLocStart(), ToType, 0))
|
|
return Result;
|
|
|
|
// C++11 [over.ics.list]p2:
|
|
// If the parameter type is std::initializer_list<X> or "array of X" and
|
|
// all the elements can be implicitly converted to X, the implicit
|
|
// conversion sequence is the worst conversion necessary to convert an
|
|
// element of the list to X.
|
|
bool toStdInitializerList = false;
|
|
QualType X;
|
|
if (ToType->isArrayType())
|
|
X = S.Context.getBaseElementType(ToType);
|
|
else
|
|
toStdInitializerList = S.isStdInitializerList(ToType, &X);
|
|
if (!X.isNull()) {
|
|
for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
|
|
Expr *Init = From->getInit(i);
|
|
ImplicitConversionSequence ICS =
|
|
TryCopyInitialization(S, Init, X, SuppressUserConversions,
|
|
InOverloadResolution,
|
|
AllowObjCWritebackConversion);
|
|
// If a single element isn't convertible, fail.
|
|
if (ICS.isBad()) {
|
|
Result = ICS;
|
|
break;
|
|
}
|
|
// Otherwise, look for the worst conversion.
|
|
if (Result.isBad() ||
|
|
CompareImplicitConversionSequences(S, ICS, Result) ==
|
|
ImplicitConversionSequence::Worse)
|
|
Result = ICS;
|
|
}
|
|
|
|
// For an empty list, we won't have computed any conversion sequence.
|
|
// Introduce the identity conversion sequence.
|
|
if (From->getNumInits() == 0) {
|
|
Result.setStandard();
|
|
Result.Standard.setAsIdentityConversion();
|
|
Result.Standard.setFromType(ToType);
|
|
Result.Standard.setAllToTypes(ToType);
|
|
}
|
|
|
|
Result.setListInitializationSequence();
|
|
Result.setStdInitializerListElement(toStdInitializerList);
|
|
return Result;
|
|
}
|
|
|
|
// C++11 [over.ics.list]p3:
|
|
// Otherwise, if the parameter is a non-aggregate class X and overload
|
|
// resolution chooses a single best constructor [...] the implicit
|
|
// conversion sequence is a user-defined conversion sequence. If multiple
|
|
// constructors are viable but none is better than the others, the
|
|
// implicit conversion sequence is a user-defined conversion sequence.
|
|
if (ToType->isRecordType() && !ToType->isAggregateType()) {
|
|
// This function can deal with initializer lists.
|
|
Result = TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
|
|
/*AllowExplicit=*/false,
|
|
InOverloadResolution, /*CStyle=*/false,
|
|
AllowObjCWritebackConversion);
|
|
Result.setListInitializationSequence();
|
|
return Result;
|
|
}
|
|
|
|
// C++11 [over.ics.list]p4:
|
|
// Otherwise, if the parameter has an aggregate type which can be
|
|
// initialized from the initializer list [...] the implicit conversion
|
|
// sequence is a user-defined conversion sequence.
|
|
if (ToType->isAggregateType()) {
|
|
// Type is an aggregate, argument is an init list. At this point it comes
|
|
// down to checking whether the initialization works.
|
|
// FIXME: Find out whether this parameter is consumed or not.
|
|
InitializedEntity Entity =
|
|
InitializedEntity::InitializeParameter(S.Context, ToType,
|
|
/*Consumed=*/false);
|
|
if (S.CanPerformCopyInitialization(Entity, S.Owned(From))) {
|
|
Result.setUserDefined();
|
|
Result.UserDefined.Before.setAsIdentityConversion();
|
|
// Initializer lists don't have a type.
|
|
Result.UserDefined.Before.setFromType(QualType());
|
|
Result.UserDefined.Before.setAllToTypes(QualType());
|
|
|
|
Result.UserDefined.After.setAsIdentityConversion();
|
|
Result.UserDefined.After.setFromType(ToType);
|
|
Result.UserDefined.After.setAllToTypes(ToType);
|
|
Result.UserDefined.ConversionFunction = 0;
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
// C++11 [over.ics.list]p5:
|
|
// Otherwise, if the parameter is a reference, see 13.3.3.1.4.
|
|
if (ToType->isReferenceType()) {
|
|
// The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
|
|
// mention initializer lists in any way. So we go by what list-
|
|
// initialization would do and try to extrapolate from that.
|
|
|
|
QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType();
|
|
|
|
// If the initializer list has a single element that is reference-related
|
|
// to the parameter type, we initialize the reference from that.
|
|
if (From->getNumInits() == 1) {
|
|
Expr *Init = From->getInit(0);
|
|
|
|
QualType T2 = Init->getType();
|
|
|
|
// If the initializer is the address of an overloaded function, try
|
|
// to resolve the overloaded function. If all goes well, T2 is the
|
|
// type of the resulting function.
|
|
if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
|
|
DeclAccessPair Found;
|
|
if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
|
|
Init, ToType, false, Found))
|
|
T2 = Fn->getType();
|
|
}
|
|
|
|
// Compute some basic properties of the types and the initializer.
|
|
bool dummy1 = false;
|
|
bool dummy2 = false;
|
|
bool dummy3 = false;
|
|
Sema::ReferenceCompareResult RefRelationship
|
|
= S.CompareReferenceRelationship(From->getLocStart(), T1, T2, dummy1,
|
|
dummy2, dummy3);
|
|
|
|
if (RefRelationship >= Sema::Ref_Related)
|
|
return TryReferenceInit(S, Init, ToType,
|
|
/*FIXME:*/From->getLocStart(),
|
|
SuppressUserConversions,
|
|
/*AllowExplicit=*/false);
|
|
}
|
|
|
|
// Otherwise, we bind the reference to a temporary created from the
|
|
// initializer list.
|
|
Result = TryListConversion(S, From, T1, SuppressUserConversions,
|
|
InOverloadResolution,
|
|
AllowObjCWritebackConversion);
|
|
if (Result.isFailure())
|
|
return Result;
|
|
assert(!Result.isEllipsis() &&
|
|
"Sub-initialization cannot result in ellipsis conversion.");
|
|
|
|
// Can we even bind to a temporary?
|
|
if (ToType->isRValueReferenceType() ||
|
|
(T1.isConstQualified() && !T1.isVolatileQualified())) {
|
|
StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
|
|
Result.UserDefined.After;
|
|
SCS.ReferenceBinding = true;
|
|
SCS.IsLvalueReference = ToType->isLValueReferenceType();
|
|
SCS.BindsToRvalue = true;
|
|
SCS.BindsToFunctionLvalue = false;
|
|
SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
|
|
SCS.ObjCLifetimeConversionBinding = false;
|
|
} else
|
|
Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
|
|
From, ToType);
|
|
return Result;
|
|
}
|
|
|
|
// C++11 [over.ics.list]p6:
|
|
// Otherwise, if the parameter type is not a class:
|
|
if (!ToType->isRecordType()) {
|
|
// - if the initializer list has one element, the implicit conversion
|
|
// sequence is the one required to convert the element to the
|
|
// parameter type.
|
|
unsigned NumInits = From->getNumInits();
|
|
if (NumInits == 1)
|
|
Result = TryCopyInitialization(S, From->getInit(0), ToType,
|
|
SuppressUserConversions,
|
|
InOverloadResolution,
|
|
AllowObjCWritebackConversion);
|
|
// - if the initializer list has no elements, the implicit conversion
|
|
// sequence is the identity conversion.
|
|
else if (NumInits == 0) {
|
|
Result.setStandard();
|
|
Result.Standard.setAsIdentityConversion();
|
|
Result.Standard.setFromType(ToType);
|
|
Result.Standard.setAllToTypes(ToType);
|
|
}
|
|
Result.setListInitializationSequence();
|
|
return Result;
|
|
}
|
|
|
|
// C++11 [over.ics.list]p7:
|
|
// In all cases other than those enumerated above, no conversion is possible
|
|
return Result;
|
|
}
|
|
|
|
/// TryCopyInitialization - Try to copy-initialize a value of type
|
|
/// ToType from the expression From. Return the implicit conversion
|
|
/// sequence required to pass this argument, which may be a bad
|
|
/// conversion sequence (meaning that the argument cannot be passed to
|
|
/// a parameter of this type). If @p SuppressUserConversions, then we
|
|
/// do not permit any user-defined conversion sequences.
|
|
static ImplicitConversionSequence
|
|
TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
|
|
bool SuppressUserConversions,
|
|
bool InOverloadResolution,
|
|
bool AllowObjCWritebackConversion,
|
|
bool AllowExplicit) {
|
|
if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
|
|
return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
|
|
InOverloadResolution,AllowObjCWritebackConversion);
|
|
|
|
if (ToType->isReferenceType())
|
|
return TryReferenceInit(S, From, ToType,
|
|
/*FIXME:*/From->getLocStart(),
|
|
SuppressUserConversions,
|
|
AllowExplicit);
|
|
|
|
return TryImplicitConversion(S, From, ToType,
|
|
SuppressUserConversions,
|
|
/*AllowExplicit=*/false,
|
|
InOverloadResolution,
|
|
/*CStyle=*/false,
|
|
AllowObjCWritebackConversion);
|
|
}
|
|
|
|
static bool TryCopyInitialization(const CanQualType FromQTy,
|
|
const CanQualType ToQTy,
|
|
Sema &S,
|
|
SourceLocation Loc,
|
|
ExprValueKind FromVK) {
|
|
OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
|
|
ImplicitConversionSequence ICS =
|
|
TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
|
|
|
|
return !ICS.isBad();
|
|
}
|
|
|
|
/// TryObjectArgumentInitialization - Try to initialize the object
|
|
/// parameter of the given member function (@c Method) from the
|
|
/// expression @p From.
|
|
static ImplicitConversionSequence
|
|
TryObjectArgumentInitialization(Sema &S, QualType OrigFromType,
|
|
Expr::Classification FromClassification,
|
|
CXXMethodDecl *Method,
|
|
CXXRecordDecl *ActingContext) {
|
|
QualType ClassType = S.Context.getTypeDeclType(ActingContext);
|
|
// [class.dtor]p2: A destructor can be invoked for a const, volatile or
|
|
// const volatile object.
|
|
unsigned Quals = isa<CXXDestructorDecl>(Method) ?
|
|
Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
|
|
QualType ImplicitParamType = S.Context.getCVRQualifiedType(ClassType, Quals);
|
|
|
|
// Set up the conversion sequence as a "bad" conversion, to allow us
|
|
// to exit early.
|
|
ImplicitConversionSequence ICS;
|
|
|
|
// We need to have an object of class type.
|
|
QualType FromType = OrigFromType;
|
|
if (const PointerType *PT = FromType->getAs<PointerType>()) {
|
|
FromType = PT->getPointeeType();
|
|
|
|
// When we had a pointer, it's implicitly dereferenced, so we
|
|
// better have an lvalue.
|
|
assert(FromClassification.isLValue());
|
|
}
|
|
|
|
assert(FromType->isRecordType());
|
|
|
|
// C++0x [over.match.funcs]p4:
|
|
// For non-static member functions, the type of the implicit object
|
|
// parameter is
|
|
//
|
|
// - "lvalue reference to cv X" for functions declared without a
|
|
// ref-qualifier or with the & ref-qualifier
|
|
// - "rvalue reference to cv X" for functions declared with the &&
|
|
// ref-qualifier
|
|
//
|
|
// where X is the class of which the function is a member and cv is the
|
|
// cv-qualification on the member function declaration.
|
|
//
|
|
// However, when finding an implicit conversion sequence for the argument, we
|
|
// are not allowed to create temporaries or perform user-defined conversions
|
|
// (C++ [over.match.funcs]p5). We perform a simplified version of
|
|
// reference binding here, that allows class rvalues to bind to
|
|
// non-constant references.
|
|
|
|
// First check the qualifiers.
|
|
QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
|
|
if (ImplicitParamType.getCVRQualifiers()
|
|
!= FromTypeCanon.getLocalCVRQualifiers() &&
|
|
!ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
|
|
ICS.setBad(BadConversionSequence::bad_qualifiers,
|
|
OrigFromType, ImplicitParamType);
|
|
return ICS;
|
|
}
|
|
|
|
// Check that we have either the same type or a derived type. It
|
|
// affects the conversion rank.
|
|
QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
|
|
ImplicitConversionKind SecondKind;
|
|
if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
|
|
SecondKind = ICK_Identity;
|
|
} else if (S.IsDerivedFrom(FromType, ClassType))
|
|
SecondKind = ICK_Derived_To_Base;
|
|
else {
|
|
ICS.setBad(BadConversionSequence::unrelated_class,
|
|
FromType, ImplicitParamType);
|
|
return ICS;
|
|
}
|
|
|
|
// Check the ref-qualifier.
|
|
switch (Method->getRefQualifier()) {
|
|
case RQ_None:
|
|
// Do nothing; we don't care about lvalueness or rvalueness.
|
|
break;
|
|
|
|
case RQ_LValue:
|
|
if (!FromClassification.isLValue() && Quals != Qualifiers::Const) {
|
|
// non-const lvalue reference cannot bind to an rvalue
|
|
ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
|
|
ImplicitParamType);
|
|
return ICS;
|
|
}
|
|
break;
|
|
|
|
case RQ_RValue:
|
|
if (!FromClassification.isRValue()) {
|
|
// rvalue reference cannot bind to an lvalue
|
|
ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
|
|
ImplicitParamType);
|
|
return ICS;
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Success. Mark this as a reference binding.
|
|
ICS.setStandard();
|
|
ICS.Standard.setAsIdentityConversion();
|
|
ICS.Standard.Second = SecondKind;
|
|
ICS.Standard.setFromType(FromType);
|
|
ICS.Standard.setAllToTypes(ImplicitParamType);
|
|
ICS.Standard.ReferenceBinding = true;
|
|
ICS.Standard.DirectBinding = true;
|
|
ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
|
|
ICS.Standard.BindsToFunctionLvalue = false;
|
|
ICS.Standard.BindsToRvalue = FromClassification.isRValue();
|
|
ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
|
|
= (Method->getRefQualifier() == RQ_None);
|
|
return ICS;
|
|
}
|
|
|
|
/// PerformObjectArgumentInitialization - Perform initialization of
|
|
/// the implicit object parameter for the given Method with the given
|
|
/// expression.
|
|
ExprResult
|
|
Sema::PerformObjectArgumentInitialization(Expr *From,
|
|
NestedNameSpecifier *Qualifier,
|
|
NamedDecl *FoundDecl,
|
|
CXXMethodDecl *Method) {
|
|
QualType FromRecordType, DestType;
|
|
QualType ImplicitParamRecordType =
|
|
Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
|
|
|
|
Expr::Classification FromClassification;
|
|
if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
|
|
FromRecordType = PT->getPointeeType();
|
|
DestType = Method->getThisType(Context);
|
|
FromClassification = Expr::Classification::makeSimpleLValue();
|
|
} else {
|
|
FromRecordType = From->getType();
|
|
DestType = ImplicitParamRecordType;
|
|
FromClassification = From->Classify(Context);
|
|
}
|
|
|
|
// Note that we always use the true parent context when performing
|
|
// the actual argument initialization.
|
|
ImplicitConversionSequence ICS
|
|
= TryObjectArgumentInitialization(*this, From->getType(), FromClassification,
|
|
Method, Method->getParent());
|
|
if (ICS.isBad()) {
|
|
if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) {
|
|
Qualifiers FromQs = FromRecordType.getQualifiers();
|
|
Qualifiers ToQs = DestType.getQualifiers();
|
|
unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
|
|
if (CVR) {
|
|
Diag(From->getLocStart(),
|
|
diag::err_member_function_call_bad_cvr)
|
|
<< Method->getDeclName() << FromRecordType << (CVR - 1)
|
|
<< From->getSourceRange();
|
|
Diag(Method->getLocation(), diag::note_previous_decl)
|
|
<< Method->getDeclName();
|
|
return ExprError();
|
|
}
|
|
}
|
|
|
|
return Diag(From->getLocStart(),
|
|
diag::err_implicit_object_parameter_init)
|
|
<< ImplicitParamRecordType << FromRecordType << From->getSourceRange();
|
|
}
|
|
|
|
if (ICS.Standard.Second == ICK_Derived_To_Base) {
|
|
ExprResult FromRes =
|
|
PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
|
|
if (FromRes.isInvalid())
|
|
return ExprError();
|
|
From = FromRes.take();
|
|
}
|
|
|
|
if (!Context.hasSameType(From->getType(), DestType))
|
|
From = ImpCastExprToType(From, DestType, CK_NoOp,
|
|
From->getValueKind()).take();
|
|
return Owned(From);
|
|
}
|
|
|
|
/// TryContextuallyConvertToBool - Attempt to contextually convert the
|
|
/// expression From to bool (C++0x [conv]p3).
|
|
static ImplicitConversionSequence
|
|
TryContextuallyConvertToBool(Sema &S, Expr *From) {
|
|
// FIXME: This is pretty broken.
|
|
return TryImplicitConversion(S, From, S.Context.BoolTy,
|
|
// FIXME: Are these flags correct?
|
|
/*SuppressUserConversions=*/false,
|
|
/*AllowExplicit=*/true,
|
|
/*InOverloadResolution=*/false,
|
|
/*CStyle=*/false,
|
|
/*AllowObjCWritebackConversion=*/false);
|
|
}
|
|
|
|
/// PerformContextuallyConvertToBool - Perform a contextual conversion
|
|
/// of the expression From to bool (C++0x [conv]p3).
|
|
ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
|
|
if (checkPlaceholderForOverload(*this, From))
|
|
return ExprError();
|
|
|
|
ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
|
|
if (!ICS.isBad())
|
|
return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
|
|
|
|
if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
|
|
return Diag(From->getLocStart(),
|
|
diag::err_typecheck_bool_condition)
|
|
<< From->getType() << From->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
/// Check that the specified conversion is permitted in a converted constant
|
|
/// expression, according to C++11 [expr.const]p3. Return true if the conversion
|
|
/// is acceptable.
|
|
static bool CheckConvertedConstantConversions(Sema &S,
|
|
StandardConversionSequence &SCS) {
|
|
// Since we know that the target type is an integral or unscoped enumeration
|
|
// type, most conversion kinds are impossible. All possible First and Third
|
|
// conversions are fine.
|
|
switch (SCS.Second) {
|
|
case ICK_Identity:
|
|
case ICK_Integral_Promotion:
|
|
case ICK_Integral_Conversion:
|
|
return true;
|
|
|
|
case ICK_Boolean_Conversion:
|
|
// Conversion from an integral or unscoped enumeration type to bool is
|
|
// classified as ICK_Boolean_Conversion, but it's also an integral
|
|
// conversion, so it's permitted in a converted constant expression.
|
|
return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
|
|
SCS.getToType(2)->isBooleanType();
|
|
|
|
case ICK_Floating_Integral:
|
|
case ICK_Complex_Real:
|
|
return false;
|
|
|
|
case ICK_Lvalue_To_Rvalue:
|
|
case ICK_Array_To_Pointer:
|
|
case ICK_Function_To_Pointer:
|
|
case ICK_NoReturn_Adjustment:
|
|
case ICK_Qualification:
|
|
case ICK_Compatible_Conversion:
|
|
case ICK_Vector_Conversion:
|
|
case ICK_Vector_Splat:
|
|
case ICK_Derived_To_Base:
|
|
case ICK_Pointer_Conversion:
|
|
case ICK_Pointer_Member:
|
|
case ICK_Block_Pointer_Conversion:
|
|
case ICK_Writeback_Conversion:
|
|
case ICK_Floating_Promotion:
|
|
case ICK_Complex_Promotion:
|
|
case ICK_Complex_Conversion:
|
|
case ICK_Floating_Conversion:
|
|
case ICK_TransparentUnionConversion:
|
|
llvm_unreachable("unexpected second conversion kind");
|
|
|
|
case ICK_Num_Conversion_Kinds:
|
|
break;
|
|
}
|
|
|
|
llvm_unreachable("unknown conversion kind");
|
|
}
|
|
|
|
/// CheckConvertedConstantExpression - Check that the expression From is a
|
|
/// converted constant expression of type T, perform the conversion and produce
|
|
/// the converted expression, per C++11 [expr.const]p3.
|
|
ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
|
|
llvm::APSInt &Value,
|
|
CCEKind CCE) {
|
|
assert(LangOpts.CPlusPlus0x && "converted constant expression outside C++11");
|
|
assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
|
|
|
|
if (checkPlaceholderForOverload(*this, From))
|
|
return ExprError();
|
|
|
|
// C++11 [expr.const]p3 with proposed wording fixes:
|
|
// A converted constant expression of type T is a core constant expression,
|
|
// implicitly converted to a prvalue of type T, where the converted
|
|
// expression is a literal constant expression and the implicit conversion
|
|
// sequence contains only user-defined conversions, lvalue-to-rvalue
|
|
// conversions, integral promotions, and integral conversions other than
|
|
// narrowing conversions.
|
|
ImplicitConversionSequence ICS =
|
|
TryImplicitConversion(From, T,
|
|
/*SuppressUserConversions=*/false,
|
|
/*AllowExplicit=*/false,
|
|
/*InOverloadResolution=*/false,
|
|
/*CStyle=*/false,
|
|
/*AllowObjcWritebackConversion=*/false);
|
|
StandardConversionSequence *SCS = 0;
|
|
switch (ICS.getKind()) {
|
|
case ImplicitConversionSequence::StandardConversion:
|
|
if (!CheckConvertedConstantConversions(*this, ICS.Standard))
|
|
return Diag(From->getLocStart(),
|
|
diag::err_typecheck_converted_constant_expression_disallowed)
|
|
<< From->getType() << From->getSourceRange() << T;
|
|
SCS = &ICS.Standard;
|
|
break;
|
|
case ImplicitConversionSequence::UserDefinedConversion:
|
|
// We are converting from class type to an integral or enumeration type, so
|
|
// the Before sequence must be trivial.
|
|
if (!CheckConvertedConstantConversions(*this, ICS.UserDefined.After))
|
|
return Diag(From->getLocStart(),
|
|
diag::err_typecheck_converted_constant_expression_disallowed)
|
|
<< From->getType() << From->getSourceRange() << T;
|
|
SCS = &ICS.UserDefined.After;
|
|
break;
|
|
case ImplicitConversionSequence::AmbiguousConversion:
|
|
case ImplicitConversionSequence::BadConversion:
|
|
if (!DiagnoseMultipleUserDefinedConversion(From, T))
|
|
return Diag(From->getLocStart(),
|
|
diag::err_typecheck_converted_constant_expression)
|
|
<< From->getType() << From->getSourceRange() << T;
|
|
return ExprError();
|
|
|
|
case ImplicitConversionSequence::EllipsisConversion:
|
|
llvm_unreachable("ellipsis conversion in converted constant expression");
|
|
}
|
|
|
|
ExprResult Result = PerformImplicitConversion(From, T, ICS, AA_Converting);
|
|
if (Result.isInvalid())
|
|
return Result;
|
|
|
|
// Check for a narrowing implicit conversion.
|
|
APValue PreNarrowingValue;
|
|
QualType PreNarrowingType;
|
|
switch (SCS->getNarrowingKind(Context, Result.get(), PreNarrowingValue,
|
|
PreNarrowingType)) {
|
|
case NK_Variable_Narrowing:
|
|
// Implicit conversion to a narrower type, and the value is not a constant
|
|
// expression. We'll diagnose this in a moment.
|
|
case NK_Not_Narrowing:
|
|
break;
|
|
|
|
case NK_Constant_Narrowing:
|
|
Diag(From->getLocStart(),
|
|
isSFINAEContext() ? diag::err_cce_narrowing_sfinae :
|
|
diag::err_cce_narrowing)
|
|
<< CCE << /*Constant*/1
|
|
<< PreNarrowingValue.getAsString(Context, PreNarrowingType) << T;
|
|
break;
|
|
|
|
case NK_Type_Narrowing:
|
|
Diag(From->getLocStart(),
|
|
isSFINAEContext() ? diag::err_cce_narrowing_sfinae :
|
|
diag::err_cce_narrowing)
|
|
<< CCE << /*Constant*/0 << From->getType() << T;
|
|
break;
|
|
}
|
|
|
|
// Check the expression is a constant expression.
|
|
llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
|
|
Expr::EvalResult Eval;
|
|
Eval.Diag = &Notes;
|
|
|
|
if (!Result.get()->EvaluateAsRValue(Eval, Context)) {
|
|
// The expression can't be folded, so we can't keep it at this position in
|
|
// the AST.
|
|
Result = ExprError();
|
|
} else {
|
|
Value = Eval.Val.getInt();
|
|
|
|
if (Notes.empty()) {
|
|
// It's a constant expression.
|
|
return Result;
|
|
}
|
|
}
|
|
|
|
// It's not a constant expression. Produce an appropriate diagnostic.
|
|
if (Notes.size() == 1 &&
|
|
Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
|
|
Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
|
|
else {
|
|
Diag(From->getLocStart(), diag::err_expr_not_cce)
|
|
<< CCE << From->getSourceRange();
|
|
for (unsigned I = 0; I < Notes.size(); ++I)
|
|
Diag(Notes[I].first, Notes[I].second);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
/// dropPointerConversions - If the given standard conversion sequence
|
|
/// involves any pointer conversions, remove them. This may change
|
|
/// the result type of the conversion sequence.
|
|
static void dropPointerConversion(StandardConversionSequence &SCS) {
|
|
if (SCS.Second == ICK_Pointer_Conversion) {
|
|
SCS.Second = ICK_Identity;
|
|
SCS.Third = ICK_Identity;
|
|
SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
|
|
}
|
|
}
|
|
|
|
/// TryContextuallyConvertToObjCPointer - Attempt to contextually
|
|
/// convert the expression From to an Objective-C pointer type.
|
|
static ImplicitConversionSequence
|
|
TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
|
|
// Do an implicit conversion to 'id'.
|
|
QualType Ty = S.Context.getObjCIdType();
|
|
ImplicitConversionSequence ICS
|
|
= TryImplicitConversion(S, From, Ty,
|
|
// FIXME: Are these flags correct?
|
|
/*SuppressUserConversions=*/false,
|
|
/*AllowExplicit=*/true,
|
|
/*InOverloadResolution=*/false,
|
|
/*CStyle=*/false,
|
|
/*AllowObjCWritebackConversion=*/false);
|
|
|
|
// Strip off any final conversions to 'id'.
|
|
switch (ICS.getKind()) {
|
|
case ImplicitConversionSequence::BadConversion:
|
|
case ImplicitConversionSequence::AmbiguousConversion:
|
|
case ImplicitConversionSequence::EllipsisConversion:
|
|
break;
|
|
|
|
case ImplicitConversionSequence::UserDefinedConversion:
|
|
dropPointerConversion(ICS.UserDefined.After);
|
|
break;
|
|
|
|
case ImplicitConversionSequence::StandardConversion:
|
|
dropPointerConversion(ICS.Standard);
|
|
break;
|
|
}
|
|
|
|
return ICS;
|
|
}
|
|
|
|
/// PerformContextuallyConvertToObjCPointer - Perform a contextual
|
|
/// conversion of the expression From to an Objective-C pointer type.
|
|
ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
|
|
if (checkPlaceholderForOverload(*this, From))
|
|
return ExprError();
|
|
|
|
QualType Ty = Context.getObjCIdType();
|
|
ImplicitConversionSequence ICS =
|
|
TryContextuallyConvertToObjCPointer(*this, From);
|
|
if (!ICS.isBad())
|
|
return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
|
|
return ExprError();
|
|
}
|
|
|
|
/// Determine whether the provided type is an integral type, or an enumeration
|
|
/// type of a permitted flavor.
|
|
static bool isIntegralOrEnumerationType(QualType T, bool AllowScopedEnum) {
|
|
return AllowScopedEnum ? T->isIntegralOrEnumerationType()
|
|
: T->isIntegralOrUnscopedEnumerationType();
|
|
}
|
|
|
|
/// \brief Attempt to convert the given expression to an integral or
|
|
/// enumeration type.
|
|
///
|
|
/// This routine will attempt to convert an expression of class type to an
|
|
/// integral or enumeration type, if that class type only has a single
|
|
/// conversion to an integral or enumeration type.
|
|
///
|
|
/// \param Loc The source location of the construct that requires the
|
|
/// conversion.
|
|
///
|
|
/// \param FromE The expression we're converting from.
|
|
///
|
|
/// \param NotIntDiag The diagnostic to be emitted if the expression does not
|
|
/// have integral or enumeration type.
|
|
///
|
|
/// \param IncompleteDiag The diagnostic to be emitted if the expression has
|
|
/// incomplete class type.
|
|
///
|
|
/// \param ExplicitConvDiag The diagnostic to be emitted if we're calling an
|
|
/// explicit conversion function (because no implicit conversion functions
|
|
/// were available). This is a recovery mode.
|
|
///
|
|
/// \param ExplicitConvNote The note to be emitted with \p ExplicitConvDiag,
|
|
/// showing which conversion was picked.
|
|
///
|
|
/// \param AmbigDiag The diagnostic to be emitted if there is more than one
|
|
/// conversion function that could convert to integral or enumeration type.
|
|
///
|
|
/// \param AmbigNote The note to be emitted with \p AmbigDiag for each
|
|
/// usable conversion function.
|
|
///
|
|
/// \param ConvDiag The diagnostic to be emitted if we are calling a conversion
|
|
/// function, which may be an extension in this case.
|
|
///
|
|
/// \param AllowScopedEnumerations Specifies whether conversions to scoped
|
|
/// enumerations should be considered.
|
|
///
|
|
/// \returns The expression, converted to an integral or enumeration type if
|
|
/// successful.
|
|
ExprResult
|
|
Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From,
|
|
ICEConvertDiagnoser &Diagnoser,
|
|
bool AllowScopedEnumerations) {
|
|
// We can't perform any more checking for type-dependent expressions.
|
|
if (From->isTypeDependent())
|
|
return Owned(From);
|
|
|
|
// Process placeholders immediately.
|
|
if (From->hasPlaceholderType()) {
|
|
ExprResult result = CheckPlaceholderExpr(From);
|
|
if (result.isInvalid()) return result;
|
|
From = result.take();
|
|
}
|
|
|
|
// If the expression already has integral or enumeration type, we're golden.
|
|
QualType T = From->getType();
|
|
if (isIntegralOrEnumerationType(T, AllowScopedEnumerations))
|
|
return DefaultLvalueConversion(From);
|
|
|
|
// FIXME: Check for missing '()' if T is a function type?
|
|
|
|
// If we don't have a class type in C++, there's no way we can get an
|
|
// expression of integral or enumeration type.
|
|
const RecordType *RecordTy = T->getAs<RecordType>();
|
|
if (!RecordTy || !getLangOpts().CPlusPlus) {
|
|
if (!Diagnoser.Suppress)
|
|
Diagnoser.diagnoseNotInt(*this, Loc, T) << From->getSourceRange();
|
|
return Owned(From);
|
|
}
|
|
|
|
// We must have a complete class type.
|
|
struct TypeDiagnoserPartialDiag : TypeDiagnoser {
|
|
ICEConvertDiagnoser &Diagnoser;
|
|
Expr *From;
|
|
|
|
TypeDiagnoserPartialDiag(ICEConvertDiagnoser &Diagnoser, Expr *From)
|
|
: TypeDiagnoser(Diagnoser.Suppress), Diagnoser(Diagnoser), From(From) {}
|
|
|
|
virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
|
|
Diagnoser.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
|
|
}
|
|
} IncompleteDiagnoser(Diagnoser, From);
|
|
|
|
if (RequireCompleteType(Loc, T, IncompleteDiagnoser))
|
|
return Owned(From);
|
|
|
|
// Look for a conversion to an integral or enumeration type.
|
|
UnresolvedSet<4> ViableConversions;
|
|
UnresolvedSet<4> ExplicitConversions;
|
|
const UnresolvedSetImpl *Conversions
|
|
= cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
|
|
|
|
bool HadMultipleCandidates = (Conversions->size() > 1);
|
|
|
|
for (UnresolvedSetImpl::iterator I = Conversions->begin(),
|
|
E = Conversions->end();
|
|
I != E;
|
|
++I) {
|
|
if (CXXConversionDecl *Conversion
|
|
= dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl())) {
|
|
if (isIntegralOrEnumerationType(
|
|
Conversion->getConversionType().getNonReferenceType(),
|
|
AllowScopedEnumerations)) {
|
|
if (Conversion->isExplicit())
|
|
ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
|
|
else
|
|
ViableConversions.addDecl(I.getDecl(), I.getAccess());
|
|
}
|
|
}
|
|
}
|
|
|
|
switch (ViableConversions.size()) {
|
|
case 0:
|
|
if (ExplicitConversions.size() == 1 && !Diagnoser.Suppress) {
|
|
DeclAccessPair Found = ExplicitConversions[0];
|
|
CXXConversionDecl *Conversion
|
|
= cast<CXXConversionDecl>(Found->getUnderlyingDecl());
|
|
|
|
// The user probably meant to invoke the given explicit
|
|
// conversion; use it.
|
|
QualType ConvTy
|
|
= Conversion->getConversionType().getNonReferenceType();
|
|
std::string TypeStr;
|
|
ConvTy.getAsStringInternal(TypeStr, getPrintingPolicy());
|
|
|
|
Diagnoser.diagnoseExplicitConv(*this, Loc, T, ConvTy)
|
|
<< FixItHint::CreateInsertion(From->getLocStart(),
|
|
"static_cast<" + TypeStr + ">(")
|
|
<< FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()),
|
|
")");
|
|
Diagnoser.noteExplicitConv(*this, Conversion, ConvTy);
|
|
|
|
// If we aren't in a SFINAE context, build a call to the
|
|
// explicit conversion function.
|
|
if (isSFINAEContext())
|
|
return ExprError();
|
|
|
|
CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
|
|
ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion,
|
|
HadMultipleCandidates);
|
|
if (Result.isInvalid())
|
|
return ExprError();
|
|
// Record usage of conversion in an implicit cast.
