forked from OSchip/llvm-project
676 lines
28 KiB
C++
676 lines
28 KiB
C++
//===---- MachineCombiner.cpp - Instcombining on SSA form machine code ----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The machine combiner pass uses machine trace metrics to ensure the combined
|
|
// instructions do not lengthen the critical path or the resource depth.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/ProfileSummaryInfo.h"
|
|
#include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/MachineSizeOpts.h"
|
|
#include "llvm/CodeGen/MachineTraceMetrics.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetSchedule.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "machine-combiner"
|
|
|
|
STATISTIC(NumInstCombined, "Number of machineinst combined");
|
|
|
|
static cl::opt<unsigned>
|
|
inc_threshold("machine-combiner-inc-threshold", cl::Hidden,
|
|
cl::desc("Incremental depth computation will be used for basic "
|
|
"blocks with more instructions."), cl::init(500));
|
|
|
|
static cl::opt<bool> dump_intrs("machine-combiner-dump-subst-intrs", cl::Hidden,
|
|
cl::desc("Dump all substituted intrs"),
|
|
cl::init(false));
|
|
|
|
#ifdef EXPENSIVE_CHECKS
|
|
static cl::opt<bool> VerifyPatternOrder(
|
|
"machine-combiner-verify-pattern-order", cl::Hidden,
|
|
cl::desc(
|
|
"Verify that the generated patterns are ordered by increasing latency"),
|
|
cl::init(true));
|
|
#else
|
|
static cl::opt<bool> VerifyPatternOrder(
|
|
"machine-combiner-verify-pattern-order", cl::Hidden,
|
|
cl::desc(
|
|
"Verify that the generated patterns are ordered by increasing latency"),
|
|
cl::init(false));
|
|
#endif
|
|
|
|
namespace {
|
|
class MachineCombiner : public MachineFunctionPass {
|
|
const TargetSubtargetInfo *STI;
|
|
const TargetInstrInfo *TII;
|
|
const TargetRegisterInfo *TRI;
|
|
MCSchedModel SchedModel;
|
|
MachineRegisterInfo *MRI;
|
|
MachineLoopInfo *MLI; // Current MachineLoopInfo
|
|
MachineTraceMetrics *Traces;
|
|
MachineTraceMetrics::Ensemble *MinInstr;
|
|
MachineBlockFrequencyInfo *MBFI;
|
|
ProfileSummaryInfo *PSI;
|
|
|
|
TargetSchedModel TSchedModel;
|
|
|
|
/// True if optimizing for code size.
|
|
bool OptSize;
|
|
|
|
public:
|
|
static char ID;
|
|
MachineCombiner() : MachineFunctionPass(ID) {
|
|
initializeMachineCombinerPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
StringRef getPassName() const override { return "Machine InstCombiner"; }
|
|
|
|
private:
|
|
bool doSubstitute(unsigned NewSize, unsigned OldSize, bool OptForSize);
|
|
bool combineInstructions(MachineBasicBlock *);
|
|
MachineInstr *getOperandDef(const MachineOperand &MO);
|
|
unsigned getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
|
|
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
|
|
MachineTraceMetrics::Trace BlockTrace);
|
|
unsigned getLatency(MachineInstr *Root, MachineInstr *NewRoot,
|
|
MachineTraceMetrics::Trace BlockTrace);
|
|
bool
|
|
improvesCriticalPathLen(MachineBasicBlock *MBB, MachineInstr *Root,
|
|
MachineTraceMetrics::Trace BlockTrace,
|
|
SmallVectorImpl<MachineInstr *> &InsInstrs,
|
|
SmallVectorImpl<MachineInstr *> &DelInstrs,
|
|
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
|
|
MachineCombinerPattern Pattern, bool SlackIsAccurate);
|
|
bool preservesResourceLen(MachineBasicBlock *MBB,
|
|
MachineTraceMetrics::Trace BlockTrace,
|
|
SmallVectorImpl<MachineInstr *> &InsInstrs,
|
|
SmallVectorImpl<MachineInstr *> &DelInstrs);
|
|
void instr2instrSC(SmallVectorImpl<MachineInstr *> &Instrs,
|
|
SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC);
|
|
std::pair<unsigned, unsigned>
|
|
getLatenciesForInstrSequences(MachineInstr &MI,
|
|
SmallVectorImpl<MachineInstr *> &InsInstrs,
|
|
SmallVectorImpl<MachineInstr *> &DelInstrs,
|
|
MachineTraceMetrics::Trace BlockTrace);
|
|
|
|
void verifyPatternOrder(MachineBasicBlock *MBB, MachineInstr &Root,
|
|
