forked from OSchip/llvm-project
239 lines
9.0 KiB
C++
239 lines
9.0 KiB
C++
//== RangedConstraintManager.cpp --------------------------------*- C++ -*--==//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines RangedConstraintManager, a class that provides a
|
|
// range-based constraint manager interface.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/RangedConstraintManager.h"
|
|
|
|
namespace clang {
|
|
|
|
namespace ento {
|
|
|
|
RangedConstraintManager::~RangedConstraintManager() {}
|
|
|
|
ProgramStateRef RangedConstraintManager::assumeSym(ProgramStateRef State,
|
|
SymbolRef Sym,
|
|
bool Assumption) {
|
|
Sym = simplify(State, Sym);
|
|
|
|
// Handle SymbolData.
|
|
if (isa<SymbolData>(Sym))
|
|
return assumeSymUnsupported(State, Sym, Assumption);
|
|
|
|
// Handle symbolic expression.
|
|
if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(Sym)) {
|
|
// We can only simplify expressions whose RHS is an integer.
|
|
|
|
BinaryOperator::Opcode op = SIE->getOpcode();
|
|
if (BinaryOperator::isComparisonOp(op) && op != BO_Cmp) {
|
|
if (!Assumption)
|
|
op = BinaryOperator::negateComparisonOp(op);
|
|
|
|
return assumeSymRel(State, SIE->getLHS(), op, SIE->getRHS());
|
|
}
|
|
|
|
} else if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(Sym)) {
|
|
BinaryOperator::Opcode Op = SSE->getOpcode();
|
|
assert(BinaryOperator::isComparisonOp(Op));
|
|
|
|
// We convert equality operations for pointers only.
|
|
if (Loc::isLocType(SSE->getLHS()->getType()) &&
|
|
Loc::isLocType(SSE->getRHS()->getType())) {
|
|
// Translate "a != b" to "(b - a) != 0".
|
|
// We invert the order of the operands as a heuristic for how loop
|
|
// conditions are usually written ("begin != end") as compared to length
|
|
// calculations ("end - begin"). The more correct thing to do would be to
|
|
// canonicalize "a - b" and "b - a", which would allow us to treat
|
|
// "a != b" and "b != a" the same.
|
|
|
|
SymbolManager &SymMgr = getSymbolManager();
|
|
QualType DiffTy = SymMgr.getContext().getPointerDiffType();
|
|
SymbolRef Subtraction =
|
|
SymMgr.getSymSymExpr(SSE->getRHS(), BO_Sub, SSE->getLHS(), DiffTy);
|
|
|
|
const llvm::APSInt &Zero = getBasicVals().getValue(0, DiffTy);
|
|
Op = BinaryOperator::reverseComparisonOp(Op);
|
|
if (!Assumption)
|
|
Op = BinaryOperator::negateComparisonOp(Op);
|
|
return assumeSymRel(State, Subtraction, Op, Zero);
|
|
}
|
|
|
|
if (BinaryOperator::isEqualityOp(Op)) {
|
|
SymbolManager &SymMgr = getSymbolManager();
|
|
|
|
QualType ExprType = SSE->getType();
|
|
SymbolRef CanonicalEquality =
|
|
SymMgr.getSymSymExpr(SSE->getLHS(), BO_EQ, SSE->getRHS(), ExprType);
|
|
|
|
bool WasEqual = SSE->getOpcode() == BO_EQ;
|
|
bool IsExpectedEqual = WasEqual == Assumption;
|
|
|
|
const llvm::APSInt &Zero = getBasicVals().getValue(0, ExprType);
|
|
|
|
if (IsExpectedEqual) {
|
|
return assumeSymNE(State, CanonicalEquality, Zero, Zero);
|
|
}
|
|
|
|
return assumeSymEQ(State, CanonicalEquality, Zero, Zero);
|
|
}
|
|
}
|
|
|
|
// If we get here, there's nothing else we can do but treat the symbol as
|
|
// opaque.
|
|
return assumeSymUnsupported(State, Sym, Assumption);
|
|
}
|
|
|
|
ProgramStateRef RangedConstraintManager::assumeSymInclusiveRange(
|
|
ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
|
|
const llvm::APSInt &To, bool InRange) {
|
|
|
|
Sym = simplify(State, Sym);
|
|
|
|
// Get the type used for calculating wraparound.
|
|
BasicValueFactory &BVF = getBasicVals();
|
|
APSIntType WraparoundType = BVF.getAPSIntType(Sym->getType());
|
|
|
|
llvm::APSInt Adjustment = WraparoundType.getZeroValue();
|
|
SymbolRef AdjustedSym = Sym;
|
|
computeAdjustment(AdjustedSym, Adjustment);
|
|
|
|
// Convert the right-hand side integer as necessary.
|
|
APSIntType ComparisonType = std::max(WraparoundType, APSIntType(From));
|
|
llvm::APSInt ConvertedFrom = ComparisonType.convert(From);
|
|
llvm::APSInt ConvertedTo = ComparisonType.convert(To);
|
|
|
|
// Prefer unsigned comparisons.
|
|
if (ComparisonType.getBitWidth() == WraparoundType.getBitWidth() &&
|
|
ComparisonType.isUnsigned() && !WraparoundType.isUnsigned())
|
|
Adjustment.setIsSigned(false);
|
|
|
|
if (InRange)
|
|
return assumeSymWithinInclusiveRange(State, AdjustedSym, ConvertedFrom,
|
|
ConvertedTo, Adjustment);
|
|
return assumeSymOutsideInclusiveRange(State, AdjustedSym, ConvertedFrom,
|
|
ConvertedTo, Adjustment);
|
|
}
|
|
|
|
ProgramStateRef
|
|
RangedConstraintManager::assumeSymUnsupported(ProgramStateRef State,
|
|
SymbolRef Sym, bool Assumption) {
|
|
Sym = simplify(State, Sym);
|
|
|
|
BasicValueFactory &BVF = getBasicVals();
|
|
QualType T = Sym->getType();
|
|
|
|
// Non-integer types are not supported.