|
|
From = ImplicitCastExpr::Create(Context, Result.get()->getType(),
|
|
CK_UserDefinedConversion,
|
|
Result.get(), 0,
|
|
Result.get()->getValueKind());
|
|
}
|
|
|
|
// We'll complain below about a non-integral condition type.
|
|
break;
|
|
|
|
case 1: {
|
|
// Apply this conversion.
|
|
DeclAccessPair Found = ViableConversions[0];
|
|
CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
|
|
|
|
CXXConversionDecl *Conversion
|
|
= cast<CXXConversionDecl>(Found->getUnderlyingDecl());
|
|
QualType ConvTy
|
|
= Conversion->getConversionType().getNonReferenceType();
|
|
if (!Diagnoser.SuppressConversion) {
|
|
if (isSFINAEContext())
|
|
return ExprError();
|
|
|
|
Diagnoser.diagnoseConversion(*this, Loc, T, ConvTy)
|
|
<< From->getSourceRange();
|
|
}
|
|
|
|
ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion,
|
|
HadMultipleCandidates);
|
|
if (Result.isInvalid())
|
|
return ExprError();
|
|
// Record usage of conversion in an implicit cast.
|
|
From = ImplicitCastExpr::Create(Context, Result.get()->getType(),
|
|
CK_UserDefinedConversion,
|
|
Result.get(), 0,
|
|
Result.get()->getValueKind());
|
|
break;
|
|
}
|
|
|
|
default:
|
|
if (Diagnoser.Suppress)
|
|
return ExprError();
|
|
|
|
Diagnoser.diagnoseAmbiguous(*this, Loc, T) << From->getSourceRange();
|
|
for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
|
|
CXXConversionDecl *Conv
|
|
= cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
|
|
QualType ConvTy = Conv->getConversionType().getNonReferenceType();
|
|
Diagnoser.noteAmbiguous(*this, Conv, ConvTy);
|
|
}
|
|
return Owned(From);
|
|
}
|
|
|
|
if (!isIntegralOrEnumerationType(From->getType(), AllowScopedEnumerations) &&
|
|
!Diagnoser.Suppress) {
|
|
Diagnoser.diagnoseNotInt(*this, Loc, From->getType())
|
|
<< From->getSourceRange();
|
|
}
|
|
|
|
return DefaultLvalueConversion(From);
|
|
}
|
|
|
|
/// AddOverloadCandidate - Adds the given function to the set of
|
|
/// candidate functions, using the given function call arguments. If
|
|
/// @p SuppressUserConversions, then don't allow user-defined
|
|
/// conversions via constructors or conversion operators.
|
|
///
|
|
/// \para PartialOverloading true if we are performing "partial" overloading
|
|
/// based on an incomplete set of function arguments. This feature is used by
|
|
/// code completion.
|
|
void
|
|
Sema::AddOverloadCandidate(FunctionDecl *Function,
|
|
DeclAccessPair FoundDecl,
|
|
llvm::ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet& CandidateSet,
|
|
bool SuppressUserConversions,
|
|
bool PartialOverloading,
|
|
bool AllowExplicit) {
|
|
const FunctionProtoType* Proto
|
|
= dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
|
|
assert(Proto && "Functions without a prototype cannot be overloaded");
|
|
assert(!Function->getDescribedFunctionTemplate() &&
|
|
"Use AddTemplateOverloadCandidate for function templates");
|
|
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
|
|
if (!isa<CXXConstructorDecl>(Method)) {
|
|
// If we get here, it's because we're calling a member function
|
|
// that is named without a member access expression (e.g.,
|
|
// "this->f") that was either written explicitly or created
|
|
// implicitly. This can happen with a qualified call to a member
|
|
// function, e.g., X::f(). We use an empty type for the implied
|
|
// object argument (C++ [over.call.func]p3), and the acting context
|
|
// is irrelevant.
|
|
AddMethodCandidate(Method, FoundDecl, Method->getParent(),
|
|
QualType(), Expr::Classification::makeSimpleLValue(),
|
|
Args, CandidateSet, SuppressUserConversions);
|
|
return;
|
|
}
|
|
// We treat a constructor like a non-member function, since its object
|
|
// argument doesn't participate in overload resolution.
|
|
}
|
|
|
|
if (!CandidateSet.isNewCandidate(Function))
|
|
return;
|
|
|
|
// Overload resolution is always an unevaluated context.
|
|
EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
|
|
|
|
if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
|
|
// C++ [class.copy]p3:
|
|
// A member function template is never instantiated to perform the copy
|
|
// of a class object to an object of its class type.
|
|
QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
|
|
if (Args.size() == 1 &&
|
|
Constructor->isSpecializationCopyingObject() &&
|
|
(Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
|
|
IsDerivedFrom(Args[0]->getType(), ClassType)))
|
|
return;
|
|
}
|
|
|
|
// Add this candidate
|
|
OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
|
|
Candidate.FoundDecl = FoundDecl;
|
|
Candidate.Function = Function;
|
|
Candidate.Viable = true;
|
|
Candidate.IsSurrogate = false;
|
|
Candidate.IgnoreObjectArgument = false;
|
|
Candidate.ExplicitCallArguments = Args.size();
|
|
|
|
unsigned NumArgsInProto = Proto->getNumArgs();
|
|
|
|
// (C++ 13.3.2p2): A candidate function having fewer than m
|
|
// parameters is viable only if it has an ellipsis in its parameter
|
|
// list (8.3.5).
|
|
if ((Args.size() + (PartialOverloading && Args.size())) > NumArgsInProto &&
|
|
!Proto->isVariadic()) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_too_many_arguments;
|
|
return;
|
|
}
|
|
|
|
// (C++ 13.3.2p2): A candidate function having more than m parameters
|
|
// is viable only if the (m+1)st parameter has a default argument
|
|
// (8.3.6). For the purposes of overload resolution, the
|
|
// parameter list is truncated on the right, so that there are
|
|
// exactly m parameters.
|
|
unsigned MinRequiredArgs = Function->getMinRequiredArguments();
|
|
if (Args.size() < MinRequiredArgs && !PartialOverloading) {
|
|
// Not enough arguments.
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_too_few_arguments;
|
|
return;
|
|
}
|
|
|
|
// (CUDA B.1): Check for invalid calls between targets.
|
|
if (getLangOpts().CUDA)
|
|
if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
|
|
if (CheckCUDATarget(Caller, Function)) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_target;
|
|
return;
|
|
}
|
|
|
|
// Determine the implicit conversion sequences for each of the
|
|
// arguments.
|
|
for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
|
|
if (ArgIdx < NumArgsInProto) {
|
|
// (C++ 13.3.2p3): for F to be a viable function, there shall
|
|
// exist for each argument an implicit conversion sequence
|
|
// (13.3.3.1) that converts that argument to the corresponding
|
|
// parameter of F.
|
|
QualType ParamType = Proto->getArgType(ArgIdx);
|
|
Candidate.Conversions[ArgIdx]
|
|
= TryCopyInitialization(*this, Args[ArgIdx], ParamType,
|
|
SuppressUserConversions,
|
|
/*InOverloadResolution=*/true,
|
|
/*AllowObjCWritebackConversion=*/
|
|
getLangOpts().ObjCAutoRefCount,
|
|
AllowExplicit);
|
|
if (Candidate.Conversions[ArgIdx].isBad()) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_conversion;
|
|
break;
|
|
}
|
|
} else {
|
|
// (C++ 13.3.2p2): For the purposes of overload resolution, any
|
|
// argument for which there is no corresponding parameter is
|
|
// considered to ""match the ellipsis" (C+ 13.3.3.1.3).
|
|
Candidate.Conversions[ArgIdx].setEllipsis();
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief Add all of the function declarations in the given function set to
|
|
/// the overload canddiate set.
|
|
void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
|
|
llvm::ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet& CandidateSet,
|
|
bool SuppressUserConversions,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs) {
|
|
for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
|
|
NamedDecl *D = F.getDecl()->getUnderlyingDecl();
|
|
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
|
|
AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
|
|
cast<CXXMethodDecl>(FD)->getParent(),
|
|
Args[0]->getType(), Args[0]->Classify(Context),
|
|
Args.slice(1), CandidateSet,
|
|
SuppressUserConversions);
|
|
else
|
|
AddOverloadCandidate(FD, F.getPair(), Args, CandidateSet,
|
|
SuppressUserConversions);
|
|
} else {
|
|
FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
|
|
if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
|
|
!cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
|
|
AddMethodTemplateCandidate(FunTmpl, F.getPair(),
|
|
cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
|
|
ExplicitTemplateArgs,
|
|
Args[0]->getType(),
|
|
Args[0]->Classify(Context), Args.slice(1),
|
|
CandidateSet, SuppressUserConversions);
|
|
else
|
|
AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
|
|
ExplicitTemplateArgs, Args,
|
|
CandidateSet, SuppressUserConversions);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// AddMethodCandidate - Adds a named decl (which is some kind of
|
|
/// method) as a method candidate to the given overload set.
|
|
void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
|
|
QualType ObjectType,
|
|
Expr::Classification ObjectClassification,
|
|
Expr **Args, unsigned NumArgs,
|
|
OverloadCandidateSet& CandidateSet,
|
|
bool SuppressUserConversions) {
|
|
NamedDecl *Decl = FoundDecl.getDecl();
|
|
CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
|
|
|
|
if (isa<UsingShadowDecl>(Decl))
|
|
Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
|
|
|
|
if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
|
|
assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
|
|
"Expected a member function template");
|
|
AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
|
|
/*ExplicitArgs*/ 0,
|
|
ObjectType, ObjectClassification,
|
|
llvm::makeArrayRef(Args, NumArgs), CandidateSet,
|
|
SuppressUserConversions);
|
|
} else {
|
|
AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
|
|
ObjectType, ObjectClassification,
|
|
llvm::makeArrayRef(Args, NumArgs),
|
|
CandidateSet, SuppressUserConversions);
|
|
}
|
|
}
|
|
|
|
/// AddMethodCandidate - Adds the given C++ member function to the set
|
|
/// of candidate functions, using the given function call arguments
|
|
/// and the object argument (@c Object). For example, in a call
|
|
/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
|
|
/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
|
|
/// allow user-defined conversions via constructors or conversion
|
|
/// operators.
|
|
void
|
|
Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
|
|
CXXRecordDecl *ActingContext, QualType ObjectType,
|
|
Expr::Classification ObjectClassification,
|
|
llvm::ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet& CandidateSet,
|
|
bool SuppressUserConversions) {
|
|
const FunctionProtoType* Proto
|
|
= dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
|
|
assert(Proto && "Methods without a prototype cannot be overloaded");
|
|
assert(!isa<CXXConstructorDecl>(Method) &&
|
|
"Use AddOverloadCandidate for constructors");
|
|
|
|
if (!CandidateSet.isNewCandidate(Method))
|
|
return;
|
|
|
|
// Overload resolution is always an unevaluated context.
|
|
EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
|
|
|
|
// Add this candidate
|
|
OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
|
|
Candidate.FoundDecl = FoundDecl;
|
|
Candidate.Function = Method;
|
|
Candidate.IsSurrogate = false;
|
|
Candidate.IgnoreObjectArgument = false;
|
|
Candidate.ExplicitCallArguments = Args.size();
|
|
|
|
unsigned NumArgsInProto = Proto->getNumArgs();
|
|
|
|
// (C++ 13.3.2p2): A candidate function having fewer than m
|
|
// parameters is viable only if it has an ellipsis in its parameter
|
|
// list (8.3.5).
|
|
if (Args.size() > NumArgsInProto && !Proto->isVariadic()) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_too_many_arguments;
|
|
return;
|
|
}
|
|
|
|
// (C++ 13.3.2p2): A candidate function having more than m parameters
|
|
// is viable only if the (m+1)st parameter has a default argument
|
|
// (8.3.6). For the purposes of overload resolution, the
|
|
// parameter list is truncated on the right, so that there are
|
|
// exactly m parameters.
|
|
unsigned MinRequiredArgs = Method->getMinRequiredArguments();
|
|
if (Args.size() < MinRequiredArgs) {
|
|
// Not enough arguments.
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_too_few_arguments;
|
|
return;
|
|
}
|
|
|
|
Candidate.Viable = true;
|
|
|
|
if (Method->isStatic() || ObjectType.isNull())
|
|
// The implicit object argument is ignored.
|
|
Candidate.IgnoreObjectArgument = true;
|
|
else {
|
|
// Determine the implicit conversion sequence for the object
|
|
// parameter.
|
|
Candidate.Conversions[0]
|
|
= TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification,
|
|
Method, ActingContext);
|
|
if (Candidate.Conversions[0].isBad()) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_conversion;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Determine the implicit conversion sequences for each of the
|
|
// arguments.
|
|
for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
|
|
if (ArgIdx < NumArgsInProto) {
|
|
// (C++ 13.3.2p3): for F to be a viable function, there shall
|
|
// exist for each argument an implicit conversion sequence
|
|
// (13.3.3.1) that converts that argument to the corresponding
|
|
// parameter of F.
|
|
QualType ParamType = Proto->getArgType(ArgIdx);
|
|
Candidate.Conversions[ArgIdx + 1]
|
|
= TryCopyInitialization(*this, Args[ArgIdx], ParamType,
|
|
SuppressUserConversions,
|
|
/*InOverloadResolution=*/true,
|
|
/*AllowObjCWritebackConversion=*/
|
|
getLangOpts().ObjCAutoRefCount);
|
|
if (Candidate.Conversions[ArgIdx + 1].isBad()) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_conversion;
|
|
break;
|
|
}
|
|
} else {
|
|
// (C++ 13.3.2p2): For the purposes of overload resolution, any
|
|
// argument for which there is no corresponding parameter is
|
|
// considered to ""match the ellipsis" (C+ 13.3.3.1.3).
|
|
Candidate.Conversions[ArgIdx + 1].setEllipsis();
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief Add a C++ member function template as a candidate to the candidate
|
|
/// set, using template argument deduction to produce an appropriate member
|
|
/// function template specialization.
|
|
void
|
|
Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
|
|
DeclAccessPair FoundDecl,
|
|
CXXRecordDecl *ActingContext,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs,
|
|
QualType ObjectType,
|
|
Expr::Classification ObjectClassification,
|
|
llvm::ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet& CandidateSet,
|
|
bool SuppressUserConversions) {
|
|
if (!CandidateSet.isNewCandidate(MethodTmpl))
|
|
return;
|
|
|
|
// C++ [over.match.funcs]p7:
|
|
// In each case where a candidate is a function template, candidate
|
|
// function template specializations are generated using template argument
|
|
// deduction (14.8.3, 14.8.2). Those candidates are then handled as
|
|
// candidate functions in the usual way.113) A given name can refer to one
|
|
// or more function templates and also to a set of overloaded non-template
|
|
// functions. In such a case, the candidate functions generated from each
|
|
// function template are combined with the set of non-template candidate
|
|
// functions.
|
|
TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
|
|
FunctionDecl *Specialization = 0;
|
|
if (TemplateDeductionResult Result
|
|
= DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, Args,
|
|
Specialization, Info)) {
|
|
OverloadCandidate &Candidate = CandidateSet.addCandidate();
|
|
Candidate.FoundDecl = FoundDecl;
|
|
Candidate.Function = MethodTmpl->getTemplatedDecl();
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_deduction;
|
|
Candidate.IsSurrogate = false;
|
|
Candidate.IgnoreObjectArgument = false;
|
|
Candidate.ExplicitCallArguments = Args.size();
|
|
Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
|
|
Info);
|
|
return;
|
|
}
|
|
|
|
// Add the function template specialization produced by template argument
|
|
// deduction as a candidate.
|
|
assert(Specialization && "Missing member function template specialization?");
|
|
assert(isa<CXXMethodDecl>(Specialization) &&
|
|
"Specialization is not a member function?");
|
|
AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
|
|
ActingContext, ObjectType, ObjectClassification, Args,
|
|
CandidateSet, SuppressUserConversions);
|
|
}
|
|
|
|
/// \brief Add a C++ function template specialization as a candidate
|
|
/// in the candidate set, using template argument deduction to produce
|
|
/// an appropriate function template specialization.
|
|
void
|
|
Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
|
|
DeclAccessPair FoundDecl,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs,
|
|
llvm::ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet& CandidateSet,
|
|
bool SuppressUserConversions) {
|
|
if (!CandidateSet.isNewCandidate(FunctionTemplate))
|
|
return;
|
|
|
|
// C++ [over.match.funcs]p7:
|
|
// In each case where a candidate is a function template, candidate
|
|
// function template specializations are generated using template argument
|
|
// deduction (14.8.3, 14.8.2). Those candidates are then handled as
|
|
// candidate functions in the usual way.113) A given name can refer to one
|
|
// or more function templates and also to a set of overloaded non-template
|
|
// functions. In such a case, the candidate functions generated from each
|
|
// function template are combined with the set of non-template candidate
|
|
// functions.
|
|
TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
|
|
FunctionDecl *Specialization = 0;
|
|
if (TemplateDeductionResult Result
|
|
= DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, Args,
|
|
Specialization, Info)) {
|
|
OverloadCandidate &Candidate = CandidateSet.addCandidate();
|
|
Candidate.FoundDecl = FoundDecl;
|
|
Candidate.Function = FunctionTemplate->getTemplatedDecl();
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_deduction;
|
|
Candidate.IsSurrogate = false;
|
|
Candidate.IgnoreObjectArgument = false;
|
|
Candidate.ExplicitCallArguments = Args.size();
|
|
Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
|
|
Info);
|
|
return;
|
|
}
|
|
|
|
// Add the function template specialization produced by template argument
|
|
// deduction as a candidate.
|
|
assert(Specialization && "Missing function template specialization?");
|
|
AddOverloadCandidate(Specialization, FoundDecl, Args, CandidateSet,
|
|
SuppressUserConversions);
|
|
}
|
|
|
|
/// AddConversionCandidate - Add a C++ conversion function as a
|
|
/// candidate in the candidate set (C++ [over.match.conv],
|
|
/// C++ [over.match.copy]). From is the expression we're converting from,
|
|
/// and ToType is the type that we're eventually trying to convert to
|
|
/// (which may or may not be the same type as the type that the
|
|
/// conversion function produces).
|
|
void
|
|
Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
|
|
DeclAccessPair FoundDecl,
|
|
CXXRecordDecl *ActingContext,
|
|
Expr *From, QualType ToType,
|
|
OverloadCandidateSet& CandidateSet) {
|
|
assert(!Conversion->getDescribedFunctionTemplate() &&
|
|
"Conversion function templates use AddTemplateConversionCandidate");
|
|
QualType ConvType = Conversion->getConversionType().getNonReferenceType();
|
|
if (!CandidateSet.isNewCandidate(Conversion))
|
|
return;
|
|
|
|
// Overload resolution is always an unevaluated context.
|
|
EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
|
|
|
|
// Add this candidate
|
|
OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
|
|
Candidate.FoundDecl = FoundDecl;
|
|
Candidate.Function = Conversion;
|
|
Candidate.IsSurrogate = false;
|
|
Candidate.IgnoreObjectArgument = false;
|
|
Candidate.FinalConversion.setAsIdentityConversion();
|
|
Candidate.FinalConversion.setFromType(ConvType);
|
|
Candidate.FinalConversion.setAllToTypes(ToType);
|
|
Candidate.Viable = true;
|
|
Candidate.ExplicitCallArguments = 1;
|
|
|
|
// C++ [over.match.funcs]p4:
|
|
// For conversion functions, the function is considered to be a member of
|
|
// the class of the implicit implied object argument for the purpose of
|
|
// defining the type of the implicit object parameter.
|
|
//
|
|
// Determine the implicit conversion sequence for the implicit
|
|
// object parameter.
|
|
QualType ImplicitParamType = From->getType();
|
|
if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
|
|
ImplicitParamType = FromPtrType->getPointeeType();
|
|
CXXRecordDecl *ConversionContext
|
|
= cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
|
|
|
|
Candidate.Conversions[0]
|
|
= TryObjectArgumentInitialization(*this, From->getType(),
|
|
From->Classify(Context),
|
|
Conversion, ConversionContext);
|
|
|
|
if (Candidate.Conversions[0].isBad()) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_conversion;
|
|
return;
|
|
}
|
|
|
|
// We won't go through a user-define type conversion function to convert a
|
|
// derived to base as such conversions are given Conversion Rank. They only
|
|
// go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
|
|
QualType FromCanon
|
|
= Context.getCanonicalType(From->getType().getUnqualifiedType());
|
|
QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
|
|
if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_trivial_conversion;
|
|
return;
|
|
}
|
|
|
|
// To determine what the conversion from the result of calling the
|
|
// conversion function to the type we're eventually trying to
|
|
// convert to (ToType), we need to synthesize a call to the
|
|
// conversion function and attempt copy initialization from it. This
|
|
// makes sure that we get the right semantics with respect to
|
|
// lvalues/rvalues and the type. Fortunately, we can allocate this
|
|
// call on the stack and we don't need its arguments to be
|
|
// well-formed.
|
|
DeclRefExpr ConversionRef(Conversion, false, Conversion->getType(),
|
|
VK_LValue, From->getLocStart());
|
|
ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
|
|
Context.getPointerType(Conversion->getType()),
|
|
CK_FunctionToPointerDecay,
|
|
&ConversionRef, VK_RValue);
|
|
|
|
QualType ConversionType = Conversion->getConversionType();
|
|
if (RequireCompleteType(From->getLocStart(), ConversionType, 0)) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_final_conversion;
|
|
return;
|
|
}
|
|
|
|
ExprValueKind VK = Expr::getValueKindForType(ConversionType);
|
|
|
|
// Note that it is safe to allocate CallExpr on the stack here because
|
|
// there are 0 arguments (i.e., nothing is allocated using ASTContext's
|
|
// allocator).
|
|
QualType CallResultType = ConversionType.getNonLValueExprType(Context);
|
|
CallExpr Call(Context, &ConversionFn, 0, 0, CallResultType, VK,
|
|
From->getLocStart());
|
|
ImplicitConversionSequence ICS =
|
|
TryCopyInitialization(*this, &Call, ToType,
|
|
/*SuppressUserConversions=*/true,
|
|
/*InOverloadResolution=*/false,
|
|
/*AllowObjCWritebackConversion=*/false);
|
|
|
|
switch (ICS.getKind()) {
|
|
case ImplicitConversionSequence::StandardConversion:
|
|
Candidate.FinalConversion = ICS.Standard;
|
|
|
|
// C++ [over.ics.user]p3:
|
|
// If the user-defined conversion is specified by a specialization of a
|
|
// conversion function template, the second standard conversion sequence
|
|
// shall have exact match rank.
|
|
if (Conversion->getPrimaryTemplate() &&
|
|
GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
|
|
}
|
|
|
|
// C++0x [dcl.init.ref]p5:
|
|
// In the second case, if the reference is an rvalue reference and
|
|
// the second standard conversion sequence of the user-defined
|
|
// conversion sequence includes an lvalue-to-rvalue conversion, the
|
|
// program is ill-formed.
|
|
if (ToType->isRValueReferenceType() &&
|
|
ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_final_conversion;
|
|
}
|
|
break;
|
|
|
|
case ImplicitConversionSequence::BadConversion:
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_final_conversion;
|
|
break;
|
|
|
|
default:
|
|
llvm_unreachable(
|
|
"Can only end up with a standard conversion sequence or failure");
|
|
}
|
|
}
|
|
|
|
/// \brief Adds a conversion function template specialization
|
|
/// candidate to the overload set, using template argument deduction
|
|
/// to deduce the template arguments of the conversion function
|
|
/// template from the type that we are converting to (C++
|
|
/// [temp.deduct.conv]).
|
|
void
|
|
Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
|
|
DeclAccessPair FoundDecl,
|
|
CXXRecordDecl *ActingDC,
|
|
Expr *From, QualType ToType,
|
|
OverloadCandidateSet &CandidateSet) {
|
|
assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
|
|
"Only conversion function templates permitted here");
|
|
|
|
if (!CandidateSet.isNewCandidate(FunctionTemplate))
|
|
return;
|
|
|
|
TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
|
|
CXXConversionDecl *Specialization = 0;
|
|
if (TemplateDeductionResult Result
|
|
= DeduceTemplateArguments(FunctionTemplate, ToType,
|
|
Specialization, Info)) {
|
|
OverloadCandidate &Candidate = CandidateSet.addCandidate();
|
|
Candidate.FoundDecl = FoundDecl;
|
|
Candidate.Function = FunctionTemplate->getTemplatedDecl();
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_deduction;
|
|
Candidate.IsSurrogate = false;
|
|
Candidate.IgnoreObjectArgument = false;
|
|
Candidate.ExplicitCallArguments = 1;
|
|
Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
|
|
Info);
|
|
return;
|
|
}
|
|
|
|
// Add the conversion function template specialization produced by
|
|
// template argument deduction as a candidate.
|
|
assert(Specialization && "Missing function template specialization?");
|
|
AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
|
|
CandidateSet);
|
|
}
|
|
|
|
/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
|
|
/// converts the given @c Object to a function pointer via the
|
|
/// conversion function @c Conversion, and then attempts to call it
|
|
/// with the given arguments (C++ [over.call.object]p2-4). Proto is
|
|
/// the type of function that we'll eventually be calling.
|
|
void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
|
|
DeclAccessPair FoundDecl,
|
|
CXXRecordDecl *ActingContext,
|
|
const FunctionProtoType *Proto,
|
|
Expr *Object,
|
|
llvm::ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet& CandidateSet) {
|
|
if (!CandidateSet.isNewCandidate(Conversion))
|
|
return;
|
|
|
|
// Overload resolution is always an unevaluated context.
|
|
EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
|
|
|
|
OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
|
|
Candidate.FoundDecl = FoundDecl;
|
|
Candidate.Function = 0;
|
|
Candidate.Surrogate = Conversion;
|
|
Candidate.Viable = true;
|
|
Candidate.IsSurrogate = true;
|
|
Candidate.IgnoreObjectArgument = false;
|
|
Candidate.ExplicitCallArguments = Args.size();
|
|
|
|
// Determine the implicit conversion sequence for the implicit
|
|
// object parameter.
|
|
ImplicitConversionSequence ObjectInit
|
|
= TryObjectArgumentInitialization(*this, Object->getType(),
|
|
Object->Classify(Context),
|
|
Conversion, ActingContext);
|
|
if (ObjectInit.isBad()) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_conversion;
|
|
Candidate.Conversions[0] = ObjectInit;
|
|
return;
|
|
}
|
|
|
|
// The first conversion is actually a user-defined conversion whose
|
|
// first conversion is ObjectInit's standard conversion (which is
|
|
// effectively a reference binding). Record it as such.
|
|
Candidate.Conversions[0].setUserDefined();
|
|
Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
|
|
Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
|
|
Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
|
|
Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
|
|
Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
|
|
Candidate.Conversions[0].UserDefined.After
|
|
= Candidate.Conversions[0].UserDefined.Before;
|
|
Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
|
|
|
|
// Find the
|
|
unsigned NumArgsInProto = Proto->getNumArgs();
|
|
|
|
// (C++ 13.3.2p2): A candidate function having fewer than m
|
|
// parameters is viable only if it has an ellipsis in its parameter
|
|
// list (8.3.5).
|
|
if (Args.size() > NumArgsInProto && !Proto->isVariadic()) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_too_many_arguments;
|
|
return;
|
|
}
|
|
|
|
// Function types don't have any default arguments, so just check if
|
|
// we have enough arguments.
|
|
if (Args.size() < NumArgsInProto) {
|
|
// Not enough arguments.
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_too_few_arguments;
|
|
return;
|
|
}
|
|
|
|
// Determine the implicit conversion sequences for each of the
|
|
// arguments.
|
|
for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
|
|
if (ArgIdx < NumArgsInProto) {
|
|
// (C++ 13.3.2p3): for F to be a viable function, there shall
|
|
// exist for each argument an implicit conversion sequence
|
|
// (13.3.3.1) that converts that argument to the corresponding
|
|
// parameter of F.
|
|
QualType ParamType = Proto->getArgType(ArgIdx);
|
|
Candidate.Conversions[ArgIdx + 1]
|
|
= TryCopyInitialization(*this, Args[ArgIdx], ParamType,
|
|
/*SuppressUserConversions=*/false,
|
|
/*InOverloadResolution=*/false,
|
|
/*AllowObjCWritebackConversion=*/
|
|
getLangOpts().ObjCAutoRefCount);
|
|
if (Candidate.Conversions[ArgIdx + 1].isBad()) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_conversion;
|
|
break;
|
|
}
|
|
} else {
|
|
// (C++ 13.3.2p2): For the purposes of overload resolution, any
|
|
// argument for which there is no corresponding parameter is
|
|
// considered to ""match the ellipsis" (C+ 13.3.3.1.3).
|
|
Candidate.Conversions[ArgIdx + 1].setEllipsis();
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief Add overload candidates for overloaded operators that are
|
|
/// member functions.
|
|
///
|
|
/// Add the overloaded operator candidates that are member functions
|
|
/// for the operator Op that was used in an operator expression such
|
|
/// as "x Op y". , Args/NumArgs provides the operator arguments, and
|
|
/// CandidateSet will store the added overload candidates. (C++
|
|
/// [over.match.oper]).
|
|
void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
|
|
SourceLocation OpLoc,
|
|
Expr **Args, unsigned NumArgs,
|
|
OverloadCandidateSet& CandidateSet,
|
|
SourceRange OpRange) {
|
|
DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
|
|
|
|
// C++ [over.match.oper]p3:
|
|
// For a unary operator @ with an operand of a type whose
|
|
// cv-unqualified version is T1, and for a binary operator @ with
|
|
// a left operand of a type whose cv-unqualified version is T1 and
|
|
// a right operand of a type whose cv-unqualified version is T2,
|
|
// three sets of candidate functions, designated member
|
|
// candidates, non-member candidates and built-in candidates, are
|
|
// constructed as follows:
|
|
QualType T1 = Args[0]->getType();
|
|
|
|
// -- If T1 is a class type, the set of member candidates is the
|
|
// result of the qualified lookup of T1::operator@
|
|
// (13.3.1.1.1); otherwise, the set of member candidates is
|
|
// empty.
|
|
if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
|
|
// Complete the type if it can be completed. Otherwise, we're done.
|
|
if (RequireCompleteType(OpLoc, T1, 0))
|
|
return;
|
|
|
|
LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
|
|
LookupQualifiedName(Operators, T1Rec->getDecl());
|
|
Operators.suppressDiagnostics();
|
|
|
|
for (LookupResult::iterator Oper = Operators.begin(),
|
|
OperEnd = Operators.end();
|
|
Oper != OperEnd;
|
|
++Oper)
|
|
AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
|
|
Args[0]->Classify(Context), Args + 1, NumArgs - 1,
|
|
CandidateSet,
|
|
/* SuppressUserConversions = */ false);
|
|
}
|
|
}
|
|
|
|
/// AddBuiltinCandidate - Add a candidate for a built-in
|
|
/// operator. ResultTy and ParamTys are the result and parameter types
|
|
/// of the built-in candidate, respectively. Args and NumArgs are the
|
|
/// arguments being passed to the candidate. IsAssignmentOperator
|
|
/// should be true when this built-in candidate is an assignment
|
|
/// operator. NumContextualBoolArguments is the number of arguments
|
|
/// (at the beginning of the argument list) that will be contextually
|
|
/// converted to bool.
|
|
void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
|
|
Expr **Args, unsigned NumArgs,
|
|
OverloadCandidateSet& CandidateSet,
|
|
bool IsAssignmentOperator,
|
|
unsigned NumContextualBoolArguments) {
|
|
// Overload resolution is always an unevaluated context.
|
|
EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
|
|
|
|
// Add this candidate
|
|
OverloadCandidate &Candidate = CandidateSet.addCandidate(NumArgs);
|
|
Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
|
|
Candidate.Function = 0;
|
|
Candidate.IsSurrogate = false;
|
|
Candidate.IgnoreObjectArgument = false;
|
|
Candidate.BuiltinTypes.ResultTy = ResultTy;
|
|
for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
|
|
Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
|
|
|
|
// Determine the implicit conversion sequences for each of the
|
|
// arguments.
|
|
Candidate.Viable = true;
|
|
Candidate.ExplicitCallArguments = NumArgs;
|
|
for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
|
|
// C++ [over.match.oper]p4:
|
|
// For the built-in assignment operators, conversions of the
|
|
// left operand are restricted as follows:
|
|
// -- no temporaries are introduced to hold the left operand, and
|
|
// -- no user-defined conversions are applied to the left
|
|
// operand to achieve a type match with the left-most
|
|
// parameter of a built-in candidate.
|
|
//
|
|
// We block these conversions by turning off user-defined
|
|
// conversions, since that is the only way that initialization of
|
|
// a reference to a non-class type can occur from something that
|
|
// is not of the same type.
|
|
if (ArgIdx < NumContextualBoolArguments) {
|
|
assert(ParamTys[ArgIdx] == Context.BoolTy &&
|
|
"Contextual conversion to bool requires bool type");
|
|
Candidate.Conversions[ArgIdx]
|
|
= TryContextuallyConvertToBool(*this, Args[ArgIdx]);
|
|
} else {
|
|
Candidate.Conversions[ArgIdx]
|
|
= TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
|
|
ArgIdx == 0 && IsAssignmentOperator,
|
|
/*InOverloadResolution=*/false,
|
|
/*AllowObjCWritebackConversion=*/
|
|
getLangOpts().ObjCAutoRefCount);
|
|
}
|
|
if (Candidate.Conversions[ArgIdx].isBad()) {
|
|
Candidate.Viable = false;
|
|
Candidate.FailureKind = ovl_fail_bad_conversion;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// BuiltinCandidateTypeSet - A set of types that will be used for the
|
|
/// candidate operator functions for built-in operators (C++
|
|
/// [over.built]). The types are separated into pointer types and
|
|
/// enumeration types.