SmallVector<MachineCombinerPattern, 16> &Patterns);
|
|
};
|
|
}
|
|
|
|
char MachineCombiner::ID = 0;
|
|
char &llvm::MachineCombinerID = MachineCombiner::ID;
|
|
|
|
INITIALIZE_PASS_BEGIN(MachineCombiner, DEBUG_TYPE,
|
|
"Machine InstCombiner", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
|
|
INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics)
|
|
INITIALIZE_PASS_END(MachineCombiner, DEBUG_TYPE, "Machine InstCombiner",
|
|
false, false)
|
|
|
|
void MachineCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesCFG();
|
|
AU.addPreserved<MachineDominatorTree>();
|
|
AU.addRequired<MachineLoopInfo>();
|
|
AU.addPreserved<MachineLoopInfo>();
|
|
AU.addRequired<MachineTraceMetrics>();
|
|
AU.addPreserved<MachineTraceMetrics>();
|
|
AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
|
|
AU.addRequired<ProfileSummaryInfoWrapperPass>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
MachineInstr *MachineCombiner::getOperandDef(const MachineOperand &MO) {
|
|
MachineInstr *DefInstr = nullptr;
|
|
// We need a virtual register definition.
|
|
if (MO.isReg() && Register::isVirtualRegister(MO.getReg()))
|
|
DefInstr = MRI->getUniqueVRegDef(MO.getReg());
|
|
// PHI's have no depth etc.
|
|
if (DefInstr && DefInstr->isPHI())
|
|
DefInstr = nullptr;
|
|
return DefInstr;
|
|
}
|
|
|
|
/// Computes depth of instructions in vector \InsInstr.
|
|
///
|
|
/// \param InsInstrs is a vector of machine instructions
|
|
/// \param InstrIdxForVirtReg is a dense map of virtual register to index
|
|
/// of defining machine instruction in \p InsInstrs
|
|
/// \param BlockTrace is a trace of machine instructions
|
|
///
|
|
/// \returns Depth of last instruction in \InsInstrs ("NewRoot")
|
|
unsigned
|
|
MachineCombiner::getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
|
|
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
|
|
MachineTraceMetrics::Trace BlockTrace) {
|
|
SmallVector<unsigned, 16> InstrDepth;
|
|
assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
|
|
"Missing machine model\n");
|
|
|
|
// For each instruction in the new sequence compute the depth based on the
|
|
// operands. Use the trace information when possible. For new operands which
|
|
// are tracked in the InstrIdxForVirtReg map depth is looked up in InstrDepth
|
|
for (auto *InstrPtr : InsInstrs) { // for each Use
|
|
unsigned IDepth = 0;
|
|
for (const MachineOperand &MO : InstrPtr->operands()) {
|
|
// Check for virtual register operand.
|
|
if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg())))
|
|
continue;
|
|
if (!MO.isUse())
|
|
continue;
|
|
unsigned DepthOp = 0;
|
|
unsigned LatencyOp = 0;
|
|
DenseMap<unsigned, unsigned>::iterator II =
|
|
InstrIdxForVirtReg.find(MO.getReg());
|
|
if (II != InstrIdxForVirtReg.end()) {
|
|
// Operand is new virtual register not in trace
|
|
assert(II->second < InstrDepth.size() && "Bad Index");
|
|
MachineInstr *DefInstr = InsInstrs[II->second];
|
|
assert(DefInstr &&
|
|
"There must be a definition for a new virtual register");
|
|
DepthOp = InstrDepth[II->second];
|
|
int DefIdx = DefInstr->findRegisterDefOperandIdx(MO.getReg());
|
|
int UseIdx = InstrPtr->findRegisterUseOperandIdx(MO.getReg());
|
|
LatencyOp = TSchedModel.computeOperandLatency(DefInstr, DefIdx,
|
|
InstrPtr, UseIdx);
|
|
} else {
|
|
MachineInstr *DefInstr = getOperandDef(MO);
|
|
if (DefInstr) {
|
|
DepthOp = BlockTrace.getInstrCycles(*DefInstr).Depth;
|
|
LatencyOp = TSchedModel.computeOperandLatency(
|
|
DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()),
|
|
InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg()));
|
|
}
|
|
}
|
|
IDepth = std::max(IDepth, DepthOp + LatencyOp);
|
|
}
|
|
InstrDepth.push_back(IDepth);
|
|
}
|
|
unsigned NewRootIdx = InsInstrs.size() - 1;
|
|
return InstrDepth[NewRootIdx];
|
|
}
|
|
|
|
/// Computes instruction latency as max of latency of defined operands.
