llvm-project/llvm/lib/Target/AMDGPU/AMDGPUMachineCFGStructurize...

2911 lines
102 KiB
C++

//===- AMDGPUMachineCFGStructurizer.cpp - Machine code if conversion pass. ===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the machine instruction level CFG structurizer pass.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegionInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <tuple>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "amdgpucfgstructurizer"
namespace {
class PHILinearizeDestIterator;
class PHILinearize {
friend class PHILinearizeDestIterator;
public:
using PHISourceT = std::pair<unsigned, MachineBasicBlock *>;
private:
using PHISourcesT = DenseSet<PHISourceT>;
using PHIInfoElementT = struct {
unsigned DestReg;
DebugLoc DL;
PHISourcesT Sources;
};
using PHIInfoT = SmallPtrSet<PHIInfoElementT *, 2>;
PHIInfoT PHIInfo;
static unsigned phiInfoElementGetDest(PHIInfoElementT *Info);
static void phiInfoElementSetDef(PHIInfoElementT *Info, unsigned NewDef);
static PHISourcesT &phiInfoElementGetSources(PHIInfoElementT *Info);
static void phiInfoElementAddSource(PHIInfoElementT *Info, unsigned SourceReg,
MachineBasicBlock *SourceMBB);
static void phiInfoElementRemoveSource(PHIInfoElementT *Info,
unsigned SourceReg,
MachineBasicBlock *SourceMBB);
PHIInfoElementT *findPHIInfoElement(unsigned DestReg);
PHIInfoElementT *findPHIInfoElementFromSource(unsigned SourceReg,
MachineBasicBlock *SourceMBB);
public:
bool findSourcesFromMBB(MachineBasicBlock *SourceMBB,
SmallVector<unsigned, 4> &Sources);
void addDest(unsigned DestReg, const DebugLoc &DL);
void replaceDef(unsigned OldDestReg, unsigned NewDestReg);
void deleteDef(unsigned DestReg);
void addSource(unsigned DestReg, unsigned SourceReg,
MachineBasicBlock *SourceMBB);
void removeSource(unsigned DestReg, unsigned SourceReg,
MachineBasicBlock *SourceMBB = nullptr);
bool findDest(unsigned SourceReg, MachineBasicBlock *SourceMBB,
unsigned &DestReg);
bool isSource(unsigned Reg, MachineBasicBlock *SourceMBB = nullptr);
unsigned getNumSources(unsigned DestReg);
void dump(MachineRegisterInfo *MRI);
void clear();
using source_iterator = PHISourcesT::iterator;
using dest_iterator = PHILinearizeDestIterator;
dest_iterator dests_begin();
dest_iterator dests_end();
source_iterator sources_begin(unsigned Reg);
source_iterator sources_end(unsigned Reg);
};
class PHILinearizeDestIterator {
private:
PHILinearize::PHIInfoT::iterator Iter;
public:
PHILinearizeDestIterator(PHILinearize::PHIInfoT::iterator I) : Iter(I) {}
unsigned operator*() { return PHILinearize::phiInfoElementGetDest(*Iter); }
PHILinearizeDestIterator &operator++() {
++Iter;
return *this;
}
bool operator==(const PHILinearizeDestIterator &I) const {
return I.Iter == Iter;
}
bool operator!=(const PHILinearizeDestIterator &I) const {
return I.Iter != Iter;
}
};
} // end anonymous namespace
unsigned PHILinearize::phiInfoElementGetDest(PHIInfoElementT *Info) {
return Info->DestReg;
}
void PHILinearize::phiInfoElementSetDef(PHIInfoElementT *Info,
unsigned NewDef) {
Info->DestReg = NewDef;
}
PHILinearize::PHISourcesT &
PHILinearize::phiInfoElementGetSources(PHIInfoElementT *Info) {
return Info->Sources;
}
void PHILinearize::phiInfoElementAddSource(PHIInfoElementT *Info,
unsigned SourceReg,
MachineBasicBlock *SourceMBB) {
// Assertion ensures we don't use the same SourceMBB for the
// sources, because we cannot have different registers with
// identical predecessors, but we can have the same register for
// multiple predecessors.
#if !defined(NDEBUG)
for (auto SI : phiInfoElementGetSources(Info)) {
assert((SI.second != SourceMBB || SourceReg == SI.first));
}
#endif
phiInfoElementGetSources(Info).insert(PHISourceT(SourceReg, SourceMBB));
}
void PHILinearize::phiInfoElementRemoveSource(PHIInfoElementT *Info,
unsigned SourceReg,
MachineBasicBlock *SourceMBB) {
auto &Sources = phiInfoElementGetSources(Info);
SmallVector<PHISourceT, 4> ElimiatedSources;
for (auto SI : Sources) {
if (SI.first == SourceReg &&
(SI.second == nullptr || SI.second == SourceMBB)) {
ElimiatedSources.push_back(PHISourceT(SI.first, SI.second));
}
}
for (auto &Source : ElimiatedSources) {
Sources.erase(Source);
}
}
PHILinearize::PHIInfoElementT *
PHILinearize::findPHIInfoElement(unsigned DestReg) {
for (auto I : PHIInfo) {
if (phiInfoElementGetDest(I) == DestReg) {
return I;
}
}
return nullptr;
}
PHILinearize::PHIInfoElementT *
PHILinearize::findPHIInfoElementFromSource(unsigned SourceReg,
MachineBasicBlock *SourceMBB) {
for (auto I : PHIInfo) {
for (auto SI : phiInfoElementGetSources(I)) {
if (SI.first == SourceReg &&
(SI.second == nullptr || SI.second == SourceMBB)) {
return I;
}
}
}
return nullptr;
}
bool PHILinearize::findSourcesFromMBB(MachineBasicBlock *SourceMBB,
SmallVector<unsigned, 4> &Sources) {
bool FoundSource = false;
for (auto I : PHIInfo) {
for (auto SI : phiInfoElementGetSources(I)) {
if (SI.second == SourceMBB) {
FoundSource = true;
Sources.push_back(SI.first);
}
}
}
return FoundSource;
}
void PHILinearize::addDest(unsigned DestReg, const DebugLoc &DL) {
assert(findPHIInfoElement(DestReg) == nullptr && "Dest already exsists");
PHISourcesT EmptySet;
PHIInfoElementT *NewElement = new PHIInfoElementT();
NewElement->DestReg = DestReg;
NewElement->DL = DL;
NewElement->Sources = EmptySet;
PHIInfo.insert(NewElement);
}
void PHILinearize::replaceDef(unsigned OldDestReg, unsigned NewDestReg) {
phiInfoElementSetDef(findPHIInfoElement(OldDestReg), NewDestReg);
}
void PHILinearize::deleteDef(unsigned DestReg) {
PHIInfoElementT *InfoElement = findPHIInfoElement(DestReg);
PHIInfo.erase(InfoElement);
delete InfoElement;
}
void PHILinearize::addSource(unsigned DestReg, unsigned SourceReg,
MachineBasicBlock *SourceMBB) {
phiInfoElementAddSource(findPHIInfoElement(DestReg), SourceReg, SourceMBB);
}
void PHILinearize::removeSource(unsigned DestReg, unsigned SourceReg,
MachineBasicBlock *SourceMBB) {
phiInfoElementRemoveSource(findPHIInfoElement(DestReg), SourceReg, SourceMBB);
}
bool PHILinearize::findDest(unsigned SourceReg, MachineBasicBlock *SourceMBB,
unsigned &DestReg) {
PHIInfoElementT *InfoElement =
findPHIInfoElementFromSource(SourceReg, SourceMBB);
if (InfoElement != nullptr) {
DestReg = phiInfoElementGetDest(InfoElement);
return true;
}
return false;
}
bool PHILinearize::isSource(unsigned Reg, MachineBasicBlock *SourceMBB) {
unsigned DestReg;
return findDest(Reg, SourceMBB, DestReg);
}
unsigned PHILinearize::getNumSources(unsigned DestReg) {
return phiInfoElementGetSources(findPHIInfoElement(DestReg)).size();
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void PHILinearize::dump(MachineRegisterInfo *MRI) {
const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo();
dbgs() << "=PHIInfo Start=\n";
for (auto PII : this->PHIInfo) {
PHIInfoElementT &Element = *PII;
dbgs() << "Dest: " << printReg(Element.DestReg, TRI)
<< " Sources: {";
for (auto &SI : Element.Sources) {
dbgs() << printReg(SI.first, TRI) << '(' << printMBBReference(*SI.second)
<< "),";
}
dbgs() << "}\n";
}
dbgs() << "=PHIInfo End=\n";
}
#endif
void PHILinearize::clear() { PHIInfo = PHIInfoT(); }
PHILinearize::dest_iterator PHILinearize::dests_begin() {
return PHILinearizeDestIterator(PHIInfo.begin());
}
PHILinearize::dest_iterator PHILinearize::dests_end() {
return PHILinearizeDestIterator(PHIInfo.end());
}
PHILinearize::source_iterator PHILinearize::sources_begin(unsigned Reg) {
auto InfoElement = findPHIInfoElement(Reg);
return phiInfoElementGetSources(InfoElement).begin();
}
PHILinearize::source_iterator PHILinearize::sources_end(unsigned Reg) {
auto InfoElement = findPHIInfoElement(Reg);
return phiInfoElementGetSources(InfoElement).end();
}
static unsigned getPHINumInputs(MachineInstr &PHI) {
assert(PHI.isPHI());
return (PHI.getNumOperands() - 1) / 2;
}
static MachineBasicBlock *getPHIPred(MachineInstr &PHI, unsigned Index) {
assert(PHI.isPHI());
return PHI.getOperand(Index * 2 + 2).getMBB();
}
static void setPhiPred(MachineInstr &PHI, unsigned Index,
MachineBasicBlock *NewPred) {
PHI.getOperand(Index * 2 + 2).setMBB(NewPred);
}
static unsigned getPHISourceReg(MachineInstr &PHI, unsigned Index) {
assert(PHI.isPHI());
return PHI.getOperand(Index * 2 + 1).getReg();
}
static unsigned getPHIDestReg(MachineInstr &PHI) {
assert(PHI.isPHI());
return PHI.getOperand(0).getReg();
}
namespace {
class RegionMRT;
class MBBMRT;
class LinearizedRegion {
protected:
MachineBasicBlock *Entry;
// The exit block is part of the region, and is the last
// merge block before exiting the region.