|
|
class BuiltinCandidateTypeSet {
|
|
/// TypeSet - A set of types.
|
|
typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
|
|
|
|
/// PointerTypes - The set of pointer types that will be used in the
|
|
/// built-in candidates.
|
|
TypeSet PointerTypes;
|
|
|
|
/// MemberPointerTypes - The set of member pointer types that will be
|
|
/// used in the built-in candidates.
|
|
TypeSet MemberPointerTypes;
|
|
|
|
/// EnumerationTypes - The set of enumeration types that will be
|
|
/// used in the built-in candidates.
|
|
TypeSet EnumerationTypes;
|
|
|
|
/// \brief The set of vector types that will be used in the built-in
|
|
/// candidates.
|
|
TypeSet VectorTypes;
|
|
|
|
/// \brief A flag indicating non-record types are viable candidates
|
|
bool HasNonRecordTypes;
|
|
|
|
/// \brief A flag indicating whether either arithmetic or enumeration types
|
|
/// were present in the candidate set.
|
|
bool HasArithmeticOrEnumeralTypes;
|
|
|
|
/// \brief A flag indicating whether the nullptr type was present in the
|
|
/// candidate set.
|
|
bool HasNullPtrType;
|
|
|
|
/// Sema - The semantic analysis instance where we are building the
|
|
/// candidate type set.
|
|
Sema &SemaRef;
|
|
|
|
/// Context - The AST context in which we will build the type sets.
|
|
ASTContext &Context;
|
|
|
|
bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
|
|
const Qualifiers &VisibleQuals);
|
|
bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
|
|
|
|
public:
|
|
/// iterator - Iterates through the types that are part of the set.
|
|
typedef TypeSet::iterator iterator;
|
|
|
|
BuiltinCandidateTypeSet(Sema &SemaRef)
|
|
: HasNonRecordTypes(false),
|
|
HasArithmeticOrEnumeralTypes(false),
|
|
HasNullPtrType(false),
|
|
SemaRef(SemaRef),
|
|
Context(SemaRef.Context) { }
|
|
|
|
void AddTypesConvertedFrom(QualType Ty,
|
|
SourceLocation Loc,
|
|
bool AllowUserConversions,
|
|
bool AllowExplicitConversions,
|
|
const Qualifiers &VisibleTypeConversionsQuals);
|
|
|
|
/// pointer_begin - First pointer type found;
|
|
iterator pointer_begin() { return PointerTypes.begin(); }
|
|
|
|
/// pointer_end - Past the last pointer type found;
|
|
iterator pointer_end() { return PointerTypes.end(); }
|
|
|
|
/// member_pointer_begin - First member pointer type found;
|
|
iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
|
|
|
|
/// member_pointer_end - Past the last member pointer type found;
|
|
iterator member_pointer_end() { return MemberPointerTypes.end(); }
|
|
|
|
/// enumeration_begin - First enumeration type found;
|
|
iterator enumeration_begin() { return EnumerationTypes.begin(); }
|
|
|
|
/// enumeration_end - Past the last enumeration type found;
|
|
iterator enumeration_end() { return EnumerationTypes.end(); }
|
|
|
|
iterator vector_begin() { return VectorTypes.begin(); }
|
|
iterator vector_end() { return VectorTypes.end(); }
|
|
|
|
bool hasNonRecordTypes() { return HasNonRecordTypes; }
|
|
bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
|
|
bool hasNullPtrType() const { return HasNullPtrType; }
|
|
};
|
|
|
|
/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
|
|
/// the set of pointer types along with any more-qualified variants of
|
|
/// that type. For example, if @p Ty is "int const *", this routine
|
|
/// will add "int const *", "int const volatile *", "int const
|
|
/// restrict *", and "int const volatile restrict *" to the set of
|
|
/// pointer types. Returns true if the add of @p Ty itself succeeded,
|
|
/// false otherwise.
|
|
///
|
|
/// FIXME: what to do about extended qualifiers?
|
|
bool
|
|
BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
|
|
const Qualifiers &VisibleQuals) {
|
|
|
|
// Insert this type.
|
|
if (!PointerTypes.insert(Ty))
|
|
return false;
|
|
|
|
QualType PointeeTy;
|
|
const PointerType *PointerTy = Ty->getAs<PointerType>();
|
|
bool buildObjCPtr = false;
|
|
if (!PointerTy) {
|
|
const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
|
|
PointeeTy = PTy->getPointeeType();
|
|
buildObjCPtr = true;
|
|
} else {
|
|
PointeeTy = PointerTy->getPointeeType();
|
|
}
|
|
|
|
// Don't add qualified variants of arrays. For one, they're not allowed
|
|
// (the qualifier would sink to the element type), and for another, the
|
|
// only overload situation where it matters is subscript or pointer +- int,
|
|
// and those shouldn't have qualifier variants anyway.
|
|
if (PointeeTy->isArrayType())
|
|
return true;
|
|
|
|
unsigned BaseCVR = PointeeTy.getCVRQualifiers();
|
|
bool hasVolatile = VisibleQuals.hasVolatile();
|
|
bool hasRestrict = VisibleQuals.hasRestrict();
|
|
|
|
// Iterate through all strict supersets of BaseCVR.
|
|
for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
|
|
if ((CVR | BaseCVR) != CVR) continue;
|
|
// Skip over volatile if no volatile found anywhere in the types.
|
|
if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
|
|
|
|
// Skip over restrict if no restrict found anywhere in the types, or if
|
|
// the type cannot be restrict-qualified.
|
|
if ((CVR & Qualifiers::Restrict) &&
|
|
(!hasRestrict ||
|
|
(!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
|
|
continue;
|
|
|
|
// Build qualified pointee type.
|
|
QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
|
|
|
|
// Build qualified pointer type.
|
|
QualType QPointerTy;
|
|
if (!buildObjCPtr)
|
|
QPointerTy = Context.getPointerType(QPointeeTy);
|
|
else
|
|
QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
|
|
|
|
// Insert qualified pointer type.
|
|
PointerTypes.insert(QPointerTy);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
|
|
/// to the set of pointer types along with any more-qualified variants of
|
|
/// that type. For example, if @p Ty is "int const *", this routine
|
|
/// will add "int const *", "int const volatile *", "int const
|
|
/// restrict *", and "int const volatile restrict *" to the set of
|
|
/// pointer types. Returns true if the add of @p Ty itself succeeded,
|
|
/// false otherwise.
|
|
///
|
|
/// FIXME: what to do about extended qualifiers?
|
|
bool
|
|
BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
|
|
QualType Ty) {
|
|
// Insert this type.
|
|
if (!MemberPointerTypes.insert(Ty))
|
|
return false;
|
|
|
|
const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
|
|
assert(PointerTy && "type was not a member pointer type!");
|
|
|
|
QualType PointeeTy = PointerTy->getPointeeType();
|
|
// Don't add qualified variants of arrays. For one, they're not allowed
|
|
// (the qualifier would sink to the element type), and for another, the
|
|
// only overload situation where it matters is subscript or pointer +- int,
|
|
// and those shouldn't have qualifier variants anyway.
|
|
if (PointeeTy->isArrayType())
|
|
return true;
|
|
const Type *ClassTy = PointerTy->getClass();
|
|
|
|
// Iterate through all strict supersets of the pointee type's CVR
|
|
// qualifiers.
|
|
unsigned BaseCVR = PointeeTy.getCVRQualifiers();
|
|
for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
|
|
if ((CVR | BaseCVR) != CVR) continue;
|
|
|
|
QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
|
|
MemberPointerTypes.insert(
|
|
Context.getMemberPointerType(QPointeeTy, ClassTy));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// AddTypesConvertedFrom - Add each of the types to which the type @p
|
|
/// Ty can be implicit converted to the given set of @p Types. We're
|
|
/// primarily interested in pointer types and enumeration types. We also
|
|
/// take member pointer types, for the conditional operator.
|
|
/// AllowUserConversions is true if we should look at the conversion
|
|
/// functions of a class type, and AllowExplicitConversions if we
|
|
/// should also include the explicit conversion functions of a class
|
|
/// type.
|
|
void
|
|
BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
|
|
SourceLocation Loc,
|
|
bool AllowUserConversions,
|
|
bool AllowExplicitConversions,
|
|
const Qualifiers &VisibleQuals) {
|
|
// Only deal with canonical types.
|
|
Ty = Context.getCanonicalType(Ty);
|
|
|
|
// Look through reference types; they aren't part of the type of an
|
|
// expression for the purposes of conversions.
|
|
if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
|
|
Ty = RefTy->getPointeeType();
|
|
|
|
// If we're dealing with an array type, decay to the pointer.
|
|
if (Ty->isArrayType())
|
|
Ty = SemaRef.Context.getArrayDecayedType(Ty);
|
|
|
|
// Otherwise, we don't care about qualifiers on the type.
|
|
Ty = Ty.getLocalUnqualifiedType();
|
|
|
|
// Flag if we ever add a non-record type.
|
|
const RecordType *TyRec = Ty->getAs<RecordType>();
|
|
HasNonRecordTypes = HasNonRecordTypes || !TyRec;
|
|
|
|
// Flag if we encounter an arithmetic type.
|
|
HasArithmeticOrEnumeralTypes =
|
|
HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
|
|
|
|
if (Ty->isObjCIdType() || Ty->isObjCClassType())
|
|
PointerTypes.insert(Ty);
|
|
else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
|
|
// Insert our type, and its more-qualified variants, into the set
|
|
// of types.
|
|
if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
|
|
return;
|
|
} else if (Ty->isMemberPointerType()) {
|
|
// Member pointers are far easier, since the pointee can't be converted.
|
|
if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
|
|
return;
|
|
} else if (Ty->isEnumeralType()) {
|
|
HasArithmeticOrEnumeralTypes = true;
|
|
EnumerationTypes.insert(Ty);
|
|
} else if (Ty->isVectorType()) {
|
|
// We treat vector types as arithmetic types in many contexts as an
|
|
// extension.
|
|
HasArithmeticOrEnumeralTypes = true;
|
|
VectorTypes.insert(Ty);
|
|
} else if (Ty->isNullPtrType()) {
|
|
HasNullPtrType = true;
|
|
} else if (AllowUserConversions && TyRec) {
|
|
// No conversion functions in incomplete types.
|
|
if (SemaRef.RequireCompleteType(Loc, Ty, 0))
|
|
return;
|
|
|
|
CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
|
|
const UnresolvedSetImpl *Conversions
|
|
= ClassDecl->getVisibleConversionFunctions();
|
|
for (UnresolvedSetImpl::iterator I = Conversions->begin(),
|
|
E = Conversions->end(); I != E; ++I) {
|
|
NamedDecl *D = I.getDecl();
|
|
if (isa<UsingShadowDecl>(D))
|
|
D = cast<UsingShadowDecl>(D)->getTargetDecl();
|
|
|
|
// Skip conversion function templates; they don't tell us anything
|
|
// about which builtin types we can convert to.
|
|
if (isa<FunctionTemplateDecl>(D))
|
|
continue;
|
|
|
|
CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
|
|
if (AllowExplicitConversions || !Conv->isExplicit()) {
|
|
AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
|
|
VisibleQuals);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
|
|
/// the volatile- and non-volatile-qualified assignment operators for the
|
|
/// given type to the candidate set.
|
|
static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
|
|
QualType T,
|
|
Expr **Args,
|
|
unsigned NumArgs,
|
|
OverloadCandidateSet &CandidateSet) {
|
|
QualType ParamTypes[2];
|
|
|
|
// T& operator=(T&, T)
|
|
ParamTypes[0] = S.Context.getLValueReferenceType(T);
|
|
ParamTypes[1] = T;
|
|
S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
|
|
/*IsAssignmentOperator=*/true);
|
|
|
|
if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
|
|
// volatile T& operator=(volatile T&, T)
|
|
ParamTypes[0]
|
|
= S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
|
|
ParamTypes[1] = T;
|
|
S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
|
|
/*IsAssignmentOperator=*/true);
|
|
}
|
|
}
|
|
|
|
/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
|
|
/// if any, found in visible type conversion functions found in ArgExpr's type.
|
|
static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
|
|
Qualifiers VRQuals;
|
|
const RecordType *TyRec;
|
|
if (const MemberPointerType *RHSMPType =
|
|
ArgExpr->getType()->getAs<MemberPointerType>())
|
|
TyRec = RHSMPType->getClass()->getAs<RecordType>();
|
|
else
|
|
TyRec = ArgExpr->getType()->getAs<RecordType>();
|
|
if (!TyRec) {
|
|
// Just to be safe, assume the worst case.
|
|
VRQuals.addVolatile();
|
|
VRQuals.addRestrict();
|
|
return VRQuals;
|
|
}
|
|
|
|
CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
|
|
if (!ClassDecl->hasDefinition())
|
|
return VRQuals;
|
|
|
|
const UnresolvedSetImpl *Conversions =
|
|
ClassDecl->getVisibleConversionFunctions();
|
|
|
|
for (UnresolvedSetImpl::iterator I = Conversions->begin(),
|
|
E = Conversions->end(); I != E; ++I) {
|
|
NamedDecl *D = I.getDecl();
|
|
if (isa<UsingShadowDecl>(D))
|
|
D = cast<UsingShadowDecl>(D)->getTargetDecl();
|
|
if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
|
|
QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
|
|
if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
|
|
CanTy = ResTypeRef->getPointeeType();
|
|
// Need to go down the pointer/mempointer chain and add qualifiers
|
|
// as see them.
|
|
bool done = false;
|
|
while (!done) {
|
|
if (CanTy.isRestrictQualified())
|
|
VRQuals.addRestrict();
|
|
if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
|
|
CanTy = ResTypePtr->getPointeeType();
|
|
else if (const MemberPointerType *ResTypeMPtr =
|
|
CanTy->getAs<MemberPointerType>())
|
|
CanTy = ResTypeMPtr->getPointeeType();
|
|
else
|
|
done = true;
|
|
if (CanTy.isVolatileQualified())
|
|
VRQuals.addVolatile();
|
|
if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
|
|
return VRQuals;
|
|
}
|
|
}
|
|
}
|
|
return VRQuals;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// \brief Helper class to manage the addition of builtin operator overload
|
|
/// candidates. It provides shared state and utility methods used throughout
|
|
/// the process, as well as a helper method to add each group of builtin
|
|
/// operator overloads from the standard to a candidate set.
|
|
class BuiltinOperatorOverloadBuilder {
|
|
// Common instance state available to all overload candidate addition methods.
|
|
Sema &S;
|
|
Expr **Args;
|
|
unsigned NumArgs;
|
|
Qualifiers VisibleTypeConversionsQuals;
|
|
bool HasArithmeticOrEnumeralCandidateType;
|
|
SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
|
|
OverloadCandidateSet &CandidateSet;
|
|
|
|
// Define some constants used to index and iterate over the arithemetic types
|
|
// provided via the getArithmeticType() method below.
|
|
// The "promoted arithmetic types" are the arithmetic
|
|
// types are that preserved by promotion (C++ [over.built]p2).
|
|
static const unsigned FirstIntegralType = 3;
|
|
static const unsigned LastIntegralType = 18;
|
|
static const unsigned FirstPromotedIntegralType = 3,
|
|
LastPromotedIntegralType = 9;
|
|
static const unsigned FirstPromotedArithmeticType = 0,
|
|
LastPromotedArithmeticType = 9;
|
|
static const unsigned NumArithmeticTypes = 18;
|
|
|
|
/// \brief Get the canonical type for a given arithmetic type index.
|
|
CanQualType getArithmeticType(unsigned index) {
|
|
assert(index < NumArithmeticTypes);
|
|
static CanQualType ASTContext::* const
|
|
ArithmeticTypes[NumArithmeticTypes] = {
|
|
// Start of promoted types.
|
|
&ASTContext::FloatTy,
|
|
&ASTContext::DoubleTy,
|
|
&ASTContext::LongDoubleTy,
|
|
|
|
// Start of integral types.
|
|
&ASTContext::IntTy,
|
|
&ASTContext::LongTy,
|
|
&ASTContext::LongLongTy,
|
|
&ASTContext::UnsignedIntTy,
|
|
&ASTContext::UnsignedLongTy,
|
|
&ASTContext::UnsignedLongLongTy,
|
|
// End of promoted types.
|
|
|
|
&ASTContext::BoolTy,
|
|
&ASTContext::CharTy,
|
|
&ASTContext::WCharTy,
|
|
&ASTContext::Char16Ty,
|
|
&ASTContext::Char32Ty,
|
|
&ASTContext::SignedCharTy,
|
|
&ASTContext::ShortTy,
|
|
&ASTContext::UnsignedCharTy,
|
|
&ASTContext::UnsignedShortTy,
|
|
// End of integral types.
|
|
// FIXME: What about complex?
|
|
};
|
|
return S.Context.*ArithmeticTypes[index];
|
|
}
|
|
|
|
/// \brief Gets the canonical type resulting from the usual arithemetic
|
|
/// converions for the given arithmetic types.
|
|
CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) {
|
|
// Accelerator table for performing the usual arithmetic conversions.
|
|
// The rules are basically:
|
|
// - if either is floating-point, use the wider floating-point
|
|
// - if same signedness, use the higher rank
|
|
// - if same size, use unsigned of the higher rank
|
|
// - use the larger type
|
|
// These rules, together with the axiom that higher ranks are
|
|
// never smaller, are sufficient to precompute all of these results
|
|
// *except* when dealing with signed types of higher rank.
|
|
// (we could precompute SLL x UI for all known platforms, but it's
|
|
// better not to make any assumptions).
|
|
enum PromotedType {
|
|
Flt, Dbl, LDbl, SI, SL, SLL, UI, UL, ULL, Dep=-1
|
|
};
|
|
static const PromotedType ConversionsTable[LastPromotedArithmeticType]
|
|
[LastPromotedArithmeticType] = {
|
|
/* Flt*/ { Flt, Dbl, LDbl, Flt, Flt, Flt, Flt, Flt, Flt },
|
|
/* Dbl*/ { Dbl, Dbl, LDbl, Dbl, Dbl, Dbl, Dbl, Dbl, Dbl },
|
|
/*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl },
|
|
/* SI*/ { Flt, Dbl, LDbl, SI, SL, SLL, UI, UL, ULL },
|
|
/* SL*/ { Flt, Dbl, LDbl, SL, SL, SLL, Dep, UL, ULL },
|
|
/* SLL*/ { Flt, Dbl, LDbl, SLL, SLL, SLL, Dep, Dep, ULL },
|
|
/* UI*/ { Flt, Dbl, LDbl, UI, Dep, Dep, UI, UL, ULL },
|
|
/* UL*/ { Flt, Dbl, LDbl, UL, UL, Dep, UL, UL, ULL },
|
|
/* ULL*/ { Flt, Dbl, LDbl, ULL, ULL, ULL, ULL, ULL, ULL },
|
|
};
|
|
|
|
assert(L < LastPromotedArithmeticType);
|
|
assert(R < LastPromotedArithmeticType);
|
|
int Idx = ConversionsTable[L][R];
|
|
|
|
// Fast path: the table gives us a concrete answer.
|
|
if (Idx != Dep) return getArithmeticType(Idx);
|
|
|
|
// Slow path: we need to compare widths.
|
|
// An invariant is that the signed type has higher rank.
|
|
CanQualType LT = getArithmeticType(L),
|
|
RT = getArithmeticType(R);
|
|
unsigned LW = S.Context.getIntWidth(LT),
|
|
RW = S.Context.getIntWidth(RT);
|
|
|
|
// If they're different widths, use the signed type.
|
|
if (LW > RW) return LT;
|
|
else if (LW < RW) return RT;
|
|
|
|
// Otherwise, use the unsigned type of the signed type's rank.
|
|
if (L == SL || R == SL) return S.Context.UnsignedLongTy;
|
|
assert(L == SLL || R == SLL);
|
|
return S.Context.UnsignedLongLongTy;
|
|
}
|
|
|
|
/// \brief Helper method to factor out the common pattern of adding overloads
|
|
/// for '++' and '--' builtin operators.
|
|
void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
|
|
bool HasVolatile,
|
|
bool HasRestrict) {
|
|
QualType ParamTypes[2] = {
|
|
S.Context.getLValueReferenceType(CandidateTy),
|
|
S.Context.IntTy
|
|
};
|
|
|
|
// Non-volatile version.
|
|
if (NumArgs == 1)
|
|
S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
|
|
else
|
|
S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
|
|
|
|
// Use a heuristic to reduce number of builtin candidates in the set:
|
|
// add volatile version only if there are conversions to a volatile type.
|
|
if (HasVolatile) {
|
|
ParamTypes[0] =
|
|
S.Context.getLValueReferenceType(
|
|
S.Context.getVolatileType(CandidateTy));
|
|
if (NumArgs == 1)
|
|
S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
|
|
else
|
|
S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
|
|
}
|
|
|
|
// Add restrict version only if there are conversions to a restrict type
|
|
// and our candidate type is a non-restrict-qualified pointer.
|
|
if (HasRestrict && CandidateTy->isAnyPointerType() &&
|
|
!CandidateTy.isRestrictQualified()) {
|
|
ParamTypes[0]
|
|
= S.Context.getLValueReferenceType(
|
|
S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
|
|
if (NumArgs == 1)
|
|
S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
|
|
else
|
|
S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
|
|
|
|
if (HasVolatile) {
|
|
ParamTypes[0]
|
|
= S.Context.getLValueReferenceType(
|
|
S.Context.getCVRQualifiedType(CandidateTy,
|
|
(Qualifiers::Volatile |
|
|
Qualifiers::Restrict)));
|
|
if (NumArgs == 1)
|
|
S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1,
|
|
CandidateSet);
|
|
else
|
|
S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
public:
|
|
BuiltinOperatorOverloadBuilder(
|
|
Sema &S, Expr **Args, unsigned NumArgs,
|
|
Qualifiers VisibleTypeConversionsQuals,
|
|
bool HasArithmeticOrEnumeralCandidateType,
|
|
SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
|
|
OverloadCandidateSet &CandidateSet)
|
|
: S(S), Args(Args), NumArgs(NumArgs),
|
|
VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
|
|
HasArithmeticOrEnumeralCandidateType(
|
|
HasArithmeticOrEnumeralCandidateType),
|
|
CandidateTypes(CandidateTypes),
|
|
CandidateSet(CandidateSet) {
|
|
// Validate some of our static helper constants in debug builds.
|
|
assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy &&
|
|
"Invalid first promoted integral type");
|
|
assert(getArithmeticType(LastPromotedIntegralType - 1)
|
|
== S.Context.UnsignedLongLongTy &&
|
|
"Invalid last promoted integral type");
|
|
assert(getArithmeticType(FirstPromotedArithmeticType)
|
|
== S.Context.FloatTy &&
|
|
"Invalid first promoted arithmetic type");
|
|
assert(getArithmeticType(LastPromotedArithmeticType - 1)
|
|
== S.Context.UnsignedLongLongTy &&
|
|
"Invalid last promoted arithmetic type");
|
|
}
|
|
|
|
// C++ [over.built]p3:
|
|
//
|
|
// For every pair (T, VQ), where T is an arithmetic type, and VQ
|
|
// is either volatile or empty, there exist candidate operator
|
|
// functions of the form
|
|
//
|
|
// VQ T& operator++(VQ T&);
|
|
// T operator++(VQ T&, int);
|
|
//
|
|
// C++ [over.built]p4:
|
|
//
|
|
// For every pair (T, VQ), where T is an arithmetic type other
|
|
// than bool, and VQ is either volatile or empty, there exist
|
|
// candidate operator functions of the form
|
|
//
|
|
// VQ T& operator--(VQ T&);
|
|
// T operator--(VQ T&, int);
|
|
void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
|
|
if (!HasArithmeticOrEnumeralCandidateType)
|
|
return;
|
|
|
|
for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
|
|
Arith < NumArithmeticTypes; ++Arith) {
|
|
addPlusPlusMinusMinusStyleOverloads(
|
|
getArithmeticType(Arith),
|
|
VisibleTypeConversionsQuals.hasVolatile(),
|
|
VisibleTypeConversionsQuals.hasRestrict());
|
|
}
|
|
}
|
|
|
|
// C++ [over.built]p5:
|
|
//
|
|
// For every pair (T, VQ), where T is a cv-qualified or
|
|
// cv-unqualified object type, and VQ is either volatile or
|
|
// empty, there exist candidate operator functions of the form
|
|
//
|
|
// T*VQ& operator++(T*VQ&);
|
|
// T*VQ& operator--(T*VQ&);
|
|
// T* operator++(T*VQ&, int);
|
|
// T* operator--(T*VQ&, int);
|
|
void addPlusPlusMinusMinusPointerOverloads() {
|
|
for (BuiltinCandidateTypeSet::iterator
|
|
Ptr = CandidateTypes[0].pointer_begin(),
|
|
PtrEnd = CandidateTypes[0].pointer_end();
|
|
Ptr != PtrEnd; ++Ptr) {
|
|
// Skip pointer types that aren't pointers to object types.
|
|
if (!(*Ptr)->getPointeeType()->isObjectType())
|
|
continue;
|
|
|
|
addPlusPlusMinusMinusStyleOverloads(*Ptr,
|
|
(!(*Ptr).isVolatileQualified() &&
|
|
VisibleTypeConversionsQuals.hasVolatile()),
|
|
(!(*Ptr).isRestrictQualified() &&
|
|
VisibleTypeConversionsQuals.hasRestrict()));
|
|
}
|
|
}
|
|
|
|
// C++ [over.built]p6:
|
|
// For every cv-qualified or cv-unqualified object type T, there
|
|
// exist candidate operator functions of the form
|
|
//
|
|
// T& operator*(T*);
|
|
//
|
|
// C++ [over.built]p7:
|
|
// For every function type T that does not have cv-qualifiers or a
|
|
// ref-qualifier, there exist candidate operator functions of the form
|
|
// T& operator*(T*);
|
|
void addUnaryStarPointerOverloads() {
|
|
for (BuiltinCandidateTypeSet::iterator
|
|
Ptr = CandidateTypes[0].pointer_begin(),
|
|
PtrEnd = CandidateTypes[0].pointer_end();
|
|
Ptr != PtrEnd; ++Ptr) {
|
|
QualType ParamTy = *Ptr;
|
|
QualType PointeeTy = ParamTy->getPointeeType();
|
|
if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
|
|
continue;
|
|
|
|
if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
|
|
if (Proto->getTypeQuals() || Proto->getRefQualifier())
|
|
continue;
|
|
|
|
S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy),
|
|
&ParamTy, Args, 1, CandidateSet);
|
|
}
|
|
}
|
|
|
|
// C++ [over.built]p9:
|
|
// For every promoted arithmetic type T, there exist candidate
|
|
// operator functions of the form
|
|
//
|
|
// T operator+(T);
|
|
// T operator-(T);
|
|
void addUnaryPlusOrMinusArithmeticOverloads() {
|
|
if (!HasArithmeticOrEnumeralCandidateType)
|
|
return;
|
|
|
|
for (unsigned Arith = FirstPromotedArithmeticType;
|
|
Arith < LastPromotedArithmeticType; ++Arith) {
|
|
QualType ArithTy = getArithmeticType(Arith);
|
|
S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
|
|
}
|
|
|
|
// Extension: We also add these operators for vector types.
|
|
for (BuiltinCandidateTypeSet::iterator
|
|
Vec = CandidateTypes[0].vector_begin(),
|
|
VecEnd = CandidateTypes[0].vector_end();
|
|
Vec != VecEnd; ++Vec) {
|
|
QualType VecTy = *Vec;
|
|
S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
|
|
}
|
|
}
|
|
|
|
// C++ [over.built]p8:
|
|
// For every type T, there exist candidate operator functions of
|
|
// the form
|
|
//
|
|
// T* operator+(T*);
|
|
void addUnaryPlusPointerOverloads() {
|
|
for (BuiltinCandidateTypeSet::iterator
|
|
Ptr = CandidateTypes[0].pointer_begin(),
|
|
PtrEnd = CandidateTypes[0].pointer_end();
|
|
Ptr != PtrEnd; ++Ptr) {
|
|
QualType ParamTy = *Ptr;
|
|
S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
|
|
}
|
|
}
|
|
|
|
// C++ [over.built]p10:
|
|
// For every promoted integral type T, there exist candidate
|
|
// operator functions of the form
|
|
//
|
|
// T operator~(T);
|
|
void addUnaryTildePromotedIntegralOverloads() {
|
|
if (!HasArithmeticOrEnumeralCandidateType)
|
|
return;
|
|
|
|
for (unsigned Int = FirstPromotedIntegralType;
|
|
Int < LastPromotedIntegralType; ++Int) {
|
|
QualType IntTy = getArithmeticType(Int);
|
|
S.AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
|
|
}
|
|
|
|
// Extension: We also add this operator for vector types.
|
|
for (BuiltinCandidateTypeSet::iterator
|
|
Vec = CandidateTypes[0].vector_begin(),
|
|
VecEnd = CandidateTypes[0].vector_end();
|
|
Vec != VecEnd; ++Vec) {
|
|
QualType VecTy = *Vec;
|
|
S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
|
|
}
|
|
}
|
|
|
|
// C++ [over.match.oper]p16:
|
|
// For every pointer to member type T, there exist candidate operator
|
|
// functions of the form
|
|
//
|
|
// bool operator==(T,T);
|
|
// bool operator!=(T,T);
|
|
void addEqualEqualOrNotEqualMemberPointerOverloads() {
|
|
/// Set of (canonical) types that we've already handled.
|
|
llvm::SmallPtrSet<QualType, 8> AddedTypes;
|
|
|
|
for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
|
|
for (BuiltinCandidateTypeSet::iterator
|
|
MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
|
|
MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
|
|
MemPtr != MemPtrEnd;
|
|
++MemPtr) {
|
|
// Don't add the same builtin candidate twice.
|
|
if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
|
|
continue;
|
|
|
|
QualType ParamTypes[2] = { *MemPtr, *MemPtr };
|
|
S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
|
|
CandidateSet);
|
|
}
|
|
}
|
|
}
|
|
|
|
// C++ [over.built]p15:
|
|
//
|
|
// For every T, where T is an enumeration type, a pointer type, or
|
|
// std::nullptr_t, there exist candidate operator functions of the form
|
|
//
|
|
// bool operator<(T, T);
|
|
// bool operator>(T, T);
|
|
// bool operator<=(T, T);
|
|
// bool operator>=(T, T);
|
|
// bool operator==(T, T);
|
|
// bool operator!=(T, T);
|
|
void addRelationalPointerOrEnumeralOverloads() {
|
|
// C++ [over.built]p1:
|
|
// If there is a user-written candidate with the same name and parameter
|
|
// types as a built-in candidate operator function, the built-in operator
|
|
// function is hidden and is not included in the set of candidate
|
|
// functions.
|
|
//
|
|
// The text is actually in a note, but if we don't implement it then we end
|
|
// up with ambiguities when the user provides an overloaded operator for
|
|
// an enumeration type. Note that only enumeration types have this problem,
|
|
// so we track which enumeration types we've seen operators for. Also, the
|
|
// only other overloaded operator with enumeration argumenst, operator=,
|
|
// cannot be overloaded for enumeration types, so this is the only place
|
|
// where we must suppress candidates like this.
|
|
llvm::DenseSet<std::pair<CanQualType, CanQualType> >
|
|
UserDefinedBinaryOperators;
|
|
|
|
for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
|
|
if (CandidateTypes[ArgIdx].enumeration_begin() !=
|
|
CandidateTypes[ArgIdx].enumeration_end()) {
|
|
for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
|
|
CEnd = CandidateSet.end();
|
|
C != CEnd; ++C) {
|
|
if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
|
|
continue;
|
|
|
|
QualType FirstParamType =
|
|
C->Function->getParamDecl(0)->getType().getUnqualifiedType();
|
|
QualType SecondParamType =
|
|
C->Function->getParamDecl(1)->getType().getUnqualifiedType();
|
|
|
|
// Skip if either parameter isn't of enumeral type.
|
|
if (!FirstParamType->isEnumeralType() ||
|
|
!SecondParamType->isEnumeralType())
|
|
continue;
|
|
|
|
// Add this operator to the set of known user-defined operators.
|
|
UserDefinedBinaryOperators.insert(
|
|
std::make_pair(S.Context.getCanonicalType(FirstParamType),
|
|
S.Context.getCanonicalType(SecondParamType)));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Set of (canonical) types that we've already handled.
|
|
llvm::SmallPtrSet<QualType, 8> AddedTypes;
|
|
|
|
for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
|
|
for (BuiltinCandidateTypeSet::iterator
|
|
Ptr = CandidateTypes[ArgIdx].pointer_begin(),
|
|
PtrEnd = CandidateTypes[ArgIdx].pointer_end();
|
|
Ptr != PtrEnd; ++Ptr) {
|
|
// Don't add the same builtin candidate twice.
|
|
if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
|
|
continue;
|
|
|
|
QualType ParamTypes[2] = { *Ptr, *Ptr };
|
|
S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
|
|
CandidateSet);
|
|
}
|
|
for (BuiltinCandidateTypeSet::iterator
|
|
Enum = CandidateTypes[ArgIdx].enumeration_begin(),
|
|
EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
|
|
Enum != EnumEnd; ++Enum) {
|
|
CanQualType CanonType = S.Context.getCanonicalType(*Enum);
|
|
|
|
// Don't add the same builtin candidate twice, or if a user defined
|
|
// candidate exists.