|
|
///
|
|
/// \param Root is a machine instruction that could be replaced by NewRoot.
|
|
/// It is used to compute a more accurate latency information for NewRoot in
|
|
/// case there is a dependent instruction in the same trace (\p BlockTrace)
|
|
/// \param NewRoot is the instruction for which the latency is computed
|
|
/// \param BlockTrace is a trace of machine instructions
|
|
///
|
|
/// \returns Latency of \p NewRoot
|
|
unsigned MachineCombiner::getLatency(MachineInstr *Root, MachineInstr *NewRoot,
|
|
MachineTraceMetrics::Trace BlockTrace) {
|
|
assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
|
|
"Missing machine model\n");
|
|
|
|
// Check each definition in NewRoot and compute the latency
|
|
unsigned NewRootLatency = 0;
|
|
|
|
for (const MachineOperand &MO : NewRoot->operands()) {
|
|
// Check for virtual register operand.
|
|
if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg())))
|
|
continue;
|
|
if (!MO.isDef())
|
|
continue;
|
|
// Get the first instruction that uses MO
|
|
MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(MO.getReg());
|
|
RI++;
|
|
if (RI == MRI->reg_end())
|
|
continue;
|
|
MachineInstr *UseMO = RI->getParent();
|
|
unsigned LatencyOp = 0;
|
|
if (UseMO && BlockTrace.isDepInTrace(*Root, *UseMO)) {
|
|
LatencyOp = TSchedModel.computeOperandLatency(
|
|
NewRoot, NewRoot->findRegisterDefOperandIdx(MO.getReg()), UseMO,
|
|
UseMO->findRegisterUseOperandIdx(MO.getReg()));
|
|
} else {
|
|
LatencyOp = TSchedModel.computeInstrLatency(NewRoot);
|
|
}
|
|
NewRootLatency = std::max(NewRootLatency, LatencyOp);
|
|
}
|
|
return NewRootLatency;
|
|
}
|
|
|
|
/// The combiner's goal may differ based on which pattern it is attempting
|
|
/// to optimize.
|
|
enum class CombinerObjective {
|
|
MustReduceDepth, // The data dependency chain must be improved.
|
|
Default // The critical path must not be lengthened.
|
|
};
|
|
|
|
static CombinerObjective getCombinerObjective(MachineCombinerPattern P) {
|
|
// TODO: If C++ ever gets a real enum class, make this part of the
|
|
// MachineCombinerPattern class.
|
|
switch (P) {
|
|
case MachineCombinerPattern::REASSOC_AX_BY:
|
|
case MachineCombinerPattern::REASSOC_AX_YB:
|
|
case MachineCombinerPattern::REASSOC_XA_BY:
|
|
case MachineCombinerPattern::REASSOC_XA_YB:
|
|
return CombinerObjective::MustReduceDepth;
|
|
default:
|
|
return CombinerObjective::Default;
|
|
}
|
|
}
|
|
|
|
/// Estimate the latency of the new and original instruction sequence by summing
|
|
/// up the latencies of the inserted and deleted instructions. This assumes
|
|
/// that the inserted and deleted instructions are dependent instruction chains,
|
|
/// which might not hold in all cases.