MachineBasicBlock *Exit;
DenseSet<unsigned> LiveOuts;
SmallPtrSet<MachineBasicBlock *, 1> MBBs;
bool HasLoop;
LinearizedRegion *Parent;
RegionMRT *RMRT;
void storeLiveOutReg(MachineBasicBlock *MBB, unsigned Reg,
MachineInstr *DefInstr, const MachineRegisterInfo *MRI,
const TargetRegisterInfo *TRI, PHILinearize &PHIInfo);
void storeLiveOutRegRegion(RegionMRT *Region, unsigned Reg,
MachineInstr *DefInstr,
const MachineRegisterInfo *MRI,
const TargetRegisterInfo *TRI,
PHILinearize &PHIInfo);
void storeMBBLiveOuts(MachineBasicBlock *MBB, const MachineRegisterInfo *MRI,
const TargetRegisterInfo *TRI, PHILinearize &PHIInfo,
RegionMRT *TopRegion);
void storeLiveOuts(MachineBasicBlock *MBB, const MachineRegisterInfo *MRI,
const TargetRegisterInfo *TRI, PHILinearize &PHIInfo);
void storeLiveOuts(RegionMRT *Region, const MachineRegisterInfo *MRI,
const TargetRegisterInfo *TRI, PHILinearize &PHIInfo,
RegionMRT *TopRegion = nullptr);
public:
LinearizedRegion();
LinearizedRegion(MachineBasicBlock *MBB, const MachineRegisterInfo *MRI,
const TargetRegisterInfo *TRI, PHILinearize &PHIInfo);
~LinearizedRegion() = default;
void setRegionMRT(RegionMRT *Region) { RMRT = Region; }
RegionMRT *getRegionMRT() { return RMRT; }
void setParent(LinearizedRegion *P) { Parent = P; }
LinearizedRegion *getParent() { return Parent; }
void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr);
void setBBSelectRegIn(unsigned Reg);
unsigned getBBSelectRegIn();
void setBBSelectRegOut(unsigned Reg, bool IsLiveOut);
unsigned getBBSelectRegOut();
void setHasLoop(bool Value);
bool getHasLoop();
void addLiveOut(unsigned VReg);
void removeLiveOut(unsigned Reg);
void replaceLiveOut(unsigned OldReg, unsigned NewReg);
void replaceRegister(unsigned Register, unsigned NewRegister,
MachineRegisterInfo *MRI, bool ReplaceInside,
bool ReplaceOutside, bool IncludeLoopPHIs);
void replaceRegisterInsideRegion(unsigned Register, unsigned NewRegister,
bool IncludeLoopPHIs,
MachineRegisterInfo *MRI);
void replaceRegisterOutsideRegion(unsigned Register, unsigned NewRegister,
bool IncludeLoopPHIs,
MachineRegisterInfo *MRI);
DenseSet<unsigned> *getLiveOuts();
void setEntry(MachineBasicBlock *NewEntry);
MachineBasicBlock *getEntry();
void setExit(MachineBasicBlock *NewExit);
MachineBasicBlock *getExit();
void addMBB(MachineBasicBlock *MBB);
void addMBBs(LinearizedRegion *InnerRegion);
bool contains(MachineBasicBlock *MBB);
bool isLiveOut(unsigned Reg);
bool hasNoDef(unsigned Reg, MachineRegisterInfo *MRI);
void removeFalseRegisterKills(MachineRegisterInfo *MRI);
void initLiveOut(RegionMRT *Region, const MachineRegisterInfo *MRI,
const TargetRegisterInfo *TRI, PHILinearize &PHIInfo);
};
class MRT {
protected:
RegionMRT *Parent;
unsigned BBSelectRegIn;
unsigned BBSelectRegOut;
public:
virtual ~MRT() = default;
unsigned getBBSelectRegIn() { return BBSelectRegIn; }
unsigned getBBSelectRegOut() { return BBSelectRegOut; }
void setBBSelectRegIn(unsigned Reg) { BBSelectRegIn = Reg; }
void setBBSelectRegOut(unsigned Reg) { BBSelectRegOut = Reg; }
virtual RegionMRT *getRegionMRT() { return nullptr; }
virtual MBBMRT *getMBBMRT() { return nullptr; }
bool isRegion() { return getRegionMRT() != nullptr; }
bool isMBB() { return getMBBMRT() != nullptr; }
bool isRoot() { return Parent == nullptr; }
void setParent(RegionMRT *Region) { Parent = Region; }
RegionMRT *getParent() { return Parent; }
static MachineBasicBlock *
initializeMRT(MachineFunction &MF, const MachineRegionInfo *RegionInfo,
DenseMap<MachineRegion *, RegionMRT *> &RegionMap);
static RegionMRT *buildMRT(MachineFunction &MF,
const MachineRegionInfo *RegionInfo,
const SIInstrInfo *TII,
MachineRegisterInfo *MRI);
virtual void dump(const TargetRegisterInfo *TRI, int depth = 0) = 0;
void dumpDepth(int depth) {
for (int i = depth; i > 0; --i) {
dbgs() << " ";
}
}
};
class MBBMRT : public MRT {
MachineBasicBlock *MBB;
public:
MBBMRT(MachineBasicBlock *BB) : MBB(BB) {
setParent(nullptr);
setBBSelectRegOut(0);
setBBSelectRegIn(0);
}
MBBMRT *getMBBMRT() override { return this; }
MachineBasicBlock *getMBB() { return MBB; }
void dump(const TargetRegisterInfo *TRI, int depth = 0) override {
dumpDepth(depth);
dbgs() << "MBB: " << getMBB()->getNumber();
dbgs() << " In: " << printReg(getBBSelectRegIn(), TRI);
dbgs() << ", Out: " << printReg(getBBSelectRegOut(), TRI) << "\n";
}
};
class RegionMRT : public MRT {
protected:
MachineRegion *Region;
LinearizedRegion *LRegion = nullptr;
MachineBasicBlock *Succ = nullptr;
SetVector<MRT *> Children;
public:
RegionMRT(MachineRegion *MachineRegion) : Region(MachineRegion) {
setParent(nullptr);
setBBSelectRegOut(0);
setBBSelectRegIn(0);
}
~RegionMRT() override {
if (LRegion) {
delete LRegion;
}
for (auto CI : Children) {
delete &(*CI);
}
}
RegionMRT *getRegionMRT() override { return this; }
void setLinearizedRegion(LinearizedRegion *LinearizeRegion) {
LRegion = LinearizeRegion;
}
LinearizedRegion *getLinearizedRegion() { return LRegion; }
MachineRegion *getMachineRegion() { return Region; }
unsigned getInnerOutputRegister() {
return (*(Children.begin()))->getBBSelectRegOut();
}
void addChild(MRT *Tree) { Children.insert(Tree); }
SetVector<MRT *> *getChildren() { return &Children; }
void dump(const TargetRegisterInfo *TRI, int depth = 0) override {
dumpDepth(depth);
dbgs() << "Region: " << (void *)Region;
dbgs() << " In: " << printReg(getBBSelectRegIn(), TRI);
dbgs() << ", Out: " << printReg(getBBSelectRegOut(), TRI) << "\n";
dumpDepth(depth);
if (getSucc())
dbgs() << "Succ: " << getSucc()->getNumber() << "\n";
else
dbgs() << "Succ: none \n";
for (auto MRTI : Children) {
MRTI->dump(TRI, depth + 1);
}
}
MRT *getEntryTree() { return Children.back(); }
MRT *getExitTree() { return Children.front(); }
MachineBasicBlock *getEntry() {
MRT *Tree = Children.back();
return (Tree->isRegion()) ? Tree->getRegionMRT()->getEntry()
: Tree->getMBBMRT()->getMBB();
}
MachineBasicBlock *getExit() {
MRT *Tree = Children.front();
return (Tree->isRegion()) ? Tree->getRegionMRT()->getExit()
: Tree->getMBBMRT()->getMBB();
}
void setSucc(MachineBasicBlock *MBB) { Succ = MBB; }
MachineBasicBlock *getSucc() { return Succ; }
bool contains(MachineBasicBlock *MBB) {
for (auto CI : Children) {
if (CI->isMBB()) {
if (MBB == CI->getMBBMRT()->getMBB()) {
return true;
}
} else {
if (CI->getRegionMRT()->contains(MBB)) {
return true;
} else if (CI->getRegionMRT()->getLinearizedRegion() != nullptr &&
CI->getRegionMRT()->getLinearizedRegion()->contains(MBB)) {
return true;
}
}
}
return false;
}
void replaceLiveOutReg(unsigned Register, unsigned NewRegister) {
LinearizedRegion *LRegion = getLinearizedRegion();
LRegion->replaceLiveOut(Register, NewRegister);
for (auto &CI : Children) {
if (CI->isRegion()) {
CI->getRegionMRT()->replaceLiveOutReg(Register, NewRegister);
}
}
}
};
} // end anonymous namespace
static unsigned createBBSelectReg(const SIInstrInfo *TII,
MachineRegisterInfo *MRI) {
return MRI->createVirtualRegister(TII->getPreferredSelectRegClass(32));
}
MachineBasicBlock *
MRT::initializeMRT(MachineFunction &MF, const MachineRegionInfo *RegionInfo,
DenseMap<MachineRegion *, RegionMRT *> &RegionMap) {
for (auto &MFI : MF) {
MachineBasicBlock *ExitMBB = &MFI;
if (ExitMBB->succ_size() == 0) {
return ExitMBB;
}
}
llvm_unreachable("CFG has no exit block");
return nullptr;
}
RegionMRT *MRT::buildMRT(MachineFunction &MF,
const MachineRegionInfo *RegionInfo,
const SIInstrInfo *TII, MachineRegisterInfo *MRI) {
SmallPtrSet<MachineRegion *, 4> PlacedRegions;
DenseMap<MachineRegion *, RegionMRT *> RegionMap;
MachineRegion *TopLevelRegion = RegionInfo->getTopLevelRegion();
RegionMRT *Result = new RegionMRT(TopLevelRegion);
RegionMap[TopLevelRegion] = Result;
// Insert the exit block first, we need it to be the merge node
// for the top level region.
MachineBasicBlock *Exit = initializeMRT(MF, RegionInfo, RegionMap);
unsigned BBSelectRegIn = createBBSelectReg(TII, MRI);
MBBMRT *ExitMRT = new MBBMRT(Exit);
RegionMap[RegionInfo->getRegionFor(Exit)]->addChild(ExitMRT);
ExitMRT->setBBSelectRegIn(BBSelectRegIn);
for (auto MBBI : post_order(&(MF.front()))) {
MachineBasicBlock *MBB = &(*MBBI);
// Skip Exit since we already added it
if (MBB == Exit) {
continue;
}
LLVM_DEBUG(dbgs() << "Visiting " << printMBBReference(*MBB) << "\n");
MBBMRT *NewMBB = new MBBMRT(MBB);
MachineRegion *Region = RegionInfo->getRegionFor(MBB);
// Ensure we have the MRT region
if (RegionMap.count(Region) == 0) {
RegionMRT *NewMRTRegion = new RegionMRT(Region);
RegionMap[Region] = NewMRTRegion;
// Ensure all parents are in the RegionMap
MachineRegion *Parent = Region->getParent();
while (RegionMap.count(Parent) == 0) {
RegionMRT *NewMRTParent = new RegionMRT(Parent);
NewMRTParent->addChild(NewMRTRegion);
NewMRTRegion->setParent(NewMRTParent);
RegionMap[Parent] = NewMRTParent;
NewMRTRegion = NewMRTParent;
Parent = Parent->getParent();
}
RegionMap[Parent]->addChild(NewMRTRegion);
NewMRTRegion->setParent(RegionMap[Parent]);
}
// Add MBB to Region MRT
RegionMap[Region]->addChild(NewMBB);
NewMBB->setParent(RegionMap[Region]);
RegionMap[Region]->setSucc(Region->getExit());
}
return Result;
}
void LinearizedRegion::storeLiveOutReg(MachineBasicBlock *MBB, unsigned Reg,
MachineInstr *DefInstr,
const MachineRegisterInfo *MRI,
const TargetRegisterInfo *TRI,
PHILinearize &PHIInfo) {
if (Register::isVirtualRegister(Reg)) {
LLVM_DEBUG(dbgs() << "Considering Register: " << printReg(Reg, TRI)
<< "\n");
// If this is a source register to a PHI we are chaining, it
// must be live out.
if (PHIInfo.isSource(Reg)) {
LLVM_DEBUG(dbgs() << "Add LiveOut (PHI): " << printReg(Reg, TRI) << "\n");
addLiveOut(Reg);
} else {
// If this is live out of the MBB
for (auto &UI : MRI->use_operands(Reg)) {
if (UI.getParent()->getParent() != MBB) {
LLVM_DEBUG(dbgs() << "Add LiveOut (MBB " << printMBBReference(*MBB)
<< "): " << printReg(Reg, TRI) << "\n");
addLiveOut(Reg);
} else {
// If the use is in the same MBB we have to make sure
// it is after the def, otherwise it is live out in a loop
MachineInstr *UseInstr = UI.getParent();
for (MachineBasicBlock::instr_iterator
MII = UseInstr->getIterator(),
MIE = UseInstr->getParent()->instr_end();
MII != MIE; ++MII) {
if ((&(*MII)) == DefInstr) {
LLVM_DEBUG(dbgs() << "Add LiveOut (Loop): " << printReg(Reg, TRI)
<< "\n");
addLiveOut(Reg);
}
}
}
}
}
}
}
void LinearizedRegion::storeLiveOutRegRegion(RegionMRT *Region, unsigned Reg,
MachineInstr *DefInstr,
const MachineRegisterInfo *MRI,
const TargetRegisterInfo *TRI,
PHILinearize &PHIInfo) {
if (Register::isVirtualRegister(Reg)) {
LLVM_DEBUG(dbgs() << "Considering Register: " << printReg(Reg, TRI)
<< "\n");
for (auto &UI : MRI->use_operands(Reg)) {
if (!Region->contains(UI.getParent()->getParent())) {
LLVM_DEBUG(dbgs() << "Add LiveOut (Region " << (void *)Region
<< "): " << printReg(Reg, TRI) << "\n");
addLiveOut(Reg);
}
}
}
}
void LinearizedRegion::storeLiveOuts(MachineBasicBlock *MBB,
const MachineRegisterInfo *MRI,
const TargetRegisterInfo *TRI,
PHILinearize &PHIInfo) {
LLVM_DEBUG(dbgs() << "-Store Live Outs Begin (" << printMBBReference(*MBB)
<< ")-\n");
for (auto &II : *MBB) {
for (auto &RI : II.defs()) {
storeLiveOutReg(MBB, RI.getReg(), RI.getParent(), MRI, TRI, PHIInfo);
}
for (auto &IRI : II.implicit_operands()) {
if (IRI.isDef()) {
storeLiveOutReg(MBB, IRI.getReg(), IRI.getParent(), MRI, TRI, PHIInfo);
}
}
}
// If we have a successor with a PHI, source coming from this MBB we have to
// add the register as live out
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
E = MBB->succ_end();
SI != E; ++SI) {
for (auto &II : *(*SI)) {
if (II.isPHI()) {
MachineInstr &PHI = II;
int numPreds = getPHINumInputs(PHI);
for (int i = 0; i < numPreds; ++i) {
if (getPHIPred(PHI, i) == MBB) {
unsigned PHIReg = getPHISourceReg(PHI, i);
LLVM_DEBUG(dbgs()
<< "Add LiveOut (PhiSource " << printMBBReference(*MBB)
<< " -> " << printMBBReference(*(*SI))
<< "): " << printReg(PHIReg, TRI) << "\n");
addLiveOut(PHIReg);
}
}
}
}
}
LLVM_DEBUG(dbgs() << "-Store Live Outs Endn-\n");
}
void LinearizedRegion::storeMBBLiveOuts(MachineBasicBlock *MBB,
const MachineRegisterInfo *MRI,
const TargetRegisterInfo *TRI,
PHILinearize &PHIInfo,
RegionMRT *TopRegion) {
for (auto &II : *MBB) {
for (auto &RI : II.defs()) {
storeLiveOutRegRegion(TopRegion, RI.getReg(), RI.getParent(), MRI, TRI,
PHIInfo);
}
for (auto &IRI : II.implicit_operands()) {
if (IRI.isDef()) {
storeLiveOutRegRegion(TopRegion, IRI.getReg(), IRI.getParent(), MRI,
TRI, PHIInfo);
}
}
}
}
void LinearizedRegion::storeLiveOuts(RegionMRT *Region,
const MachineRegisterInfo *MRI,
const TargetRegisterInfo *TRI,
PHILinearize &PHIInfo,
RegionMRT *CurrentTopRegion) {
MachineBasicBlock *Exit = Region->getSucc();
RegionMRT *TopRegion =
CurrentTopRegion == nullptr ? Region : CurrentTopRegion;
// Check if exit is end of function, if so, no live outs.