|
|
if (!T->isIntegralOrEnumerationType())
|
|
return State;
|
|
|
|
// Reverse the operation and add directly to state.
|
|
const llvm::APSInt &Zero = BVF.getValue(0, T);
|
|
if (Assumption)
|
|
return assumeSymNE(State, Sym, Zero, Zero);
|
|
else
|
|
return assumeSymEQ(State, Sym, Zero, Zero);
|
|
}
|
|
|
|
ProgramStateRef RangedConstraintManager::assumeSymRel(ProgramStateRef State,
|
|
SymbolRef Sym,
|
|
BinaryOperator::Opcode Op,
|
|
const llvm::APSInt &Int) {
|
|
assert(BinaryOperator::isComparisonOp(Op) &&
|
|
"Non-comparison ops should be rewritten as comparisons to zero.");
|
|
|
|
// Simplification: translate an assume of a constraint of the form
|
|
// "(exp comparison_op expr) != 0" to true into an assume of
|
|
// "exp comparison_op expr" to true. (And similarly, an assume of the form
|
|
// "(exp comparison_op expr) == 0" to true into an assume of
|
|
// "exp comparison_op expr" to false.)
|
|
if (Int == 0 && (Op == BO_EQ || Op == BO_NE)) {
|
|
if (const BinarySymExpr *SE = dyn_cast<BinarySymExpr>(Sym))
|
|
if (BinaryOperator::isComparisonOp(SE->getOpcode()))
|
|
return assumeSym(State, Sym, (Op == BO_NE ? true : false));
|
|
}
|
|
|
|
// Get the type used for calculating wraparound.
|
|
BasicValueFactory &BVF = getBasicVals();
|
|
APSIntType WraparoundType = BVF.getAPSIntType(Sym->getType());
|
|
|
|
// We only handle simple comparisons of the form "$sym == constant"
|
|
// or "($sym+constant1) == constant2".
|
|
// The adjustment is "constant1" in the above expression. It's used to
|
|
// "slide" the solution range around for modular arithmetic. For example,
|
|
// x < 4 has the solution [0, 3]. x+2 < 4 has the solution [0-2, 3-2], which
|
|
// in modular arithmetic is [0, 1] U [UINT_MAX-1, UINT_MAX]. It's up to
|
|
// the subclasses of SimpleConstraintManager to handle the adjustment.
|
|
llvm::APSInt Adjustment = WraparoundType.getZeroValue();
|
|
computeAdjustment(Sym, Adjustment);
|
|
|
|
// Convert the right-hand side integer as necessary.
|
|
APSIntType ComparisonType = std::max(WraparoundType, APSIntType(Int));
|
|
llvm::APSInt ConvertedInt = ComparisonType.convert(Int);
|
|
|
|
// Prefer unsigned comparisons.
|
|
if (ComparisonType.getBitWidth() == WraparoundType.getBitWidth() &&
|
|
ComparisonType.isUnsigned() && !WraparoundType.isUnsigned())
|
|
Adjustment.setIsSigned(false);
|
|
|
|
switch (Op) {
|
|
default:
|
|
llvm_unreachable("invalid operation not caught by assertion above");
|
|
|
|
case BO_EQ:
|
|
return assumeSymEQ(State, Sym, ConvertedInt, Adjustment);
|
|
|
|
case BO_NE:
|
|
return assumeSymNE(State, Sym, ConvertedInt, Adjustment);
|
|
|
|
case BO_GT:
|
|
return assumeSymGT(State, Sym, ConvertedInt, Adjustment);
|
|
|
|
case BO_GE:
|
|
return assumeSymGE(State, Sym, ConvertedInt, Adjustment);
|
|
|
|
case BO_LT:
|
|
return assumeSymLT(State, Sym, ConvertedInt, Adjustment);
|
|
|
|
case BO_LE:
|
|
return assumeSymLE(State, Sym, ConvertedInt, Adjustment);
|
|
} // end switch
|
|
}
|
|
|
|
void RangedConstraintManager::computeAdjustment(SymbolRef &Sym,
|
|
llvm::APSInt &Adjustment) {
|
|
// Is it a "($sym+constant1)" expression?
|
|
if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(Sym)) {
|
|
BinaryOperator::Opcode Op = SE->getOpcode();
|
|
if (Op == BO_Add || Op == BO_Sub) {
|
|
Sym = SE->getLHS();
|
|
Adjustment = APSIntType(Adjustment).convert(SE->getRHS());
|
|
|
|
// Don't forget to negate the adjustment if it's being subtracted.
|
|
// This should happen /after/ promotion, in case the value being
|
|
// subtracted is, say, CHAR_MIN, and the promoted type is 'int'.
|
|
if (Op == BO_Sub)
|
|
Adjustment = -Adjustment;
|
|
}
|
|
}
|
|
}
|
|
|
|
SymbolRef simplify(ProgramStateRef State, SymbolRef Sym) {
|
|
SValBuilder &SVB = State->getStateManager().getSValBuilder();
|
|
SVal SimplifiedVal = SVB.simplifySVal(State, SVB.makeSymbolVal(Sym));
|
|
if (SymbolRef SimplifiedSym = SimplifiedVal.getAsSymbol())
|
|
return SimplifiedSym;
|
|
return Sym;
|
|
}
|
|
|
|
} // end of namespace ento
|
|
} // end of namespace clang
|