|
|
std::pair<unsigned, unsigned> MachineCombiner::getLatenciesForInstrSequences(
|
|
MachineInstr &MI, SmallVectorImpl<MachineInstr *> &InsInstrs,
|
|
SmallVectorImpl<MachineInstr *> &DelInstrs,
|
|
MachineTraceMetrics::Trace BlockTrace) {
|
|
assert(!InsInstrs.empty() && "Only support sequences that insert instrs.");
|
|
unsigned NewRootLatency = 0;
|
|
// NewRoot is the last instruction in the \p InsInstrs vector.
|
|
MachineInstr *NewRoot = InsInstrs.back();
|
|
for (unsigned i = 0; i < InsInstrs.size() - 1; i++)
|
|
NewRootLatency += TSchedModel.computeInstrLatency(InsInstrs[i]);
|
|
NewRootLatency += getLatency(&MI, NewRoot, BlockTrace);
|
|
|
|
unsigned RootLatency = 0;
|
|
for (auto I : DelInstrs)
|
|
RootLatency += TSchedModel.computeInstrLatency(I);
|
|
|
|
return {NewRootLatency, RootLatency};
|
|
}
|
|
|
|
/// The DAGCombine code sequence ends in MI (Machine Instruction) Root.
|
|
/// The new code sequence ends in MI NewRoot. A necessary condition for the new
|
|
/// sequence to replace the old sequence is that it cannot lengthen the critical
|
|
/// path. The definition of "improve" may be restricted by specifying that the
|
|
/// new path improves the data dependency chain (MustReduceDepth).
|
|
bool MachineCombiner::improvesCriticalPathLen(
|
|
MachineBasicBlock *MBB, MachineInstr *Root,
|
|
MachineTraceMetrics::Trace BlockTrace,
|
|
SmallVectorImpl<MachineInstr *> &InsInstrs,
|
|
SmallVectorImpl<MachineInstr *> &DelInstrs,
|
|
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
|
|
MachineCombinerPattern Pattern,
|
|
bool SlackIsAccurate) {
|
|
assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
|
|
"Missing machine model\n");
|
|
// Get depth and latency of NewRoot and Root.
|
|
unsigned NewRootDepth = getDepth(InsInstrs, InstrIdxForVirtReg, BlockTrace);
|
|
unsigned RootDepth = BlockTrace.getInstrCycles(*Root).Depth;
|
|
|
|
LLVM_DEBUG(dbgs() << " Dependence data for " << *Root << "\tNewRootDepth: "
|
|
<< NewRootDepth << "\tRootDepth: " << RootDepth);
|
|
|
|
// For a transform such as reassociation, the cost equation is
|
|
// conservatively calculated so that we must improve the depth (data
|
|
// dependency cycles) in the critical path to proceed with the transform.
|
|
// Being conservative also protects against inaccuracies in the underlying
|
|
// machine trace metrics and CPU models.
|
|
if (getCombinerObjective(Pattern) == CombinerObjective::MustReduceDepth) {
|
|
LLVM_DEBUG(dbgs() << "\tIt MustReduceDepth ");
|
|
LLVM_DEBUG(NewRootDepth < RootDepth
|
|
? dbgs() << "\t and it does it\n"
|
|
: dbgs() << "\t but it does NOT do it\n");
|
|
return NewRootDepth < RootDepth;
|
|
}
|
|
|
|
// A more flexible cost calculation for the critical path includes the slack
|
|
// of the original code sequence. This may allow the transform to proceed
|
|
// even if the instruction depths (data dependency cycles) become worse.