if (Exit == nullptr)
return;
auto Children = Region->getChildren();
for (auto CI : *Children) {
if (CI->isMBB()) {
auto MBB = CI->getMBBMRT()->getMBB();
storeMBBLiveOuts(MBB, MRI, TRI, PHIInfo, TopRegion);
} else {
LinearizedRegion *SubRegion = CI->getRegionMRT()->getLinearizedRegion();
// We should be limited to only store registers that are live out from the
// lineaized region
for (auto MBBI : SubRegion->MBBs) {
storeMBBLiveOuts(MBBI, MRI, TRI, PHIInfo, TopRegion);
}
}
}
if (CurrentTopRegion == nullptr) {
auto Succ = Region->getSucc();
for (auto &II : *Succ) {
if (II.isPHI()) {
MachineInstr &PHI = II;
int numPreds = getPHINumInputs(PHI);
for (int i = 0; i < numPreds; ++i) {
if (Region->contains(getPHIPred(PHI, i))) {
unsigned PHIReg = getPHISourceReg(PHI, i);
LLVM_DEBUG(dbgs() << "Add Region LiveOut (" << (void *)Region
<< "): " << printReg(PHIReg, TRI) << "\n");
addLiveOut(PHIReg);
}
}
}
}
}
}
#ifndef NDEBUG
void LinearizedRegion::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
OS << "Linearized Region {";
bool IsFirst = true;
for (const auto &MBB : MBBs) {
if (IsFirst) {
IsFirst = false;
} else {
OS << " ,";
}
OS << MBB->getNumber();
}
OS << "} (" << Entry->getNumber() << ", "
<< (Exit == nullptr ? -1 : Exit->getNumber())
<< "): In:" << printReg(getBBSelectRegIn(), TRI)
<< " Out:" << printReg(getBBSelectRegOut(), TRI) << " {";
for (auto &LI : LiveOuts) {
OS << printReg(LI, TRI) << " ";
}
OS << "} \n";
}
#endif
unsigned LinearizedRegion::getBBSelectRegIn() {
return getRegionMRT()->getBBSelectRegIn();
}
unsigned LinearizedRegion::getBBSelectRegOut() {
return getRegionMRT()->getBBSelectRegOut();
}
void LinearizedRegion::setHasLoop(bool Value) { HasLoop = Value; }
bool LinearizedRegion::getHasLoop() { return HasLoop; }
void LinearizedRegion::addLiveOut(unsigned VReg) { LiveOuts.insert(VReg); }
void LinearizedRegion::removeLiveOut(unsigned Reg) {
if (isLiveOut(Reg))
LiveOuts.erase(Reg);
}
void LinearizedRegion::replaceLiveOut(unsigned OldReg, unsigned NewReg) {
if (isLiveOut(OldReg)) {
removeLiveOut(OldReg);
addLiveOut(NewReg);
}
}
void LinearizedRegion::replaceRegister(unsigned Register, unsigned NewRegister,
MachineRegisterInfo *MRI,
bool ReplaceInside, bool ReplaceOutside,
bool IncludeLoopPHI) {
assert(Register != NewRegister && "Cannot replace a reg with itself");
LLVM_DEBUG(
dbgs() << "Pepareing to replace register (region): "
<< printReg(Register, MRI->getTargetRegisterInfo()) << " with "
<< printReg(NewRegister, MRI->getTargetRegisterInfo()) << "\n");
// If we are replacing outside, we also need to update the LiveOuts
if (ReplaceOutside &&
(isLiveOut(Register) || this->getParent()->isLiveOut(Register))) {
LinearizedRegion *Current = this;
while (Current != nullptr && Current->getEntry() != nullptr) {
LLVM_DEBUG(dbgs() << "Region before register replace\n");
LLVM_DEBUG(Current->print(dbgs(), MRI->getTargetRegisterInfo()));
Current->replaceLiveOut(Register, NewRegister);
LLVM_DEBUG(dbgs() << "Region after register replace\n");
LLVM_DEBUG(Current->print(dbgs(), MRI->getTargetRegisterInfo()));
Current = Current->getParent();
}
}
for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Register),
E = MRI->reg_end();
I != E;) {
MachineOperand &O = *I;
++I;
// We don't rewrite defs.
if (O.isDef())
continue;
bool IsInside = contains(O.getParent()->getParent());
bool IsLoopPHI = IsInside && (O.getParent()->isPHI() &&
O.getParent()->getParent() == getEntry());
bool ShouldReplace = (IsInside && ReplaceInside) ||
(!IsInside && ReplaceOutside) ||
(IncludeLoopPHI && IsLoopPHI);
if (ShouldReplace) {
if (Register::isPhysicalRegister(NewRegister)) {
LLVM_DEBUG(dbgs() << "Trying to substitute physical register: "
<< printReg(NewRegister, MRI->getTargetRegisterInfo())
<< "\n");
llvm_unreachable("Cannot substitute physical registers");
} else {
LLVM_DEBUG(dbgs() << "Replacing register (region): "
<< printReg(Register, MRI->getTargetRegisterInfo())
<< " with "
<< printReg(NewRegister, MRI->getTargetRegisterInfo())
<< "\n");
O.setReg(NewRegister);
}
}
}
}
void LinearizedRegion::replaceRegisterInsideRegion(unsigned Register,
unsigned NewRegister,
bool IncludeLoopPHIs,
MachineRegisterInfo *MRI) {
replaceRegister(Register, NewRegister, MRI, true, false, IncludeLoopPHIs);
}
void LinearizedRegion::replaceRegisterOutsideRegion(unsigned Register,
unsigned NewRegister,
bool IncludeLoopPHIs,
MachineRegisterInfo *MRI) {
replaceRegister(Register, NewRegister, MRI, false, true, IncludeLoopPHIs);
}
DenseSet<unsigned> *LinearizedRegion::getLiveOuts() { return &LiveOuts; }
void LinearizedRegion::setEntry(MachineBasicBlock *NewEntry) {
Entry = NewEntry;
}
MachineBasicBlock *LinearizedRegion::getEntry() { return Entry; }
void LinearizedRegion::setExit(MachineBasicBlock *NewExit) { Exit = NewExit; }
MachineBasicBlock *LinearizedRegion::getExit() { return Exit; }
void LinearizedRegion::addMBB(MachineBasicBlock *MBB) { MBBs.insert(MBB); }
void LinearizedRegion::addMBBs(LinearizedRegion *InnerRegion) {
for (const auto &MBB : InnerRegion->MBBs) {
addMBB(MBB);
}
}
bool LinearizedRegion::contains(MachineBasicBlock *MBB) {
return MBBs.count(MBB) == 1;
}
bool LinearizedRegion::isLiveOut(unsigned Reg) {
return LiveOuts.count(Reg) == 1;
}
bool LinearizedRegion::hasNoDef(unsigned Reg, MachineRegisterInfo *MRI) {
return MRI->def_begin(Reg) == MRI->def_end();
}
// After the code has been structurized, what was flagged as kills
// before are no longer register kills.
void LinearizedRegion::removeFalseRegisterKills(MachineRegisterInfo *MRI) {
const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo();
(void)TRI; // It's used by LLVM_DEBUG.
for (auto MBBI : MBBs) {
MachineBasicBlock *MBB = MBBI;
for (auto &II : *MBB) {
for (auto &RI : II.uses()) {
if (RI.isReg()) {
Register Reg = RI.getReg();
if (Register::isVirtualRegister(Reg)) {
if (hasNoDef(Reg, MRI))
continue;
if (!MRI->hasOneDef(Reg)) {
LLVM_DEBUG(this->getEntry()->getParent()->dump());
LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << "\n");
}
if (MRI->def_begin(Reg) == MRI->def_end()) {
LLVM_DEBUG(dbgs() << "Register "
<< printReg(Reg, MRI->getTargetRegisterInfo())
<< " has NO defs\n");
} else if (!MRI->hasOneDef(Reg)) {
LLVM_DEBUG(dbgs() << "Register "
<< printReg(Reg, MRI->getTargetRegisterInfo())
<< " has multiple defs\n");
}
assert(MRI->hasOneDef(Reg) && "Register has multiple definitions");
MachineOperand *Def = &(*(MRI->def_begin(Reg)));
MachineOperand *UseOperand = &(RI);
bool UseIsOutsideDefMBB = Def->getParent()->getParent() != MBB;
if (UseIsOutsideDefMBB && UseOperand->isKill()) {
LLVM_DEBUG(dbgs() << "Removing kill flag on register: "
<< printReg(Reg, TRI) << "\n");
UseOperand->setIsKill(false);
}
}
}
}
}
}
}
void LinearizedRegion::initLiveOut(RegionMRT *Region,
const MachineRegisterInfo *MRI,
const TargetRegisterInfo *TRI,
PHILinearize &PHIInfo) {
storeLiveOuts(Region, MRI, TRI, PHIInfo);
}
LinearizedRegion::LinearizedRegion(MachineBasicBlock *MBB,
const MachineRegisterInfo *MRI,
const TargetRegisterInfo *TRI,
PHILinearize &PHIInfo) {
setEntry(MBB);
setExit(MBB);
storeLiveOuts(MBB, MRI, TRI, PHIInfo);
MBBs.insert(MBB);
Parent = nullptr;
}
LinearizedRegion::LinearizedRegion() {
setEntry(nullptr);
setExit(nullptr);
Parent = nullptr;
}
namespace {
class AMDGPUMachineCFGStructurizer : public MachineFunctionPass {
private:
const MachineRegionInfo *Regions;
const SIInstrInfo *TII;
const TargetRegisterInfo *TRI;
MachineRegisterInfo *MRI;
unsigned BBSelectRegister;
PHILinearize PHIInfo;
DenseMap<MachineBasicBlock *, MachineBasicBlock *> FallthroughMap;
RegionMRT *RMRT;
void getPHIRegionIndices(RegionMRT *Region, MachineInstr &PHI,
SmallVector<unsigned, 2> &RegionIndices);
void getPHIRegionIndices(LinearizedRegion *Region, MachineInstr &PHI,
SmallVector<unsigned, 2> &RegionIndices);
void getPHINonRegionIndices(LinearizedRegion *Region, MachineInstr &PHI,
SmallVector<unsigned, 2> &PHINonRegionIndices);
void storePHILinearizationInfoDest(
unsigned LDestReg, MachineInstr &PHI,
SmallVector<unsigned, 2> *RegionIndices = nullptr);
unsigned storePHILinearizationInfo(MachineInstr &PHI,
SmallVector<unsigned, 2> *RegionIndices);
void extractKilledPHIs(MachineBasicBlock *MBB);
bool shrinkPHI(MachineInstr &PHI, SmallVector<unsigned, 2> &PHIIndices,
unsigned *ReplaceReg);
bool shrinkPHI(MachineInstr &PHI, unsigned CombinedSourceReg,
MachineBasicBlock *SourceMBB,
SmallVector<unsigned, 2> &PHIIndices, unsigned *ReplaceReg);
void replacePHI(MachineInstr &PHI, unsigned CombinedSourceReg,
MachineBasicBlock *LastMerge,
SmallVector<unsigned, 2> &PHIRegionIndices);
void replaceEntryPHI(MachineInstr &PHI, unsigned CombinedSourceReg,
MachineBasicBlock *IfMBB,
SmallVector<unsigned, 2> &PHIRegionIndices);
void replaceLiveOutRegs(MachineInstr &PHI,
SmallVector<unsigned, 2> &PHIRegionIndices,
unsigned CombinedSourceReg,
LinearizedRegion *LRegion);
void rewriteRegionExitPHI(RegionMRT *Region, MachineBasicBlock *LastMerge,
MachineInstr &PHI, LinearizedRegion *LRegion);
void rewriteRegionExitPHIs(RegionMRT *Region, MachineBasicBlock *LastMerge,
LinearizedRegion *LRegion);
void rewriteRegionEntryPHI(LinearizedRegion *Region, MachineBasicBlock *IfMBB,
MachineInstr &PHI);
void rewriteRegionEntryPHIs(LinearizedRegion *Region,
MachineBasicBlock *IfMBB);
bool regionIsSimpleIf(RegionMRT *Region);
void transformSimpleIfRegion(RegionMRT *Region);
void eliminateDeadBranchOperands(MachineBasicBlock::instr_iterator &II);
void insertUnconditionalBranch(MachineBasicBlock *MBB,
MachineBasicBlock *Dest,
const DebugLoc &DL = DebugLoc());
MachineBasicBlock *createLinearizedExitBlock(RegionMRT *Region);
void insertMergePHI(MachineBasicBlock *IfBB, MachineBasicBlock *CodeBB,
MachineBasicBlock *MergeBB, unsigned DestRegister,
unsigned IfSourceRegister, unsigned CodeSourceRegister,
bool IsUndefIfSource = false);
MachineBasicBlock *createIfBlock(MachineBasicBlock *MergeBB,
MachineBasicBlock *CodeBBStart,
MachineBasicBlock *CodeBBEnd,
MachineBasicBlock *SelectBB, unsigned IfReg,
bool InheritPreds);
void prunePHIInfo(MachineBasicBlock *MBB);
void createEntryPHI(LinearizedRegion *CurrentRegion, unsigned DestReg);
void createEntryPHIs(LinearizedRegion *CurrentRegion);
void resolvePHIInfos(MachineBasicBlock *FunctionEntry);
void replaceRegisterWith(unsigned Register, unsigned NewRegister);
MachineBasicBlock *createIfRegion(MachineBasicBlock *MergeBB,
MachineBasicBlock *CodeBB,
LinearizedRegion *LRegion,
unsigned BBSelectRegIn,
unsigned BBSelectRegOut);
MachineBasicBlock *
createIfRegion(MachineBasicBlock *MergeMBB, LinearizedRegion *InnerRegion,
LinearizedRegion *CurrentRegion, MachineBasicBlock *SelectBB,
unsigned BBSelectRegIn, unsigned BBSelectRegOut);
void ensureCondIsNotKilled(SmallVector<MachineOperand, 1> Cond);