|
|
if (!AddedTypes.insert(CanonType) ||
|
|
UserDefinedBinaryOperators.count(std::make_pair(CanonType,
|
|
CanonType)))
|
|
continue;
|
|
|
|
QualType ParamTypes[2] = { *Enum, *Enum };
|
|
S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
|
|
CandidateSet);
|
|
}
|
|
|
|
if (CandidateTypes[ArgIdx].hasNullPtrType()) {
|
|
CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
|
|
if (AddedTypes.insert(NullPtrTy) &&
|
|
!UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy,
|
|
NullPtrTy))) {
|
|
QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
|
|
S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
|
|
CandidateSet);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// C++ [over.built]p13:
|
|
//
|
|
// For every cv-qualified or cv-unqualified object type T
|
|
// there exist candidate operator functions of the form
|
|
//
|
|
// T* operator+(T*, ptrdiff_t);
|
|
// T& operator[](T*, ptrdiff_t); [BELOW]
|
|
// T* operator-(T*, ptrdiff_t);
|
|
// T* operator+(ptrdiff_t, T*);
|
|
// T& operator[](ptrdiff_t, T*); [BELOW]
|
|
//
|
|
// C++ [over.built]p14:
|
|
//
|
|
// For every T, where T is a pointer to object type, there
|
|
// exist candidate operator functions of the form
|
|
//
|
|
// ptrdiff_t operator-(T, T);
|
|
void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
|
|
/// Set of (canonical) types that we've already handled.
|
|
llvm::SmallPtrSet<QualType, 8> AddedTypes;
|
|
|
|
for (int Arg = 0; Arg < 2; ++Arg) {
|
|
QualType AsymetricParamTypes[2] = {
|
|
S.Context.getPointerDiffType(),
|
|
S.Context.getPointerDiffType(),
|
|
};
|
|
for (BuiltinCandidateTypeSet::iterator
|
|
Ptr = CandidateTypes[Arg].pointer_begin(),
|
|
PtrEnd = CandidateTypes[Arg].pointer_end();
|
|
Ptr != PtrEnd; ++Ptr) {
|
|
QualType PointeeTy = (*Ptr)->getPointeeType();
|
|
if (!PointeeTy->isObjectType())
|
|
continue;
|
|
|
|
AsymetricParamTypes[Arg] = *Ptr;
|
|
if (Arg == 0 || Op == OO_Plus) {
|
|
// operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
|
|
// T* operator+(ptrdiff_t, T*);
|
|
S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, 2,
|
|
CandidateSet);
|
|
}
|
|
if (Op == OO_Minus) {
|
|
// ptrdiff_t operator-(T, T);
|
|
if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
|
|
continue;
|
|
|
|
QualType ParamTypes[2] = { *Ptr, *Ptr };
|
|
S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes,
|
|
Args, 2, CandidateSet);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// C++ [over.built]p12:
|
|
//
|
|
// For every pair of promoted arithmetic types L and R, there
|
|
// exist candidate operator functions of the form
|
|
//
|
|
// LR operator*(L, R);
|
|
// LR operator/(L, R);
|
|
// LR operator+(L, R);
|
|
// LR operator-(L, R);
|
|
// bool operator<(L, R);
|
|
// bool operator>(L, R);
|
|
// bool operator<=(L, R);
|
|
// bool operator>=(L, R);
|
|
// bool operator==(L, R);
|
|
// bool operator!=(L, R);
|
|
//
|
|
// where LR is the result of the usual arithmetic conversions
|
|
// between types L and R.
|
|
//
|
|
// C++ [over.built]p24:
|
|
//
|
|
// For every pair of promoted arithmetic types L and R, there exist
|
|
// candidate operator functions of the form
|
|
//
|
|
// LR operator?(bool, L, R);
|
|
//
|
|
// where LR is the result of the usual arithmetic conversions
|
|
// between types L and R.
|
|
// Our candidates ignore the first parameter.
|
|
void addGenericBinaryArithmeticOverloads(bool isComparison) {
|
|
if (!HasArithmeticOrEnumeralCandidateType)
|
|
return;
|
|
|
|
for (unsigned Left = FirstPromotedArithmeticType;
|
|
Left < LastPromotedArithmeticType; ++Left) {
|
|
for (unsigned Right = FirstPromotedArithmeticType;
|
|
Right < LastPromotedArithmeticType; ++Right) {
|
|
QualType LandR[2] = { getArithmeticType(Left),
|
|
getArithmeticType(Right) };
|
|
QualType Result =
|
|
isComparison ? S.Context.BoolTy
|
|
: getUsualArithmeticConversions(Left, Right);
|
|
S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
|
|
}
|
|
}
|
|
|
|
// Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
|
|
// conditional operator for vector types.
|
|
for (BuiltinCandidateTypeSet::iterator
|
|
Vec1 = CandidateTypes[0].vector_begin(),
|
|
Vec1End = CandidateTypes[0].vector_end();
|
|
Vec1 != Vec1End; ++Vec1) {
|
|
for (BuiltinCandidateTypeSet::iterator
|
|
Vec2 = CandidateTypes[1].vector_begin(),
|
|
Vec2End = CandidateTypes[1].vector_end();
|
|
Vec2 != Vec2End; ++Vec2) {
|
|
QualType LandR[2] = { *Vec1, *Vec2 };
|
|
QualType Result = S.Context.BoolTy;
|
|
if (!isComparison) {
|
|
if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
|
|
Result = *Vec1;
|
|
else
|
|
Result = *Vec2;
|
|
}
|
|
|
|
S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
|
|
}
|
|
}
|
|
}
|
|
|
|
// C++ [over.built]p17:
|
|
//
|
|
// For every pair of promoted integral types L and R, there
|
|
// exist candidate operator functions of the form
|
|
//
|
|
// LR operator%(L, R);
|
|
// LR operator&(L, R);
|
|
// LR operator^(L, R);
|
|
// LR operator|(L, R);
|
|
// L operator<<(L, R);
|
|
// L operator>>(L, R);
|
|
//
|
|
// where LR is the result of the usual arithmetic conversions
|
|
// between types L and R.
|
|
void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
|
|
if (!HasArithmeticOrEnumeralCandidateType)
|
|
return;
|
|
|
|
for (unsigned Left = FirstPromotedIntegralType;
|
|
Left < LastPromotedIntegralType; ++Left) {
|
|
for (unsigned Right = FirstPromotedIntegralType;
|
|
Right < LastPromotedIntegralType; ++Right) {
|
|
QualType LandR[2] = { getArithmeticType(Left),
|
|
getArithmeticType(Right) };
|
|
QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
|
|
? LandR[0]
|
|
: getUsualArithmeticConversions(Left, Right);
|
|
S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
|
|
}
|
|
}
|
|
}
|
|
|
|
// C++ [over.built]p20:
|
|
//
|
|
// For every pair (T, VQ), where T is an enumeration or
|
|
// pointer to member type and VQ is either volatile or
|
|
// empty, there exist candidate operator functions of the form
|
|
//
|
|
// VQ T& operator=(VQ T&, T);
|
|
void addAssignmentMemberPointerOrEnumeralOverloads() {
|
|
/// Set of (canonical) types that we've already handled.
|
|
llvm::SmallPtrSet<QualType, 8> AddedTypes;
|
|
|
|
for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
|
|
for (BuiltinCandidateTypeSet::iterator
|
|
Enum = CandidateTypes[ArgIdx].enumeration_begin(),
|
|
EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
|
|
Enum != EnumEnd; ++Enum) {
|
|
if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
|
|
continue;
|
|
|
|
AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, 2,
|
|
CandidateSet);
|
|
}
|
|
|
|
for (BuiltinCandidateTypeSet::iterator
|
|
MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
|
|
MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
|
|
MemPtr != MemPtrEnd; ++MemPtr) {
|
|
if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
|
|
continue;
|
|
|
|
AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, 2,
|
|
CandidateSet);
|
|
}
|
|
}
|
|
}
|
|
|
|
// C++ [over.built]p19:
|
|
//
|
|
// For every pair (T, VQ), where T is any type and VQ is either
|
|
// volatile or empty, there exist candidate operator functions
|
|
// of the form
|
|
//
|
|
// T*VQ& operator=(T*VQ&, T*);
|
|
//
|
|
// C++ [over.built]p21:
|
|
//
|
|
// For every pair (T, VQ), where T is a cv-qualified or
|
|
// cv-unqualified object type and VQ is either volatile or
|
|
// empty, there exist candidate operator functions of the form
|
|
//
|
|
// T*VQ& operator+=(T*VQ&, ptrdiff_t);
|
|
// T*VQ& operator-=(T*VQ&, ptrdiff_t);
|
|
void addAssignmentPointerOverloads(bool isEqualOp) {
|
|
/// Set of (canonical) types that we've already handled.
|
|
llvm::SmallPtrSet<QualType, 8> AddedTypes;
|
|
|
|
for (BuiltinCandidateTypeSet::iterator
|
|
Ptr = CandidateTypes[0].pointer_begin(),
|
|
PtrEnd = CandidateTypes[0].pointer_end();
|
|
Ptr != PtrEnd; ++Ptr) {
|
|
// If this is operator=, keep track of the builtin candidates we added.
|
|
if (isEqualOp)
|
|
AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
|
|
else if (!(*Ptr)->getPointeeType()->isObjectType())
|
|
continue;
|
|
|
|
// non-volatile version
|
|
QualType ParamTypes[2] = {
|
|
S.Context.getLValueReferenceType(*Ptr),
|
|
isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
|
|
};
|
|
S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
|
|
/*IsAssigmentOperator=*/ isEqualOp);
|
|
|
|
bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
|
|
VisibleTypeConversionsQuals.hasVolatile();
|
|
if (NeedVolatile) {
|
|
// volatile version
|
|
ParamTypes[0] =
|
|
S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
|
|
S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
|
|
/*IsAssigmentOperator=*/isEqualOp);
|
|
}
|
|
|
|
if (!(*Ptr).isRestrictQualified() &&
|
|
VisibleTypeConversionsQuals.hasRestrict()) {
|
|
// restrict version
|
|
ParamTypes[0]
|
|
= S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
|
|
S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
|
|
/*IsAssigmentOperator=*/isEqualOp);
|
|
|
|
if (NeedVolatile) {
|
|
// volatile restrict version
|
|
ParamTypes[0]
|
|
= S.Context.getLValueReferenceType(
|
|
S.Context.getCVRQualifiedType(*Ptr,
|
|
(Qualifiers::Volatile |
|
|
Qualifiers::Restrict)));
|
|
S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
|
|
CandidateSet,
|
|
/*IsAssigmentOperator=*/isEqualOp);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (isEqualOp) {
|
|
for (BuiltinCandidateTypeSet::iterator
|
|
Ptr = CandidateTypes[1].pointer_begin(),
|
|
PtrEnd = CandidateTypes[1].pointer_end();
|
|
Ptr != PtrEnd; ++Ptr) {
|
|
// Make sure we don't add the same candidate twice.
|
|
if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
|
|
continue;
|
|
|
|
QualType ParamTypes[2] = {
|
|
S.Context.getLValueReferenceType(*Ptr),
|
|
*Ptr,
|
|
};
|
|
|
|
// non-volatile version
|
|
S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
|
|
/*IsAssigmentOperator=*/true);
|
|
|
|
bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
|
|
VisibleTypeConversionsQuals.hasVolatile();
|
|
if (NeedVolatile) {
|
|
// volatile version
|
|
ParamTypes[0] =
|
|
S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
|
|
S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
|
|
CandidateSet, /*IsAssigmentOperator=*/true);
|
|
}
|
|
|
|
if (!(*Ptr).isRestrictQualified() &&
|
|
VisibleTypeConversionsQuals.hasRestrict()) {
|
|
// restrict version
|
|
ParamTypes[0]
|
|
= S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
|
|
S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
|
|
CandidateSet, /*IsAssigmentOperator=*/true);
|
|
|
|
if (NeedVolatile) {
|
|
// volatile restrict version
|
|
ParamTypes[0]
|
|
= S.Context.getLValueReferenceType(
|
|
S.Context.getCVRQualifiedType(*Ptr,
|
|
(Qualifiers::Volatile |
|
|
Qualifiers::Restrict)));
|
|
S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
|
|
CandidateSet, /*IsAssigmentOperator=*/true);
|
|
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// C++ [over.built]p18:
|
|
//
|
|
// For every triple (L, VQ, R), where L is an arithmetic type,
|
|
// VQ is either volatile or empty, and R is a promoted
|
|
// arithmetic type, there exist candidate operator functions of
|
|
// the form
|
|
//
|
|
// VQ L& operator=(VQ L&, R);
|
|
// VQ L& operator*=(VQ L&, R);
|
|
// VQ L& operator/=(VQ L&, R);
|
|
// VQ L& operator+=(VQ L&, R);
|
|
// VQ L& operator-=(VQ L&, R);
|
|
void addAssignmentArithmeticOverloads(bool isEqualOp) {
|
|
if (!HasArithmeticOrEnumeralCandidateType)
|
|
return;
|
|
|
|
for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
|
|
for (unsigned Right = FirstPromotedArithmeticType;
|
|
Right < LastPromotedArithmeticType; ++Right) {
|
|
QualType ParamTypes[2];
|
|
ParamTypes[1] = getArithmeticType(Right);
|
|
|
|
// Add this built-in operator as a candidate (VQ is empty).
|
|
ParamTypes[0] =
|
|
S.Context.getLValueReferenceType(getArithmeticType(Left));
|
|
S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
|
|
/*IsAssigmentOperator=*/isEqualOp);
|
|
|
|
// Add this built-in operator as a candidate (VQ is 'volatile').
|
|
if (VisibleTypeConversionsQuals.hasVolatile()) {
|
|
ParamTypes[0] =
|
|
S.Context.getVolatileType(getArithmeticType(Left));
|
|
ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
|
|
S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
|
|
CandidateSet,
|
|
/*IsAssigmentOperator=*/isEqualOp);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
|
|
for (BuiltinCandidateTypeSet::iterator
|
|
Vec1 = CandidateTypes[0].vector_begin(),
|
|
Vec1End = CandidateTypes[0].vector_end();
|
|
Vec1 != Vec1End; ++Vec1) {
|
|
for (BuiltinCandidateTypeSet::iterator
|
|
Vec2 = CandidateTypes[1].vector_begin(),
|
|
Vec2End = CandidateTypes[1].vector_end();
|
|
Vec2 != Vec2End; ++Vec2) {
|
|
QualType ParamTypes[2];
|
|
ParamTypes[1] = *Vec2;
|
|
// Add this built-in operator as a candidate (VQ is empty).
|
|
ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
|
|
S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
|
|
/*IsAssigmentOperator=*/isEqualOp);
|
|
|
|
// Add this built-in operator as a candidate (VQ is 'volatile').
|
|
if (VisibleTypeConversionsQuals.hasVolatile()) {
|
|
ParamTypes[0] = S.Context.getVolatileType(*Vec1);
|
|
ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
|
|
S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
|
|
CandidateSet,
|
|
/*IsAssigmentOperator=*/isEqualOp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// C++ [over.built]p22:
|
|
//
|
|
// For every triple (L, VQ, R), where L is an integral type, VQ
|
|
// is either volatile or empty, and R is a promoted integral
|
|
// type, there exist candidate operator functions of the form
|
|
//
|
|
// VQ L& operator%=(VQ L&, R);
|
|
// VQ L& operator<<=(VQ L&, R);
|
|
// VQ L& operator>>=(VQ L&, R);
|
|
// VQ L& operator&=(VQ L&, R);
|
|
// VQ L& operator^=(VQ L&, R);
|
|
// VQ L& operator|=(VQ L&, R);
|
|
void addAssignmentIntegralOverloads() {
|
|
if (!HasArithmeticOrEnumeralCandidateType)
|
|
return;
|
|
|
|
for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
|
|
for (unsigned Right = FirstPromotedIntegralType;
|
|
Right < LastPromotedIntegralType; ++Right) {
|
|
QualType ParamTypes[2];
|
|
ParamTypes[1] = getArithmeticType(Right);
|
|
|
|
// Add this built-in operator as a candidate (VQ is empty).
|
|
ParamTypes[0] =
|
|
S.Context.getLValueReferenceType(getArithmeticType(Left));
|
|
S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
|
|
if (VisibleTypeConversionsQuals.hasVolatile()) {
|
|
// Add this built-in operator as a candidate (VQ is 'volatile').
|
|
ParamTypes[0] = getArithmeticType(Left);
|
|
ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
|
|
ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
|
|
S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
|
|
CandidateSet);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// C++ [over.operator]p23:
|
|
//
|
|
// There also exist candidate operator functions of the form
|
|
//
|
|
// bool operator!(bool);
|
|
// bool operator&&(bool, bool);
|
|
// bool operator||(bool, bool);
|
|
void addExclaimOverload() {
|
|
QualType ParamTy = S.Context.BoolTy;
|
|
S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
|
|
/*IsAssignmentOperator=*/false,
|
|
/*NumContextualBoolArguments=*/1);
|
|
}
|
|
void addAmpAmpOrPipePipeOverload() {
|
|
QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
|
|
S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
|
|
/*IsAssignmentOperator=*/false,
|
|
/*NumContextualBoolArguments=*/2);
|
|
}
|
|
|
|
// C++ [over.built]p13:
|
|
//
|
|
// For every cv-qualified or cv-unqualified object type T there
|
|
// exist candidate operator functions of the form
|
|
//
|
|
// T* operator+(T*, ptrdiff_t); [ABOVE]
|
|
// T& operator[](T*, ptrdiff_t);
|
|
// T* operator-(T*, ptrdiff_t); [ABOVE]
|
|
// T* operator+(ptrdiff_t, T*); [ABOVE]
|
|
// T& operator[](ptrdiff_t, T*);
|
|
void addSubscriptOverloads() {
|
|
for (BuiltinCandidateTypeSet::iterator
|
|
Ptr = CandidateTypes[0].pointer_begin(),
|
|
PtrEnd = CandidateTypes[0].pointer_end();
|
|
Ptr != PtrEnd; ++Ptr) {
|
|
QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
|
|
QualType PointeeType = (*Ptr)->getPointeeType();
|
|
if (!PointeeType->isObjectType())
|
|
continue;
|
|
|
|
QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
|
|
|
|
// T& operator[](T*, ptrdiff_t)
|
|
S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
|
|
}
|
|
|
|
for (BuiltinCandidateTypeSet::iterator
|
|
Ptr = CandidateTypes[1].pointer_begin(),
|
|
PtrEnd = CandidateTypes[1].pointer_end();
|
|
Ptr != PtrEnd; ++Ptr) {
|
|
QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
|
|
QualType PointeeType = (*Ptr)->getPointeeType();
|
|
if (!PointeeType->isObjectType())
|
|
continue;
|
|
|
|
QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
|
|
|
|
// T& operator[](ptrdiff_t, T*)
|
|
S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
|
|
}
|
|
}
|
|
|
|
// C++ [over.built]p11:
|
|
// For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
|
|
// C1 is the same type as C2 or is a derived class of C2, T is an object
|
|
// type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
|
|
// there exist candidate operator functions of the form
|
|
//
|
|
// CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
|
|
//
|
|
// where CV12 is the union of CV1 and CV2.
|
|
void addArrowStarOverloads() {
|
|
for (BuiltinCandidateTypeSet::iterator
|
|
Ptr = CandidateTypes[0].pointer_begin(),
|
|
PtrEnd = CandidateTypes[0].pointer_end();
|
|
Ptr != PtrEnd; ++Ptr) {
|
|
QualType C1Ty = (*Ptr);
|
|
QualType C1;
|
|
QualifierCollector Q1;
|
|
C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
|
|
if (!isa<RecordType>(C1))
|
|
continue;
|
|
// heuristic to reduce number of builtin candidates in the set.
|
|
// Add volatile/restrict version only if there are conversions to a
|
|
// volatile/restrict type.
|
|
if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
|
|
continue;
|
|
if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
|
|
continue;
|
|
for (BuiltinCandidateTypeSet::iterator
|
|
MemPtr = CandidateTypes[1].member_pointer_begin(),
|
|
MemPtrEnd = CandidateTypes[1].member_pointer_end();
|
|
MemPtr != MemPtrEnd; ++MemPtr) {
|
|
const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
|
|
QualType C2 = QualType(mptr->getClass(), 0);
|
|
C2 = C2.getUnqualifiedType();
|
|
if (C1 != C2 && !S.IsDerivedFrom(C1, C2))
|
|
break;
|
|
QualType ParamTypes[2] = { *Ptr, *MemPtr };
|
|
// build CV12 T&
|
|
QualType T = mptr->getPointeeType();
|
|
if (!VisibleTypeConversionsQuals.hasVolatile() &&
|
|
T.isVolatileQualified())
|
|
continue;
|
|
if (!VisibleTypeConversionsQuals.hasRestrict() &&
|
|
T.isRestrictQualified())
|
|
continue;
|
|
T = Q1.apply(S.Context, T);
|
|
QualType ResultTy = S.Context.getLValueReferenceType(T);
|
|
S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Note that we don't consider the first argument, since it has been
|
|
// contextually converted to bool long ago. The candidates below are
|
|
// therefore added as binary.
|
|
//
|
|
// C++ [over.built]p25:
|
|
// For every type T, where T is a pointer, pointer-to-member, or scoped
|
|
// enumeration type, there exist candidate operator functions of the form
|
|
//
|
|
// T operator?(bool, T, T);
|
|
//
|
|
void addConditionalOperatorOverloads() {
|
|
/// Set of (canonical) types that we've already handled.
|
|
llvm::SmallPtrSet<QualType, 8> AddedTypes;
|
|
|
|
for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
|
|
for (BuiltinCandidateTypeSet::iterator
|
|
Ptr = CandidateTypes[ArgIdx].pointer_begin(),
|
|
PtrEnd = CandidateTypes[ArgIdx].pointer_end();
|
|
Ptr != PtrEnd; ++Ptr) {
|
|
if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
|
|
continue;
|
|
|
|
QualType ParamTypes[2] = { *Ptr, *Ptr };
|
|
S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
|
|
}
|
|
|
|
for (BuiltinCandidateTypeSet::iterator
|
|
MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
|
|
MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
|
|
MemPtr != MemPtrEnd; ++MemPtr) {
|
|
if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
|
|
continue;
|
|
|
|
QualType ParamTypes[2] = { *MemPtr, *MemPtr };
|
|
S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, 2, CandidateSet);
|
|
}
|
|
|
|
if (S.getLangOpts().CPlusPlus0x) {
|
|
for (BuiltinCandidateTypeSet::iterator
|
|
Enum = CandidateTypes[ArgIdx].enumeration_begin(),
|
|
EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
|
|
Enum != EnumEnd; ++Enum) {
|
|
if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
|
|
continue;
|
|
|
|
if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
|
|
continue;
|
|
|
|
QualType ParamTypes[2] = { *Enum, *Enum };
|
|
S.AddBuiltinCandidate(*Enum, ParamTypes, Args, 2, CandidateSet);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// AddBuiltinOperatorCandidates - Add the appropriate built-in
|
|
/// operator overloads to the candidate set (C++ [over.built]), based
|
|
/// on the operator @p Op and the arguments given. For example, if the
|
|
/// operator is a binary '+', this routine might add "int
|
|
/// operator+(int, int)" to cover integer addition.
|
|
void
|
|
Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
|
|
SourceLocation OpLoc,
|
|
Expr **Args, unsigned NumArgs,
|
|
OverloadCandidateSet& CandidateSet) {
|
|
// Find all of the types that the arguments can convert to, but only
|
|
// if the operator we're looking at has built-in operator candidates
|
|
// that make use of these types. Also record whether we encounter non-record
|
|
// candidate types or either arithmetic or enumeral candidate types.
|
|
Qualifiers VisibleTypeConversionsQuals;
|
|
VisibleTypeConversionsQuals.addConst();
|
|
for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
|
|
VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
|
|
|
|
bool HasNonRecordCandidateType = false;
|
|
bool HasArithmeticOrEnumeralCandidateType = false;
|
|
SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
|
|
for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
|
|
CandidateTypes.push_back(BuiltinCandidateTypeSet(*this));
|
|
CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
|
|
OpLoc,
|
|
true,
|
|
(Op == OO_Exclaim ||
|
|
Op == OO_AmpAmp ||
|
|
Op == OO_PipePipe),
|
|
VisibleTypeConversionsQuals);
|
|
HasNonRecordCandidateType = HasNonRecordCandidateType ||
|
|
CandidateTypes[ArgIdx].hasNonRecordTypes();
|
|
HasArithmeticOrEnumeralCandidateType =
|
|
HasArithmeticOrEnumeralCandidateType ||
|
|
CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
|
|
}
|
|
|
|
// Exit early when no non-record types have been added to the candidate set
|
|
// for any of the arguments to the operator.
|
|
//
|
|
// We can't exit early for !, ||, or &&, since there we have always have
|
|
// 'bool' overloads.
|
|
if (!HasNonRecordCandidateType &&
|
|
!(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
|
|
return;
|
|
|
|
// Setup an object to manage the common state for building overloads.
|
|
BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, NumArgs,
|
|
VisibleTypeConversionsQuals,
|
|
HasArithmeticOrEnumeralCandidateType,
|
|
CandidateTypes, CandidateSet);
|
|
|
|
// Dispatch over the operation to add in only those overloads which apply.
|
|
switch (Op) {
|
|
case OO_None:
|
|
case NUM_OVERLOADED_OPERATORS:
|
|
llvm_unreachable("Expected an overloaded operator");
|
|
|
|
case OO_New:
|
|
case OO_Delete:
|
|
case OO_Array_New:
|
|
case OO_Array_Delete:
|
|
case OO_Call:
|
|
llvm_unreachable(
|
|
"Special operators don't use AddBuiltinOperatorCandidates");
|
|
|
|
case OO_Comma:
|
|
case OO_Arrow:
|
|
// C++ [over.match.oper]p3:
|
|
// -- For the operator ',', the unary operator '&', or the
|
|
// operator '->', the built-in candidates set is empty.
|
|
break;
|
|
|
|
case OO_Plus: // '+' is either unary or binary
|
|
if (NumArgs == 1)
|
|
OpBuilder.addUnaryPlusPointerOverloads();
|
|
// Fall through.
|
|
|
|
case OO_Minus: // '-' is either unary or binary
|
|
if (NumArgs == 1) {
|
|
OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
|
|
} else {
|
|
OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
|
|
OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
|
|
}
|
|
break;
|
|
|
|
case OO_Star: // '*' is either unary or binary
|
|
if (NumArgs == 1)
|
|
OpBuilder.addUnaryStarPointerOverloads();
|
|
else
|
|
OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
|
|
break;
|
|
|
|
case OO_Slash:
|
|
OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
|
|
break;
|
|
|
|
case OO_PlusPlus:
|
|
case OO_MinusMinus:
|
|
OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
|
|
OpBuilder.addPlusPlusMinusMinusPointerOverloads();
|
|
break;
|
|
|
|
case OO_EqualEqual:
|
|
case OO_ExclaimEqual:
|
|
OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads();
|
|
// Fall through.
|
|
|
|
case OO_Less:
|
|
case OO_Greater:
|
|
case OO_LessEqual:
|
|
case OO_GreaterEqual:
|
|
OpBuilder.addRelationalPointerOrEnumeralOverloads();
|
|
OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true);
|
|
break;
|
|
|
|
case OO_Percent:
|
|
case OO_Caret:
|
|
case OO_Pipe:
|
|
case OO_LessLess:
|
|
case OO_GreaterGreater:
|
|
OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
|
|
break;
|
|
|
|
case OO_Amp: // '&' is either unary or binary
|
|
if (NumArgs == 1)
|
|
// C++ [over.match.oper]p3:
|
|
// -- For the operator ',', the unary operator '&', or the
|
|
// operator '->', the built-in candidates set is empty.
|
|
break;
|
|
|
|
OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
|
|
break;
|
|
|
|
case OO_Tilde:
|
|
OpBuilder.addUnaryTildePromotedIntegralOverloads();
|
|
break;
|
|
|
|
case OO_Equal:
|
|
OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
|
|
// Fall through.
|
|
|
|
case OO_PlusEqual:
|
|
case OO_MinusEqual:
|
|
OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
|
|
// Fall through.
|
|
|
|
case OO_StarEqual:
|
|
case OO_SlashEqual:
|
|
OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
|
|
break;
|
|
|
|
case OO_PercentEqual:
|
|
case OO_LessLessEqual:
|
|
case OO_GreaterGreaterEqual:
|
|
case OO_AmpEqual:
|
|
case OO_CaretEqual:
|
|
case OO_PipeEqual:
|
|
OpBuilder.addAssignmentIntegralOverloads();
|
|
break;
|
|
|
|
case OO_Exclaim:
|
|
OpBuilder.addExclaimOverload();
|
|
break;
|
|
|
|
case OO_AmpAmp:
|
|
case OO_PipePipe:
|
|
OpBuilder.addAmpAmpOrPipePipeOverload();
|
|
break;
|
|
|
|
case OO_Subscript:
|
|
OpBuilder.addSubscriptOverloads();
|
|
break;
|
|
|
|
case OO_ArrowStar:
|
|
OpBuilder.addArrowStarOverloads();
|
|
break;
|
|
|
|
case OO_Conditional:
|
|
OpBuilder.addConditionalOperatorOverloads();
|
|
OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// \brief Add function candidates found via argument-dependent lookup
|
|
/// to the set of overloading candidates.
|
|
///
|
|
/// This routine performs argument-dependent name lookup based on the
|
|
/// given function name (which may also be an operator name) and adds
|
|
/// all of the overload candidates found by ADL to the overload
|
|
/// candidate set (C++ [basic.lookup.argdep]).
|
|
void
|
|
Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
|
|
bool Operator, SourceLocation Loc,
|
|
llvm::ArrayRef<Expr *> Args,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs,
|
|
OverloadCandidateSet& CandidateSet,
|
|
bool PartialOverloading,
|
|
bool StdNamespaceIsAssociated) {
|
|
ADLResult Fns;
|
|
|
|
// FIXME: This approach for uniquing ADL results (and removing
|
|
// redundant candidates from the set) relies on pointer-equality,
|
|
// which means we need to key off the canonical decl. However,
|
|
// always going back to the canonical decl might not get us the
|
|
// right set of default arguments. What default arguments are
|
|
// we supposed to consider on ADL candidates, anyway?
|
|
|
|
// FIXME: Pass in the explicit template arguments?
|
|
ArgumentDependentLookup(Name, Operator, Loc, Args, Fns,
|
|
StdNamespaceIsAssociated);
|
|
|
|
// Erase all of the candidates we already knew about.
|
|
for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
|
|
CandEnd = CandidateSet.end();
|
|
Cand != CandEnd; ++Cand)
|
|
if (Cand->Function) {
|
|
Fns.erase(Cand->Function);
|
|
if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
|
|
Fns.erase(FunTmpl);
|
|
}
|
|
|
|
// For each of the ADL candidates we found, add it to the overload
|
|
// set.
|
|
for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
|
|
DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
|
|
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
|
|
if (ExplicitTemplateArgs)
|
|
continue;
|
|
|
|
AddOverloadCandidate(FD, FoundDecl, Args, CandidateSet, false,
|
|
PartialOverloading);
|
|
} else
|
|
AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
|
|
FoundDecl, ExplicitTemplateArgs,
|
|
Args, CandidateSet);
|
|
}
|
|
}
|
|
|
|
/// isBetterOverloadCandidate - Determines whether the first overload
|
|
/// candidate is a better candidate than the second (C++ 13.3.3p1).
|
|
bool
|
|
isBetterOverloadCandidate(Sema &S,
|
|
const OverloadCandidate &Cand1,
|
|
const OverloadCandidate &Cand2,
|
|
SourceLocation Loc,
|
|
bool UserDefinedConversion) {
|
|
// Define viable functions to be better candidates than non-viable
|
|
// functions.
|
|
if (!Cand2.Viable)
|
|
return Cand1.Viable;
|
|
else if (!Cand1.Viable)
|
|
return false;
|
|
|
|
// C++ [over.match.best]p1:
|
|
//
|
|
// -- if F is a static member function, ICS1(F) is defined such
|
|
// that ICS1(F) is neither better nor worse than ICS1(G) for
|
|
// any function G, and, symmetrically, ICS1(G) is neither
|
|
// better nor worse than ICS1(F).
|
|
unsigned StartArg = 0;
|
|
if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
|
|
StartArg = 1;
|
|
|
|
// C++ [over.match.best]p1:
|
|
// A viable function F1 is defined to be a better function than another
|
|
// viable function F2 if for all arguments i, ICSi(F1) is not a worse
|
|
// conversion sequence than ICSi(F2), and then...
|
|
unsigned NumArgs = Cand1.NumConversions;
|
|
assert(Cand2.NumConversions == NumArgs && "Overload candidate mismatch");
|
|
bool HasBetterConversion = false;
|
|
for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
|
|
switch (CompareImplicitConversionSequences(S,
|
|
Cand1.Conversions[ArgIdx],
|
|
Cand2.Conversions[ArgIdx])) {
|
|
case ImplicitConversionSequence::Better:
|
|
// Cand1 has a better conversion sequence.
|
|
HasBetterConversion = true;
|
|
break;
|
|
|
|
case ImplicitConversionSequence::Worse:
|
|
// Cand1 can't be better than Cand2.
|
|
return false;
|
|
|
|
case ImplicitConversionSequence::Indistinguishable:
|
|
// Do nothing.
|
|
break;
|
|
}
|
|
}
|
|
|
|
// -- for some argument j, ICSj(F1) is a better conversion sequence than
|
|
// ICSj(F2), or, if not that,
|
|
if (HasBetterConversion)
|
|
return true;
|
|
|
|
// - F1 is a non-template function and F2 is a function template
|
|
// specialization, or, if not that,
|
|
if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) &&
|
|
Cand2.Function && Cand2.Function->getPrimaryTemplate())
|
|
return true;
|
|
|
|
// -- F1 and F2 are function template specializations, and the function
|
|
// template for F1 is more specialized than the template for F2
|
|
// according to the partial ordering rules described in 14.5.5.2, or,
|
|
// if not that,
|
|
if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
|
|
Cand2.Function && Cand2.Function->getPrimaryTemplate()) {
|
|
if (FunctionTemplateDecl *BetterTemplate
|
|
= S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
|
|
Cand2.Function->getPrimaryTemplate(),
|
|
Loc,
|
|
isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
|
|
: TPOC_Call,
|
|
Cand1.ExplicitCallArguments))
|
|
return BetterTemplate == Cand1.Function->getPrimaryTemplate();
|
|
}
|
|
|
|
// -- the context is an initialization by user-defined conversion
|
|
// (see 8.5, 13.3.1.5) and the standard conversion sequence
|
|
// from the return type of F1 to the destination type (i.e.,
|
|
// the type of the entity being initialized) is a better
|
|
// conversion sequence than the standard conversion sequence
|
|
// from the return type of F2 to the destination type.