|
|
|
|
// Account for the latency of the inserted and deleted instructions by
|
|
unsigned NewRootLatency, RootLatency;
|
|
std::tie(NewRootLatency, RootLatency) =
|
|
getLatenciesForInstrSequences(*Root, InsInstrs, DelInstrs, BlockTrace);
|
|
|
|
unsigned RootSlack = BlockTrace.getInstrSlack(*Root);
|
|
unsigned NewCycleCount = NewRootDepth + NewRootLatency;
|
|
unsigned OldCycleCount =
|
|
RootDepth + RootLatency + (SlackIsAccurate ? RootSlack : 0);
|
|
LLVM_DEBUG(dbgs() << "\n\tNewRootLatency: " << NewRootLatency
|
|
<< "\tRootLatency: " << RootLatency << "\n\tRootSlack: "
|
|
<< RootSlack << " SlackIsAccurate=" << SlackIsAccurate
|
|
<< "\n\tNewRootDepth + NewRootLatency = " << NewCycleCount
|
|
<< "\n\tRootDepth + RootLatency + RootSlack = "
|
|
<< OldCycleCount;);
|
|
LLVM_DEBUG(NewCycleCount <= OldCycleCount
|
|
? dbgs() << "\n\t It IMPROVES PathLen because"
|
|
: dbgs() << "\n\t It DOES NOT improve PathLen because");
|
|
LLVM_DEBUG(dbgs() << "\n\t\tNewCycleCount = " << NewCycleCount
|
|
<< ", OldCycleCount = " << OldCycleCount << "\n");
|
|
|
|
return NewCycleCount <= OldCycleCount;
|
|
}
|
|
|
|
/// helper routine to convert instructions into SC
|
|
void MachineCombiner::instr2instrSC(
|
|
SmallVectorImpl<MachineInstr *> &Instrs,
|
|
SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC) {
|
|
for (auto *InstrPtr : Instrs) {
|
|
unsigned Opc = InstrPtr->getOpcode();
|
|
unsigned Idx = TII->get(Opc).getSchedClass();
|
|
const MCSchedClassDesc *SC = SchedModel.getSchedClassDesc(Idx);
|
|
InstrsSC.push_back(SC);
|
|
}
|
|
}
|
|
|
|
/// True when the new instructions do not increase resource length
|
|
bool MachineCombiner::preservesResourceLen(
|
|
MachineBasicBlock *MBB, MachineTraceMetrics::Trace BlockTrace,
|
|
SmallVectorImpl<MachineInstr *> &InsInstrs,
|
|
SmallVectorImpl<MachineInstr *> &DelInstrs) {
|
|
if (!TSchedModel.hasInstrSchedModel())
|
|
return true;
|
|
|
|
// Compute current resource length
|
|
|
|
//ArrayRef<const MachineBasicBlock *> MBBarr(MBB);
|
|
SmallVector <const MachineBasicBlock *, 1> MBBarr;
|
|
MBBarr.push_back(MBB);
|
|
unsigned ResLenBeforeCombine = BlockTrace.getResourceLength(MBBarr);
|
|
|
|
// Deal with SC rather than Instructions.
|
|
SmallVector<const MCSchedClassDesc *, 16> InsInstrsSC;
|
|
SmallVector<const MCSchedClassDesc *, 16> DelInstrsSC;
|
|
|
|
instr2instrSC(InsInstrs, InsInstrsSC);
|
|
instr2instrSC(DelInstrs, DelInstrsSC);
|
|
|
|
ArrayRef<const MCSchedClassDesc *> MSCInsArr = makeArrayRef(InsInstrsSC);
|
|
ArrayRef<const MCSchedClassDesc *> MSCDelArr = makeArrayRef(DelInstrsSC);
|
|
|
|
// Compute new resource length.
|
|
unsigned ResLenAfterCombine =
|
|
BlockTrace.getResourceLength(MBBarr, MSCInsArr, MSCDelArr);
|
|
|
|
LLVM_DEBUG(dbgs() << "\t\tResource length before replacement: "
|
|
<< ResLenBeforeCombine
|
|
<< " and after: " << ResLenAfterCombine << "\n";);
|
|
LLVM_DEBUG(
|
|
ResLenAfterCombine <= ResLenBeforeCombine
|
|
? dbgs() << "\t\t As result it IMPROVES/PRESERVES Resource Length\n"
|
|
: dbgs() << "\t\t As result it DOES NOT improve/preserve Resource "
|
|
"Length\n");
|
|
|
|
return ResLenAfterCombine <= ResLenBeforeCombine;
|
|
}
|
|
|
|
/// \returns true when new instruction sequence should be generated
|
|
/// independent if it lengthens critical path or not
|
|
bool MachineCombiner::doSubstitute(unsigned NewSize, unsigned OldSize,
|
|
bool OptForSize) {
|
|
if (OptForSize && (NewSize < OldSize))
|
|
return true;
|
|
if (!TSchedModel.hasInstrSchedModelOrItineraries())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// Inserts InsInstrs and deletes DelInstrs. Incrementally updates instruction
|
|
/// depths if requested.