void rewriteCodeBBTerminator(MachineBasicBlock *CodeBB,
MachineBasicBlock *MergeBB,
unsigned BBSelectReg);
MachineInstr *getDefInstr(unsigned Reg);
void insertChainedPHI(MachineBasicBlock *IfBB, MachineBasicBlock *CodeBB,
MachineBasicBlock *MergeBB,
LinearizedRegion *InnerRegion, unsigned DestReg,
unsigned SourceReg);
bool containsDef(MachineBasicBlock *MBB, LinearizedRegion *InnerRegion,
unsigned Register);
void rewriteLiveOutRegs(MachineBasicBlock *IfBB, MachineBasicBlock *CodeBB,
MachineBasicBlock *MergeBB,
LinearizedRegion *InnerRegion,
LinearizedRegion *LRegion);
void splitLoopPHI(MachineInstr &PHI, MachineBasicBlock *Entry,
MachineBasicBlock *EntrySucc, LinearizedRegion *LRegion);
void splitLoopPHIs(MachineBasicBlock *Entry, MachineBasicBlock *EntrySucc,
LinearizedRegion *LRegion);
MachineBasicBlock *splitExit(LinearizedRegion *LRegion);
MachineBasicBlock *splitEntry(LinearizedRegion *LRegion);
LinearizedRegion *initLinearizedRegion(RegionMRT *Region);
bool structurizeComplexRegion(RegionMRT *Region);
bool structurizeRegion(RegionMRT *Region);
bool structurizeRegions(RegionMRT *Region, bool isTopRegion);
public:
static char ID;
AMDGPUMachineCFGStructurizer() : MachineFunctionPass(ID) {
initializeAMDGPUMachineCFGStructurizerPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<MachineRegionInfoPass>();
MachineFunctionPass::getAnalysisUsage(AU);
}
void initFallthroughMap(MachineFunction &MF);
void createLinearizedRegion(RegionMRT *Region, unsigned SelectOut);
unsigned initializeSelectRegisters(MRT *MRT, unsigned ExistingExitReg,
MachineRegisterInfo *MRI,
const SIInstrInfo *TII);
void setRegionMRT(RegionMRT *RegionTree) { RMRT = RegionTree; }
RegionMRT *getRegionMRT() { return RMRT; }
bool runOnMachineFunction(MachineFunction &MF) override;
};
} // end anonymous namespace
char AMDGPUMachineCFGStructurizer::ID = 0;
bool AMDGPUMachineCFGStructurizer::regionIsSimpleIf(RegionMRT *Region) {
MachineBasicBlock *Entry = Region->getEntry();
MachineBasicBlock *Succ = Region->getSucc();
bool FoundBypass = false;
bool FoundIf = false;
if (Entry->succ_size() != 2) {
return false;
}
for (MachineBasicBlock::const_succ_iterator SI = Entry->succ_begin(),
E = Entry->succ_end();
SI != E; ++SI) {
MachineBasicBlock *Current = *SI;
if (Current == Succ) {
FoundBypass = true;
} else if ((Current->succ_size() == 1) &&
*(Current->succ_begin()) == Succ) {
FoundIf = true;
}
}
return FoundIf && FoundBypass;
}
void AMDGPUMachineCFGStructurizer::transformSimpleIfRegion(RegionMRT *Region) {
MachineBasicBlock *Entry = Region->getEntry();
MachineBasicBlock *Exit = Region->getExit();
TII->convertNonUniformIfRegion(Entry, Exit);
}
static void fixMBBTerminator(MachineBasicBlock *MBB) {
if (MBB->succ_size() == 1) {
auto *Succ = *(MBB->succ_begin());
for (auto &TI : MBB->terminators()) {
for (auto &UI : TI.uses()) {
if (UI.isMBB() && UI.getMBB() != Succ) {
UI.setMBB(Succ);
}
}
}
}
}
static void fixRegionTerminator(RegionMRT *Region) {
MachineBasicBlock *InternalSucc = nullptr;
MachineBasicBlock *ExternalSucc = nullptr;
LinearizedRegion *LRegion = Region->getLinearizedRegion();
auto Exit = LRegion->getExit();
SmallPtrSet<MachineBasicBlock *, 2> Successors;
for (MachineBasicBlock::const_succ_iterator SI = Exit->succ_begin(),
SE = Exit->succ_end();
SI != SE; ++SI) {
MachineBasicBlock *Succ = *SI;
if (LRegion->contains(Succ)) {
// Do not allow re-assign
assert(InternalSucc == nullptr);
InternalSucc = Succ;
} else {
// Do not allow re-assign
assert(ExternalSucc == nullptr);
ExternalSucc = Succ;
}
}
for (auto &TI : Exit->terminators()) {
for (auto &UI : TI.uses()) {
if (UI.isMBB()) {
auto Target = UI.getMBB();
if (Target != InternalSucc && Target != ExternalSucc) {
UI.setMBB(ExternalSucc);
}
}
}
}
}
// If a region region is just a sequence of regions (and the exit
// block in the case of the top level region), we can simply skip
// linearizing it, because it is already linear
bool regionIsSequence(RegionMRT *Region) {
auto Children = Region->getChildren();
for (auto CI : *Children) {
if (!CI->isRegion()) {
if (CI->getMBBMRT()->getMBB()->succ_size() > 1) {
return false;
}
}
}
return true;
}
void fixupRegionExits(RegionMRT *Region) {
auto Children = Region->getChildren();
for (auto CI : *Children) {
if (!CI->isRegion()) {
fixMBBTerminator(CI->getMBBMRT()->getMBB());
} else {
fixRegionTerminator(CI->getRegionMRT());
}
}
}
void AMDGPUMachineCFGStructurizer::getPHIRegionIndices(
RegionMRT *Region, MachineInstr &PHI,
SmallVector<unsigned, 2> &PHIRegionIndices) {
unsigned NumInputs = getPHINumInputs(PHI);
for (unsigned i = 0; i < NumInputs; ++i) {
MachineBasicBlock *Pred = getPHIPred(PHI, i);
if (Region->contains(Pred)) {
PHIRegionIndices.push_back(i);
}
}
}
void AMDGPUMachineCFGStructurizer::getPHIRegionIndices(
LinearizedRegion *Region, MachineInstr &PHI,
SmallVector<unsigned, 2> &PHIRegionIndices) {
unsigned NumInputs = getPHINumInputs(PHI);
for (unsigned i = 0; i < NumInputs; ++i) {
MachineBasicBlock *Pred = getPHIPred(PHI, i);
if (Region->contains(Pred)) {
PHIRegionIndices.push_back(i);
}
}
}
void AMDGPUMachineCFGStructurizer::getPHINonRegionIndices(
LinearizedRegion *Region, MachineInstr &PHI,
SmallVector<unsigned, 2> &PHINonRegionIndices) {
unsigned NumInputs = getPHINumInputs(PHI);
for (unsigned i = 0; i < NumInputs; ++i) {
MachineBasicBlock *Pred = getPHIPred(PHI, i);
if (!Region->contains(Pred)) {
PHINonRegionIndices.push_back(i);
}
}
}
void AMDGPUMachineCFGStructurizer::storePHILinearizationInfoDest(
unsigned LDestReg, MachineInstr &PHI,
SmallVector<unsigned, 2> *RegionIndices) {
if (RegionIndices) {
for (auto i : *RegionIndices) {
PHIInfo.addSource(LDestReg, getPHISourceReg(PHI, i), getPHIPred(PHI, i));
}
} else {
unsigned NumInputs = getPHINumInputs(PHI);
for (unsigned i = 0; i < NumInputs; ++i) {
PHIInfo.addSource(LDestReg, getPHISourceReg(PHI, i), getPHIPred(PHI, i));
}
}
}
unsigned AMDGPUMachineCFGStructurizer::storePHILinearizationInfo(
MachineInstr &PHI, SmallVector<unsigned, 2> *RegionIndices) {
unsigned DestReg = getPHIDestReg(PHI);
Register LinearizeDestReg =
MRI->createVirtualRegister(MRI->getRegClass(DestReg));
PHIInfo.addDest(LinearizeDestReg, PHI.getDebugLoc());
storePHILinearizationInfoDest(LinearizeDestReg, PHI, RegionIndices);
return LinearizeDestReg;
}
void AMDGPUMachineCFGStructurizer::extractKilledPHIs(MachineBasicBlock *MBB) {
// We need to create a new chain for the killed phi, but there is no
// need to do the renaming outside or inside the block.
SmallPtrSet<MachineInstr *, 2> PHIs;
for (MachineBasicBlock::instr_iterator I = MBB->instr_begin(),
E = MBB->instr_end();
I != E; ++I) {
MachineInstr &Instr = *I;
if (Instr.isPHI()) {
unsigned PHIDestReg = getPHIDestReg(Instr);
LLVM_DEBUG(dbgs() << "Extractking killed phi:\n");
LLVM_DEBUG(Instr.dump());
PHIs.insert(&Instr);
PHIInfo.addDest(PHIDestReg, Instr.getDebugLoc());
storePHILinearizationInfoDest(PHIDestReg, Instr);
}
}
for (auto PI : PHIs) {
PI->eraseFromParent();
}
}
static bool isPHIRegionIndex(SmallVector<unsigned, 2> PHIRegionIndices,
unsigned Index) {
for (auto i : PHIRegionIndices) {
if (i == Index)
return true;
}
return false;
}
bool AMDGPUMachineCFGStructurizer::shrinkPHI(MachineInstr &PHI,
SmallVector<unsigned, 2> &PHIIndices,
unsigned *ReplaceReg) {
return shrinkPHI(PHI, 0, nullptr, PHIIndices, ReplaceReg);
}
bool AMDGPUMachineCFGStructurizer::shrinkPHI(MachineInstr &PHI,
unsigned CombinedSourceReg,
MachineBasicBlock *SourceMBB,
SmallVector<unsigned, 2> &PHIIndices,
unsigned *ReplaceReg) {
LLVM_DEBUG(dbgs() << "Shrink PHI: ");
LLVM_DEBUG(PHI.dump());
LLVM_DEBUG(dbgs() << " to " << printReg(getPHIDestReg(PHI), TRI)
<< " = PHI(");
bool Replaced = false;
unsigned NumInputs = getPHINumInputs(PHI);
int SingleExternalEntryIndex = -1;
for (unsigned i = 0; i < NumInputs; ++i) {
if (!isPHIRegionIndex(PHIIndices, i)) {
if (SingleExternalEntryIndex == -1) {
// Single entry
SingleExternalEntryIndex = i;
} else {
// Multiple entries
SingleExternalEntryIndex = -2;
}
}
}
if (SingleExternalEntryIndex > -1) {
*ReplaceReg = getPHISourceReg(PHI, SingleExternalEntryIndex);
// We should not rewrite the code, we should only pick up the single value
// that represents the shrunk PHI.
Replaced = true;
} else {
MachineBasicBlock *MBB = PHI.getParent();
MachineInstrBuilder MIB =
BuildMI(*MBB, PHI, PHI.getDebugLoc(), TII->get(TargetOpcode::PHI),
getPHIDestReg(PHI));
if (SourceMBB) {
MIB.addReg(CombinedSourceReg);
MIB.addMBB(SourceMBB);
LLVM_DEBUG(dbgs() << printReg(CombinedSourceReg, TRI) << ", "
<< printMBBReference(*SourceMBB));
}
for (unsigned i = 0; i < NumInputs; ++i) {
if (isPHIRegionIndex(PHIIndices, i)) {
continue;
}
unsigned SourceReg = getPHISourceReg(PHI, i);
MachineBasicBlock *SourcePred = getPHIPred(PHI, i);
MIB.addReg(SourceReg);
MIB.addMBB(SourcePred);
LLVM_DEBUG(dbgs() << printReg(SourceReg, TRI) << ", "
<< printMBBReference(*SourcePred));
}
LLVM_DEBUG(dbgs() << ")\n");
}
PHI.eraseFromParent();
return Replaced;
}
void AMDGPUMachineCFGStructurizer::replacePHI(
MachineInstr &PHI, unsigned CombinedSourceReg, MachineBasicBlock *LastMerge,
SmallVector<unsigned, 2> &PHIRegionIndices) {
LLVM_DEBUG(dbgs() << "Replace PHI: ");
LLVM_DEBUG(PHI.dump());
LLVM_DEBUG(dbgs() << " with " << printReg(getPHIDestReg(PHI), TRI)
<< " = PHI(");
bool HasExternalEdge = false;
unsigned NumInputs = getPHINumInputs(PHI);
for (unsigned i = 0; i < NumInputs; ++i) {
if (!isPHIRegionIndex(PHIRegionIndices, i)) {
HasExternalEdge = true;
}
}
if (HasExternalEdge) {
MachineBasicBlock *MBB = PHI.getParent();
MachineInstrBuilder MIB =
BuildMI(*MBB, PHI, PHI.getDebugLoc(), TII->get(TargetOpcode::PHI),
getPHIDestReg(PHI));
MIB.addReg(CombinedSourceReg);
MIB.addMBB(LastMerge);
LLVM_DEBUG(dbgs() << printReg(CombinedSourceReg, TRI) << ", "
<< printMBBReference(*LastMerge));
for (unsigned i = 0; i < NumInputs; ++i) {
if (isPHIRegionIndex(PHIRegionIndices, i)) {
continue;
}
unsigned SourceReg = getPHISourceReg(PHI, i);
MachineBasicBlock *SourcePred = getPHIPred(PHI, i);
MIB.addReg(SourceReg);
MIB.addMBB(SourcePred);
LLVM_DEBUG(dbgs() << printReg(SourceReg, TRI) << ", "
<< printMBBReference(*SourcePred));
}
LLVM_DEBUG(dbgs() << ")\n");
} else {
replaceRegisterWith(getPHIDestReg(PHI), CombinedSourceReg);
}
PHI.eraseFromParent();
}
void AMDGPUMachineCFGStructurizer::replaceEntryPHI(
MachineInstr &PHI, unsigned CombinedSourceReg, MachineBasicBlock *IfMBB,
SmallVector<unsigned, 2> &PHIRegionIndices) {
LLVM_DEBUG(dbgs() << "Replace entry PHI: ");
LLVM_DEBUG(PHI.dump());
LLVM_DEBUG(dbgs() << " with ");
unsigned NumInputs = getPHINumInputs(PHI);
unsigned NumNonRegionInputs = NumInputs;
for (unsigned i = 0; i < NumInputs; ++i) {
if (isPHIRegionIndex(PHIRegionIndices, i)) {