|
|
if (UserDefinedConversion && Cand1.Function && Cand2.Function &&
|
|
isa<CXXConversionDecl>(Cand1.Function) &&
|
|
isa<CXXConversionDecl>(Cand2.Function)) {
|
|
// First check whether we prefer one of the conversion functions over the
|
|
// other. This only distinguishes the results in non-standard, extension
|
|
// cases such as the conversion from a lambda closure type to a function
|
|
// pointer or block.
|
|
ImplicitConversionSequence::CompareKind FuncResult
|
|
= compareConversionFunctions(S, Cand1.Function, Cand2.Function);
|
|
if (FuncResult != ImplicitConversionSequence::Indistinguishable)
|
|
return FuncResult;
|
|
|
|
switch (CompareStandardConversionSequences(S,
|
|
Cand1.FinalConversion,
|
|
Cand2.FinalConversion)) {
|
|
case ImplicitConversionSequence::Better:
|
|
// Cand1 has a better conversion sequence.
|
|
return true;
|
|
|
|
case ImplicitConversionSequence::Worse:
|
|
// Cand1 can't be better than Cand2.
|
|
return false;
|
|
|
|
case ImplicitConversionSequence::Indistinguishable:
|
|
// Do nothing
|
|
break;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief Computes the best viable function (C++ 13.3.3)
|
|
/// within an overload candidate set.
|
|
///
|
|
/// \param CandidateSet the set of candidate functions.
|
|
///
|
|
/// \param Loc the location of the function name (or operator symbol) for
|
|
/// which overload resolution occurs.
|
|
///
|
|
/// \param Best f overload resolution was successful or found a deleted
|
|
/// function, Best points to the candidate function found.
|
|
///
|
|
/// \returns The result of overload resolution.
|
|
OverloadingResult
|
|
OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
|
|
iterator &Best,
|
|
bool UserDefinedConversion) {
|
|
// Find the best viable function.
|
|
Best = end();
|
|
for (iterator Cand = begin(); Cand != end(); ++Cand) {
|
|
if (Cand->Viable)
|
|
if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc,
|
|
UserDefinedConversion))
|
|
Best = Cand;
|
|
}
|
|
|
|
// If we didn't find any viable functions, abort.
|
|
if (Best == end())
|
|
return OR_No_Viable_Function;
|
|
|
|
// Make sure that this function is better than every other viable
|
|
// function. If not, we have an ambiguity.
|
|
for (iterator Cand = begin(); Cand != end(); ++Cand) {
|
|
if (Cand->Viable &&
|
|
Cand != Best &&
|
|
!isBetterOverloadCandidate(S, *Best, *Cand, Loc,
|
|
UserDefinedConversion)) {
|
|
Best = end();
|
|
return OR_Ambiguous;
|
|
}
|
|
}
|
|
|
|
// Best is the best viable function.
|
|
if (Best->Function &&
|
|
(Best->Function->isDeleted() ||
|
|
S.isFunctionConsideredUnavailable(Best->Function)))
|
|
return OR_Deleted;
|
|
|
|
return OR_Success;
|
|
}
|
|
|
|
namespace {
|
|
|
|
enum OverloadCandidateKind {
|
|
oc_function,
|
|
oc_method,
|
|
oc_constructor,
|
|
oc_function_template,
|
|
oc_method_template,
|
|
oc_constructor_template,
|
|
oc_implicit_default_constructor,
|
|
oc_implicit_copy_constructor,
|
|
oc_implicit_move_constructor,
|
|
oc_implicit_copy_assignment,
|
|
oc_implicit_move_assignment,
|
|
oc_implicit_inherited_constructor
|
|
};
|
|
|
|
OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
|
|
FunctionDecl *Fn,
|
|
std::string &Description) {
|
|
bool isTemplate = false;
|
|
|
|
if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
|
|
isTemplate = true;
|
|
Description = S.getTemplateArgumentBindingsText(
|
|
FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
|
|
}
|
|
|
|
if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
|
|
if (!Ctor->isImplicit())
|
|
return isTemplate ? oc_constructor_template : oc_constructor;
|
|
|
|
if (Ctor->getInheritedConstructor())
|
|
return oc_implicit_inherited_constructor;
|
|
|
|
if (Ctor->isDefaultConstructor())
|
|
return oc_implicit_default_constructor;
|
|
|
|
if (Ctor->isMoveConstructor())
|
|
return oc_implicit_move_constructor;
|
|
|
|
assert(Ctor->isCopyConstructor() &&
|
|
"unexpected sort of implicit constructor");
|
|
return oc_implicit_copy_constructor;
|
|
}
|
|
|
|
if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
|
|
// This actually gets spelled 'candidate function' for now, but
|
|
// it doesn't hurt to split it out.
|
|
if (!Meth->isImplicit())
|
|
return isTemplate ? oc_method_template : oc_method;
|
|
|
|
if (Meth->isMoveAssignmentOperator())
|
|
return oc_implicit_move_assignment;
|
|
|
|
if (Meth->isCopyAssignmentOperator())
|
|
return oc_implicit_copy_assignment;
|
|
|
|
assert(isa<CXXConversionDecl>(Meth) && "expected conversion");
|
|
return oc_method;
|
|
}
|
|
|
|
return isTemplate ? oc_function_template : oc_function;
|
|
}
|
|
|
|
void MaybeEmitInheritedConstructorNote(Sema &S, FunctionDecl *Fn) {
|
|
const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn);
|
|
if (!Ctor) return;
|
|
|
|
Ctor = Ctor->getInheritedConstructor();
|
|
if (!Ctor) return;
|
|
|
|
S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor);
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
|
|
// Notes the location of an overload candidate.
|
|
void Sema::NoteOverloadCandidate(FunctionDecl *Fn, QualType DestType) {
|
|
std::string FnDesc;
|
|
OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
|
|
PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
|
|
<< (unsigned) K << FnDesc;
|
|
HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
|
|
Diag(Fn->getLocation(), PD);
|
|
MaybeEmitInheritedConstructorNote(*this, Fn);
|
|
}
|
|
|
|
//Notes the location of all overload candidates designated through
|
|
// OverloadedExpr
|
|
void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr, QualType DestType) {
|
|
assert(OverloadedExpr->getType() == Context.OverloadTy);
|
|
|
|
OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
|
|
OverloadExpr *OvlExpr = Ovl.Expression;
|
|
|
|
for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
|
|
IEnd = OvlExpr->decls_end();
|
|
I != IEnd; ++I) {
|
|
if (FunctionTemplateDecl *FunTmpl =
|
|
dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
|
|
NoteOverloadCandidate(FunTmpl->getTemplatedDecl(), DestType);
|
|
} else if (FunctionDecl *Fun
|
|
= dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
|
|
NoteOverloadCandidate(Fun, DestType);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Diagnoses an ambiguous conversion. The partial diagnostic is the
|
|
/// "lead" diagnostic; it will be given two arguments, the source and
|
|
/// target types of the conversion.
|
|
void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
|
|
Sema &S,
|
|
SourceLocation CaretLoc,
|
|
const PartialDiagnostic &PDiag) const {
|
|
S.Diag(CaretLoc, PDiag)
|
|
<< Ambiguous.getFromType() << Ambiguous.getToType();
|
|
for (AmbiguousConversionSequence::const_iterator
|
|
I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
|
|
S.NoteOverloadCandidate(*I);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
|
|
const ImplicitConversionSequence &Conv = Cand->Conversions[I];
|
|
assert(Conv.isBad());
|
|
assert(Cand->Function && "for now, candidate must be a function");
|
|
FunctionDecl *Fn = Cand->Function;
|
|
|
|
// There's a conversion slot for the object argument if this is a
|
|
// non-constructor method. Note that 'I' corresponds the
|
|
// conversion-slot index.
|
|
bool isObjectArgument = false;
|
|
if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
|
|
if (I == 0)
|
|
isObjectArgument = true;
|
|
else
|
|
I--;
|
|
}
|
|
|
|
std::string FnDesc;
|
|
OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
|
|
|
|
Expr *FromExpr = Conv.Bad.FromExpr;
|
|
QualType FromTy = Conv.Bad.getFromType();
|
|
QualType ToTy = Conv.Bad.getToType();
|
|
|
|
if (FromTy == S.Context.OverloadTy) {
|
|
assert(FromExpr && "overload set argument came from implicit argument?");
|
|
Expr *E = FromExpr->IgnoreParens();
|
|
if (isa<UnaryOperator>(E))
|
|
E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
|
|
DeclarationName Name = cast<OverloadExpr>(E)->getName();
|
|
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
|
|
<< (unsigned) FnKind << FnDesc
|
|
<< (FromExpr ? FromExpr->getSourceRange() : SourceRange())
|
|
<< ToTy << Name << I+1;
|
|
MaybeEmitInheritedConstructorNote(S, Fn);
|
|
return;
|
|
}
|
|
|
|
// Do some hand-waving analysis to see if the non-viability is due
|
|
// to a qualifier mismatch.
|
|
CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
|
|
CanQualType CToTy = S.Context.getCanonicalType(ToTy);
|
|
if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
|
|
CToTy = RT->getPointeeType();
|
|
else {
|
|
// TODO: detect and diagnose the full richness of const mismatches.
|
|
if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
|
|
if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
|
|
CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
|
|
}
|
|
|
|
if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
|
|
!CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
|
|
Qualifiers FromQs = CFromTy.getQualifiers();
|
|
Qualifiers ToQs = CToTy.getQualifiers();
|
|
|
|
if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
|
|
<< (unsigned) FnKind << FnDesc
|
|
<< (FromExpr ? FromExpr->getSourceRange() : SourceRange())
|
|
<< FromTy
|
|
<< FromQs.getAddressSpace() << ToQs.getAddressSpace()
|
|
<< (unsigned) isObjectArgument << I+1;
|
|
MaybeEmitInheritedConstructorNote(S, Fn);
|
|
return;
|
|
}
|
|
|
|
if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
|
|
<< (unsigned) FnKind << FnDesc
|
|
<< (FromExpr ? FromExpr->getSourceRange() : SourceRange())
|
|
<< FromTy
|
|
<< FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
|
|
<< (unsigned) isObjectArgument << I+1;
|
|
MaybeEmitInheritedConstructorNote(S, Fn);
|
|
return;
|
|
}
|
|
|
|
if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
|
|
<< (unsigned) FnKind << FnDesc
|
|
<< (FromExpr ? FromExpr->getSourceRange() : SourceRange())
|
|
<< FromTy
|
|
<< FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
|
|
<< (unsigned) isObjectArgument << I+1;
|
|
MaybeEmitInheritedConstructorNote(S, Fn);
|
|
return;
|
|
}
|
|
|
|
unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
|
|
assert(CVR && "unexpected qualifiers mismatch");
|
|
|
|
if (isObjectArgument) {
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
|
|
<< (unsigned) FnKind << FnDesc
|
|
<< (FromExpr ? FromExpr->getSourceRange() : SourceRange())
|
|
<< FromTy << (CVR - 1);
|
|
} else {
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
|
|
<< (unsigned) FnKind << FnDesc
|
|
<< (FromExpr ? FromExpr->getSourceRange() : SourceRange())
|
|
<< FromTy << (CVR - 1) << I+1;
|
|
}
|
|
MaybeEmitInheritedConstructorNote(S, Fn);
|
|
return;
|
|
}
|
|
|
|
// Special diagnostic for failure to convert an initializer list, since
|
|
// telling the user that it has type void is not useful.
|
|
if (FromExpr && isa<InitListExpr>(FromExpr)) {
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
|
|
<< (unsigned) FnKind << FnDesc
|
|
<< (FromExpr ? FromExpr->getSourceRange() : SourceRange())
|
|
<< FromTy << ToTy << (unsigned) isObjectArgument << I+1;
|
|
MaybeEmitInheritedConstructorNote(S, Fn);
|
|
return;
|
|
}
|
|
|
|
// Diagnose references or pointers to incomplete types differently,
|
|
// since it's far from impossible that the incompleteness triggered
|
|
// the failure.
|
|
QualType TempFromTy = FromTy.getNonReferenceType();
|
|
if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
|
|
TempFromTy = PTy->getPointeeType();
|
|
if (TempFromTy->isIncompleteType()) {
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
|
|
<< (unsigned) FnKind << FnDesc
|
|
<< (FromExpr ? FromExpr->getSourceRange() : SourceRange())
|
|
<< FromTy << ToTy << (unsigned) isObjectArgument << I+1;
|
|
MaybeEmitInheritedConstructorNote(S, Fn);
|
|
return;
|
|
}
|
|
|
|
// Diagnose base -> derived pointer conversions.
|
|
unsigned BaseToDerivedConversion = 0;
|
|
if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
|
|
if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
|
|
if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
|
|
FromPtrTy->getPointeeType()) &&
|
|
!FromPtrTy->getPointeeType()->isIncompleteType() &&
|
|
!ToPtrTy->getPointeeType()->isIncompleteType() &&
|
|
S.IsDerivedFrom(ToPtrTy->getPointeeType(),
|
|
FromPtrTy->getPointeeType()))
|
|
BaseToDerivedConversion = 1;
|
|
}
|
|
} else if (const ObjCObjectPointerType *FromPtrTy
|
|
= FromTy->getAs<ObjCObjectPointerType>()) {
|
|
if (const ObjCObjectPointerType *ToPtrTy
|
|
= ToTy->getAs<ObjCObjectPointerType>())
|
|
if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
|
|
if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
|
|
if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
|
|
FromPtrTy->getPointeeType()) &&
|
|
FromIface->isSuperClassOf(ToIface))
|
|
BaseToDerivedConversion = 2;
|
|
} else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
|
|
if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
|
|
!FromTy->isIncompleteType() &&
|
|
!ToRefTy->getPointeeType()->isIncompleteType() &&
|
|
S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy))
|
|
BaseToDerivedConversion = 3;
|
|
}
|
|
|
|
if (BaseToDerivedConversion) {
|
|
S.Diag(Fn->getLocation(),
|
|
diag::note_ovl_candidate_bad_base_to_derived_conv)
|
|
<< (unsigned) FnKind << FnDesc
|
|
<< (FromExpr ? FromExpr->getSourceRange() : SourceRange())
|
|
<< (BaseToDerivedConversion - 1)
|
|
<< FromTy << ToTy << I+1;
|
|
MaybeEmitInheritedConstructorNote(S, Fn);
|
|
return;
|
|
}
|
|
|
|
if (isa<ObjCObjectPointerType>(CFromTy) &&
|
|
isa<PointerType>(CToTy)) {
|
|
Qualifiers FromQs = CFromTy.getQualifiers();
|
|
Qualifiers ToQs = CToTy.getQualifiers();
|
|
if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
|
|
<< (unsigned) FnKind << FnDesc
|
|
<< (FromExpr ? FromExpr->getSourceRange() : SourceRange())
|
|
<< FromTy << ToTy << (unsigned) isObjectArgument << I+1;
|
|
MaybeEmitInheritedConstructorNote(S, Fn);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Emit the generic diagnostic and, optionally, add the hints to it.
|
|
PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
|
|
FDiag << (unsigned) FnKind << FnDesc
|
|
<< (FromExpr ? FromExpr->getSourceRange() : SourceRange())
|
|
<< FromTy << ToTy << (unsigned) isObjectArgument << I + 1
|
|
<< (unsigned) (Cand->Fix.Kind);
|
|
|
|
// If we can fix the conversion, suggest the FixIts.
|
|
for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
|
|
HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
|
|
FDiag << *HI;
|
|
S.Diag(Fn->getLocation(), FDiag);
|
|
|
|
MaybeEmitInheritedConstructorNote(S, Fn);
|
|
}
|
|
|
|
void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
|
|
unsigned NumFormalArgs) {
|
|
// TODO: treat calls to a missing default constructor as a special case
|
|
|
|
FunctionDecl *Fn = Cand->Function;
|
|
const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
|
|
|
|
unsigned MinParams = Fn->getMinRequiredArguments();
|
|
|
|
// With invalid overloaded operators, it's possible that we think we
|
|
// have an arity mismatch when it fact it looks like we have the
|
|
// right number of arguments, because only overloaded operators have
|
|
// the weird behavior of overloading member and non-member functions.
|
|
// Just don't report anything.
|
|
if (Fn->isInvalidDecl() &&
|
|
Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
|
|
return;
|
|
|
|
// at least / at most / exactly
|
|
unsigned mode, modeCount;
|
|
if (NumFormalArgs < MinParams) {
|
|
assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
|
|
(Cand->FailureKind == ovl_fail_bad_deduction &&
|
|
Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
|
|
if (MinParams != FnTy->getNumArgs() ||
|
|
FnTy->isVariadic() || FnTy->isTemplateVariadic())
|
|
mode = 0; // "at least"
|
|
else
|
|
mode = 2; // "exactly"
|
|
modeCount = MinParams;
|
|
} else {
|
|
assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
|
|
(Cand->FailureKind == ovl_fail_bad_deduction &&
|
|
Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
|
|
if (MinParams != FnTy->getNumArgs())
|
|
mode = 1; // "at most"
|
|
else
|
|
mode = 2; // "exactly"
|
|
modeCount = FnTy->getNumArgs();
|
|
}
|
|
|
|
std::string Description;
|
|
OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
|
|
|
|
if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
|
|
<< (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
|
|
<< Fn->getParamDecl(0) << NumFormalArgs;
|
|
else
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
|
|
<< (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
|
|
<< modeCount << NumFormalArgs;
|
|
MaybeEmitInheritedConstructorNote(S, Fn);
|
|
}
|
|
|
|
/// Diagnose a failed template-argument deduction.
|
|
void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
|
|
unsigned NumArgs) {
|
|
FunctionDecl *Fn = Cand->Function; // pattern
|
|
|
|
TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter();
|
|
NamedDecl *ParamD;
|
|
(ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
|
|
(ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
|
|
(ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
|
|
switch (Cand->DeductionFailure.Result) {
|
|
case Sema::TDK_Success:
|
|
llvm_unreachable("TDK_success while diagnosing bad deduction");
|
|
|
|
case Sema::TDK_Incomplete: {
|
|
assert(ParamD && "no parameter found for incomplete deduction result");
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
|
|
<< ParamD->getDeclName();
|
|
MaybeEmitInheritedConstructorNote(S, Fn);
|
|
return;
|
|
}
|
|
|
|
case Sema::TDK_Underqualified: {
|
|
assert(ParamD && "no parameter found for bad qualifiers deduction result");
|
|
TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
|
|
|
|
QualType Param = Cand->DeductionFailure.getFirstArg()->getAsType();
|
|
|
|
// Param will have been canonicalized, but it should just be a
|
|
// qualified version of ParamD, so move the qualifiers to that.
|
|
QualifierCollector Qs;
|
|
Qs.strip(Param);
|
|
QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
|
|
assert(S.Context.hasSameType(Param, NonCanonParam));
|
|
|
|
// Arg has also been canonicalized, but there's nothing we can do
|
|
// about that. It also doesn't matter as much, because it won't
|
|
// have any template parameters in it (because deduction isn't
|
|
// done on dependent types).
|
|
QualType Arg = Cand->DeductionFailure.getSecondArg()->getAsType();
|
|
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_underqualified)
|
|
<< ParamD->getDeclName() << Arg << NonCanonParam;
|
|
MaybeEmitInheritedConstructorNote(S, Fn);
|
|
return;
|
|
}
|
|
|
|
case Sema::TDK_Inconsistent: {
|
|
assert(ParamD && "no parameter found for inconsistent deduction result");
|
|
int which = 0;
|
|
if (isa<TemplateTypeParmDecl>(ParamD))
|
|
which = 0;
|
|
else if (isa<NonTypeTemplateParmDecl>(ParamD))
|
|
which = 1;
|
|
else {
|
|
which = 2;
|
|
}
|
|
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction)
|
|
<< which << ParamD->getDeclName()
|
|
<< *Cand->DeductionFailure.getFirstArg()
|
|
<< *Cand->DeductionFailure.getSecondArg();
|
|
MaybeEmitInheritedConstructorNote(S, Fn);
|
|
return;
|
|
}
|
|
|
|
case Sema::TDK_InvalidExplicitArguments:
|
|
assert(ParamD && "no parameter found for invalid explicit arguments");
|
|
if (ParamD->getDeclName())
|
|
S.Diag(Fn->getLocation(),
|
|
diag::note_ovl_candidate_explicit_arg_mismatch_named)
|
|
<< ParamD->getDeclName();
|
|
else {
|
|
int index = 0;
|
|
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
|
|
index = TTP->getIndex();
|
|
else if (NonTypeTemplateParmDecl *NTTP
|
|
= dyn_cast<NonTypeTemplateParmDecl>(ParamD))
|
|
index = NTTP->getIndex();
|
|
else
|
|
index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
|
|
S.Diag(Fn->getLocation(),
|
|
diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
|
|
<< (index + 1);
|
|
}
|
|
MaybeEmitInheritedConstructorNote(S, Fn);
|
|
return;
|
|
|
|
case Sema::TDK_TooManyArguments:
|
|
case Sema::TDK_TooFewArguments:
|
|
DiagnoseArityMismatch(S, Cand, NumArgs);
|
|
return;
|
|
|
|
case Sema::TDK_InstantiationDepth:
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth);
|
|
MaybeEmitInheritedConstructorNote(S, Fn);
|
|
return;
|
|
|
|
case Sema::TDK_SubstitutionFailure: {
|
|
// Format the template argument list into the argument string.
|
|
llvm::SmallString<128> TemplateArgString;
|
|
if (TemplateArgumentList *Args =
|
|
Cand->DeductionFailure.getTemplateArgumentList()) {
|
|
TemplateArgString = " ";
|
|
TemplateArgString += S.getTemplateArgumentBindingsText(
|
|
Fn->getDescribedFunctionTemplate()->getTemplateParameters(), *Args);
|
|
}
|
|
|
|
// If this candidate was disabled by enable_if, say so.
|
|
PartialDiagnosticAt *PDiag = Cand->DeductionFailure.getSFINAEDiagnostic();
|
|
if (PDiag && PDiag->second.getDiagID() ==
|
|
diag::err_typename_nested_not_found_enable_if) {
|
|
// FIXME: Use the source range of the condition, and the fully-qualified
|
|
// name of the enable_if template. These are both present in PDiag.
|
|
S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
|
|
<< "'enable_if'" << TemplateArgString;
|
|
return;
|
|
}
|
|
|
|
// Format the SFINAE diagnostic into the argument string.
|
|
// FIXME: Add a general mechanism to include a PartialDiagnostic *'s
|
|
// formatted message in another diagnostic.
|
|
llvm::SmallString<128> SFINAEArgString;
|
|
SourceRange R;
|
|
if (PDiag) {
|
|
SFINAEArgString = ": ";
|
|
R = SourceRange(PDiag->first, PDiag->first);
|
|
PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
|
|
}
|
|
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure)
|
|
<< TemplateArgString << SFINAEArgString << R;
|
|
MaybeEmitInheritedConstructorNote(S, Fn);
|
|
return;
|
|
}
|
|
|
|
// TODO: diagnose these individually, then kill off
|
|
// note_ovl_candidate_bad_deduction, which is uselessly vague.
|
|
case Sema::TDK_NonDeducedMismatch:
|
|
case Sema::TDK_FailedOverloadResolution:
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
|
|
MaybeEmitInheritedConstructorNote(S, Fn);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/// CUDA: diagnose an invalid call across targets.
|
|
void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
|
|
FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
|
|
FunctionDecl *Callee = Cand->Function;
|
|
|
|
Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
|
|
CalleeTarget = S.IdentifyCUDATarget(Callee);
|
|
|
|
std::string FnDesc;
|
|
OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Callee, FnDesc);
|
|
|
|
S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
|
|
<< (unsigned) FnKind << CalleeTarget << CallerTarget;
|
|
}
|
|
|
|
/// Generates a 'note' diagnostic for an overload candidate. We've
|
|
/// already generated a primary error at the call site.
|
|
///
|
|
/// It really does need to be a single diagnostic with its caret
|
|
/// pointed at the candidate declaration. Yes, this creates some
|
|
/// major challenges of technical writing. Yes, this makes pointing
|
|
/// out problems with specific arguments quite awkward. It's still
|
|
/// better than generating twenty screens of text for every failed
|
|
/// overload.
|
|
///
|
|
/// It would be great to be able to express per-candidate problems
|
|
/// more richly for those diagnostic clients that cared, but we'd
|
|
/// still have to be just as careful with the default diagnostics.
|
|
void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
|
|
unsigned NumArgs) {
|
|
FunctionDecl *Fn = Cand->Function;
|
|
|
|
// Note deleted candidates, but only if they're viable.
|
|
if (Cand->Viable && (Fn->isDeleted() ||
|
|
S.isFunctionConsideredUnavailable(Fn))) {
|
|
std::string FnDesc;
|
|
OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
|
|
|
|
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
|
|
<< FnKind << FnDesc
|
|
<< (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
|
|
MaybeEmitInheritedConstructorNote(S, Fn);
|
|
return;
|
|
}
|
|
|
|
// We don't really have anything else to say about viable candidates.
|
|
if (Cand->Viable) {
|
|
S.NoteOverloadCandidate(Fn);
|
|
return;
|
|
}
|
|
|
|
switch (Cand->FailureKind) {
|
|
case ovl_fail_too_many_arguments:
|
|
case ovl_fail_too_few_arguments:
|
|
return DiagnoseArityMismatch(S, Cand, NumArgs);
|
|
|
|
case ovl_fail_bad_deduction:
|
|
return DiagnoseBadDeduction(S, Cand, NumArgs);
|
|
|
|
case ovl_fail_trivial_conversion:
|
|
case ovl_fail_bad_final_conversion:
|
|
case ovl_fail_final_conversion_not_exact:
|
|
return S.NoteOverloadCandidate(Fn);
|
|
|
|
case ovl_fail_bad_conversion: {
|
|
unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
|
|
for (unsigned N = Cand->NumConversions; I != N; ++I)
|
|
if (Cand->Conversions[I].isBad())
|
|
return DiagnoseBadConversion(S, Cand, I);
|
|
|
|
// FIXME: this currently happens when we're called from SemaInit
|
|
// when user-conversion overload fails. Figure out how to handle
|
|
// those conditions and diagnose them well.
|
|
return S.NoteOverloadCandidate(Fn);
|
|
}
|
|
|
|
case ovl_fail_bad_target:
|
|
return DiagnoseBadTarget(S, Cand);
|
|
}
|
|
}
|
|
|
|
void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
|
|
// Desugar the type of the surrogate down to a function type,
|
|
// retaining as many typedefs as possible while still showing
|
|
// the function type (and, therefore, its parameter types).
|
|
QualType FnType = Cand->Surrogate->getConversionType();
|
|
bool isLValueReference = false;
|
|
bool isRValueReference = false;
|
|
bool isPointer = false;
|
|
if (const LValueReferenceType *FnTypeRef =
|
|
FnType->getAs<LValueReferenceType>()) {
|
|
FnType = FnTypeRef->getPointeeType();
|
|
isLValueReference = true;
|
|
} else if (const RValueReferenceType *FnTypeRef =
|
|
FnType->getAs<RValueReferenceType>()) {
|
|
FnType = FnTypeRef->getPointeeType();
|
|
isRValueReference = true;
|
|
}
|
|
if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
|
|
FnType = FnTypePtr->getPointeeType();
|
|
isPointer = true;
|
|
}
|
|
// Desugar down to a function type.
|
|
FnType = QualType(FnType->getAs<FunctionType>(), 0);
|
|
// Reconstruct the pointer/reference as appropriate.
|
|
if (isPointer) FnType = S.Context.getPointerType(FnType);
|
|
if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
|
|
if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
|
|
|
|
S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
|
|
<< FnType;
|
|
MaybeEmitInheritedConstructorNote(S, Cand->Surrogate);
|
|
}
|
|
|
|
void NoteBuiltinOperatorCandidate(Sema &S,
|
|
const char *Opc,
|
|
SourceLocation OpLoc,
|
|
OverloadCandidate *Cand) {
|
|
assert(Cand->NumConversions <= 2 && "builtin operator is not binary");
|
|
std::string TypeStr("operator");
|
|
TypeStr += Opc;
|
|
TypeStr += "(";
|
|
TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
|
|
if (Cand->NumConversions == 1) {
|
|
TypeStr += ")";
|
|
S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
|
|
} else {
|
|
TypeStr += ", ";
|
|
TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
|
|
TypeStr += ")";
|
|
S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
|
|
}
|
|
}
|
|
|
|
void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
|
|
OverloadCandidate *Cand) {
|
|
unsigned NoOperands = Cand->NumConversions;
|
|
for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
|
|
const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
|
|
if (ICS.isBad()) break; // all meaningless after first invalid
|
|
if (!ICS.isAmbiguous()) continue;
|
|
|
|
ICS.DiagnoseAmbiguousConversion(S, OpLoc,
|
|
S.PDiag(diag::note_ambiguous_type_conversion));
|
|
}
|
|
}
|
|
|
|
SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
|
|
if (Cand->Function)
|
|
return Cand->Function->getLocation();
|
|
if (Cand->IsSurrogate)
|
|
return Cand->Surrogate->getLocation();
|
|
return SourceLocation();
|
|
}
|
|
|
|
static unsigned
|
|
RankDeductionFailure(const OverloadCandidate::DeductionFailureInfo &DFI) {
|
|
switch ((Sema::TemplateDeductionResult)DFI.Result) {
|
|
case Sema::TDK_Success:
|
|
llvm_unreachable("TDK_success while diagnosing bad deduction");
|
|
|
|
case Sema::TDK_Incomplete:
|
|
return 1;
|
|
|
|
case Sema::TDK_Underqualified:
|
|
case Sema::TDK_Inconsistent:
|
|
return 2;
|
|
|
|
case Sema::TDK_SubstitutionFailure:
|
|
case Sema::TDK_NonDeducedMismatch:
|
|
return 3;
|
|
|
|
case Sema::TDK_InstantiationDepth:
|
|
case Sema::TDK_FailedOverloadResolution:
|
|
return 4;
|
|
|
|
case Sema::TDK_InvalidExplicitArguments:
|
|
return 5;
|
|
|
|
case Sema::TDK_TooManyArguments:
|
|
case Sema::TDK_TooFewArguments:
|
|
return 6;
|
|
}
|
|
llvm_unreachable("Unhandled deduction result");
|
|
}
|
|
|
|
struct CompareOverloadCandidatesForDisplay {
|
|
Sema &S;
|
|
CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
|
|
|
|
bool operator()(const OverloadCandidate *L,
|
|
const OverloadCandidate *R) {
|
|
// Fast-path this check.
|
|
if (L == R) return false;
|
|
|
|
// Order first by viability.
|
|
if (L->Viable) {
|
|
if (!R->Viable) return true;
|
|
|
|
// TODO: introduce a tri-valued comparison for overload
|
|
// candidates. Would be more worthwhile if we had a sort
|
|
// that could exploit it.
|
|
if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true;
|
|
if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false;
|
|
} else if (R->Viable)
|
|
return false;
|
|
|
|
assert(L->Viable == R->Viable);
|
|
|
|
// Criteria by which we can sort non-viable candidates:
|
|
if (!L->Viable) {
|
|
// 1. Arity mismatches come after other candidates.
|
|
if (L->FailureKind == ovl_fail_too_many_arguments ||
|
|
L->FailureKind == ovl_fail_too_few_arguments)
|
|
return false;
|
|
if (R->FailureKind == ovl_fail_too_many_arguments ||
|
|
R->FailureKind == ovl_fail_too_few_arguments)
|
|
return true;
|
|
|
|
// 2. Bad conversions come first and are ordered by the number
|
|
// of bad conversions and quality of good conversions.
|
|
if (L->FailureKind == ovl_fail_bad_conversion) {
|
|
if (R->FailureKind != ovl_fail_bad_conversion)
|
|
return true;
|
|
|
|
// The conversion that can be fixed with a smaller number of changes,
|
|
// comes first.
|
|
unsigned numLFixes = L->Fix.NumConversionsFixed;
|
|
unsigned numRFixes = R->Fix.NumConversionsFixed;
|
|
numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
|
|
numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
|
|
if (numLFixes != numRFixes) {
|
|
if (numLFixes < numRFixes)
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
// If there's any ordering between the defined conversions...
|
|
// FIXME: this might not be transitive.
|
|
assert(L->NumConversions == R->NumConversions);
|
|
|
|
int leftBetter = 0;
|
|
unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
|
|
for (unsigned E = L->NumConversions; I != E; ++I) {
|
|
switch (CompareImplicitConversionSequences(S,
|
|
L->Conversions[I],
|
|
R->Conversions[I])) {
|
|
case ImplicitConversionSequence::Better:
|
|
leftBetter++;
|
|
break;
|
|
|
|
case ImplicitConversionSequence::Worse:
|
|
leftBetter--;
|
|
break;
|
|
|
|
case ImplicitConversionSequence::Indistinguishable:
|
|
break;
|
|
}
|
|
}
|
|
if (leftBetter > 0) return true;
|
|
if (leftBetter < 0) return false;
|
|
|
|
} else if (R->FailureKind == ovl_fail_bad_conversion)
|
|
return false;
|
|
|
|
if (L->FailureKind == ovl_fail_bad_deduction) {
|
|
if (R->FailureKind != ovl_fail_bad_deduction)
|
|
return true;
|
|
|
|
if (L->DeductionFailure.Result != R->DeductionFailure.Result)
|
|
return RankDeductionFailure(L->DeductionFailure)
|
|
< RankDeductionFailure(R->DeductionFailure);
|
|
} else if (R->FailureKind == ovl_fail_bad_deduction)
|
|
return false;
|
|
|
|
// TODO: others?