|
|
///
|
|
/// \param MBB basic block to insert instructions in
|
|
/// \param MI current machine instruction
|
|
/// \param InsInstrs new instructions to insert in \p MBB
|
|
/// \param DelInstrs instruction to delete from \p MBB
|
|
/// \param MinInstr is a pointer to the machine trace information
|
|
/// \param RegUnits set of live registers, needed to compute instruction depths
|
|
/// \param IncrementalUpdate if true, compute instruction depths incrementally,
|
|
/// otherwise invalidate the trace
|
|
static void insertDeleteInstructions(MachineBasicBlock *MBB, MachineInstr &MI,
|
|
SmallVector<MachineInstr *, 16> InsInstrs,
|
|
SmallVector<MachineInstr *, 16> DelInstrs,
|
|
MachineTraceMetrics::Ensemble *MinInstr,
|
|
SparseSet<LiveRegUnit> &RegUnits,
|
|
bool IncrementalUpdate) {
|
|
for (auto *InstrPtr : InsInstrs)
|
|
MBB->insert((MachineBasicBlock::iterator)&MI, InstrPtr);
|
|
|
|
for (auto *InstrPtr : DelInstrs) {
|
|
InstrPtr->eraseFromParentAndMarkDBGValuesForRemoval();
|
|
// Erase all LiveRegs defined by the removed instruction
|
|
for (auto I = RegUnits.begin(); I != RegUnits.end(); ) {
|
|
if (I->MI == InstrPtr)
|
|
I = RegUnits.erase(I);
|
|
else
|
|
I++;
|
|
}
|
|
}
|
|
|
|
if (IncrementalUpdate)
|
|
for (auto *InstrPtr : InsInstrs)
|
|
MinInstr->updateDepth(MBB, *InstrPtr, RegUnits);
|
|
else
|
|
MinInstr->invalidate(MBB);
|
|
|
|
NumInstCombined++;
|
|
}
|
|
|
|
// Check that the difference between original and new latency is decreasing for
|
|
// later patterns. This helps to discover sub-optimal pattern orderings.
|
|
void MachineCombiner::verifyPatternOrder(
|
|
MachineBasicBlock *MBB, MachineInstr &Root,
|
|
SmallVector<MachineCombinerPattern, 16> &Patterns) {
|
|
long PrevLatencyDiff = std::numeric_limits<long>::max();
|
|
(void)PrevLatencyDiff; // Variable is used in assert only.
|
|
for (auto P : Patterns) {
|
|
SmallVector<MachineInstr *, 16> InsInstrs;
|
|
SmallVector<MachineInstr *, 16> DelInstrs;
|
|
DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
|
|
TII->genAlternativeCodeSequence(Root, P, InsInstrs, DelInstrs,
|
|
InstrIdxForVirtReg);
|
|
// Found pattern, but did not generate alternative sequence.
|
|
// This can happen e.g. when an immediate could not be materialized
|
|
// in a single instruction.
|
|
if (InsInstrs.empty() || !TSchedModel.hasInstrSchedModelOrItineraries())
|
|
continue;
|
|
|
|
unsigned NewRootLatency, RootLatency;
|
|
std::tie(NewRootLatency, RootLatency) = getLatenciesForInstrSequences(
|
|
Root, InsInstrs, DelInstrs, MinInstr->getTrace(MBB));
|
|
long CurrentLatencyDiff = ((long)RootLatency) - ((long)NewRootLatency);
|
|
assert(CurrentLatencyDiff <= PrevLatencyDiff &&
|
|
"Current pattern is better than previous pattern.");
|
|
PrevLatencyDiff = CurrentLatencyDiff;
|
|
}
|
|
}
|
|
|
|
/// Substitute a slow code sequence with a faster one by
|
|
/// evaluating instruction combining pattern.
|
|
/// The prototype of such a pattern is MUl + ADD -> MADD. Performs instruction
|
|
/// combining based on machine trace metrics. Only combine a sequence of
|
|
/// instructions when this neither lengthens the critical path nor increases
|
|
/// resource pressure. When optimizing for codesize always combine when the new
|
|
/// sequence is shorter.