NumNonRegionInputs--;
}
}
if (NumNonRegionInputs == 0) {
auto DestReg = getPHIDestReg(PHI);
replaceRegisterWith(DestReg, CombinedSourceReg);
LLVM_DEBUG(dbgs() << " register " << printReg(CombinedSourceReg, TRI)
<< "\n");
PHI.eraseFromParent();
} else {
LLVM_DEBUG(dbgs() << printReg(getPHIDestReg(PHI), TRI) << " = PHI(");
MachineBasicBlock *MBB = PHI.getParent();
MachineInstrBuilder MIB =
BuildMI(*MBB, PHI, PHI.getDebugLoc(), TII->get(TargetOpcode::PHI),
getPHIDestReg(PHI));
MIB.addReg(CombinedSourceReg);
MIB.addMBB(IfMBB);
LLVM_DEBUG(dbgs() << printReg(CombinedSourceReg, TRI) << ", "
<< printMBBReference(*IfMBB));
unsigned NumInputs = getPHINumInputs(PHI);
for (unsigned i = 0; i < NumInputs; ++i) {
if (isPHIRegionIndex(PHIRegionIndices, i)) {
continue;
}
unsigned SourceReg = getPHISourceReg(PHI, i);
MachineBasicBlock *SourcePred = getPHIPred(PHI, i);
MIB.addReg(SourceReg);
MIB.addMBB(SourcePred);
LLVM_DEBUG(dbgs() << printReg(SourceReg, TRI) << ", "
<< printMBBReference(*SourcePred));
}
LLVM_DEBUG(dbgs() << ")\n");
PHI.eraseFromParent();
}
}
void AMDGPUMachineCFGStructurizer::replaceLiveOutRegs(
MachineInstr &PHI, SmallVector<unsigned, 2> &PHIRegionIndices,
unsigned CombinedSourceReg, LinearizedRegion *LRegion) {
bool WasLiveOut = false;
for (auto PII : PHIRegionIndices) {
unsigned Reg = getPHISourceReg(PHI, PII);
if (LRegion->isLiveOut(Reg)) {
bool IsDead = true;
// Check if register is live out of the basic block
MachineBasicBlock *DefMBB = getDefInstr(Reg)->getParent();
for (auto UI = MRI->use_begin(Reg), E = MRI->use_end(); UI != E; ++UI) {
if ((*UI).getParent()->getParent() != DefMBB) {
IsDead = false;
}
}
LLVM_DEBUG(dbgs() << "Register " << printReg(Reg, TRI) << " is "
<< (IsDead ? "dead" : "alive")
<< " after PHI replace\n");
if (IsDead) {
LRegion->removeLiveOut(Reg);
}
WasLiveOut = true;
}
}
if (WasLiveOut)
LRegion->addLiveOut(CombinedSourceReg);
}
void AMDGPUMachineCFGStructurizer::rewriteRegionExitPHI(RegionMRT *Region,
MachineBasicBlock *LastMerge,
MachineInstr &PHI,
LinearizedRegion *LRegion) {
SmallVector<unsigned, 2> PHIRegionIndices;
getPHIRegionIndices(Region, PHI, PHIRegionIndices);
unsigned LinearizedSourceReg =
storePHILinearizationInfo(PHI, &PHIRegionIndices);
replacePHI(PHI, LinearizedSourceReg, LastMerge, PHIRegionIndices);
replaceLiveOutRegs(PHI, PHIRegionIndices, LinearizedSourceReg, LRegion);
}
void AMDGPUMachineCFGStructurizer::rewriteRegionEntryPHI(LinearizedRegion *Region,
MachineBasicBlock *IfMBB,
MachineInstr &PHI) {
SmallVector<unsigned, 2> PHINonRegionIndices;
getPHINonRegionIndices(Region, PHI, PHINonRegionIndices);
unsigned LinearizedSourceReg =
storePHILinearizationInfo(PHI, &PHINonRegionIndices);
replaceEntryPHI(PHI, LinearizedSourceReg, IfMBB, PHINonRegionIndices);
}
static void collectPHIs(MachineBasicBlock *MBB,
SmallVector<MachineInstr *, 2> &PHIs) {
for (auto &BBI : *MBB) {
if (BBI.isPHI()) {
PHIs.push_back(&BBI);
}
}
}
void AMDGPUMachineCFGStructurizer::rewriteRegionExitPHIs(RegionMRT *Region,
MachineBasicBlock *LastMerge,
LinearizedRegion *LRegion) {
SmallVector<MachineInstr *, 2> PHIs;
auto Exit = Region->getSucc();
if (Exit == nullptr)
return;
collectPHIs(Exit, PHIs);
for (auto PHII : PHIs) {
rewriteRegionExitPHI(Region, LastMerge, *PHII, LRegion);
}
}
void AMDGPUMachineCFGStructurizer::rewriteRegionEntryPHIs(LinearizedRegion *Region,
MachineBasicBlock *IfMBB) {
SmallVector<MachineInstr *, 2> PHIs;
auto Entry = Region->getEntry();
collectPHIs(Entry, PHIs);
for (auto PHII : PHIs) {
rewriteRegionEntryPHI(Region, IfMBB, *PHII);
}
}
void AMDGPUMachineCFGStructurizer::insertUnconditionalBranch(MachineBasicBlock *MBB,
MachineBasicBlock *Dest,
const DebugLoc &DL) {
LLVM_DEBUG(dbgs() << "Inserting unconditional branch: " << MBB->getNumber()
<< " -> " << Dest->getNumber() << "\n");
MachineBasicBlock::instr_iterator Terminator = MBB->getFirstInstrTerminator();
bool HasTerminator = Terminator != MBB->instr_end();
if (HasTerminator) {
TII->ReplaceTailWithBranchTo(Terminator, Dest);
}
if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(Dest)) {
TII->insertUnconditionalBranch(*MBB, Dest, DL);
}
}
static MachineBasicBlock *getSingleExitNode(MachineFunction &MF) {
MachineBasicBlock *result = nullptr;
for (auto &MFI : MF) {
if (MFI.succ_size() == 0) {
if (result == nullptr) {
result = &MFI;
} else {
return nullptr;
}
}
}
return result;
}
static bool hasOneExitNode(MachineFunction &MF) {
return getSingleExitNode(MF) != nullptr;
}
MachineBasicBlock *
AMDGPUMachineCFGStructurizer::createLinearizedExitBlock(RegionMRT *Region) {
auto Exit = Region->getSucc();
// If the exit is the end of the function, we just use the existing
MachineFunction *MF = Region->getEntry()->getParent();
if (Exit == nullptr && hasOneExitNode(*MF)) {
return &(*(--(Region->getEntry()->getParent()->end())));
}
MachineBasicBlock *LastMerge = MF->CreateMachineBasicBlock();
if (Exit == nullptr) {
MachineFunction::iterator ExitIter = MF->end();
MF->insert(ExitIter, LastMerge);
} else {
MachineFunction::iterator ExitIter = Exit->getIterator();
MF->insert(ExitIter, LastMerge);
LastMerge->addSuccessor(Exit);
insertUnconditionalBranch(LastMerge, Exit);
LLVM_DEBUG(dbgs() << "Created exit block: " << LastMerge->getNumber()
<< "\n");
}
return LastMerge;
}
void AMDGPUMachineCFGStructurizer::insertMergePHI(MachineBasicBlock *IfBB,
MachineBasicBlock *CodeBB,
MachineBasicBlock *MergeBB,
unsigned DestRegister,
unsigned IfSourceRegister,
unsigned CodeSourceRegister,
bool IsUndefIfSource) {
// If this is the function exit block, we don't need a phi.
if (MergeBB->succ_begin() == MergeBB->succ_end()) {
return;
}
LLVM_DEBUG(dbgs() << "Merge PHI (" << printMBBReference(*MergeBB)
<< "): " << printReg(DestRegister, TRI) << " = PHI("
<< printReg(IfSourceRegister, TRI) << ", "
<< printMBBReference(*IfBB)
<< printReg(CodeSourceRegister, TRI) << ", "
<< printMBBReference(*CodeBB) << ")\n");
const DebugLoc &DL = MergeBB->findDebugLoc(MergeBB->begin());
MachineInstrBuilder MIB = BuildMI(*MergeBB, MergeBB->instr_begin(), DL,
TII->get(TargetOpcode::PHI), DestRegister);
if (IsUndefIfSource && false) {
MIB.addReg(IfSourceRegister, RegState::Undef);
} else {
MIB.addReg(IfSourceRegister);
}
MIB.addMBB(IfBB);
MIB.addReg(CodeSourceRegister);
MIB.addMBB(CodeBB);
}
static void removeExternalCFGSuccessors(MachineBasicBlock *MBB) {
for (MachineBasicBlock::succ_iterator PI = MBB->succ_begin(),
E = MBB->succ_end();
PI != E; ++PI) {
if ((*PI) != MBB) {
(MBB)->removeSuccessor(*PI);
}
}
}
static void removeExternalCFGEdges(MachineBasicBlock *StartMBB,
MachineBasicBlock *EndMBB) {
// We have to check against the StartMBB successor becasuse a
// structurized region with a loop will have the entry block split,
// and the backedge will go to the entry successor.
DenseSet<std::pair<MachineBasicBlock *, MachineBasicBlock *>> Succs;
unsigned SuccSize = StartMBB->succ_size();
if (SuccSize > 0) {
MachineBasicBlock *StartMBBSucc = *(StartMBB->succ_begin());
for (MachineBasicBlock::succ_iterator PI = EndMBB->succ_begin(),
E = EndMBB->succ_end();
PI != E; ++PI) {
// Either we have a back-edge to the entry block, or a back-edge to the
// successor of the entry block since the block may be split.
if ((*PI) != StartMBB &&
!((*PI) == StartMBBSucc && StartMBB != EndMBB && SuccSize == 1)) {
Succs.insert(
std::pair<MachineBasicBlock *, MachineBasicBlock *>(EndMBB, *PI));
}
}
}
for (MachineBasicBlock::pred_iterator PI = StartMBB->pred_begin(),
E = StartMBB->pred_end();
PI != E; ++PI) {
if ((*PI) != EndMBB) {
Succs.insert(
std::pair<MachineBasicBlock *, MachineBasicBlock *>(*PI, StartMBB));
}
}
for (auto SI : Succs) {
std::pair<MachineBasicBlock *, MachineBasicBlock *> Edge = SI;
LLVM_DEBUG(dbgs() << "Removing edge: " << printMBBReference(*Edge.first)
<< " -> " << printMBBReference(*Edge.second) << "\n");
Edge.first->removeSuccessor(Edge.second);
}
}
MachineBasicBlock *AMDGPUMachineCFGStructurizer::createIfBlock(
MachineBasicBlock *MergeBB, MachineBasicBlock *CodeBBStart,
MachineBasicBlock *CodeBBEnd, MachineBasicBlock *SelectBB, unsigned IfReg,
bool InheritPreds) {
MachineFunction *MF = MergeBB->getParent();
MachineBasicBlock *IfBB = MF->CreateMachineBasicBlock();
if (InheritPreds) {
for (MachineBasicBlock::pred_iterator PI = CodeBBStart->pred_begin(),
E = CodeBBStart->pred_end();
PI != E; ++PI) {
if ((*PI) != CodeBBEnd) {
MachineBasicBlock *Pred = (*PI);
Pred->addSuccessor(IfBB);
}
}
}
removeExternalCFGEdges(CodeBBStart, CodeBBEnd);
auto CodeBBStartI = CodeBBStart->getIterator();
auto CodeBBEndI = CodeBBEnd->getIterator();
auto MergeIter = MergeBB->getIterator();
MF->insert(MergeIter, IfBB);
MF->splice(MergeIter, CodeBBStartI, ++CodeBBEndI);
IfBB->addSuccessor(MergeBB);
IfBB->addSuccessor(CodeBBStart);
LLVM_DEBUG(dbgs() << "Created If block: " << IfBB->getNumber() << "\n");
// Ensure that the MergeBB is a successor of the CodeEndBB.
if (!CodeBBEnd->isSuccessor(MergeBB))
CodeBBEnd->addSuccessor(MergeBB);
LLVM_DEBUG(dbgs() << "Moved " << printMBBReference(*CodeBBStart)
<< " through " << printMBBReference(*CodeBBEnd) << "\n");
// If we have a single predecessor we can find a reasonable debug location
MachineBasicBlock *SinglePred =
CodeBBStart->pred_size() == 1 ? *(CodeBBStart->pred_begin()) : nullptr;
const DebugLoc &DL = SinglePred
? SinglePred->findDebugLoc(SinglePred->getFirstTerminator())
: DebugLoc();
unsigned Reg =
TII->insertEQ(IfBB, IfBB->begin(), DL, IfReg,
SelectBB->getNumber() /* CodeBBStart->getNumber() */);
if (&(*(IfBB->getParent()->begin())) == IfBB) {
TII->materializeImmediate(*IfBB, IfBB->begin(), DL, IfReg,
CodeBBStart->getNumber());
}
MachineOperand RegOp = MachineOperand::CreateReg(Reg, false, false, true);
ArrayRef<MachineOperand> Cond(RegOp);
TII->insertBranch(*IfBB, MergeBB, CodeBBStart, Cond, DL);
return IfBB;
}
void AMDGPUMachineCFGStructurizer::ensureCondIsNotKilled(
SmallVector<MachineOperand, 1> Cond) {
if (Cond.size() != 1)
return;
if (!Cond[0].isReg())
return;
Register CondReg = Cond[0].getReg();
for (auto UI = MRI->use_begin(CondReg), E = MRI->use_end(); UI != E; ++UI) {
(*UI).setIsKill(false);
}
}
void AMDGPUMachineCFGStructurizer::rewriteCodeBBTerminator(MachineBasicBlock *CodeBB,
MachineBasicBlock *MergeBB,
unsigned BBSelectReg) {
MachineBasicBlock *TrueBB = nullptr;
MachineBasicBlock *FalseBB = nullptr;
SmallVector<MachineOperand, 1> Cond;
MachineBasicBlock *FallthroughBB = FallthroughMap[CodeBB];
TII->analyzeBranch(*CodeBB, TrueBB, FalseBB, Cond);
const DebugLoc &DL = CodeBB->findDebugLoc(CodeBB->getFirstTerminator());
if (FalseBB == nullptr && TrueBB == nullptr && FallthroughBB == nullptr) {
// This is an exit block, hence no successors. We will assign the
// bb select register to the entry block.