|
|
}
|
|
|
|
// Sort everything else by location.
|
|
SourceLocation LLoc = GetLocationForCandidate(L);
|
|
SourceLocation RLoc = GetLocationForCandidate(R);
|
|
|
|
// Put candidates without locations (e.g. builtins) at the end.
|
|
if (LLoc.isInvalid()) return false;
|
|
if (RLoc.isInvalid()) return true;
|
|
|
|
return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
|
|
}
|
|
};
|
|
|
|
/// CompleteNonViableCandidate - Normally, overload resolution only
|
|
/// computes up to the first. Produces the FixIt set if possible.
|
|
void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
|
|
llvm::ArrayRef<Expr *> Args) {
|
|
assert(!Cand->Viable);
|
|
|
|
// Don't do anything on failures other than bad conversion.
|
|
if (Cand->FailureKind != ovl_fail_bad_conversion) return;
|
|
|
|
// We only want the FixIts if all the arguments can be corrected.
|
|
bool Unfixable = false;
|
|
// Use a implicit copy initialization to check conversion fixes.
|
|
Cand->Fix.setConversionChecker(TryCopyInitialization);
|
|
|
|
// Skip forward to the first bad conversion.
|
|
unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
|
|
unsigned ConvCount = Cand->NumConversions;
|
|
while (true) {
|
|
assert(ConvIdx != ConvCount && "no bad conversion in candidate");
|
|
ConvIdx++;
|
|
if (Cand->Conversions[ConvIdx - 1].isBad()) {
|
|
Unfixable = !Cand->TryToFixBadConversion(ConvIdx - 1, S);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ConvIdx == ConvCount)
|
|
return;
|
|
|
|
assert(!Cand->Conversions[ConvIdx].isInitialized() &&
|
|
"remaining conversion is initialized?");
|
|
|
|
// FIXME: this should probably be preserved from the overload
|
|
// operation somehow.
|
|
bool SuppressUserConversions = false;
|
|
|
|
const FunctionProtoType* Proto;
|
|
unsigned ArgIdx = ConvIdx;
|
|
|
|
if (Cand->IsSurrogate) {
|
|
QualType ConvType
|
|
= Cand->Surrogate->getConversionType().getNonReferenceType();
|
|
if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
|
|
ConvType = ConvPtrType->getPointeeType();
|
|
Proto = ConvType->getAs<FunctionProtoType>();
|
|
ArgIdx--;
|
|
} else if (Cand->Function) {
|
|
Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
|
|
if (isa<CXXMethodDecl>(Cand->Function) &&
|
|
!isa<CXXConstructorDecl>(Cand->Function))
|
|
ArgIdx--;
|
|
} else {
|
|
// Builtin binary operator with a bad first conversion.
|
|
assert(ConvCount <= 3);
|
|
for (; ConvIdx != ConvCount; ++ConvIdx)
|
|
Cand->Conversions[ConvIdx]
|
|
= TryCopyInitialization(S, Args[ConvIdx],
|
|
Cand->BuiltinTypes.ParamTypes[ConvIdx],
|
|
SuppressUserConversions,
|
|
/*InOverloadResolution*/ true,
|
|
/*AllowObjCWritebackConversion=*/
|
|
S.getLangOpts().ObjCAutoRefCount);
|
|
return;
|
|
}
|
|
|
|
// Fill in the rest of the conversions.
|
|
unsigned NumArgsInProto = Proto->getNumArgs();
|
|
for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
|
|
if (ArgIdx < NumArgsInProto) {
|
|
Cand->Conversions[ConvIdx]
|
|
= TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx),
|
|
SuppressUserConversions,
|
|
/*InOverloadResolution=*/true,
|
|
/*AllowObjCWritebackConversion=*/
|
|
S.getLangOpts().ObjCAutoRefCount);
|
|
// Store the FixIt in the candidate if it exists.
|
|
if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
|
|
Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
|
|
}
|
|
else
|
|
Cand->Conversions[ConvIdx].setEllipsis();
|
|
}
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// PrintOverloadCandidates - When overload resolution fails, prints
|
|
/// diagnostic messages containing the candidates in the candidate
|
|
/// set.
|
|
void OverloadCandidateSet::NoteCandidates(Sema &S,
|
|
OverloadCandidateDisplayKind OCD,
|
|
llvm::ArrayRef<Expr *> Args,
|
|
const char *Opc,
|
|
SourceLocation OpLoc) {
|
|
// Sort the candidates by viability and position. Sorting directly would
|
|
// be prohibitive, so we make a set of pointers and sort those.
|
|
SmallVector<OverloadCandidate*, 32> Cands;
|
|
if (OCD == OCD_AllCandidates) Cands.reserve(size());
|
|
for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
|
|
if (Cand->Viable)
|
|
Cands.push_back(Cand);
|
|
else if (OCD == OCD_AllCandidates) {
|
|
CompleteNonViableCandidate(S, Cand, Args);
|
|
if (Cand->Function || Cand->IsSurrogate)
|
|
Cands.push_back(Cand);
|
|
// Otherwise, this a non-viable builtin candidate. We do not, in general,
|
|
// want to list every possible builtin candidate.
|
|
}
|
|
}
|
|
|
|
std::sort(Cands.begin(), Cands.end(),
|
|
CompareOverloadCandidatesForDisplay(S));
|
|
|
|
bool ReportedAmbiguousConversions = false;
|
|
|
|
SmallVectorImpl<OverloadCandidate*>::iterator I, E;
|
|
const DiagnosticsEngine::OverloadsShown ShowOverloads =
|
|
S.Diags.getShowOverloads();
|
|
unsigned CandsShown = 0;
|
|
for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
|
|
OverloadCandidate *Cand = *I;
|
|
|
|
// Set an arbitrary limit on the number of candidate functions we'll spam
|
|
// the user with. FIXME: This limit should depend on details of the
|
|
// candidate list.
|
|
if (CandsShown >= 4 && ShowOverloads == DiagnosticsEngine::Ovl_Best) {
|
|
break;
|
|
}
|
|
++CandsShown;
|
|
|
|
if (Cand->Function)
|
|
NoteFunctionCandidate(S, Cand, Args.size());
|
|
else if (Cand->IsSurrogate)
|
|
NoteSurrogateCandidate(S, Cand);
|
|
else {
|
|
assert(Cand->Viable &&
|
|
"Non-viable built-in candidates are not added to Cands.");
|
|
// Generally we only see ambiguities including viable builtin
|
|
// operators if overload resolution got screwed up by an
|
|
// ambiguous user-defined conversion.
|
|
//
|
|
// FIXME: It's quite possible for different conversions to see
|
|
// different ambiguities, though.
|
|
if (!ReportedAmbiguousConversions) {
|
|
NoteAmbiguousUserConversions(S, OpLoc, Cand);
|
|
ReportedAmbiguousConversions = true;
|
|
}
|
|
|
|
// If this is a viable builtin, print it.
|
|
NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
|
|
}
|
|
}
|
|
|
|
if (I != E)
|
|
S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
|
|
}
|
|
|
|
// [PossiblyAFunctionType] --> [Return]
|
|
// NonFunctionType --> NonFunctionType
|
|
// R (A) --> R(A)
|
|
// R (*)(A) --> R (A)
|
|
// R (&)(A) --> R (A)
|
|
// R (S::*)(A) --> R (A)
|
|
QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
|
|
QualType Ret = PossiblyAFunctionType;
|
|
if (const PointerType *ToTypePtr =
|
|
PossiblyAFunctionType->getAs<PointerType>())
|
|
Ret = ToTypePtr->getPointeeType();
|
|
else if (const ReferenceType *ToTypeRef =
|
|
PossiblyAFunctionType->getAs<ReferenceType>())
|
|
Ret = ToTypeRef->getPointeeType();
|
|
else if (const MemberPointerType *MemTypePtr =
|
|
PossiblyAFunctionType->getAs<MemberPointerType>())
|
|
Ret = MemTypePtr->getPointeeType();
|
|
Ret =
|
|
Context.getCanonicalType(Ret).getUnqualifiedType();
|
|
return Ret;
|
|
}
|
|
|
|
// A helper class to help with address of function resolution
|
|
// - allows us to avoid passing around all those ugly parameters
|
|
class AddressOfFunctionResolver
|
|
{
|
|
Sema& S;
|
|
Expr* SourceExpr;
|
|
const QualType& TargetType;
|
|
QualType TargetFunctionType; // Extracted function type from target type
|
|
|
|
bool Complain;
|
|
//DeclAccessPair& ResultFunctionAccessPair;
|
|
ASTContext& Context;
|
|
|
|
bool TargetTypeIsNonStaticMemberFunction;
|
|
bool FoundNonTemplateFunction;
|
|
|
|
OverloadExpr::FindResult OvlExprInfo;
|
|
OverloadExpr *OvlExpr;
|
|
TemplateArgumentListInfo OvlExplicitTemplateArgs;
|
|
SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
|
|
|
|
public:
|
|
AddressOfFunctionResolver(Sema &S, Expr* SourceExpr,
|
|
const QualType& TargetType, bool Complain)
|
|
: S(S), SourceExpr(SourceExpr), TargetType(TargetType),
|
|
Complain(Complain), Context(S.getASTContext()),
|
|
TargetTypeIsNonStaticMemberFunction(
|
|
!!TargetType->getAs<MemberPointerType>()),
|
|
FoundNonTemplateFunction(false),
|
|
OvlExprInfo(OverloadExpr::find(SourceExpr)),
|
|
OvlExpr(OvlExprInfo.Expression)
|
|
{
|
|
ExtractUnqualifiedFunctionTypeFromTargetType();
|
|
|
|
if (!TargetFunctionType->isFunctionType()) {
|
|
if (OvlExpr->hasExplicitTemplateArgs()) {
|
|
DeclAccessPair dap;
|
|
if (FunctionDecl* Fn = S.ResolveSingleFunctionTemplateSpecialization(
|
|
OvlExpr, false, &dap) ) {
|
|
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
|
|
if (!Method->isStatic()) {
|
|
// If the target type is a non-function type and the function
|
|
// found is a non-static member function, pretend as if that was
|
|
// the target, it's the only possible type to end up with.
|
|
TargetTypeIsNonStaticMemberFunction = true;
|
|
|
|
// And skip adding the function if its not in the proper form.
|
|
// We'll diagnose this due to an empty set of functions.
|
|
if (!OvlExprInfo.HasFormOfMemberPointer)
|
|
return;
|
|
}
|
|
}
|
|
|
|
Matches.push_back(std::make_pair(dap,Fn));
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (OvlExpr->hasExplicitTemplateArgs())
|
|
OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs);
|
|
|
|
if (FindAllFunctionsThatMatchTargetTypeExactly()) {
|
|
// C++ [over.over]p4:
|
|
// If more than one function is selected, [...]
|
|
if (Matches.size() > 1) {
|
|
if (FoundNonTemplateFunction)
|
|
EliminateAllTemplateMatches();
|
|
else
|
|
EliminateAllExceptMostSpecializedTemplate();
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
bool isTargetTypeAFunction() const {
|
|
return TargetFunctionType->isFunctionType();
|
|
}
|
|
|
|
// [ToType] [Return]
|
|
|
|
// R (*)(A) --> R (A), IsNonStaticMemberFunction = false
|
|
// R (&)(A) --> R (A), IsNonStaticMemberFunction = false
|
|
// R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
|
|
void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
|
|
TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
|
|
}
|
|
|
|
// return true if any matching specializations were found
|
|
bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
|
|
const DeclAccessPair& CurAccessFunPair) {
|
|
if (CXXMethodDecl *Method
|
|
= dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
|
|
// Skip non-static function templates when converting to pointer, and
|
|
// static when converting to member pointer.
|
|
if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
|
|
return false;
|
|
}
|
|
else if (TargetTypeIsNonStaticMemberFunction)
|
|
return false;
|
|
|
|
// C++ [over.over]p2:
|
|
// If the name is a function template, template argument deduction is
|
|
// done (14.8.2.2), and if the argument deduction succeeds, the
|
|
// resulting template argument list is used to generate a single
|
|
// function template specialization, which is added to the set of
|
|
// overloaded functions considered.
|
|
FunctionDecl *Specialization = 0;
|
|
TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
|
|
if (Sema::TemplateDeductionResult Result
|
|
= S.DeduceTemplateArguments(FunctionTemplate,
|
|
&OvlExplicitTemplateArgs,
|
|
TargetFunctionType, Specialization,
|
|
Info)) {
|
|
// FIXME: make a note of the failed deduction for diagnostics.
|
|
(void)Result;
|
|
return false;
|
|
}
|
|
|
|
// Template argument deduction ensures that we have an exact match.
|
|
// This function template specicalization works.
|
|
Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl());
|
|
assert(TargetFunctionType
|
|
== Context.getCanonicalType(Specialization->getType()));
|
|
Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
|
|
return true;
|
|
}
|
|
|
|
bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
|
|
const DeclAccessPair& CurAccessFunPair) {
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
|
|
// Skip non-static functions when converting to pointer, and static
|
|
// when converting to member pointer.
|
|
if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
|
|
return false;
|
|
}
|
|
else if (TargetTypeIsNonStaticMemberFunction)
|
|
return false;
|
|
|
|
if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
|
|
if (S.getLangOpts().CUDA)
|
|
if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
|
|
if (S.CheckCUDATarget(Caller, FunDecl))
|
|
return false;
|
|
|
|
QualType ResultTy;
|
|
if (Context.hasSameUnqualifiedType(TargetFunctionType,
|
|
FunDecl->getType()) ||
|
|
S.IsNoReturnConversion(FunDecl->getType(), TargetFunctionType,
|
|
ResultTy)) {
|
|
Matches.push_back(std::make_pair(CurAccessFunPair,
|
|
cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
|
|
FoundNonTemplateFunction = true;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool FindAllFunctionsThatMatchTargetTypeExactly() {
|
|
bool Ret = false;
|
|
|
|
// If the overload expression doesn't have the form of a pointer to
|
|
// member, don't try to convert it to a pointer-to-member type.
|
|
if (IsInvalidFormOfPointerToMemberFunction())
|
|
return false;
|
|
|
|
for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
|
|
E = OvlExpr->decls_end();
|
|
I != E; ++I) {
|
|
// Look through any using declarations to find the underlying function.
|
|
NamedDecl *Fn = (*I)->getUnderlyingDecl();
|
|
|
|
// C++ [over.over]p3:
|
|
// Non-member functions and static member functions match
|
|
// targets of type "pointer-to-function" or "reference-to-function."
|
|
// Nonstatic member functions match targets of
|
|
// type "pointer-to-member-function."
|
|
// Note that according to DR 247, the containing class does not matter.
|
|
if (FunctionTemplateDecl *FunctionTemplate
|
|
= dyn_cast<FunctionTemplateDecl>(Fn)) {
|
|
if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
|
|
Ret = true;
|
|
}
|
|
// If we have explicit template arguments supplied, skip non-templates.
|
|
else if (!OvlExpr->hasExplicitTemplateArgs() &&
|
|
AddMatchingNonTemplateFunction(Fn, I.getPair()))
|
|
Ret = true;
|
|
}
|
|
assert(Ret || Matches.empty());
|
|
return Ret;
|
|
}
|
|
|
|
void EliminateAllExceptMostSpecializedTemplate() {
|
|
// [...] and any given function template specialization F1 is
|
|
// eliminated if the set contains a second function template
|
|
// specialization whose function template is more specialized
|
|
// than the function template of F1 according to the partial
|
|
// ordering rules of 14.5.5.2.
|
|
|
|
// The algorithm specified above is quadratic. We instead use a
|
|
// two-pass algorithm (similar to the one used to identify the
|
|
// best viable function in an overload set) that identifies the
|
|
// best function template (if it exists).
|
|
|
|
UnresolvedSet<4> MatchesCopy; // TODO: avoid!
|
|
for (unsigned I = 0, E = Matches.size(); I != E; ++I)
|
|
MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
|
|
|
|
UnresolvedSetIterator Result =
|
|
S.getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
|
|
TPOC_Other, 0, SourceExpr->getLocStart(),
|
|
S.PDiag(),
|
|
S.PDiag(diag::err_addr_ovl_ambiguous)
|
|
<< Matches[0].second->getDeclName(),
|
|
S.PDiag(diag::note_ovl_candidate)
|
|
<< (unsigned) oc_function_template,
|
|
Complain, TargetFunctionType);
|
|
|
|
if (Result != MatchesCopy.end()) {
|
|
// Make it the first and only element
|
|
Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
|
|
Matches[0].second = cast<FunctionDecl>(*Result);
|
|
Matches.resize(1);
|
|
}
|
|
}
|
|
|
|
void EliminateAllTemplateMatches() {
|
|
// [...] any function template specializations in the set are
|
|
// eliminated if the set also contains a non-template function, [...]
|
|
for (unsigned I = 0, N = Matches.size(); I != N; ) {
|
|
if (Matches[I].second->getPrimaryTemplate() == 0)
|
|
++I;
|
|
else {
|
|
Matches[I] = Matches[--N];
|
|
Matches.set_size(N);
|
|
}
|
|
}
|
|
}
|
|
|
|
public:
|
|
void ComplainNoMatchesFound() const {
|
|
assert(Matches.empty());
|
|
S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable)
|
|
<< OvlExpr->getName() << TargetFunctionType
|
|
<< OvlExpr->getSourceRange();
|
|
S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
|
|
}
|
|
|
|
bool IsInvalidFormOfPointerToMemberFunction() const {
|
|
return TargetTypeIsNonStaticMemberFunction &&
|
|
!OvlExprInfo.HasFormOfMemberPointer;
|
|
}
|
|
|
|
void ComplainIsInvalidFormOfPointerToMemberFunction() const {
|
|
// TODO: Should we condition this on whether any functions might
|
|
// have matched, or is it more appropriate to do that in callers?
|
|
// TODO: a fixit wouldn't hurt.
|
|
S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
|
|
<< TargetType << OvlExpr->getSourceRange();
|
|
}
|
|
|
|
void ComplainOfInvalidConversion() const {
|
|
S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
|
|
<< OvlExpr->getName() << TargetType;
|
|
}
|
|
|
|
void ComplainMultipleMatchesFound() const {
|
|
assert(Matches.size() > 1);
|
|
S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
|
|
<< OvlExpr->getName()
|
|
<< OvlExpr->getSourceRange();
|
|
S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
|
|
}
|
|
|
|
bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
|
|
|
|
int getNumMatches() const { return Matches.size(); }
|
|
|
|
FunctionDecl* getMatchingFunctionDecl() const {
|
|
if (Matches.size() != 1) return 0;
|
|
return Matches[0].second;
|
|
}
|
|
|
|
const DeclAccessPair* getMatchingFunctionAccessPair() const {
|
|
if (Matches.size() != 1) return 0;
|
|
return &Matches[0].first;
|
|
}
|
|
};
|
|
|
|
/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
|
|
/// an overloaded function (C++ [over.over]), where @p From is an
|
|
/// expression with overloaded function type and @p ToType is the type
|
|
/// we're trying to resolve to. For example:
|
|
///
|
|
/// @code
|
|
/// int f(double);
|
|
/// int f(int);
|
|
///
|
|
/// int (*pfd)(double) = f; // selects f(double)
|
|
/// @endcode
|
|
///
|
|
/// This routine returns the resulting FunctionDecl if it could be
|
|
/// resolved, and NULL otherwise. When @p Complain is true, this
|
|
/// routine will emit diagnostics if there is an error.
|
|
FunctionDecl *
|
|
Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
|
|
QualType TargetType,
|
|
bool Complain,
|
|
DeclAccessPair &FoundResult,
|
|
bool *pHadMultipleCandidates) {
|
|
assert(AddressOfExpr->getType() == Context.OverloadTy);
|
|
|
|
AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
|
|
Complain);
|
|
int NumMatches = Resolver.getNumMatches();
|
|
FunctionDecl* Fn = 0;
|
|
if (NumMatches == 0 && Complain) {
|
|
if (Resolver.IsInvalidFormOfPointerToMemberFunction())
|
|
Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
|
|
else
|
|
Resolver.ComplainNoMatchesFound();
|
|
}
|
|
else if (NumMatches > 1 && Complain)
|
|
Resolver.ComplainMultipleMatchesFound();
|
|
else if (NumMatches == 1) {
|
|
Fn = Resolver.getMatchingFunctionDecl();
|
|
assert(Fn);
|
|
FoundResult = *Resolver.getMatchingFunctionAccessPair();
|
|
MarkFunctionReferenced(AddressOfExpr->getLocStart(), Fn);
|
|
if (Complain)
|
|
CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
|
|
}
|
|
|
|
if (pHadMultipleCandidates)
|
|
*pHadMultipleCandidates = Resolver.hadMultipleCandidates();
|
|
return Fn;
|
|
}
|
|
|
|
/// \brief Given an expression that refers to an overloaded function, try to
|
|
/// resolve that overloaded function expression down to a single function.
|
|
///
|
|
/// This routine can only resolve template-ids that refer to a single function
|
|
/// template, where that template-id refers to a single template whose template
|
|
/// arguments are either provided by the template-id or have defaults,
|
|
/// as described in C++0x [temp.arg.explicit]p3.
|
|
FunctionDecl *
|
|
Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
|
|
bool Complain,
|
|
DeclAccessPair *FoundResult) {
|
|
// C++ [over.over]p1:
|
|
// [...] [Note: any redundant set of parentheses surrounding the
|
|
// overloaded function name is ignored (5.1). ]
|
|
// C++ [over.over]p1:
|
|
// [...] The overloaded function name can be preceded by the &
|
|
// operator.
|
|
|
|
// If we didn't actually find any template-ids, we're done.
|
|
if (!ovl->hasExplicitTemplateArgs())
|
|
return 0;
|
|
|
|
TemplateArgumentListInfo ExplicitTemplateArgs;
|
|
ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
|
|
|
|
// Look through all of the overloaded functions, searching for one
|
|
// whose type matches exactly.
|
|
FunctionDecl *Matched = 0;
|
|
for (UnresolvedSetIterator I = ovl->decls_begin(),
|
|
E = ovl->decls_end(); I != E; ++I) {
|
|
// C++0x [temp.arg.explicit]p3:
|
|
// [...] In contexts where deduction is done and fails, or in contexts
|
|
// where deduction is not done, if a template argument list is
|
|
// specified and it, along with any default template arguments,
|
|
// identifies a single function template specialization, then the
|
|
// template-id is an lvalue for the function template specialization.
|
|
FunctionTemplateDecl *FunctionTemplate
|
|
= cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
|
|
|
|
// C++ [over.over]p2:
|
|
// If the name is a function template, template argument deduction is
|
|
// done (14.8.2.2), and if the argument deduction succeeds, the
|
|
// resulting template argument list is used to generate a single
|
|
// function template specialization, which is added to the set of
|
|
// overloaded functions considered.
|
|
FunctionDecl *Specialization = 0;
|
|
TemplateDeductionInfo Info(Context, ovl->getNameLoc());
|
|
if (TemplateDeductionResult Result
|
|
= DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
|
|
Specialization, Info)) {
|
|
// FIXME: make a note of the failed deduction for diagnostics.
|
|
(void)Result;
|
|
continue;
|
|
}
|
|
|
|
assert(Specialization && "no specialization and no error?");
|
|
|
|
// Multiple matches; we can't resolve to a single declaration.
|
|
if (Matched) {
|
|
if (Complain) {
|
|
Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
|
|
<< ovl->getName();
|
|
NoteAllOverloadCandidates(ovl);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
Matched = Specialization;
|
|
if (FoundResult) *FoundResult = I.getPair();
|
|
}
|
|
|
|
return Matched;
|
|
}
|
|
|
|
|
|
|
|
|
|
// Resolve and fix an overloaded expression that can be resolved
|
|
// because it identifies a single function template specialization.
|
|
//
|
|
// Last three arguments should only be supplied if Complain = true
|
|
//
|
|
// Return true if it was logically possible to so resolve the
|
|
// expression, regardless of whether or not it succeeded. Always
|
|
// returns true if 'complain' is set.
|
|
bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
|
|
ExprResult &SrcExpr, bool doFunctionPointerConverion,
|
|
bool complain, const SourceRange& OpRangeForComplaining,
|
|
QualType DestTypeForComplaining,
|
|
unsigned DiagIDForComplaining) {
|
|
assert(SrcExpr.get()->getType() == Context.OverloadTy);
|
|
|
|
OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
|
|
|
|
DeclAccessPair found;
|
|
ExprResult SingleFunctionExpression;
|
|
if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
|
|
ovl.Expression, /*complain*/ false, &found)) {
|
|
if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getLocStart())) {
|
|
SrcExpr = ExprError();
|
|
return true;
|
|
}
|
|
|
|
// It is only correct to resolve to an instance method if we're
|
|
// resolving a form that's permitted to be a pointer to member.
|
|
// Otherwise we'll end up making a bound member expression, which
|
|
// is illegal in all the contexts we resolve like this.
|
|
if (!ovl.HasFormOfMemberPointer &&
|
|
isa<CXXMethodDecl>(fn) &&
|
|
cast<CXXMethodDecl>(fn)->isInstance()) {
|
|
if (!complain) return false;
|
|
|
|
Diag(ovl.Expression->getExprLoc(),
|
|
diag::err_bound_member_function)
|
|
<< 0 << ovl.Expression->getSourceRange();
|
|
|
|
// TODO: I believe we only end up here if there's a mix of
|
|
// static and non-static candidates (otherwise the expression
|
|
// would have 'bound member' type, not 'overload' type).
|
|
// Ideally we would note which candidate was chosen and why
|
|
// the static candidates were rejected.
|
|
SrcExpr = ExprError();
|
|
return true;
|
|
}
|
|
|
|
// Fix the expresion to refer to 'fn'.
|
|
SingleFunctionExpression =
|
|
Owned(FixOverloadedFunctionReference(SrcExpr.take(), found, fn));
|
|
|
|
// If desired, do function-to-pointer decay.
|
|
if (doFunctionPointerConverion) {
|
|
SingleFunctionExpression =
|
|
DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.take());
|
|
if (SingleFunctionExpression.isInvalid()) {
|
|
SrcExpr = ExprError();
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!SingleFunctionExpression.isUsable()) {
|
|
if (complain) {
|
|
Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
|
|
<< ovl.Expression->getName()
|
|
<< DestTypeForComplaining
|
|
<< OpRangeForComplaining
|
|
<< ovl.Expression->getQualifierLoc().getSourceRange();
|
|
NoteAllOverloadCandidates(SrcExpr.get());
|
|
|
|
SrcExpr = ExprError();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
SrcExpr = SingleFunctionExpression;
|
|
return true;
|
|
}
|
|
|
|
/// \brief Add a single candidate to the overload set.
|
|
static void AddOverloadedCallCandidate(Sema &S,
|
|
DeclAccessPair FoundDecl,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs,
|
|
llvm::ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet &CandidateSet,
|
|
bool PartialOverloading,
|
|
bool KnownValid) {
|
|
NamedDecl *Callee = FoundDecl.getDecl();
|
|
if (isa<UsingShadowDecl>(Callee))
|
|
Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
|
|
|
|
if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
|
|
if (ExplicitTemplateArgs) {
|
|
assert(!KnownValid && "Explicit template arguments?");
|
|
return;
|
|
}
|
|
S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet, false,
|
|
PartialOverloading);
|
|
return;
|
|
}
|
|
|
|
if (FunctionTemplateDecl *FuncTemplate
|
|
= dyn_cast<FunctionTemplateDecl>(Callee)) {
|
|
S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
|
|
ExplicitTemplateArgs, Args, CandidateSet);
|
|
return;
|
|
}
|
|
|
|
assert(!KnownValid && "unhandled case in overloaded call candidate");
|
|
}
|
|
|
|
/// \brief Add the overload candidates named by callee and/or found by argument
|
|
/// dependent lookup to the given overload set.
|
|
void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
|
|
llvm::ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet &CandidateSet,
|
|
bool PartialOverloading) {
|
|
|
|
#ifndef NDEBUG
|
|
// Verify that ArgumentDependentLookup is consistent with the rules
|
|
// in C++0x [basic.lookup.argdep]p3:
|
|
//
|
|
// Let X be the lookup set produced by unqualified lookup (3.4.1)
|
|
// and let Y be the lookup set produced by argument dependent
|
|
// lookup (defined as follows). If X contains
|
|
//
|
|
// -- a declaration of a class member, or
|
|
//
|
|
// -- a block-scope function declaration that is not a
|
|
// using-declaration, or
|
|
//
|
|
// -- a declaration that is neither a function or a function
|
|
// template
|
|
//
|
|
// then Y is empty.
|
|
|
|
if (ULE->requiresADL()) {
|
|
for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
|
|
E = ULE->decls_end(); I != E; ++I) {
|
|
assert(!(*I)->getDeclContext()->isRecord());
|
|
assert(isa<UsingShadowDecl>(*I) ||
|
|
!(*I)->getDeclContext()->isFunctionOrMethod());
|
|
assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// It would be nice to avoid this copy.
|
|
TemplateArgumentListInfo TABuffer;
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
|
|
if (ULE->hasExplicitTemplateArgs()) {
|
|
ULE->copyTemplateArgumentsInto(TABuffer);
|
|
ExplicitTemplateArgs = &TABuffer;
|
|
}
|
|
|
|
for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
|
|
E = ULE->decls_end(); I != E; ++I)
|
|
AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
|
|
CandidateSet, PartialOverloading,
|
|
/*KnownValid*/ true);
|
|
|
|
if (ULE->requiresADL())
|
|
AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
|
|
ULE->getExprLoc(),
|
|
Args, ExplicitTemplateArgs,
|
|
CandidateSet, PartialOverloading,
|
|
ULE->isStdAssociatedNamespace());
|
|
}
|
|
|
|
/// Attempt to recover from an ill-formed use of a non-dependent name in a
|
|
/// template, where the non-dependent name was declared after the template
|
|
/// was defined. This is common in code written for a compilers which do not
|
|
/// correctly implement two-stage name lookup.
|
|
///
|
|
/// Returns true if a viable candidate was found and a diagnostic was issued.
|
|
static bool
|
|
DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
|
|
const CXXScopeSpec &SS, LookupResult &R,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs,
|
|
llvm::ArrayRef<Expr *> Args) {
|
|
if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty())
|
|
return false;
|
|
|
|
for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
|
|
if (DC->isTransparentContext())
|
|
continue;
|
|
|
|
SemaRef.LookupQualifiedName(R, DC);
|
|
|
|
if (!R.empty()) {
|
|
R.suppressDiagnostics();
|
|
|
|
if (isa<CXXRecordDecl>(DC)) {
|
|
// Don't diagnose names we find in classes; we get much better
|
|
// diagnostics for these from DiagnoseEmptyLookup.
|
|
R.clear();
|
|
return false;
|
|
}
|
|
|
|
OverloadCandidateSet Candidates(FnLoc);
|
|
for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
|
|
AddOverloadedCallCandidate(SemaRef, I.getPair(),
|
|
ExplicitTemplateArgs, Args,
|
|
Candidates, false, /*KnownValid*/ false);
|
|
|
|
OverloadCandidateSet::iterator Best;
|
|
if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
|
|
// No viable functions. Don't bother the user with notes for functions
|
|
// which don't work and shouldn't be found anyway.
|
|
R.clear();
|
|
return false;
|
|
}
|
|
|
|
// Find the namespaces where ADL would have looked, and suggest
|
|
// declaring the function there instead.
|
|
Sema::AssociatedNamespaceSet AssociatedNamespaces;
|
|
Sema::AssociatedClassSet AssociatedClasses;
|
|
SemaRef.FindAssociatedClassesAndNamespaces(Args,
|
|
AssociatedNamespaces,
|
|
AssociatedClasses);
|
|
// Never suggest declaring a function within namespace 'std'.
|
|
Sema::AssociatedNamespaceSet SuggestedNamespaces;
|
|
if (DeclContext *Std = SemaRef.getStdNamespace()) {
|
|
for (Sema::AssociatedNamespaceSet::iterator
|
|
it = AssociatedNamespaces.begin(),
|
|
end = AssociatedNamespaces.end(); it != end; ++it) {
|
|
if (!Std->Encloses(*it))
|
|
SuggestedNamespaces.insert(*it);
|
|
}
|
|
} else {
|
|
// Lacking the 'std::' namespace, use all of the associated namespaces.
|
|
SuggestedNamespaces = AssociatedNamespaces;
|
|
}
|
|
|
|
SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
|
|
<< R.getLookupName();
|
|
if (SuggestedNamespaces.empty()) {
|
|
SemaRef.Diag(Best->Function->getLocation(),
|
|
diag::note_not_found_by_two_phase_lookup)
|
|
<< R.getLookupName() << 0;
|
|
} else if (SuggestedNamespaces.size() == 1) {
|
|
SemaRef.Diag(Best->Function->getLocation(),
|
|
diag::note_not_found_by_two_phase_lookup)
|
|
<< R.getLookupName() << 1 << *SuggestedNamespaces.begin();
|
|
} else {
|
|
// FIXME: It would be useful to list the associated namespaces here,
|
|
// but the diagnostics infrastructure doesn't provide a way to produce
|
|
// a localized representation of a list of items.
|
|
SemaRef.Diag(Best->Function->getLocation(),
|
|
diag::note_not_found_by_two_phase_lookup)
|
|
<< R.getLookupName() << 2;
|
|
}
|
|
|
|
// Try to recover by calling this function.
|
|
return true;
|
|
}
|
|
|
|
R.clear();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Attempt to recover from ill-formed use of a non-dependent operator in a
|
|
/// template, where the non-dependent operator was declared after the template
|
|
/// was defined.