|
|
bool MachineCombiner::combineInstructions(MachineBasicBlock *MBB) {
|
|
bool Changed = false;
|
|
LLVM_DEBUG(dbgs() << "Combining MBB " << MBB->getName() << "\n");
|
|
|
|
bool IncrementalUpdate = false;
|
|
auto BlockIter = MBB->begin();
|
|
decltype(BlockIter) LastUpdate;
|
|
// Check if the block is in a loop.
|
|
const MachineLoop *ML = MLI->getLoopFor(MBB);
|
|
if (!MinInstr)
|
|
MinInstr = Traces->getEnsemble(MachineTraceMetrics::TS_MinInstrCount);
|
|
|
|
SparseSet<LiveRegUnit> RegUnits;
|
|
RegUnits.setUniverse(TRI->getNumRegUnits());
|
|
|
|
bool OptForSize = OptSize || llvm::shouldOptimizeForSize(MBB, PSI, MBFI);
|
|
|
|
while (BlockIter != MBB->end()) {
|
|
auto &MI = *BlockIter++;
|
|
SmallVector<MachineCombinerPattern, 16> Patterns;
|
|
// The motivating example is:
|
|
//
|
|
// MUL Other MUL_op1 MUL_op2 Other
|
|
// \ / \ | /
|
|
// ADD/SUB => MADD/MSUB
|
|
// (=Root) (=NewRoot)
|
|
|
|
// The DAGCombine code always replaced MUL + ADD/SUB by MADD. While this is
|
|
// usually beneficial for code size it unfortunately can hurt performance
|
|
// when the ADD is on the critical path, but the MUL is not. With the
|
|
// substitution the MUL becomes part of the critical path (in form of the
|
|
// MADD) and can lengthen it on architectures where the MADD latency is
|
|
// longer than the ADD latency.
|
|
//
|
|
// For each instruction we check if it can be the root of a combiner
|
|
// pattern. Then for each pattern the new code sequence in form of MI is
|
|
// generated and evaluated. When the efficiency criteria (don't lengthen
|
|
// critical path, don't use more resources) is met the new sequence gets
|
|
// hooked up into the basic block before the old sequence is removed.
|
|
//
|
|
// The algorithm does not try to evaluate all patterns and pick the best.
|
|
// This is only an artificial restriction though. In practice there is
|
|
// mostly one pattern, and getMachineCombinerPatterns() can order patterns
|
|
// based on an internal cost heuristic. If
|
|
// machine-combiner-verify-pattern-order is enabled, all patterns are
|
|
// checked to ensure later patterns do not provide better latency savings.
|
|
|
|
if (!TII->getMachineCombinerPatterns(MI, Patterns))
|
|
continue;
|
|
|
|
if (VerifyPatternOrder)
|
|
verifyPatternOrder(MBB, MI, Patterns);
|
|
|
|
for (auto P : Patterns) {
|
|
SmallVector<MachineInstr *, 16> InsInstrs;
|
|
SmallVector<MachineInstr *, 16> DelInstrs;
|
|
DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
|
|
TII->genAlternativeCodeSequence(MI, P, InsInstrs, DelInstrs,
|
|
InstrIdxForVirtReg);
|
|
unsigned NewInstCount = InsInstrs.size();
|
|
unsigned OldInstCount = DelInstrs.size();
|
|
// Found pattern, but did not generate alternative sequence.
|
|
// This can happen e.g. when an immediate could not be materialized
|
|
// in a single instruction.
|
|
if (!NewInstCount)
|
|
continue;
|
|
|
|
LLVM_DEBUG(if (dump_intrs) {
|
|
dbgs() << "\tFor the Pattern (" << (int)P
|
|
<< ") these instructions could be removed\n";
|
|
for (auto const *InstrPtr : DelInstrs)
|
|
InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false,
|
|
/*SkipDebugLoc*/false, /*AddNewLine*/true, TII);
|
|
dbgs() << "\tThese instructions could replace the removed ones\n";
|
|
for (auto const *InstrPtr : InsInstrs)
|
|
InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false,
|
|
/*SkipDebugLoc*/false, /*AddNewLine*/true, TII);
|
|
});
|
|
|
|
bool SubstituteAlways = false;
|
|
if (ML && TII->isThroughputPattern(P))
|
|
SubstituteAlways = true;
|
|
|
|
if (IncrementalUpdate) {
|
|
// Update depths since the last incremental update.