TII->materializeImmediate(*CodeBB, CodeBB->getFirstTerminator(), DL,
BBSelectReg,
CodeBB->getParent()->begin()->getNumber());
insertUnconditionalBranch(CodeBB, MergeBB, DL);
return;
}
if (FalseBB == nullptr && TrueBB == nullptr) {
TrueBB = FallthroughBB;
} else if (TrueBB != nullptr) {
FalseBB =
(FallthroughBB && (FallthroughBB != TrueBB)) ? FallthroughBB : FalseBB;
}
if ((TrueBB != nullptr && FalseBB == nullptr) || (TrueBB == FalseBB)) {
TII->materializeImmediate(*CodeBB, CodeBB->getFirstTerminator(), DL,
BBSelectReg, TrueBB->getNumber());
} else {
const TargetRegisterClass *RegClass = MRI->getRegClass(BBSelectReg);
Register TrueBBReg = MRI->createVirtualRegister(RegClass);
Register FalseBBReg = MRI->createVirtualRegister(RegClass);
TII->materializeImmediate(*CodeBB, CodeBB->getFirstTerminator(), DL,
TrueBBReg, TrueBB->getNumber());
TII->materializeImmediate(*CodeBB, CodeBB->getFirstTerminator(), DL,
FalseBBReg, FalseBB->getNumber());
ensureCondIsNotKilled(Cond);
TII->insertVectorSelect(*CodeBB, CodeBB->getFirstTerminator(), DL,
BBSelectReg, Cond, TrueBBReg, FalseBBReg);
}
insertUnconditionalBranch(CodeBB, MergeBB, DL);
}
MachineInstr *AMDGPUMachineCFGStructurizer::getDefInstr(unsigned Reg) {
if (MRI->def_begin(Reg) == MRI->def_end()) {
LLVM_DEBUG(dbgs() << "Register "
<< printReg(Reg, MRI->getTargetRegisterInfo())
<< " has NO defs\n");
} else if (!MRI->hasOneDef(Reg)) {
LLVM_DEBUG(dbgs() << "Register "
<< printReg(Reg, MRI->getTargetRegisterInfo())
<< " has multiple defs\n");
LLVM_DEBUG(dbgs() << "DEFS BEGIN:\n");
for (auto DI = MRI->def_begin(Reg), DE = MRI->def_end(); DI != DE; ++DI) {
LLVM_DEBUG(DI->getParent()->dump());
}
LLVM_DEBUG(dbgs() << "DEFS END\n");
}
assert(MRI->hasOneDef(Reg) && "Register has multiple definitions");
return (*(MRI->def_begin(Reg))).getParent();
}
void AMDGPUMachineCFGStructurizer::insertChainedPHI(MachineBasicBlock *IfBB,
MachineBasicBlock *CodeBB,
MachineBasicBlock *MergeBB,
LinearizedRegion *InnerRegion,
unsigned DestReg,
unsigned SourceReg) {
// In this function we know we are part of a chain already, so we need
// to add the registers to the existing chain, and rename the register
// inside the region.
bool IsSingleBB = InnerRegion->getEntry() == InnerRegion->getExit();
MachineInstr *DefInstr = getDefInstr(SourceReg);
if (DefInstr->isPHI() && DefInstr->getParent() == CodeBB && IsSingleBB) {
// Handle the case where the def is a PHI-def inside a basic
// block, then we only need to do renaming. Special care needs to
// be taken if the PHI-def is part of an existing chain, or if a
// new one needs to be created.
InnerRegion->replaceRegisterInsideRegion(SourceReg, DestReg, true, MRI);
// We collect all PHI Information, and if we are at the region entry,
// all PHIs will be removed, and then re-introduced if needed.
storePHILinearizationInfoDest(DestReg, *DefInstr);
// We have picked up all the information we need now and can remove
// the PHI
PHIInfo.removeSource(DestReg, SourceReg, CodeBB);
DefInstr->eraseFromParent();
} else {
// If this is not a phi-def, or it is a phi-def but from a linearized region
if (IsSingleBB && DefInstr->getParent() == InnerRegion->getEntry()) {
// If this is a single BB and the definition is in this block we
// need to replace any uses outside the region.
InnerRegion->replaceRegisterOutsideRegion(SourceReg, DestReg, false, MRI);
}
const TargetRegisterClass *RegClass = MRI->getRegClass(DestReg);
Register NextDestReg = MRI->createVirtualRegister(RegClass);
bool IsLastDef = PHIInfo.getNumSources(DestReg) == 1;
LLVM_DEBUG(dbgs() << "Insert Chained PHI\n");
insertMergePHI(IfBB, InnerRegion->getExit(), MergeBB, DestReg, NextDestReg,
SourceReg, IsLastDef);
PHIInfo.removeSource(DestReg, SourceReg, CodeBB);
if (IsLastDef) {
const DebugLoc &DL = IfBB->findDebugLoc(IfBB->getFirstTerminator());
TII->materializeImmediate(*IfBB, IfBB->getFirstTerminator(), DL,
NextDestReg, 0);
PHIInfo.deleteDef(DestReg);
} else {
PHIInfo.replaceDef(DestReg, NextDestReg);
}
}
}
bool AMDGPUMachineCFGStructurizer::containsDef(MachineBasicBlock *MBB,
LinearizedRegion *InnerRegion,
unsigned Register) {
return getDefInstr(Register)->getParent() == MBB ||
InnerRegion->contains(getDefInstr(Register)->getParent());
}
void AMDGPUMachineCFGStructurizer::rewriteLiveOutRegs(MachineBasicBlock *IfBB,
MachineBasicBlock *CodeBB,
MachineBasicBlock *MergeBB,
LinearizedRegion *InnerRegion,
LinearizedRegion *LRegion) {
DenseSet<unsigned> *LiveOuts = InnerRegion->getLiveOuts();
SmallVector<unsigned, 4> OldLiveOuts;
bool IsSingleBB = InnerRegion->getEntry() == InnerRegion->getExit();
for (auto OLI : *LiveOuts) {
OldLiveOuts.push_back(OLI);
}
for (auto LI : OldLiveOuts) {
LLVM_DEBUG(dbgs() << "LiveOut: " << printReg(LI, TRI));
if (!containsDef(CodeBB, InnerRegion, LI) ||
(!IsSingleBB && (getDefInstr(LI)->getParent() == LRegion->getExit()))) {
// If the register simly lives through the CodeBB, we don't have
// to rewrite anything since the register is not defined in this
// part of the code.
LLVM_DEBUG(dbgs() << "- through");
continue;
}
LLVM_DEBUG(dbgs() << "\n");
unsigned Reg = LI;
if (/*!PHIInfo.isSource(Reg) &&*/ Reg != InnerRegion->getBBSelectRegOut()) {
// If the register is live out, we do want to create a phi,
// unless it is from the Exit block, becasuse in that case there
// is already a PHI, and no need to create a new one.
// If the register is just a live out def and not part of a phi
// chain, we need to create a PHI node to handle the if region,
// and replace all uses outside of the region with the new dest
// register, unless it is the outgoing BB select register. We have
// already creaed phi nodes for these.
const TargetRegisterClass *RegClass = MRI->getRegClass(Reg);
Register PHIDestReg = MRI->createVirtualRegister(RegClass);
Register IfSourceReg = MRI->createVirtualRegister(RegClass);
// Create initializer, this value is never used, but is needed
// to satisfy SSA.
LLVM_DEBUG(dbgs() << "Initializer for reg: " << printReg(Reg) << "\n");
TII->materializeImmediate(*IfBB, IfBB->getFirstTerminator(), DebugLoc(),
IfSourceReg, 0);
InnerRegion->replaceRegisterOutsideRegion(Reg, PHIDestReg, true, MRI);
LLVM_DEBUG(dbgs() << "Insert Non-Chained Live out PHI\n");
insertMergePHI(IfBB, InnerRegion->getExit(), MergeBB, PHIDestReg,
IfSourceReg, Reg, true);
}
}
// Handle the chained definitions in PHIInfo, checking if this basic block
// is a source block for a definition.
SmallVector<unsigned, 4> Sources;
if (PHIInfo.findSourcesFromMBB(CodeBB, Sources)) {
LLVM_DEBUG(dbgs() << "Inserting PHI Live Out from "
<< printMBBReference(*CodeBB) << "\n");
for (auto SI : Sources) {
unsigned DestReg;
PHIInfo.findDest(SI, CodeBB, DestReg);
insertChainedPHI(IfBB, CodeBB, MergeBB, InnerRegion, DestReg, SI);
}
LLVM_DEBUG(dbgs() << "Insertion done.\n");
}
LLVM_DEBUG(PHIInfo.dump(MRI));
}
void AMDGPUMachineCFGStructurizer::prunePHIInfo(MachineBasicBlock *MBB) {
LLVM_DEBUG(dbgs() << "Before PHI Prune\n");
LLVM_DEBUG(PHIInfo.dump(MRI));
SmallVector<std::tuple<unsigned, unsigned, MachineBasicBlock *>, 4>
ElimiatedSources;
for (auto DRI = PHIInfo.dests_begin(), DE = PHIInfo.dests_end(); DRI != DE;
++DRI) {
unsigned DestReg = *DRI;
auto SE = PHIInfo.sources_end(DestReg);
bool MBBContainsPHISource = false;
// Check if there is a PHI source in this MBB
for (auto SRI = PHIInfo.sources_begin(DestReg); SRI != SE; ++SRI) {
unsigned SourceReg = (*SRI).first;
MachineOperand *Def = &(*(MRI->def_begin(SourceReg)));
if (Def->getParent()->getParent() == MBB) {
MBBContainsPHISource = true;
}
}
// If so, all other sources are useless since we know this block
// is always executed when the region is executed.
if (MBBContainsPHISource) {
for (auto SRI = PHIInfo.sources_begin(DestReg); SRI != SE; ++SRI) {
PHILinearize::PHISourceT Source = *SRI;
unsigned SourceReg = Source.first;
MachineBasicBlock *SourceMBB = Source.second;
MachineOperand *Def = &(*(MRI->def_begin(SourceReg)));
if (Def->getParent()->getParent() != MBB) {
ElimiatedSources.push_back(
std::make_tuple(DestReg, SourceReg, SourceMBB));
}
}
}
}
// Remove the PHI sources that are in the given MBB
for (auto &SourceInfo : ElimiatedSources) {
PHIInfo.removeSource(std::get<0>(SourceInfo), std::get<1>(SourceInfo),
std::get<2>(SourceInfo));
}
LLVM_DEBUG(dbgs() << "After PHI Prune\n");
LLVM_DEBUG(PHIInfo.dump(MRI));
}
void AMDGPUMachineCFGStructurizer::createEntryPHI(LinearizedRegion *CurrentRegion,
unsigned DestReg) {
MachineBasicBlock *Entry = CurrentRegion->getEntry();
MachineBasicBlock *Exit = CurrentRegion->getExit();
LLVM_DEBUG(dbgs() << "RegionExit: " << Exit->getNumber() << " Pred: "
<< (*(Entry->pred_begin()))->getNumber() << "\n");
int NumSources = 0;
auto SE = PHIInfo.sources_end(DestReg);
for (auto SRI = PHIInfo.sources_begin(DestReg); SRI != SE; ++SRI) {
NumSources++;
}
if (NumSources == 1) {
auto SRI = PHIInfo.sources_begin(DestReg);
unsigned SourceReg = (*SRI).first;
replaceRegisterWith(DestReg, SourceReg);
} else {
const DebugLoc &DL = Entry->findDebugLoc(Entry->begin());
MachineInstrBuilder MIB = BuildMI(*Entry, Entry->instr_begin(), DL,
TII->get(TargetOpcode::PHI), DestReg);
LLVM_DEBUG(dbgs() << "Entry PHI " << printReg(DestReg, TRI) << " = PHI(");
unsigned CurrentBackedgeReg = 0;
for (auto SRI = PHIInfo.sources_begin(DestReg); SRI != SE; ++SRI) {
unsigned SourceReg = (*SRI).first;
if (CurrentRegion->contains((*SRI).second)) {
if (CurrentBackedgeReg == 0) {
CurrentBackedgeReg = SourceReg;
} else {
MachineInstr *PHIDefInstr = getDefInstr(SourceReg);
MachineBasicBlock *PHIDefMBB = PHIDefInstr->getParent();
const TargetRegisterClass *RegClass =
MRI->getRegClass(CurrentBackedgeReg);
Register NewBackedgeReg = MRI->createVirtualRegister(RegClass);
MachineInstrBuilder BackedgePHI =
BuildMI(*PHIDefMBB, PHIDefMBB->instr_begin(), DL,
TII->get(TargetOpcode::PHI), NewBackedgeReg);
BackedgePHI.addReg(CurrentBackedgeReg);
BackedgePHI.addMBB(getPHIPred(*PHIDefInstr, 0));
BackedgePHI.addReg(getPHISourceReg(*PHIDefInstr, 1));
BackedgePHI.addMBB((*SRI).second);
CurrentBackedgeReg = NewBackedgeReg;
LLVM_DEBUG(dbgs()
<< "Inserting backedge PHI: "
<< printReg(NewBackedgeReg, TRI) << " = PHI("
<< printReg(CurrentBackedgeReg, TRI) << ", "
<< printMBBReference(*getPHIPred(*PHIDefInstr, 0)) << ", "
<< printReg(getPHISourceReg(*PHIDefInstr, 1), TRI) << ", "
<< printMBBReference(*(*SRI).second));
}
} else {
MIB.addReg(SourceReg);
MIB.addMBB((*SRI).second);
LLVM_DEBUG(dbgs() << printReg(SourceReg, TRI) << ", "
<< printMBBReference(*(*SRI).second) << ", ");
}
}
// Add the final backedge register source to the entry phi
if (CurrentBackedgeReg != 0) {
MIB.addReg(CurrentBackedgeReg);
MIB.addMBB(Exit);
LLVM_DEBUG(dbgs() << printReg(CurrentBackedgeReg, TRI) << ", "
<< printMBBReference(*Exit) << ")\n");
} else {
LLVM_DEBUG(dbgs() << ")\n");
}
}
}
void AMDGPUMachineCFGStructurizer::createEntryPHIs(LinearizedRegion *CurrentRegion) {
LLVM_DEBUG(PHIInfo.dump(MRI));
for (auto DRI = PHIInfo.dests_begin(), DE = PHIInfo.dests_end(); DRI != DE;
++DRI) {
unsigned DestReg = *DRI;
createEntryPHI(CurrentRegion, DestReg);
}
PHIInfo.clear();
}
void AMDGPUMachineCFGStructurizer::replaceRegisterWith(unsigned Register,
unsigned NewRegister) {
assert(Register != NewRegister && "Cannot replace a reg with itself");
for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Register),
E = MRI->reg_end();
I != E;) {
MachineOperand &O = *I;
++I;
if (Register::isPhysicalRegister(NewRegister)) {
LLVM_DEBUG(dbgs() << "Trying to substitute physical register: "
<< printReg(NewRegister, MRI->getTargetRegisterInfo())
<< "\n");
llvm_unreachable("Cannot substitute physical registers");
// We don't handle physical registers, but if we need to
// in the future This is how we do it:
// O.substPhysReg(NewRegister, *TRI);
} else {
LLVM_DEBUG(dbgs() << "Replacing register: "
<< printReg(Register, MRI->getTargetRegisterInfo())
<< " with "
<< printReg(NewRegister, MRI->getTargetRegisterInfo())
<< "\n");
O.setReg(NewRegister);
}
}
PHIInfo.deleteDef(Register);
getRegionMRT()->replaceLiveOutReg(Register, NewRegister);
LLVM_DEBUG(PHIInfo.dump(MRI));
}
void AMDGPUMachineCFGStructurizer::resolvePHIInfos(MachineBasicBlock *FunctionEntry) {
LLVM_DEBUG(dbgs() << "Resolve PHI Infos\n");
LLVM_DEBUG(PHIInfo.dump(MRI));
for (auto DRI = PHIInfo.dests_begin(), DE = PHIInfo.dests_end(); DRI != DE;
++DRI) {
unsigned DestReg = *DRI;
LLVM_DEBUG(dbgs() << "DestReg: " << printReg(DestReg, TRI) << "\n");
auto SRI = PHIInfo.sources_begin(DestReg);
unsigned SourceReg = (*SRI).first;
LLVM_DEBUG(dbgs() << "DestReg: " << printReg(DestReg, TRI)
<< " SourceReg: " << printReg(SourceReg, TRI) << "\n");
assert(PHIInfo.sources_end(DestReg) == ++SRI &&
"More than one phi source in entry node");
replaceRegisterWith(DestReg, SourceReg);
}
}
static bool isFunctionEntryBlock(MachineBasicBlock *MBB) {
return ((&(*(MBB->getParent()->begin()))) == MBB);
}
MachineBasicBlock *AMDGPUMachineCFGStructurizer::createIfRegion(
MachineBasicBlock *MergeBB, MachineBasicBlock *CodeBB,
LinearizedRegion *CurrentRegion, unsigned BBSelectRegIn,
unsigned BBSelectRegOut) {
if (isFunctionEntryBlock(CodeBB) && !CurrentRegion->getHasLoop()) {
// Handle non-loop function entry block.