|
|
///
|
|
/// Returns true if a viable candidate was found and a diagnostic was issued.
|
|
static bool
|
|
DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
|
|
SourceLocation OpLoc,
|
|
llvm::ArrayRef<Expr *> Args) {
|
|
DeclarationName OpName =
|
|
SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
|
|
LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
|
|
return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
|
|
/*ExplicitTemplateArgs=*/0, Args);
|
|
}
|
|
|
|
namespace {
|
|
// Callback to limit the allowed keywords and to only accept typo corrections
|
|
// that are keywords or whose decls refer to functions (or template functions)
|
|
// that accept the given number of arguments.
|
|
class RecoveryCallCCC : public CorrectionCandidateCallback {
|
|
public:
|
|
RecoveryCallCCC(Sema &SemaRef, unsigned NumArgs, bool HasExplicitTemplateArgs)
|
|
: NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs) {
|
|
WantTypeSpecifiers = SemaRef.getLangOpts().CPlusPlus;
|
|
WantRemainingKeywords = false;
|
|
}
|
|
|
|
virtual bool ValidateCandidate(const TypoCorrection &candidate) {
|
|
if (!candidate.getCorrectionDecl())
|
|
return candidate.isKeyword();
|
|
|
|
for (TypoCorrection::const_decl_iterator DI = candidate.begin(),
|
|
DIEnd = candidate.end(); DI != DIEnd; ++DI) {
|
|
FunctionDecl *FD = 0;
|
|
NamedDecl *ND = (*DI)->getUnderlyingDecl();
|
|
if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
|
|
FD = FTD->getTemplatedDecl();
|
|
if (!HasExplicitTemplateArgs && !FD) {
|
|
if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
|
|
// If the Decl is neither a function nor a template function,
|
|
// determine if it is a pointer or reference to a function. If so,
|
|
// check against the number of arguments expected for the pointee.
|
|
QualType ValType = cast<ValueDecl>(ND)->getType();
|
|
if (ValType->isAnyPointerType() || ValType->isReferenceType())
|
|
ValType = ValType->getPointeeType();
|
|
if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
|
|
if (FPT->getNumArgs() == NumArgs)
|
|
return true;
|
|
}
|
|
}
|
|
if (FD && FD->getNumParams() >= NumArgs &&
|
|
FD->getMinRequiredArguments() <= NumArgs)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
private:
|
|
unsigned NumArgs;
|
|
bool HasExplicitTemplateArgs;
|
|
};
|
|
|
|
// Callback that effectively disabled typo correction
|
|
class NoTypoCorrectionCCC : public CorrectionCandidateCallback {
|
|
public:
|
|
NoTypoCorrectionCCC() {
|
|
WantTypeSpecifiers = false;
|
|
WantExpressionKeywords = false;
|
|
WantCXXNamedCasts = false;
|
|
WantRemainingKeywords = false;
|
|
}
|
|
|
|
virtual bool ValidateCandidate(const TypoCorrection &candidate) {
|
|
return false;
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Attempts to recover from a call where no functions were found.
|
|
///
|
|
/// Returns true if new candidates were found.
|
|
static ExprResult
|
|
BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
|
|
UnresolvedLookupExpr *ULE,
|
|
SourceLocation LParenLoc,
|
|
llvm::MutableArrayRef<Expr *> Args,
|
|
SourceLocation RParenLoc,
|
|
bool EmptyLookup, bool AllowTypoCorrection) {
|
|
|
|
CXXScopeSpec SS;
|
|
SS.Adopt(ULE->getQualifierLoc());
|
|
SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
|
|
|
|
TemplateArgumentListInfo TABuffer;
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
|
|
if (ULE->hasExplicitTemplateArgs()) {
|
|
ULE->copyTemplateArgumentsInto(TABuffer);
|
|
ExplicitTemplateArgs = &TABuffer;
|
|
}
|
|
|
|
LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
|
|
Sema::LookupOrdinaryName);
|
|
RecoveryCallCCC Validator(SemaRef, Args.size(), ExplicitTemplateArgs != 0);
|
|
NoTypoCorrectionCCC RejectAll;
|
|
CorrectionCandidateCallback *CCC = AllowTypoCorrection ?
|
|
(CorrectionCandidateCallback*)&Validator :
|
|
(CorrectionCandidateCallback*)&RejectAll;
|
|
if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
|
|
ExplicitTemplateArgs, Args) &&
|
|
(!EmptyLookup ||
|
|
SemaRef.DiagnoseEmptyLookup(S, SS, R, *CCC,
|
|
ExplicitTemplateArgs, Args)))
|
|
return ExprError();
|
|
|
|
assert(!R.empty() && "lookup results empty despite recovery");
|
|
|
|
// Build an implicit member call if appropriate. Just drop the
|
|
// casts and such from the call, we don't really care.
|
|
ExprResult NewFn = ExprError();
|
|
if ((*R.begin())->isCXXClassMember())
|
|
NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
|
|
R, ExplicitTemplateArgs);
|
|
else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
|
|
NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
|
|
ExplicitTemplateArgs);
|
|
else
|
|
NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
|
|
|
|
if (NewFn.isInvalid())
|
|
return ExprError();
|
|
|
|
// This shouldn't cause an infinite loop because we're giving it
|
|
// an expression with viable lookup results, which should never
|
|
// end up here.
|
|
return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc,
|
|
MultiExprArg(Args.data(), Args.size()),
|
|
RParenLoc);
|
|
}
|
|
|
|
/// ResolveOverloadedCallFn - Given the call expression that calls Fn
|
|
/// (which eventually refers to the declaration Func) and the call
|
|
/// arguments Args/NumArgs, attempt to resolve the function call down
|
|
/// to a specific function. If overload resolution succeeds, returns
|
|
/// the function declaration produced by overload
|
|
/// resolution. Otherwise, emits diagnostics, deletes all of the
|
|
/// arguments and Fn, and returns NULL.
|
|
ExprResult
|
|
Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
|
|
SourceLocation LParenLoc,
|
|
Expr **Args, unsigned NumArgs,
|
|
SourceLocation RParenLoc,
|
|
Expr *ExecConfig,
|
|
bool AllowTypoCorrection) {
|
|
#ifndef NDEBUG
|
|
if (ULE->requiresADL()) {
|
|
// To do ADL, we must have found an unqualified name.
|
|
assert(!ULE->getQualifier() && "qualified name with ADL");
|
|
|
|
// We don't perform ADL for implicit declarations of builtins.
|
|
// Verify that this was correctly set up.
|
|
FunctionDecl *F;
|
|
if (ULE->decls_begin() + 1 == ULE->decls_end() &&
|
|
(F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
|
|
F->getBuiltinID() && F->isImplicit())
|
|
llvm_unreachable("performing ADL for builtin");
|
|
|
|
// We don't perform ADL in C.
|
|
assert(getLangOpts().CPlusPlus && "ADL enabled in C");
|
|
} else
|
|
assert(!ULE->isStdAssociatedNamespace() &&
|
|
"std is associated namespace but not doing ADL");
|
|
#endif
|
|
|
|
UnbridgedCastsSet UnbridgedCasts;
|
|
if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts))
|
|
return ExprError();
|
|
|
|
OverloadCandidateSet CandidateSet(Fn->getExprLoc());
|
|
|
|
// Add the functions denoted by the callee to the set of candidate
|
|
// functions, including those from argument-dependent lookup.
|
|
AddOverloadedCallCandidates(ULE, llvm::makeArrayRef(Args, NumArgs),
|
|
CandidateSet);
|
|
|
|
// If we found nothing, try to recover.
|
|
// BuildRecoveryCallExpr diagnoses the error itself, so we just bail
|
|
// out if it fails.
|
|
if (CandidateSet.empty()) {
|
|
// In Microsoft mode, if we are inside a template class member function then
|
|
// create a type dependent CallExpr. The goal is to postpone name lookup
|
|
// to instantiation time to be able to search into type dependent base
|
|
// classes.
|
|
if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
|
|
(isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
|
|
CallExpr *CE = new (Context) CallExpr(Context, Fn, Args, NumArgs,
|
|
Context.DependentTy, VK_RValue,
|
|
RParenLoc);
|
|
CE->setTypeDependent(true);
|
|
return Owned(CE);
|
|
}
|
|
return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc,
|
|
llvm::MutableArrayRef<Expr *>(Args, NumArgs),
|
|
RParenLoc, /*EmptyLookup=*/true,
|
|
AllowTypoCorrection);
|
|
}
|
|
|
|
UnbridgedCasts.restore();
|
|
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best)) {
|
|
case OR_Success: {
|
|
FunctionDecl *FDecl = Best->Function;
|
|
MarkFunctionReferenced(Fn->getExprLoc(), FDecl);
|
|
CheckUnresolvedLookupAccess(ULE, Best->FoundDecl);
|
|
DiagnoseUseOfDecl(FDecl, ULE->getNameLoc());
|
|
Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
|
|
return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc,
|
|
ExecConfig);
|
|
}
|
|
|
|
case OR_No_Viable_Function: {
|
|
// Try to recover by looking for viable functions which the user might
|
|
// have meant to call.
|
|
ExprResult Recovery = BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc,
|
|
llvm::MutableArrayRef<Expr *>(Args, NumArgs),
|
|
RParenLoc,
|
|
/*EmptyLookup=*/false,
|
|
AllowTypoCorrection);
|
|
if (!Recovery.isInvalid())
|
|
return Recovery;
|
|
|
|
Diag(Fn->getLocStart(),
|
|
diag::err_ovl_no_viable_function_in_call)
|
|
<< ULE->getName() << Fn->getSourceRange();
|
|
CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
|
|
llvm::makeArrayRef(Args, NumArgs));
|
|
break;
|
|
}
|
|
|
|
case OR_Ambiguous:
|
|
Diag(Fn->getLocStart(), diag::err_ovl_ambiguous_call)
|
|
<< ULE->getName() << Fn->getSourceRange();
|
|
CandidateSet.NoteCandidates(*this, OCD_ViableCandidates,
|
|
llvm::makeArrayRef(Args, NumArgs));
|
|
break;
|
|
|
|
case OR_Deleted:
|
|
{
|
|
Diag(Fn->getLocStart(), diag::err_ovl_deleted_call)
|
|
<< Best->Function->isDeleted()
|
|
<< ULE->getName()
|
|
<< getDeletedOrUnavailableSuffix(Best->Function)
|
|
<< Fn->getSourceRange();
|
|
CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
|
|
llvm::makeArrayRef(Args, NumArgs));
|
|
|
|
// We emitted an error for the unvailable/deleted function call but keep
|
|
// the call in the AST.
|
|
FunctionDecl *FDecl = Best->Function;
|
|
Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
|
|
return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs,
|
|
RParenLoc, ExecConfig);
|
|
}
|
|
}
|
|
|
|
// Overload resolution failed.
|
|
return ExprError();
|
|
}
|
|
|
|
static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
|
|
return Functions.size() > 1 ||
|
|
(Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
|
|
}
|
|
|
|
/// \brief Create a unary operation that may resolve to an overloaded
|
|
/// operator.
|
|
///
|
|
/// \param OpLoc The location of the operator itself (e.g., '*').
|
|
///
|
|
/// \param OpcIn The UnaryOperator::Opcode that describes this
|
|
/// operator.
|
|
///
|
|
/// \param Functions The set of non-member functions that will be
|
|
/// considered by overload resolution. The caller needs to build this
|
|
/// set based on the context using, e.g.,
|
|
/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
|
|
/// set should not contain any member functions; those will be added
|
|
/// by CreateOverloadedUnaryOp().
|
|
///
|
|
/// \param input The input argument.
|
|
ExprResult
|
|
Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
|
|
const UnresolvedSetImpl &Fns,
|
|
Expr *Input) {
|
|
UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
|
|
|
|
OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
|
|
assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
|
|
DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
|
|
// TODO: provide better source location info.
|
|
DeclarationNameInfo OpNameInfo(OpName, OpLoc);
|
|
|
|
if (checkPlaceholderForOverload(*this, Input))
|
|
return ExprError();
|
|
|
|
Expr *Args[2] = { Input, 0 };
|
|
unsigned NumArgs = 1;
|
|
|
|
// For post-increment and post-decrement, add the implicit '0' as
|
|
// the second argument, so that we know this is a post-increment or
|
|
// post-decrement.
|
|
if (Opc == UO_PostInc || Opc == UO_PostDec) {
|
|
llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
|
|
Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
|
|
SourceLocation());
|
|
NumArgs = 2;
|
|
}
|
|
|
|
if (Input->isTypeDependent()) {
|
|
if (Fns.empty())
|
|
return Owned(new (Context) UnaryOperator(Input,
|
|
Opc,
|
|
Context.DependentTy,
|
|
VK_RValue, OK_Ordinary,
|
|
OpLoc));
|
|
|
|
CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
|
|
UnresolvedLookupExpr *Fn
|
|
= UnresolvedLookupExpr::Create(Context, NamingClass,
|
|
NestedNameSpecifierLoc(), OpNameInfo,
|
|
/*ADL*/ true, IsOverloaded(Fns),
|
|
Fns.begin(), Fns.end());
|
|
return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
|
|
&Args[0], NumArgs,
|
|
Context.DependentTy,
|
|
VK_RValue,
|
|
OpLoc));
|
|
}
|
|
|
|
// Build an empty overload set.
|
|
OverloadCandidateSet CandidateSet(OpLoc);
|
|
|
|
// Add the candidates from the given function set.
|
|
AddFunctionCandidates(Fns, llvm::makeArrayRef(Args, NumArgs), CandidateSet,
|
|
false);
|
|
|
|
// Add operator candidates that are member functions.
|
|
AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
|
|
|
|
// Add candidates from ADL.
|
|
AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
|
|
OpLoc, llvm::makeArrayRef(Args, NumArgs),
|
|
/*ExplicitTemplateArgs*/ 0,
|
|
CandidateSet);
|
|
|
|
// Add builtin operator candidates.
|
|
AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
|
|
|
|
bool HadMultipleCandidates = (CandidateSet.size() > 1);
|
|
|
|
// Perform overload resolution.
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
|
|
case OR_Success: {
|
|
// We found a built-in operator or an overloaded operator.
|
|
FunctionDecl *FnDecl = Best->Function;
|
|
|
|
if (FnDecl) {
|
|
// We matched an overloaded operator. Build a call to that
|
|
// operator.
|
|
|
|
MarkFunctionReferenced(OpLoc, FnDecl);
|
|
|
|
// Convert the arguments.
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
|
|
CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
|
|
|
|
ExprResult InputRes =
|
|
PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
|
|
Best->FoundDecl, Method);
|
|
if (InputRes.isInvalid())
|
|
return ExprError();
|
|
Input = InputRes.take();
|
|
} else {
|
|
// Convert the arguments.
|
|
ExprResult InputInit
|
|
= PerformCopyInitialization(InitializedEntity::InitializeParameter(
|
|
Context,
|
|
FnDecl->getParamDecl(0)),
|
|
SourceLocation(),
|
|
Input);
|
|
if (InputInit.isInvalid())
|
|
return ExprError();
|
|
Input = InputInit.take();
|
|
}
|
|
|
|
DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
|
|
|
|
// Determine the result type.
|
|
QualType ResultTy = FnDecl->getResultType();
|
|
ExprValueKind VK = Expr::getValueKindForType(ResultTy);
|
|
ResultTy = ResultTy.getNonLValueExprType(Context);
|
|
|
|
// Build the actual expression node.
|
|
ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
|
|
HadMultipleCandidates, OpLoc);
|
|
if (FnExpr.isInvalid())
|
|
return ExprError();
|
|
|
|
Args[0] = Input;
|
|
CallExpr *TheCall =
|
|
new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
|
|
Args, NumArgs, ResultTy, VK, OpLoc);
|
|
|
|
if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
|
|
FnDecl))
|
|
return ExprError();
|
|
|
|
return MaybeBindToTemporary(TheCall);
|
|
} else {
|
|
// We matched a built-in operator. Convert the arguments, then
|
|
// break out so that we will build the appropriate built-in
|
|
// operator node.
|
|
ExprResult InputRes =
|
|
PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
|
|
Best->Conversions[0], AA_Passing);
|
|
if (InputRes.isInvalid())
|
|
return ExprError();
|
|
Input = InputRes.take();
|
|
break;
|
|
}
|
|
}
|
|
|
|
case OR_No_Viable_Function:
|
|
// This is an erroneous use of an operator which can be overloaded by
|
|
// a non-member function. Check for non-member operators which were
|
|
// defined too late to be candidates.
|
|
if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc,
|
|
llvm::makeArrayRef(Args, NumArgs)))
|
|
// FIXME: Recover by calling the found function.
|
|
return ExprError();
|
|
|
|
// No viable function; fall through to handling this as a
|
|
// built-in operator, which will produce an error message for us.
|
|
break;
|
|
|
|
case OR_Ambiguous:
|
|
Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary)
|
|
<< UnaryOperator::getOpcodeStr(Opc)
|
|
<< Input->getType()
|
|
<< Input->getSourceRange();
|
|
CandidateSet.NoteCandidates(*this, OCD_ViableCandidates,
|
|
llvm::makeArrayRef(Args, NumArgs),
|
|
UnaryOperator::getOpcodeStr(Opc), OpLoc);
|
|
return ExprError();
|
|
|
|
case OR_Deleted:
|
|
Diag(OpLoc, diag::err_ovl_deleted_oper)
|
|
<< Best->Function->isDeleted()
|
|
<< UnaryOperator::getOpcodeStr(Opc)
|
|
<< getDeletedOrUnavailableSuffix(Best->Function)
|
|
<< Input->getSourceRange();
|
|
CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
|
|
llvm::makeArrayRef(Args, NumArgs),
|
|
UnaryOperator::getOpcodeStr(Opc), OpLoc);
|
|
return ExprError();
|
|
}
|
|
|
|
// Either we found no viable overloaded operator or we matched a
|
|
// built-in operator. In either case, fall through to trying to
|
|
// build a built-in operation.
|
|
return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
|
|
}
|
|
|
|
/// \brief Create a binary operation that may resolve to an overloaded
|
|
/// operator.
|
|
///
|
|
/// \param OpLoc The location of the operator itself (e.g., '+').
|
|
///
|
|
/// \param OpcIn The BinaryOperator::Opcode that describes this
|
|
/// operator.
|
|
///
|
|
/// \param Functions The set of non-member functions that will be
|
|
/// considered by overload resolution. The caller needs to build this
|
|
/// set based on the context using, e.g.,
|
|
/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
|
|
/// set should not contain any member functions; those will be added
|
|
/// by CreateOverloadedBinOp().
|
|
///
|
|
/// \param LHS Left-hand argument.
|
|
/// \param RHS Right-hand argument.
|
|
ExprResult
|
|
Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
|
|
unsigned OpcIn,
|
|
const UnresolvedSetImpl &Fns,
|
|
Expr *LHS, Expr *RHS) {
|
|
Expr *Args[2] = { LHS, RHS };
|
|
LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
|
|
|
|
BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
|
|
OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
|
|
DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
|
|
|
|
// If either side is type-dependent, create an appropriate dependent
|
|
// expression.
|
|
if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
|
|
if (Fns.empty()) {
|
|
// If there are no functions to store, just build a dependent
|
|
// BinaryOperator or CompoundAssignment.
|
|
if (Opc <= BO_Assign || Opc > BO_OrAssign)
|
|
return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
|
|
Context.DependentTy,
|
|
VK_RValue, OK_Ordinary,
|
|
OpLoc));
|
|
|
|
return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
|
|
Context.DependentTy,
|
|
VK_LValue,
|
|
OK_Ordinary,
|
|
Context.DependentTy,
|
|
Context.DependentTy,
|
|
OpLoc));
|
|
}
|
|
|
|
// FIXME: save results of ADL from here?
|
|
CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
|
|
// TODO: provide better source location info in DNLoc component.
|
|
DeclarationNameInfo OpNameInfo(OpName, OpLoc);
|
|
UnresolvedLookupExpr *Fn
|
|
= UnresolvedLookupExpr::Create(Context, NamingClass,
|
|
NestedNameSpecifierLoc(), OpNameInfo,
|
|
/*ADL*/ true, IsOverloaded(Fns),
|
|
Fns.begin(), Fns.end());
|
|
return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
|
|
Args, 2,
|
|
Context.DependentTy,
|
|
VK_RValue,
|
|
OpLoc));
|
|
}
|
|
|
|
// Always do placeholder-like conversions on the RHS.
|
|
if (checkPlaceholderForOverload(*this, Args[1]))
|
|
return ExprError();
|
|
|
|
// Do placeholder-like conversion on the LHS; note that we should
|
|
// not get here with a PseudoObject LHS.
|
|
assert(Args[0]->getObjectKind() != OK_ObjCProperty);
|
|
if (checkPlaceholderForOverload(*this, Args[0]))
|
|
return ExprError();
|
|
|
|
// If this is the assignment operator, we only perform overload resolution
|
|
// if the left-hand side is a class or enumeration type. This is actually
|
|
// a hack. The standard requires that we do overload resolution between the
|
|
// various built-in candidates, but as DR507 points out, this can lead to
|
|
// problems. So we do it this way, which pretty much follows what GCC does.
|
|
// Note that we go the traditional code path for compound assignment forms.
|
|
if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
|
|
return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
|
|
|
|
// If this is the .* operator, which is not overloadable, just
|
|
// create a built-in binary operator.
|
|
if (Opc == BO_PtrMemD)
|
|
return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
|
|
|
|
// Build an empty overload set.
|
|
OverloadCandidateSet CandidateSet(OpLoc);
|
|
|
|
// Add the candidates from the given function set.
|
|
AddFunctionCandidates(Fns, Args, CandidateSet, false);
|
|
|
|
// Add operator candidates that are member functions.
|
|
AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
|
|
|
|
// Add candidates from ADL.
|
|
AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
|
|
OpLoc, Args,
|
|
/*ExplicitTemplateArgs*/ 0,
|
|
CandidateSet);
|
|
|
|
// Add builtin operator candidates.
|
|
AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
|
|
|
|
bool HadMultipleCandidates = (CandidateSet.size() > 1);
|
|
|
|
// Perform overload resolution.
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
|
|
case OR_Success: {
|
|
// We found a built-in operator or an overloaded operator.
|
|
FunctionDecl *FnDecl = Best->Function;
|
|
|
|
if (FnDecl) {
|
|
// We matched an overloaded operator. Build a call to that
|
|
// operator.
|
|
|
|
MarkFunctionReferenced(OpLoc, FnDecl);
|
|
|
|
// Convert the arguments.
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
|
|
// Best->Access is only meaningful for class members.
|
|
CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
|
|
|
|
ExprResult Arg1 =
|
|
PerformCopyInitialization(
|
|
InitializedEntity::InitializeParameter(Context,
|
|
FnDecl->getParamDecl(0)),
|
|
SourceLocation(), Owned(Args[1]));
|
|
if (Arg1.isInvalid())
|
|
return ExprError();
|
|
|
|
ExprResult Arg0 =
|
|
PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
|
|
Best->FoundDecl, Method);
|
|
if (Arg0.isInvalid())
|
|
return ExprError();
|
|
Args[0] = Arg0.takeAs<Expr>();
|
|
Args[1] = RHS = Arg1.takeAs<Expr>();
|
|
} else {
|
|
// Convert the arguments.
|
|
ExprResult Arg0 = PerformCopyInitialization(
|
|
InitializedEntity::InitializeParameter(Context,
|
|
FnDecl->getParamDecl(0)),
|
|
SourceLocation(), Owned(Args[0]));
|
|
if (Arg0.isInvalid())
|
|
return ExprError();
|
|
|
|
ExprResult Arg1 =
|
|
PerformCopyInitialization(
|
|
InitializedEntity::InitializeParameter(Context,
|
|
FnDecl->getParamDecl(1)),
|
|
SourceLocation(), Owned(Args[1]));
|
|
if (Arg1.isInvalid())
|
|
return ExprError();
|
|
Args[0] = LHS = Arg0.takeAs<Expr>();
|
|
Args[1] = RHS = Arg1.takeAs<Expr>();
|
|
}
|
|
|
|
DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
|
|
|
|
// Determine the result type.
|
|
QualType ResultTy = FnDecl->getResultType();
|
|
ExprValueKind VK = Expr::getValueKindForType(ResultTy);
|
|
ResultTy = ResultTy.getNonLValueExprType(Context);
|
|
|
|
// Build the actual expression node.
|
|
ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
|
|
HadMultipleCandidates, OpLoc);
|
|
if (FnExpr.isInvalid())
|
|
return ExprError();
|
|
|
|
CXXOperatorCallExpr *TheCall =
|
|
new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
|
|
Args, 2, ResultTy, VK, OpLoc);
|
|
|
|
if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
|
|
FnDecl))
|
|
return ExprError();
|
|
|
|
return MaybeBindToTemporary(TheCall);
|
|
} else {
|
|
// We matched a built-in operator. Convert the arguments, then
|
|
// break out so that we will build the appropriate built-in
|
|
// operator node.
|
|
ExprResult ArgsRes0 =
|
|
PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
|
|
Best->Conversions[0], AA_Passing);
|
|
if (ArgsRes0.isInvalid())
|
|
return ExprError();
|
|
Args[0] = ArgsRes0.take();
|
|
|
|
ExprResult ArgsRes1 =
|
|
PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
|
|
Best->Conversions[1], AA_Passing);
|
|
if (ArgsRes1.isInvalid())
|
|
return ExprError();
|
|
Args[1] = ArgsRes1.take();
|
|
break;
|
|
}
|
|
}
|
|
|
|
case OR_No_Viable_Function: {
|
|
// C++ [over.match.oper]p9:
|
|
// If the operator is the operator , [...] and there are no
|
|
// viable functions, then the operator is assumed to be the
|
|
// built-in operator and interpreted according to clause 5.
|
|
if (Opc == BO_Comma)
|
|
break;
|
|
|
|
// For class as left operand for assignment or compound assigment
|
|
// operator do not fall through to handling in built-in, but report that
|
|
// no overloaded assignment operator found
|
|
ExprResult Result = ExprError();
|
|
if (Args[0]->getType()->isRecordType() &&
|
|
Opc >= BO_Assign && Opc <= BO_OrAssign) {
|
|
Diag(OpLoc, diag::err_ovl_no_viable_oper)
|
|
<< BinaryOperator::getOpcodeStr(Opc)
|
|
<< Args[0]->getSourceRange() << Args[1]->getSourceRange();
|
|
} else {
|
|
// This is an erroneous use of an operator which can be overloaded by
|
|
// a non-member function. Check for non-member operators which were
|
|
// defined too late to be candidates.
|
|
if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
|
|
// FIXME: Recover by calling the found function.
|
|
return ExprError();
|
|
|
|
// No viable function; try to create a built-in operation, which will
|
|
// produce an error. Then, show the non-viable candidates.
|
|
Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
|
|
}
|
|
assert(Result.isInvalid() &&
|
|
"C++ binary operator overloading is missing candidates!");
|
|
if (Result.isInvalid())
|
|
CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
|
|
BinaryOperator::getOpcodeStr(Opc), OpLoc);
|
|
return move(Result);
|
|
}
|
|
|
|
case OR_Ambiguous:
|
|
Diag(OpLoc, diag::err_ovl_ambiguous_oper_binary)
|
|
<< BinaryOperator::getOpcodeStr(Opc)
|
|
<< Args[0]->getType() << Args[1]->getType()
|
|
<< Args[0]->getSourceRange() << Args[1]->getSourceRange();
|
|
CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
|
|
BinaryOperator::getOpcodeStr(Opc), OpLoc);
|
|
return ExprError();
|
|
|
|
case OR_Deleted:
|
|
if (isImplicitlyDeleted(Best->Function)) {
|
|
CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
|
|
Diag(OpLoc, diag::err_ovl_deleted_special_oper)
|
|
<< getSpecialMember(Method)
|
|
<< BinaryOperator::getOpcodeStr(Opc)
|
|
<< getDeletedOrUnavailableSuffix(Best->Function);
|
|
|
|
if (getSpecialMember(Method) != CXXInvalid) {
|
|
// The user probably meant to call this special member. Just
|
|
// explain why it's deleted.
|
|
NoteDeletedFunction(Method);
|
|
return ExprError();
|
|
}
|
|
} else {
|
|
Diag(OpLoc, diag::err_ovl_deleted_oper)
|
|
<< Best->Function->isDeleted()
|
|
<< BinaryOperator::getOpcodeStr(Opc)
|
|
<< getDeletedOrUnavailableSuffix(Best->Function)
|
|
<< Args[0]->getSourceRange() << Args[1]->getSourceRange();
|
|
}
|
|
CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
|
|
BinaryOperator::getOpcodeStr(Opc), OpLoc);
|
|
return ExprError();
|
|
}
|
|
|
|
// We matched a built-in operator; build it.
|
|
return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
|
|
}
|
|
|
|
ExprResult
|
|
Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
|
|
SourceLocation RLoc,
|
|
Expr *Base, Expr *Idx) {
|
|
Expr *Args[2] = { Base, Idx };
|
|
DeclarationName OpName =
|
|
Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
|
|
|
|
// If either side is type-dependent, create an appropriate dependent
|
|
// expression.
|
|
if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
|
|
|
|
CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
|
|
// CHECKME: no 'operator' keyword?
|
|
DeclarationNameInfo OpNameInfo(OpName, LLoc);
|
|
OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
|
|
UnresolvedLookupExpr *Fn
|
|
= UnresolvedLookupExpr::Create(Context, NamingClass,
|
|
NestedNameSpecifierLoc(), OpNameInfo,
|
|
/*ADL*/ true, /*Overloaded*/ false,
|
|
UnresolvedSetIterator(),
|
|
UnresolvedSetIterator());
|
|
// Can't add any actual overloads yet
|
|
|
|
return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
|
|
Args, 2,
|
|
Context.DependentTy,
|
|
VK_RValue,
|
|
RLoc));
|
|
}
|
|
|
|
// Handle placeholders on both operands.
|
|
if (checkPlaceholderForOverload(*this, Args[0]))
|
|
return ExprError();
|
|
if (checkPlaceholderForOverload(*this, Args[1]))
|
|
return ExprError();
|
|
|
|
// Build an empty overload set.
|
|
OverloadCandidateSet CandidateSet(LLoc);
|
|
|
|
// Subscript can only be overloaded as a member function.
|
|
|
|
// Add operator candidates that are member functions.
|
|
AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
|
|
|
|
// Add builtin operator candidates.
|
|
AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
|
|
|
|
bool HadMultipleCandidates = (CandidateSet.size() > 1);
|
|
|
|
// Perform overload resolution.