|
|
MinInstr->updateDepths(LastUpdate, BlockIter, RegUnits);
|
|
LastUpdate = BlockIter;
|
|
}
|
|
|
|
// Substitute when we optimize for codesize and the new sequence has
|
|
// fewer instructions OR
|
|
// the new sequence neither lengthens the critical path nor increases
|
|
// resource pressure.
|
|
if (SubstituteAlways ||
|
|
doSubstitute(NewInstCount, OldInstCount, OptForSize)) {
|
|
insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr,
|
|
RegUnits, IncrementalUpdate);
|
|
// Eagerly stop after the first pattern fires.
|
|
Changed = true;
|
|
break;
|
|
} else {
|
|
// For big basic blocks, we only compute the full trace the first time
|
|
// we hit this. We do not invalidate the trace, but instead update the
|
|
// instruction depths incrementally.
|
|
// NOTE: Only the instruction depths up to MI are accurate. All other
|
|
// trace information is not updated.
|
|
MachineTraceMetrics::Trace BlockTrace = MinInstr->getTrace(MBB);
|
|
Traces->verifyAnalysis();
|
|
if (improvesCriticalPathLen(MBB, &MI, BlockTrace, InsInstrs, DelInstrs,
|
|
InstrIdxForVirtReg, P,
|
|
!IncrementalUpdate) &&
|
|
preservesResourceLen(MBB, BlockTrace, InsInstrs, DelInstrs)) {
|
|
if (MBB->size() > inc_threshold) {
|
|
// Use incremental depth updates for basic blocks above treshold
|
|
IncrementalUpdate = true;
|
|
LastUpdate = BlockIter;
|
|
}
|
|
|
|
insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr,
|
|
RegUnits, IncrementalUpdate);
|
|
|
|
// Eagerly stop after the first pattern fires.
|
|
Changed = true;
|
|
break;
|
|
}
|
|
// Cleanup instructions of the alternative code sequence. There is no
|
|
// use for them.
|
|
MachineFunction *MF = MBB->getParent();
|
|
for (auto *InstrPtr : InsInstrs)
|
|
MF->DeleteMachineInstr(InstrPtr);
|
|
}
|
|
InstrIdxForVirtReg.clear();
|
|
}
|
|
}
|
|
|
|
if (Changed && IncrementalUpdate)
|
|
Traces->invalidate(MBB);
|
|
return Changed;
|
|
}
|
|
|
|
bool MachineCombiner::runOnMachineFunction(MachineFunction &MF) {
|
|
STI = &MF.getSubtarget();
|
|
TII = STI->getInstrInfo();
|
|
TRI = STI->getRegisterInfo();
|
|
SchedModel = STI->getSchedModel();
|
|
TSchedModel.init(STI);
|
|
MRI = &MF.getRegInfo();
|
|
MLI = &getAnalysis<MachineLoopInfo>();
|
|
Traces = &getAnalysis<MachineTraceMetrics>();
|
|
PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
|
|
MBFI = (PSI && PSI->hasProfileSummary()) ?
|
|
&getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() :
|
|
nullptr;
|
|
MinInstr = nullptr;
|
|
OptSize = MF.getFunction().hasOptSize();
|
|
|
|
LLVM_DEBUG(dbgs() << getPassName() << ": " << MF.getName() << '\n');
|
|
if (!TII->useMachineCombiner()) {
|
|
LLVM_DEBUG(
|
|
dbgs()
|
|
<< " Skipping pass: Target does not support machine combiner\n");
|
|
return false;
|
|
}
|
|
|
|
bool Changed = false;
|
|
|
|
// Try to combine instructions.
|
|
for (auto &MBB : MF)
|
|
Changed |= combineInstructions(&MBB);
|
|
|
|
return Changed;
|
|
}
|