// We need to allow loops to the entry block and then
rewriteCodeBBTerminator(CodeBB, MergeBB, BBSelectRegOut);
resolvePHIInfos(CodeBB);
removeExternalCFGSuccessors(CodeBB);
CodeBB->addSuccessor(MergeBB);
CurrentRegion->addMBB(CodeBB);
return nullptr;
}
if (CurrentRegion->getEntry() == CodeBB && !CurrentRegion->getHasLoop()) {
// Handle non-loop region entry block.
MachineFunction *MF = MergeBB->getParent();
auto MergeIter = MergeBB->getIterator();
auto CodeBBStartIter = CodeBB->getIterator();
auto CodeBBEndIter = ++(CodeBB->getIterator());
if (CodeBBEndIter != MergeIter) {
MF->splice(MergeIter, CodeBBStartIter, CodeBBEndIter);
}
rewriteCodeBBTerminator(CodeBB, MergeBB, BBSelectRegOut);
prunePHIInfo(CodeBB);
createEntryPHIs(CurrentRegion);
removeExternalCFGSuccessors(CodeBB);
CodeBB->addSuccessor(MergeBB);
CurrentRegion->addMBB(CodeBB);
return nullptr;
} else {
// Handle internal block.
const TargetRegisterClass *RegClass = MRI->getRegClass(BBSelectRegIn);
Register CodeBBSelectReg = MRI->createVirtualRegister(RegClass);
rewriteCodeBBTerminator(CodeBB, MergeBB, CodeBBSelectReg);
bool IsRegionEntryBB = CurrentRegion->getEntry() == CodeBB;
MachineBasicBlock *IfBB = createIfBlock(MergeBB, CodeBB, CodeBB, CodeBB,
BBSelectRegIn, IsRegionEntryBB);
CurrentRegion->addMBB(IfBB);
// If this is the entry block we need to make the If block the new
// linearized region entry.
if (IsRegionEntryBB) {
CurrentRegion->setEntry(IfBB);
if (CurrentRegion->getHasLoop()) {
MachineBasicBlock *RegionExit = CurrentRegion->getExit();
MachineBasicBlock *ETrueBB = nullptr;
MachineBasicBlock *EFalseBB = nullptr;
SmallVector<MachineOperand, 1> ECond;
const DebugLoc &DL = DebugLoc();
TII->analyzeBranch(*RegionExit, ETrueBB, EFalseBB, ECond);
TII->removeBranch(*RegionExit);
// We need to create a backedge if there is a loop
unsigned Reg = TII->insertNE(
RegionExit, RegionExit->instr_end(), DL,
CurrentRegion->getRegionMRT()->getInnerOutputRegister(),
CurrentRegion->getRegionMRT()->getEntry()->getNumber());
MachineOperand RegOp =
MachineOperand::CreateReg(Reg, false, false, true);
ArrayRef<MachineOperand> Cond(RegOp);
LLVM_DEBUG(dbgs() << "RegionExitReg: ");
LLVM_DEBUG(Cond[0].print(dbgs(), TRI));
LLVM_DEBUG(dbgs() << "\n");
TII->insertBranch(*RegionExit, CurrentRegion->getEntry(), RegionExit,
Cond, DebugLoc());
RegionExit->addSuccessor(CurrentRegion->getEntry());
}
}
CurrentRegion->addMBB(CodeBB);
LinearizedRegion InnerRegion(CodeBB, MRI, TRI, PHIInfo);
InnerRegion.setParent(CurrentRegion);
LLVM_DEBUG(dbgs() << "Insert BB Select PHI (BB)\n");
insertMergePHI(IfBB, CodeBB, MergeBB, BBSelectRegOut, BBSelectRegIn,
CodeBBSelectReg);
InnerRegion.addMBB(MergeBB);
LLVM_DEBUG(InnerRegion.print(dbgs(), TRI));
rewriteLiveOutRegs(IfBB, CodeBB, MergeBB, &InnerRegion, CurrentRegion);
extractKilledPHIs(CodeBB);
if (IsRegionEntryBB) {
createEntryPHIs(CurrentRegion);
}
return IfBB;
}
}
MachineBasicBlock *AMDGPUMachineCFGStructurizer::createIfRegion(
MachineBasicBlock *MergeBB, LinearizedRegion *InnerRegion,
LinearizedRegion *CurrentRegion, MachineBasicBlock *SelectBB,
unsigned BBSelectRegIn, unsigned BBSelectRegOut) {
unsigned CodeBBSelectReg =
InnerRegion->getRegionMRT()->getInnerOutputRegister();
MachineBasicBlock *CodeEntryBB = InnerRegion->getEntry();
MachineBasicBlock *CodeExitBB = InnerRegion->getExit();
MachineBasicBlock *IfBB = createIfBlock(MergeBB, CodeEntryBB, CodeExitBB,
SelectBB, BBSelectRegIn, true);
CurrentRegion->addMBB(IfBB);
bool isEntry = CurrentRegion->getEntry() == InnerRegion->getEntry();
if (isEntry) {
if (CurrentRegion->getHasLoop()) {
MachineBasicBlock *RegionExit = CurrentRegion->getExit();
MachineBasicBlock *ETrueBB = nullptr;
MachineBasicBlock *EFalseBB = nullptr;
SmallVector<MachineOperand, 1> ECond;
const DebugLoc &DL = DebugLoc();
TII->analyzeBranch(*RegionExit, ETrueBB, EFalseBB, ECond);
TII->removeBranch(*RegionExit);
// We need to create a backedge if there is a loop
unsigned Reg =
TII->insertNE(RegionExit, RegionExit->instr_end(), DL,
CurrentRegion->getRegionMRT()->getInnerOutputRegister(),
CurrentRegion->getRegionMRT()->getEntry()->getNumber());
MachineOperand RegOp = MachineOperand::CreateReg(Reg, false, false, true);
ArrayRef<MachineOperand> Cond(RegOp);
LLVM_DEBUG(dbgs() << "RegionExitReg: ");
LLVM_DEBUG(Cond[0].print(dbgs(), TRI));
LLVM_DEBUG(dbgs() << "\n");
TII->insertBranch(*RegionExit, CurrentRegion->getEntry(), RegionExit,
Cond, DebugLoc());
RegionExit->addSuccessor(IfBB);
}
}
CurrentRegion->addMBBs(InnerRegion);
LLVM_DEBUG(dbgs() << "Insert BB Select PHI (region)\n");
insertMergePHI(IfBB, CodeExitBB, MergeBB, BBSelectRegOut, BBSelectRegIn,
CodeBBSelectReg);
rewriteLiveOutRegs(IfBB, /* CodeEntryBB */ CodeExitBB, MergeBB, InnerRegion,
CurrentRegion);
rewriteRegionEntryPHIs(InnerRegion, IfBB);
if (isEntry) {
CurrentRegion->setEntry(IfBB);
}
if (isEntry) {
createEntryPHIs(CurrentRegion);
}
return IfBB;
}
void AMDGPUMachineCFGStructurizer::splitLoopPHI(MachineInstr &PHI,
MachineBasicBlock *Entry,
MachineBasicBlock *EntrySucc,
LinearizedRegion *LRegion) {
SmallVector<unsigned, 2> PHIRegionIndices;
getPHIRegionIndices(LRegion, PHI, PHIRegionIndices);
assert(PHIRegionIndices.size() == 1);
unsigned RegionIndex = PHIRegionIndices[0];
unsigned RegionSourceReg = getPHISourceReg(PHI, RegionIndex);
MachineBasicBlock *RegionSourceMBB = getPHIPred(PHI, RegionIndex);
unsigned PHIDest = getPHIDestReg(PHI);
unsigned PHISource = PHIDest;
unsigned ReplaceReg;
if (shrinkPHI(PHI, PHIRegionIndices, &ReplaceReg)) {
PHISource = ReplaceReg;
}
const TargetRegisterClass *RegClass = MRI->getRegClass(PHIDest);
Register NewDestReg = MRI->createVirtualRegister(RegClass);
LRegion->replaceRegisterInsideRegion(PHIDest, NewDestReg, false, MRI);
MachineInstrBuilder MIB =
BuildMI(*EntrySucc, EntrySucc->instr_begin(), PHI.getDebugLoc(),
TII->get(TargetOpcode::PHI), NewDestReg);
LLVM_DEBUG(dbgs() << "Split Entry PHI " << printReg(NewDestReg, TRI)
<< " = PHI(");
MIB.addReg(PHISource);
MIB.addMBB(Entry);
LLVM_DEBUG(dbgs() << printReg(PHISource, TRI) << ", "
<< printMBBReference(*Entry));
MIB.addReg(RegionSourceReg);
MIB.addMBB(RegionSourceMBB);
LLVM_DEBUG(dbgs() << " ," << printReg(RegionSourceReg, TRI) << ", "
<< printMBBReference(*RegionSourceMBB) << ")\n");
}
void AMDGPUMachineCFGStructurizer::splitLoopPHIs(MachineBasicBlock *Entry,
MachineBasicBlock *EntrySucc,
LinearizedRegion *LRegion) {
SmallVector<MachineInstr *, 2> PHIs;
collectPHIs(Entry, PHIs);
for (auto PHII : PHIs) {
splitLoopPHI(*PHII, Entry, EntrySucc, LRegion);
}
}
// Split the exit block so that we can insert a end control flow
MachineBasicBlock *
AMDGPUMachineCFGStructurizer::splitExit(LinearizedRegion *LRegion) {
auto MRTRegion = LRegion->getRegionMRT();
auto Exit = LRegion->getExit();
auto MF = Exit->getParent();
auto Succ = MRTRegion->getSucc();
auto NewExit = MF->CreateMachineBasicBlock();
auto AfterExitIter = Exit->getIterator();
AfterExitIter++;
MF->insert(AfterExitIter, NewExit);
Exit->removeSuccessor(Succ);
Exit->addSuccessor(NewExit);
NewExit->addSuccessor(Succ);
insertUnconditionalBranch(NewExit, Succ);
LRegion->addMBB(NewExit);
LRegion->setExit(NewExit);
LLVM_DEBUG(dbgs() << "Created new exit block: " << NewExit->getNumber()
<< "\n");
// Replace any PHI Predecessors in the successor with NewExit
for (auto &II : *Succ) {
MachineInstr &Instr = II;
// If we are past the PHI instructions we are done
if (!Instr.isPHI())
break;
int numPreds = getPHINumInputs(Instr);
for (int i = 0; i < numPreds; ++i) {
auto Pred = getPHIPred(Instr, i);
if (Pred == Exit) {
setPhiPred(Instr, i, NewExit);
}
}
}
return NewExit;
}
static MachineBasicBlock *split(MachineBasicBlock::iterator I) {
// Create the fall-through block.
MachineBasicBlock *MBB = (*I).getParent();
MachineFunction *MF = MBB->getParent();
MachineBasicBlock *SuccMBB = MF->CreateMachineBasicBlock();
auto MBBIter = ++(MBB->getIterator());
MF->insert(MBBIter, SuccMBB);
SuccMBB->transferSuccessorsAndUpdatePHIs(MBB);
MBB->addSuccessor(SuccMBB);
// Splice the code over.
SuccMBB->splice(SuccMBB->end(), MBB, I, MBB->end());
return SuccMBB;
}
// Split the entry block separating PHI-nodes and the rest of the code
// This is needed to insert an initializer for the bb select register
// inloop regions.