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
|
|
case OR_Success: {
|
|
// We found a built-in operator or an overloaded operator.
|
|
FunctionDecl *FnDecl = Best->Function;
|
|
|
|
if (FnDecl) {
|
|
// We matched an overloaded operator. Build a call to that
|
|
// operator.
|
|
|
|
MarkFunctionReferenced(LLoc, FnDecl);
|
|
|
|
CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
|
|
DiagnoseUseOfDecl(Best->FoundDecl, LLoc);
|
|
|
|
// Convert the arguments.
|
|
CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
|
|
ExprResult Arg0 =
|
|
PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
|
|
Best->FoundDecl, Method);
|
|
if (Arg0.isInvalid())
|
|
return ExprError();
|
|
Args[0] = Arg0.take();
|
|
|
|
// Convert the arguments.
|
|
ExprResult InputInit
|
|
= PerformCopyInitialization(InitializedEntity::InitializeParameter(
|
|
Context,
|
|
FnDecl->getParamDecl(0)),
|
|
SourceLocation(),
|
|
Owned(Args[1]));
|
|
if (InputInit.isInvalid())
|
|
return ExprError();
|
|
|
|
Args[1] = InputInit.takeAs<Expr>();
|
|
|
|
// Determine the result type
|
|
QualType ResultTy = FnDecl->getResultType();
|
|
ExprValueKind VK = Expr::getValueKindForType(ResultTy);
|
|
ResultTy = ResultTy.getNonLValueExprType(Context);
|
|
|
|
// Build the actual expression node.
|
|
DeclarationNameInfo OpLocInfo(OpName, LLoc);
|
|
OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
|
|
ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
|
|
HadMultipleCandidates,
|
|
OpLocInfo.getLoc(),
|
|
OpLocInfo.getInfo());
|
|
if (FnExpr.isInvalid())
|
|
return ExprError();
|
|
|
|
CXXOperatorCallExpr *TheCall =
|
|
new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
|
|
FnExpr.take(), Args, 2,
|
|
ResultTy, VK, RLoc);
|
|
|
|
if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall,
|
|
FnDecl))
|
|
return ExprError();
|
|
|
|
return MaybeBindToTemporary(TheCall);
|
|
} else {
|
|
// We matched a built-in operator. Convert the arguments, then
|
|
// break out so that we will build the appropriate built-in
|
|
// operator node.
|
|
ExprResult ArgsRes0 =
|
|
PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
|
|
Best->Conversions[0], AA_Passing);
|
|
if (ArgsRes0.isInvalid())
|
|
return ExprError();
|
|
Args[0] = ArgsRes0.take();
|
|
|
|
ExprResult ArgsRes1 =
|
|
PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
|
|
Best->Conversions[1], AA_Passing);
|
|
if (ArgsRes1.isInvalid())
|
|
return ExprError();
|
|
Args[1] = ArgsRes1.take();
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
case OR_No_Viable_Function: {
|
|
if (CandidateSet.empty())
|
|
Diag(LLoc, diag::err_ovl_no_oper)
|
|
<< Args[0]->getType() << /*subscript*/ 0
|
|
<< Args[0]->getSourceRange() << Args[1]->getSourceRange();
|
|
else
|
|
Diag(LLoc, diag::err_ovl_no_viable_subscript)
|
|
<< Args[0]->getType()
|
|
<< Args[0]->getSourceRange() << Args[1]->getSourceRange();
|
|
CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
|
|
"[]", LLoc);
|
|
return ExprError();
|
|
}
|
|
|
|
case OR_Ambiguous:
|
|
Diag(LLoc, diag::err_ovl_ambiguous_oper_binary)
|
|
<< "[]"
|
|
<< Args[0]->getType() << Args[1]->getType()
|
|
<< Args[0]->getSourceRange() << Args[1]->getSourceRange();
|
|
CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
|
|
"[]", LLoc);
|
|
return ExprError();
|
|
|
|
case OR_Deleted:
|
|
Diag(LLoc, diag::err_ovl_deleted_oper)
|
|
<< Best->Function->isDeleted() << "[]"
|
|
<< getDeletedOrUnavailableSuffix(Best->Function)
|
|
<< Args[0]->getSourceRange() << Args[1]->getSourceRange();
|
|
CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
|
|
"[]", LLoc);
|
|
return ExprError();
|
|
}
|
|
|
|
// We matched a built-in operator; build it.
|
|
return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
|
|
}
|
|
|
|
/// BuildCallToMemberFunction - Build a call to a member
|
|
/// function. MemExpr is the expression that refers to the member
|
|
/// function (and includes the object parameter), Args/NumArgs are the
|
|
/// arguments to the function call (not including the object
|
|
/// parameter). The caller needs to validate that the member
|
|
/// expression refers to a non-static member function or an overloaded
|
|
/// member function.
|
|
ExprResult
|
|
Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
|
|
SourceLocation LParenLoc, Expr **Args,
|
|
unsigned NumArgs, SourceLocation RParenLoc) {
|
|
assert(MemExprE->getType() == Context.BoundMemberTy ||
|
|
MemExprE->getType() == Context.OverloadTy);
|
|
|
|
// Dig out the member expression. This holds both the object
|
|
// argument and the member function we're referring to.
|
|
Expr *NakedMemExpr = MemExprE->IgnoreParens();
|
|
|
|
// Determine whether this is a call to a pointer-to-member function.
|
|
if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
|
|
assert(op->getType() == Context.BoundMemberTy);
|
|
assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
|
|
|
|
QualType fnType =
|
|
op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
|
|
|
|
const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
|
|
QualType resultType = proto->getCallResultType(Context);
|
|
ExprValueKind valueKind = Expr::getValueKindForType(proto->getResultType());
|
|
|
|
// Check that the object type isn't more qualified than the
|
|
// member function we're calling.
|
|
Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals());
|
|
|
|
QualType objectType = op->getLHS()->getType();
|
|
if (op->getOpcode() == BO_PtrMemI)
|
|
objectType = objectType->castAs<PointerType>()->getPointeeType();
|
|
Qualifiers objectQuals = objectType.getQualifiers();
|
|
|
|
Qualifiers difference = objectQuals - funcQuals;
|
|
difference.removeObjCGCAttr();
|
|
difference.removeAddressSpace();
|
|
if (difference) {
|
|
std::string qualsString = difference.getAsString();
|
|
Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
|
|
<< fnType.getUnqualifiedType()
|
|
<< qualsString
|
|
<< (qualsString.find(' ') == std::string::npos ? 1 : 2);
|
|
}
|
|
|
|
CXXMemberCallExpr *call
|
|
= new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs,
|
|
resultType, valueKind, RParenLoc);
|
|
|
|
if (CheckCallReturnType(proto->getResultType(),
|
|
op->getRHS()->getLocStart(),
|
|
call, 0))
|
|
return ExprError();
|
|
|
|
if (ConvertArgumentsForCall(call, op, 0, proto, Args, NumArgs, RParenLoc))
|
|
return ExprError();
|
|
|
|
return MaybeBindToTemporary(call);
|
|
}
|
|
|
|
UnbridgedCastsSet UnbridgedCasts;
|
|
if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts))
|
|
return ExprError();
|
|
|
|
MemberExpr *MemExpr;
|
|
CXXMethodDecl *Method = 0;
|
|
DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
|
|
NestedNameSpecifier *Qualifier = 0;
|
|
if (isa<MemberExpr>(NakedMemExpr)) {
|
|
MemExpr = cast<MemberExpr>(NakedMemExpr);
|
|
Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
|
|
FoundDecl = MemExpr->getFoundDecl();
|
|
Qualifier = MemExpr->getQualifier();
|
|
UnbridgedCasts.restore();
|
|
} else {
|
|
UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
|
|
Qualifier = UnresExpr->getQualifier();
|
|
|
|
QualType ObjectType = UnresExpr->getBaseType();
|
|
Expr::Classification ObjectClassification
|
|
= UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
|
|
: UnresExpr->getBase()->Classify(Context);
|
|
|
|
// Add overload candidates
|
|
OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
|
|
|
|
// FIXME: avoid copy.
|
|
TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
|
|
if (UnresExpr->hasExplicitTemplateArgs()) {
|
|
UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
|
|
TemplateArgs = &TemplateArgsBuffer;
|
|
}
|
|
|
|
for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
|
|
E = UnresExpr->decls_end(); I != E; ++I) {
|
|
|
|
NamedDecl *Func = *I;
|
|
CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
|
|
if (isa<UsingShadowDecl>(Func))
|
|
Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
|
|
|
|
|
|
// Microsoft supports direct constructor calls.
|
|
if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
|
|
AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(),
|
|
llvm::makeArrayRef(Args, NumArgs), CandidateSet);
|
|
} else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
|
|
// If explicit template arguments were provided, we can't call a
|
|
// non-template member function.
|
|
if (TemplateArgs)
|
|
continue;
|
|
|
|
AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
|
|
ObjectClassification,
|
|
llvm::makeArrayRef(Args, NumArgs), CandidateSet,
|
|
/*SuppressUserConversions=*/false);
|
|
} else {
|
|
AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
|
|
I.getPair(), ActingDC, TemplateArgs,
|
|
ObjectType, ObjectClassification,
|
|
llvm::makeArrayRef(Args, NumArgs),
|
|
CandidateSet,
|
|
/*SuppressUsedConversions=*/false);
|
|
}
|
|
}
|
|
|
|
DeclarationName DeclName = UnresExpr->getMemberName();
|
|
|
|
UnbridgedCasts.restore();
|
|
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
|
|
Best)) {
|
|
case OR_Success:
|
|
Method = cast<CXXMethodDecl>(Best->Function);
|
|
MarkFunctionReferenced(UnresExpr->getMemberLoc(), Method);
|
|
FoundDecl = Best->FoundDecl;
|
|
CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
|
|
DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc());
|
|
break;
|
|
|
|
case OR_No_Viable_Function:
|
|
Diag(UnresExpr->getMemberLoc(),
|
|
diag::err_ovl_no_viable_member_function_in_call)
|
|
<< DeclName << MemExprE->getSourceRange();
|
|
CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
|
|
llvm::makeArrayRef(Args, NumArgs));
|
|
// FIXME: Leaking incoming expressions!
|
|
return ExprError();
|
|
|
|
case OR_Ambiguous:
|
|
Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
|
|
<< DeclName << MemExprE->getSourceRange();
|
|
CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
|
|
llvm::makeArrayRef(Args, NumArgs));
|
|
// FIXME: Leaking incoming expressions!
|
|
return ExprError();
|
|
|
|
case OR_Deleted:
|
|
Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
|
|
<< Best->Function->isDeleted()
|
|
<< DeclName
|
|
<< getDeletedOrUnavailableSuffix(Best->Function)
|
|
<< MemExprE->getSourceRange();
|
|
CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
|
|
llvm::makeArrayRef(Args, NumArgs));
|
|
// FIXME: Leaking incoming expressions!
|
|
return ExprError();
|
|
}
|
|
|
|
MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
|
|
|
|
// If overload resolution picked a static member, build a
|
|
// non-member call based on that function.
|
|
if (Method->isStatic()) {
|
|
return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
|
|
Args, NumArgs, RParenLoc);
|
|
}
|
|
|
|
MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
|
|
}
|
|
|
|
QualType ResultType = Method->getResultType();
|
|
ExprValueKind VK = Expr::getValueKindForType(ResultType);
|
|
ResultType = ResultType.getNonLValueExprType(Context);
|
|
|
|
assert(Method && "Member call to something that isn't a method?");
|
|
CXXMemberCallExpr *TheCall =
|
|
new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs,
|
|
ResultType, VK, RParenLoc);
|
|
|
|
// Check for a valid return type.
|
|
if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
|
|
TheCall, Method))
|
|
return ExprError();
|
|
|
|
// Convert the object argument (for a non-static member function call).
|
|
// We only need to do this if there was actually an overload; otherwise
|
|
// it was done at lookup.
|
|
if (!Method->isStatic()) {
|
|
ExprResult ObjectArg =
|
|
PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
|
|
FoundDecl, Method);
|
|
if (ObjectArg.isInvalid())
|
|
return ExprError();
|
|
MemExpr->setBase(ObjectArg.take());
|
|
}
|
|
|
|
// Convert the rest of the arguments
|
|
const FunctionProtoType *Proto =
|
|
Method->getType()->getAs<FunctionProtoType>();
|
|
if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, NumArgs,
|
|
RParenLoc))
|
|
return ExprError();
|
|
|
|
DiagnoseSentinelCalls(Method, LParenLoc, Args, NumArgs);
|
|
|
|
if (CheckFunctionCall(Method, TheCall))
|
|
return ExprError();
|
|
|
|
if ((isa<CXXConstructorDecl>(CurContext) ||
|
|
isa<CXXDestructorDecl>(CurContext)) &&
|
|
TheCall->getMethodDecl()->isPure()) {
|
|
const CXXMethodDecl *MD = TheCall->getMethodDecl();
|
|
|
|
if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts())) {
|
|
Diag(MemExpr->getLocStart(),
|
|
diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
|
|
<< MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
|
|
<< MD->getParent()->getDeclName();
|
|
|
|
Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName();
|
|
}
|
|
}
|
|
return MaybeBindToTemporary(TheCall);
|
|
}
|
|
|
|
/// BuildCallToObjectOfClassType - Build a call to an object of class
|
|
/// type (C++ [over.call.object]), which can end up invoking an
|
|
/// overloaded function call operator (@c operator()) or performing a
|
|
/// user-defined conversion on the object argument.
|
|
ExprResult
|
|
Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
|
|
SourceLocation LParenLoc,
|
|
Expr **Args, unsigned NumArgs,
|
|
SourceLocation RParenLoc) {
|
|
if (checkPlaceholderForOverload(*this, Obj))
|
|
return ExprError();
|
|
ExprResult Object = Owned(Obj);
|
|
|
|
UnbridgedCastsSet UnbridgedCasts;
|
|
if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts))
|
|
return ExprError();
|
|
|
|
assert(Object.get()->getType()->isRecordType() && "Requires object type argument");
|
|
const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
|
|
|
|
// C++ [over.call.object]p1:
|
|
// If the primary-expression E in the function call syntax
|
|
// evaluates to a class object of type "cv T", then the set of
|
|
// candidate functions includes at least the function call
|
|
// operators of T. The function call operators of T are obtained by
|
|
// ordinary lookup of the name operator() in the context of
|
|
// (E).operator().
|
|
OverloadCandidateSet CandidateSet(LParenLoc);
|
|
DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
|
|
|
|
if (RequireCompleteType(LParenLoc, Object.get()->getType(),
|
|
diag::err_incomplete_object_call, Object.get()))
|
|
return true;
|
|
|
|
LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
|
|
LookupQualifiedName(R, Record->getDecl());
|
|
R.suppressDiagnostics();
|
|
|
|
for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
|
|
Oper != OperEnd; ++Oper) {
|
|
AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
|
|
Object.get()->Classify(Context), Args, NumArgs, CandidateSet,
|
|
/*SuppressUserConversions=*/ false);
|
|
}
|
|
|
|
// C++ [over.call.object]p2:
|
|
// In addition, for each (non-explicit in C++0x) conversion function
|
|
// declared in T of the form
|
|
//
|
|
// operator conversion-type-id () cv-qualifier;
|
|
//
|
|
// where cv-qualifier is the same cv-qualification as, or a
|
|
// greater cv-qualification than, cv, and where conversion-type-id
|
|
// denotes the type "pointer to function of (P1,...,Pn) returning
|
|
// R", or the type "reference to pointer to function of
|
|
// (P1,...,Pn) returning R", or the type "reference to function
|
|
// of (P1,...,Pn) returning R", a surrogate call function [...]
|
|
// is also considered as a candidate function. Similarly,
|
|
// surrogate call functions are added to the set of candidate
|
|
// functions for each conversion function declared in an
|
|
// accessible base class provided the function is not hidden
|
|
// within T by another intervening declaration.
|
|
const UnresolvedSetImpl *Conversions
|
|
= cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
|
|
for (UnresolvedSetImpl::iterator I = Conversions->begin(),
|
|
E = Conversions->end(); I != E; ++I) {
|
|
NamedDecl *D = *I;
|
|
CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
|
|
if (isa<UsingShadowDecl>(D))
|
|
D = cast<UsingShadowDecl>(D)->getTargetDecl();
|
|
|
|
// Skip over templated conversion functions; they aren't
|
|
// surrogates.
|
|
if (isa<FunctionTemplateDecl>(D))
|
|
continue;
|
|
|
|
CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
|
|
if (!Conv->isExplicit()) {
|
|
// Strip the reference type (if any) and then the pointer type (if
|
|
// any) to get down to what might be a function type.
|
|
QualType ConvType = Conv->getConversionType().getNonReferenceType();
|
|
if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
|
|
ConvType = ConvPtrType->getPointeeType();
|
|
|
|
if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
|
|
{
|
|
AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
|
|
Object.get(), llvm::makeArrayRef(Args, NumArgs),
|
|
CandidateSet);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool HadMultipleCandidates = (CandidateSet.size() > 1);
|
|
|
|
// Perform overload resolution.
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(),
|
|
Best)) {
|
|
case OR_Success:
|
|
// Overload resolution succeeded; we'll build the appropriate call
|
|
// below.
|
|
break;
|
|
|
|
case OR_No_Viable_Function:
|
|
if (CandidateSet.empty())
|
|
Diag(Object.get()->getLocStart(), diag::err_ovl_no_oper)
|
|
<< Object.get()->getType() << /*call*/ 1
|
|
<< Object.get()->getSourceRange();
|
|
else
|
|
Diag(Object.get()->getLocStart(),
|
|
diag::err_ovl_no_viable_object_call)
|
|
<< Object.get()->getType() << Object.get()->getSourceRange();
|
|
CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
|
|
llvm::makeArrayRef(Args, NumArgs));
|
|
break;
|
|
|
|
case OR_Ambiguous:
|
|
Diag(Object.get()->getLocStart(),
|
|
diag::err_ovl_ambiguous_object_call)
|
|
<< Object.get()->getType() << Object.get()->getSourceRange();
|
|
CandidateSet.NoteCandidates(*this, OCD_ViableCandidates,
|
|
llvm::makeArrayRef(Args, NumArgs));
|
|
break;
|
|
|
|
case OR_Deleted:
|
|
Diag(Object.get()->getLocStart(),
|
|
diag::err_ovl_deleted_object_call)
|
|
<< Best->Function->isDeleted()
|
|
<< Object.get()->getType()
|
|
<< getDeletedOrUnavailableSuffix(Best->Function)
|
|
<< Object.get()->getSourceRange();
|
|
CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
|
|
llvm::makeArrayRef(Args, NumArgs));
|
|
break;
|
|
}
|
|
|
|
if (Best == CandidateSet.end())
|
|
return true;
|
|
|
|
UnbridgedCasts.restore();
|
|
|
|
if (Best->Function == 0) {
|
|
// Since there is no function declaration, this is one of the
|
|
// surrogate candidates. Dig out the conversion function.
|
|
CXXConversionDecl *Conv
|
|
= cast<CXXConversionDecl>(
|
|
Best->Conversions[0].UserDefined.ConversionFunction);
|
|
|
|
CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
|
|
DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
|
|
|
|
// We selected one of the surrogate functions that converts the
|
|
// object parameter to a function pointer. Perform the conversion
|
|
// on the object argument, then let ActOnCallExpr finish the job.
|
|
|
|
// Create an implicit member expr to refer to the conversion operator.
|
|
// and then call it.
|
|
ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
|
|
Conv, HadMultipleCandidates);
|
|
if (Call.isInvalid())
|
|
return ExprError();
|
|
// Record usage of conversion in an implicit cast.
|
|
Call = Owned(ImplicitCastExpr::Create(Context, Call.get()->getType(),
|
|
CK_UserDefinedConversion,
|
|
Call.get(), 0, VK_RValue));
|
|
|
|
return ActOnCallExpr(S, Call.get(), LParenLoc, MultiExprArg(Args, NumArgs),
|
|
RParenLoc);
|
|
}
|
|
|
|
MarkFunctionReferenced(LParenLoc, Best->Function);
|
|
CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
|
|
DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
|
|
|
|
// We found an overloaded operator(). Build a CXXOperatorCallExpr
|
|
// that calls this method, using Object for the implicit object
|
|
// parameter and passing along the remaining arguments.
|
|
CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
|
|
const FunctionProtoType *Proto =
|
|
Method->getType()->getAs<FunctionProtoType>();
|
|
|
|
unsigned NumArgsInProto = Proto->getNumArgs();
|
|
unsigned NumArgsToCheck = NumArgs;
|
|
|
|
// Build the full argument list for the method call (the
|
|
// implicit object parameter is placed at the beginning of the
|
|
// list).
|
|
Expr **MethodArgs;
|
|
if (NumArgs < NumArgsInProto) {
|
|
NumArgsToCheck = NumArgsInProto;
|
|
MethodArgs = new Expr*[NumArgsInProto + 1];
|
|
} else {
|
|
MethodArgs = new Expr*[NumArgs + 1];
|
|
}
|
|
MethodArgs[0] = Object.get();
|
|
for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
|
|
MethodArgs[ArgIdx + 1] = Args[ArgIdx];
|
|
|
|
DeclarationNameInfo OpLocInfo(
|
|
Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
|
|
OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
|
|
ExprResult NewFn = CreateFunctionRefExpr(*this, Method,
|
|
HadMultipleCandidates,
|
|
OpLocInfo.getLoc(),
|
|
OpLocInfo.getInfo());
|
|
if (NewFn.isInvalid())
|
|
return true;
|
|
|
|
// Once we've built TheCall, all of the expressions are properly
|
|
// owned.
|
|
QualType ResultTy = Method->getResultType();
|
|
ExprValueKind VK = Expr::getValueKindForType(ResultTy);
|
|
ResultTy = ResultTy.getNonLValueExprType(Context);
|
|
|
|
CXXOperatorCallExpr *TheCall =
|
|
new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn.take(),
|
|
MethodArgs, NumArgs + 1,
|
|
ResultTy, VK, RParenLoc);
|
|
delete [] MethodArgs;
|
|
|
|
if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall,
|
|
Method))
|
|
return true;
|
|
|
|
// We may have default arguments. If so, we need to allocate more
|
|
// slots in the call for them.
|
|
if (NumArgs < NumArgsInProto)
|
|
TheCall->setNumArgs(Context, NumArgsInProto + 1);
|
|
else if (NumArgs > NumArgsInProto)
|
|
NumArgsToCheck = NumArgsInProto;
|
|
|
|
bool IsError = false;
|
|
|
|
// Initialize the implicit object parameter.
|
|
ExprResult ObjRes =
|
|
PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/0,
|
|
Best->FoundDecl, Method);
|
|
if (ObjRes.isInvalid())
|
|
IsError = true;
|
|
else
|
|
Object = move(ObjRes);
|
|
TheCall->setArg(0, Object.take());
|
|
|
|
// Check the argument types.
|
|
for (unsigned i = 0; i != NumArgsToCheck; i++) {
|
|
Expr *Arg;
|
|
if (i < NumArgs) {
|
|
Arg = Args[i];
|
|
|
|
// Pass the argument.
|
|
|
|
ExprResult InputInit
|
|
= PerformCopyInitialization(InitializedEntity::InitializeParameter(
|
|
Context,
|
|
Method->getParamDecl(i)),
|
|
SourceLocation(), Arg);
|
|
|
|
IsError |= InputInit.isInvalid();
|
|
Arg = InputInit.takeAs<Expr>();
|
|
} else {
|
|
ExprResult DefArg
|
|
= BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
|
|
if (DefArg.isInvalid()) {
|
|
IsError = true;
|
|
break;
|
|
}
|
|
|
|
Arg = DefArg.takeAs<Expr>();
|
|
}
|
|
|
|
TheCall->setArg(i + 1, Arg);
|
|
}
|
|
|
|
// If this is a variadic call, handle args passed through "...".
|
|
if (Proto->isVariadic()) {
|
|
// Promote the arguments (C99 6.5.2.2p7).
|
|
for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
|
|
ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 0);
|
|
IsError |= Arg.isInvalid();
|
|
TheCall->setArg(i + 1, Arg.take());
|
|
}
|
|
}
|
|
|
|
if (IsError) return true;
|
|
|
|
DiagnoseSentinelCalls(Method, LParenLoc, Args, NumArgs);
|
|
|
|
if (CheckFunctionCall(Method, TheCall))
|
|
return true;
|
|
|
|
return MaybeBindToTemporary(TheCall);
|
|
}
|
|
|
|
/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
|
|
/// (if one exists), where @c Base is an expression of class type and
|
|
/// @c Member is the name of the member we're trying to find.
|
|
ExprResult
|
|
Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) {
|
|
assert(Base->getType()->isRecordType() &&
|
|
"left-hand side must have class type");
|
|
|
|
if (checkPlaceholderForOverload(*this, Base))
|
|
return ExprError();
|
|
|
|
SourceLocation Loc = Base->getExprLoc();
|
|
|
|
// C++ [over.ref]p1:
|
|
//
|
|
// [...] An expression x->m is interpreted as (x.operator->())->m
|
|
// for a class object x of type T if T::operator->() exists and if
|
|
// the operator is selected as the best match function by the
|
|
// overload resolution mechanism (13.3).
|
|
DeclarationName OpName =
|
|
Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
|
|
OverloadCandidateSet CandidateSet(Loc);
|
|
const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
|
|
|
|
if (RequireCompleteType(Loc, Base->getType(),
|
|
diag::err_typecheck_incomplete_tag, Base))
|
|
return ExprError();
|
|
|
|
LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
|
|
LookupQualifiedName(R, BaseRecord->getDecl());
|
|
R.suppressDiagnostics();
|
|
|
|
for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
|
|
Oper != OperEnd; ++Oper) {
|
|
AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
|
|
0, 0, CandidateSet, /*SuppressUserConversions=*/false);
|
|
}
|
|
|
|
bool HadMultipleCandidates = (CandidateSet.size() > 1);
|
|
|
|
// Perform overload resolution.
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
|
|
case OR_Success:
|
|
// Overload resolution succeeded; we'll build the call below.
|
|
break;
|
|
|
|
case OR_No_Viable_Function:
|
|
if (CandidateSet.empty())
|
|
Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
|
|
<< Base->getType() << Base->getSourceRange();
|
|
else
|
|
Diag(OpLoc, diag::err_ovl_no_viable_oper)
|
|
<< "operator->" << Base->getSourceRange();
|
|
CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
|
|
return ExprError();
|
|
|
|
case OR_Ambiguous:
|
|
Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary)
|
|
<< "->" << Base->getType() << Base->getSourceRange();
|
|
CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Base);
|
|
return ExprError();
|
|
|
|
case OR_Deleted:
|
|
Diag(OpLoc, diag::err_ovl_deleted_oper)
|
|
<< Best->Function->isDeleted()
|
|
<< "->"
|
|
<< getDeletedOrUnavailableSuffix(Best->Function)
|
|
<< Base->getSourceRange();
|
|
CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
|
|
return ExprError();
|
|
}
|
|
|
|
MarkFunctionReferenced(OpLoc, Best->Function);
|
|
CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
|
|
DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
|
|
|
|
// Convert the object parameter.
|
|
CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
|
|
ExprResult BaseResult =
|
|
PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
|
|
Best->FoundDecl, Method);
|
|
if (BaseResult.isInvalid())
|
|
return ExprError();
|
|
Base = BaseResult.take();
|
|
|
|
// Build the operator call.
|
|
ExprResult FnExpr = CreateFunctionRefExpr(*this, Method,
|
|
HadMultipleCandidates, OpLoc);
|
|
if (FnExpr.isInvalid())
|
|
return ExprError();
|
|
|
|
QualType ResultTy = Method->getResultType();
|
|
ExprValueKind VK = Expr::getValueKindForType(ResultTy);
|
|
ResultTy = ResultTy.getNonLValueExprType(Context);
|
|
CXXOperatorCallExpr *TheCall =
|
|
new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.take(),
|
|
&Base, 1, ResultTy, VK, OpLoc);
|
|
|
|
if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall,
|
|
Method))
|
|
return ExprError();
|
|
|
|
return MaybeBindToTemporary(TheCall);
|
|
}
|
|
|
|
/// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
|
|
/// a literal operator described by the provided lookup results.
|
|
ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
|
|
DeclarationNameInfo &SuffixInfo,
|
|
ArrayRef<Expr*> Args,
|
|
SourceLocation LitEndLoc,
|
|
TemplateArgumentListInfo *TemplateArgs) {
|
|
SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
|
|
|
|
OverloadCandidateSet CandidateSet(UDSuffixLoc);
|
|
AddFunctionCandidates(R.asUnresolvedSet(), Args, CandidateSet, true,
|
|
TemplateArgs);
|
|
|
|
bool HadMultipleCandidates = (CandidateSet.size() > 1);
|
|
|
|
// Perform overload resolution. This will usually be trivial, but might need
|
|
// to perform substitutions for a literal operator template.
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
|
|
case OR_Success:
|
|
case OR_Deleted:
|
|
break;
|
|
|
|
case OR_No_Viable_Function:
|
|
Diag(UDSuffixLoc, diag::err_ovl_no_viable_function_in_call)
|
|
<< R.getLookupName();
|
|
CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
|
|
return ExprError();
|
|
|
|
case OR_Ambiguous:
|
|
Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
|
|
CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
|
|
return ExprError();
|
|
}
|
|
|
|
FunctionDecl *FD = Best->Function;
|
|
MarkFunctionReferenced(UDSuffixLoc, FD);
|
|
DiagnoseUseOfDecl(Best->FoundDecl, UDSuffixLoc);
|
|
|
|
ExprResult Fn = CreateFunctionRefExpr(*this, FD, HadMultipleCandidates,
|
|
SuffixInfo.getLoc(),
|
|
SuffixInfo.getInfo());
|
|
if (Fn.isInvalid())
|
|
return true;
|
|
|
|
// Check the argument types. This should almost always be a no-op, except
|
|
// that array-to-pointer decay is applied to string literals.
|
|
Expr *ConvArgs[2];
|
|
for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
|
|
ExprResult InputInit = PerformCopyInitialization(
|
|
InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
|
|
SourceLocation(), Args[ArgIdx]);
|
|
if (InputInit.isInvalid())
|
|
return true;
|
|
ConvArgs[ArgIdx] = InputInit.take();
|
|
}
|
|
|
|
QualType ResultTy = FD->getResultType();
|
|
ExprValueKind VK = Expr::getValueKindForType(ResultTy);
|
|
ResultTy = ResultTy.getNonLValueExprType(Context);
|
|
|
|
UserDefinedLiteral *UDL =
|
|
new (Context) UserDefinedLiteral(Context, Fn.take(), ConvArgs, Args.size(),
|
|
ResultTy, VK, LitEndLoc, UDSuffixLoc);
|
|
|
|
if (CheckCallReturnType(FD->getResultType(), UDSuffixLoc, UDL, FD))
|
|
return ExprError();
|
|
|
|
if (CheckFunctionCall(FD, UDL))
|
|
return ExprError();
|
|
|
|
return MaybeBindToTemporary(UDL);
|
|
}
|
|
|
|
/// FixOverloadedFunctionReference - E is an expression that refers to
|
|
/// a C++ overloaded function (possibly with some parentheses and
|
|
/// perhaps a '&' around it). We have resolved the overloaded function
|
|
/// to the function declaration Fn, so patch up the expression E to
|
|
/// refer (possibly indirectly) to Fn. Returns the new expr.
|
|
Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
|
|
FunctionDecl *Fn) {
|
|
if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
|
|
Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
|
|
Found, Fn);
|
|
if (SubExpr == PE->getSubExpr())
|
|
return PE;
|
|
|
|
return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
|
|
}
|
|
|
|
if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
|
|
Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
|
|
Found, Fn);
|
|
assert(Context.hasSameType(ICE->getSubExpr()->getType(),
|
|
SubExpr->getType()) &&
|
|
"Implicit cast type cannot be determined from overload");
|
|
assert(ICE->path_empty() && "fixing up hierarchy conversion?");
|
|
if (SubExpr == ICE->getSubExpr())
|
|
return ICE;
|
|
|
|
return ImplicitCastExpr::Create(Context, ICE->getType(),
|
|
ICE->getCastKind(),
|
|
SubExpr, 0,
|
|
ICE->getValueKind());
|
|
}
|
|
|
|
if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
|
|
assert(UnOp->getOpcode() == UO_AddrOf &&
|
|
"Can only take the address of an overloaded function");
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
|
|
if (Method->isStatic()) {
|
|
// Do nothing: static member functions aren't any different
|
|
// from non-member functions.
|
|
} else {
|
|
// Fix the sub expression, which really has to be an
|
|
// UnresolvedLookupExpr holding an overloaded member function
|
|
// or template.
|
|
Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
|
|
Found, Fn);
|
|
if (SubExpr == UnOp->getSubExpr())
|
|
return UnOp;
|
|
|
|
assert(isa<DeclRefExpr>(SubExpr)
|
|
&& "fixed to something other than a decl ref");
|
|
assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
|
|
&& "fixed to a member ref with no nested name qualifier");
|
|
|
|
// We have taken the address of a pointer to member
|
|
// function. Perform the computation here so that we get the
|
|
// appropriate pointer to member type.
|
|
QualType ClassType
|
|
= Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
|
|
QualType MemPtrType
|
|
= Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
|
|
|
|
return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
|
|
VK_RValue, OK_Ordinary,
|
|
UnOp->getOperatorLoc());
|
|
}
|
|
}
|
|
Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
|
|
Found, Fn);
|
|
if (SubExpr == UnOp->getSubExpr())
|
|
return UnOp;
|
|
|
|
return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
|
|
Context.getPointerType(SubExpr->getType()),
|
|
VK_RValue, OK_Ordinary,
|
|
UnOp->getOperatorLoc());
|
|
}
|
|
|
|
if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
|
|
// FIXME: avoid copy.
|
|
TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
|
|
if (ULE->hasExplicitTemplateArgs()) {
|
|
ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
|
|
TemplateArgs = &TemplateArgsBuffer;
|
|
}
|
|
|
|
DeclRefExpr *DRE = DeclRefExpr::Create(Context,
|
|
ULE->getQualifierLoc(),
|
|
ULE->getTemplateKeywordLoc(),
|
|
Fn,
|
|
/*enclosing*/ false, // FIXME?
|
|
ULE->getNameLoc(),
|
|
Fn->getType(),
|
|
VK_LValue,
|
|
Found.getDecl(),
|
|
TemplateArgs);
|
|
MarkDeclRefReferenced(DRE);
|
|
DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
|
|
return DRE;
|
|
}
|
|
|
|
if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
|
|
// FIXME: avoid copy.
|
|
TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
|
|
if (MemExpr->hasExplicitTemplateArgs()) {
|
|
MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
|
|
TemplateArgs = &TemplateArgsBuffer;
|
|
}
|
|
|
|
Expr *Base;
|
|
|
|
// If we're filling in a static method where we used to have an
|
|
// implicit member access, rewrite to a simple decl ref.
|
|
if (MemExpr->isImplicitAccess()) {
|
|
if (cast<CXXMethodDecl>(Fn)->isStatic()) {
|
|
DeclRefExpr *DRE = DeclRefExpr::Create(Context,
|
|
MemExpr->getQualifierLoc(),
|
|
MemExpr->getTemplateKeywordLoc(),
|
|
Fn,
|
|
/*enclosing*/ false,
|
|
MemExpr->getMemberLoc(),
|
|
Fn->getType(),
|
|
VK_LValue,
|
|
Found.getDecl(),
|
|
TemplateArgs);
|
|
MarkDeclRefReferenced(DRE);
|
|
DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
|
|
return DRE;
|
|
} else {
|
|
SourceLocation Loc = MemExpr->getMemberLoc();
|
|
if (MemExpr->getQualifier())
|
|
Loc = MemExpr->getQualifierLoc().getBeginLoc();
|
|
CheckCXXThisCapture(Loc);
|
|
Base = new (Context) CXXThisExpr(Loc,
|
|
MemExpr->getBaseType(),
|
|
/*isImplicit=*/true);
|
|
}
|
|
} else
|
|
Base = MemExpr->getBase();
|
|
|
|
ExprValueKind valueKind;
|
|
QualType type;
|
|
if (cast<CXXMethodDecl>(Fn)->isStatic()) {
|
|
valueKind = VK_LValue;
|
|
type = Fn->getType();
|
|
} else {
|
|
valueKind = VK_RValue;
|
|
type = Context.BoundMemberTy;
|
|
}
|
|
|
|
MemberExpr *ME = MemberExpr::Create(Context, Base,
|
|
MemExpr->isArrow(),
|
|
MemExpr->getQualifierLoc(),
|
|
MemExpr->getTemplateKeywordLoc(),
|
|
Fn,
|
|
Found,
|
|
MemExpr->getMemberNameInfo(),
|
|
TemplateArgs,
|
|
type, valueKind, OK_Ordinary);
|
|
ME->setHadMultipleCandidates(true);
|
|
return ME;
|
|
}
|
|
|
|
llvm_unreachable("Invalid reference to overloaded function");
|
|
}
|
|
|
|
ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
|
|
DeclAccessPair Found,
|
|
FunctionDecl *Fn) {
|
|
return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
|
|
}
|
|
|
|
} // end namespace clang
|