MachineBasicBlock *
AMDGPUMachineCFGStructurizer::splitEntry(LinearizedRegion *LRegion) {
MachineBasicBlock *Entry = LRegion->getEntry();
MachineBasicBlock *EntrySucc = split(Entry->getFirstNonPHI());
MachineBasicBlock *Exit = LRegion->getExit();
LLVM_DEBUG(dbgs() << "Split " << printMBBReference(*Entry) << " to "
<< printMBBReference(*Entry) << " -> "
<< printMBBReference(*EntrySucc) << "\n");
LRegion->addMBB(EntrySucc);
// Make the backedge go to Entry Succ
if (Exit->isSuccessor(Entry)) {
Exit->removeSuccessor(Entry);
}
Exit->addSuccessor(EntrySucc);
MachineInstr &Branch = *(Exit->instr_rbegin());
for (auto &UI : Branch.uses()) {
if (UI.isMBB() && UI.getMBB() == Entry) {
UI.setMBB(EntrySucc);
}
}
splitLoopPHIs(Entry, EntrySucc, LRegion);
return EntrySucc;
}
LinearizedRegion *
AMDGPUMachineCFGStructurizer::initLinearizedRegion(RegionMRT *Region) {
LinearizedRegion *LRegion = Region->getLinearizedRegion();
LRegion->initLiveOut(Region, MRI, TRI, PHIInfo);
LRegion->setEntry(Region->getEntry());
return LRegion;
}
static void removeOldExitPreds(RegionMRT *Region) {
MachineBasicBlock *Exit = Region->getSucc();
if (Exit == nullptr) {
return;
}
for (MachineBasicBlock::pred_iterator PI = Exit->pred_begin(),
E = Exit->pred_end();
PI != E; ++PI) {
if (Region->contains(*PI)) {
(*PI)->removeSuccessor(Exit);
}
}
}
static bool mbbHasBackEdge(MachineBasicBlock *MBB,
SmallPtrSet<MachineBasicBlock *, 8> &MBBs) {
for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) {
if (MBBs.count(*SI) != 0) {
return true;
}
}
return false;
}
static bool containsNewBackedge(MRT *Tree,
SmallPtrSet<MachineBasicBlock *, 8> &MBBs) {
// Need to traverse this in reverse since it is in post order.
if (Tree == nullptr)
return false;
if (Tree->isMBB()) {
MachineBasicBlock *MBB = Tree->getMBBMRT()->getMBB();
MBBs.insert(MBB);
if (mbbHasBackEdge(MBB, MBBs)) {
return true;
}
} else {
RegionMRT *Region = Tree->getRegionMRT();
SetVector<MRT *> *Children = Region->getChildren();
for (auto CI = Children->rbegin(), CE = Children->rend(); CI != CE; ++CI) {
if (containsNewBackedge(*CI, MBBs))
return true;
}
}
return false;
}
static bool containsNewBackedge(RegionMRT *Region) {
SmallPtrSet<MachineBasicBlock *, 8> MBBs;
return containsNewBackedge(Region, MBBs);
}
bool AMDGPUMachineCFGStructurizer::structurizeComplexRegion(RegionMRT *Region) {
auto *LRegion = initLinearizedRegion(Region);
LRegion->setHasLoop(containsNewBackedge(Region));
MachineBasicBlock *LastMerge = createLinearizedExitBlock(Region);
MachineBasicBlock *CurrentMerge = LastMerge;
LRegion->addMBB(LastMerge);
LRegion->setExit(LastMerge);
rewriteRegionExitPHIs(Region, LastMerge, LRegion);
removeOldExitPreds(Region);
LLVM_DEBUG(PHIInfo.dump(MRI));
SetVector<MRT *> *Children = Region->getChildren();
LLVM_DEBUG(dbgs() << "===========If Region Start===============\n");
if (LRegion->getHasLoop()) {
LLVM_DEBUG(dbgs() << "Has Backedge: Yes\n");
} else {
LLVM_DEBUG(dbgs() << "Has Backedge: No\n");
}
unsigned BBSelectRegIn;
unsigned BBSelectRegOut;
for (auto CI = Children->begin(), CE = Children->end(); CI != CE; ++CI) {
LLVM_DEBUG(dbgs() << "CurrentRegion: \n");
LLVM_DEBUG(LRegion->print(dbgs(), TRI));
auto CNI = CI;
++CNI;
MRT *Child = (*CI);
if (Child->isRegion()) {
LinearizedRegion *InnerLRegion =
Child->getRegionMRT()->getLinearizedRegion();
// We found the block is the exit of an inner region, we need
// to put it in the current linearized region.
LLVM_DEBUG(dbgs() << "Linearizing region: ");
LLVM_DEBUG(InnerLRegion->print(dbgs(), TRI));
LLVM_DEBUG(dbgs() << "\n");
MachineBasicBlock *InnerEntry = InnerLRegion->getEntry();
if ((&(*(InnerEntry->getParent()->begin()))) == InnerEntry) {
// Entry has already been linearized, no need to do this region.
unsigned OuterSelect = InnerLRegion->getBBSelectRegOut();
unsigned InnerSelectReg =
InnerLRegion->getRegionMRT()->getInnerOutputRegister();
replaceRegisterWith(InnerSelectReg, OuterSelect),
resolvePHIInfos(InnerEntry);
if (!InnerLRegion->getExit()->isSuccessor(CurrentMerge))
InnerLRegion->getExit()->addSuccessor(CurrentMerge);
continue;
}
BBSelectRegOut = Child->getBBSelectRegOut();
BBSelectRegIn = Child->getBBSelectRegIn();
LLVM_DEBUG(dbgs() << "BBSelectRegIn: " << printReg(BBSelectRegIn, TRI)
<< "\n");
LLVM_DEBUG(dbgs() << "BBSelectRegOut: " << printReg(BBSelectRegOut, TRI)
<< "\n");
MachineBasicBlock *IfEnd = CurrentMerge;
CurrentMerge = createIfRegion(CurrentMerge, InnerLRegion, LRegion,
Child->getRegionMRT()->getEntry(),
BBSelectRegIn, BBSelectRegOut);
TII->convertNonUniformIfRegion(CurrentMerge, IfEnd);
} else {
MachineBasicBlock *MBB = Child->getMBBMRT()->getMBB();
LLVM_DEBUG(dbgs() << "Linearizing block: " << MBB->getNumber() << "\n");
if (MBB == getSingleExitNode(*(MBB->getParent()))) {
// If this is the exit block then we need to skip to the next.
// The "in" register will be transferred to "out" in the next
// iteration.
continue;
}
BBSelectRegOut = Child->getBBSelectRegOut();
BBSelectRegIn = Child->getBBSelectRegIn();
LLVM_DEBUG(dbgs() << "BBSelectRegIn: " << printReg(BBSelectRegIn, TRI)
<< "\n");
LLVM_DEBUG(dbgs() << "BBSelectRegOut: " << printReg(BBSelectRegOut, TRI)
<< "\n");
MachineBasicBlock *IfEnd = CurrentMerge;
// This is a basic block that is not part of an inner region, we
// need to put it in the current linearized region.
CurrentMerge = createIfRegion(CurrentMerge, MBB, LRegion, BBSelectRegIn,
BBSelectRegOut);
if (CurrentMerge) {
TII->convertNonUniformIfRegion(CurrentMerge, IfEnd);
}
LLVM_DEBUG(PHIInfo.dump(MRI));
}
}
LRegion->removeFalseRegisterKills(MRI);
if (LRegion->getHasLoop()) {
MachineBasicBlock *NewSucc = splitEntry(LRegion);
if (isFunctionEntryBlock(LRegion->getEntry())) {
resolvePHIInfos(LRegion->getEntry());
}
const DebugLoc &DL = NewSucc->findDebugLoc(NewSucc->getFirstNonPHI());
unsigned InReg = LRegion->getBBSelectRegIn();
Register InnerSelectReg =
MRI->createVirtualRegister(MRI->getRegClass(InReg));
Register NewInReg = MRI->createVirtualRegister(MRI->getRegClass(InReg));
TII->materializeImmediate(*(LRegion->getEntry()),
LRegion->getEntry()->getFirstTerminator(), DL,
NewInReg, Region->getEntry()->getNumber());
// Need to be careful about updating the registers inside the region.
LRegion->replaceRegisterInsideRegion(InReg, InnerSelectReg, false, MRI);
LLVM_DEBUG(dbgs() << "Loop BBSelect Merge PHI:\n");
insertMergePHI(LRegion->getEntry(), LRegion->getExit(), NewSucc,
InnerSelectReg, NewInReg,
LRegion->getRegionMRT()->getInnerOutputRegister());
splitExit(LRegion);
TII->convertNonUniformLoopRegion(NewSucc, LastMerge);
}
if (Region->isRoot()) {
TII->insertReturn(*LastMerge);
}
LLVM_DEBUG(Region->getEntry()->getParent()->dump());
LLVM_DEBUG(LRegion->print(dbgs(), TRI));
LLVM_DEBUG(PHIInfo.dump(MRI));
LLVM_DEBUG(dbgs() << "===========If Region End===============\n");
Region->setLinearizedRegion(LRegion);
return true;
}
bool AMDGPUMachineCFGStructurizer::structurizeRegion(RegionMRT *Region) {
if (false && regionIsSimpleIf(Region)) {
transformSimpleIfRegion(Region);
return true;
} else if (regionIsSequence(Region)) {
fixupRegionExits(Region);
return false;
} else {
structurizeComplexRegion(Region);
}
return false;
}
static int structurize_once = 0;
bool AMDGPUMachineCFGStructurizer::structurizeRegions(RegionMRT *Region,
bool isTopRegion) {
bool Changed = false;
auto Children = Region->getChildren();
for (auto CI : *Children) {
if (CI->isRegion()) {
Changed |= structurizeRegions(CI->getRegionMRT(), false);
}
}
if (structurize_once < 2 || true) {
Changed |= structurizeRegion(Region);
structurize_once++;
}
return Changed;
}
void AMDGPUMachineCFGStructurizer::initFallthroughMap(MachineFunction &MF) {
LLVM_DEBUG(dbgs() << "Fallthrough Map:\n");
for (auto &MBBI : MF) {
MachineBasicBlock *MBB = MBBI.getFallThrough();
if (MBB != nullptr) {
LLVM_DEBUG(dbgs() << "Fallthrough: " << MBBI.getNumber() << " -> "
<< MBB->getNumber() << "\n");
}
FallthroughMap[&MBBI] = MBB;
}
}
void AMDGPUMachineCFGStructurizer::createLinearizedRegion(RegionMRT *Region,
unsigned SelectOut) {
LinearizedRegion *LRegion = new LinearizedRegion();
if (SelectOut) {
LRegion->addLiveOut(SelectOut);
LLVM_DEBUG(dbgs() << "Add LiveOut (BBSelect): " << printReg(SelectOut, TRI)
<< "\n");
}
LRegion->setRegionMRT(Region);
Region->setLinearizedRegion(LRegion);
LRegion->setParent(Region->getParent()
? Region->getParent()->getLinearizedRegion()
: nullptr);
}
unsigned
AMDGPUMachineCFGStructurizer::initializeSelectRegisters(MRT *MRT, unsigned SelectOut,
MachineRegisterInfo *MRI,
const SIInstrInfo *TII) {
if (MRT->isRegion()) {
RegionMRT *Region = MRT->getRegionMRT();
Region->setBBSelectRegOut(SelectOut);
unsigned InnerSelectOut = createBBSelectReg(TII, MRI);
// Fixme: Move linearization creation to the original spot
createLinearizedRegion(Region, SelectOut);
for (auto CI = Region->getChildren()->begin(),
CE = Region->getChildren()->end();
CI != CE; ++CI) {
InnerSelectOut =
initializeSelectRegisters((*CI), InnerSelectOut, MRI, TII);
}
MRT->setBBSelectRegIn(InnerSelectOut);
return InnerSelectOut;
} else {
MRT->setBBSelectRegOut(SelectOut);
unsigned NewSelectIn = createBBSelectReg(TII, MRI);
MRT->setBBSelectRegIn(NewSelectIn);
return NewSelectIn;
}
}
static void checkRegOnlyPHIInputs(MachineFunction &MF) {
for (auto &MBBI : MF) {
for (MachineBasicBlock::instr_iterator I = MBBI.instr_begin(),
E = MBBI.instr_end();
I != E; ++I) {
MachineInstr &Instr = *I;
if (Instr.isPHI()) {
int numPreds = getPHINumInputs(Instr);
for (int i = 0; i < numPreds; ++i) {
assert(Instr.getOperand(i * 2 + 1).isReg() &&
"PHI Operand not a register");
}
}
}
}
}
bool AMDGPUMachineCFGStructurizer::runOnMachineFunction(MachineFunction &MF) {
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
const SIInstrInfo *TII = ST.getInstrInfo();
TRI = ST.getRegisterInfo();
MRI = &(MF.getRegInfo());
initFallthroughMap(MF);
checkRegOnlyPHIInputs(MF);
LLVM_DEBUG(dbgs() << "----STRUCTURIZER START----\n");
LLVM_DEBUG(MF.dump());
Regions = &(getAnalysis<MachineRegionInfoPass>().getRegionInfo());
LLVM_DEBUG(Regions->dump());
RegionMRT *RTree = MRT::buildMRT(MF, Regions, TII, MRI);
setRegionMRT(RTree);
initializeSelectRegisters(RTree, 0, MRI, TII);
LLVM_DEBUG(RTree->dump(TRI));
bool result = structurizeRegions(RTree, true);
delete RTree;
LLVM_DEBUG(dbgs() << "----STRUCTURIZER END----\n");
initFallthroughMap(MF);
return result;
}
char AMDGPUMachineCFGStructurizerID = AMDGPUMachineCFGStructurizer::ID;
INITIALIZE_PASS_BEGIN(AMDGPUMachineCFGStructurizer, "amdgpu-machine-cfg-structurizer",
"AMDGPU Machine CFG Structurizer", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineRegionInfoPass)
INITIALIZE_PASS_END(AMDGPUMachineCFGStructurizer, "amdgpu-machine-cfg-structurizer",
"AMDGPU Machine CFG Structurizer", false, false)
FunctionPass *llvm::createAMDGPUMachineCFGStructurizerPass() {
return new AMDGPUMachineCFGStructurizer();
}