llvm-project/mlir/lib/Pass/PassTiming.cpp

477 lines
17 KiB
C++

//===- PassTiming.cpp -----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Pass/PassManager.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/Threading.h"
#include <chrono>
using namespace mlir;
using namespace mlir::detail;
constexpr StringLiteral kPassTimingDescription =
"... Pass execution timing report ...";
namespace {
/// Simple record class to record timing information.
struct TimeRecord {
TimeRecord(double wall = 0.0, double user = 0.0) : wall(wall), user(user) {}
TimeRecord &operator+=(const TimeRecord &other) {
wall += other.wall;
user += other.user;
return *this;
}
/// Print the current time record to 'os', with a breakdown showing
/// contributions to the give 'total' time record.
void print(raw_ostream &os, const TimeRecord &total) {
if (total.user != total.wall)
os << llvm::format(" %7.4f (%5.1f%%) ", user,
100.0 * user / total.user);
os << llvm::format(" %7.4f (%5.1f%%) ", wall, 100.0 * wall / total.wall);
}
double wall, user;
};
/// An enumeration of the different types of timers.
enum class TimerKind {
/// This timer represents an ordered collection of pass timers, corresponding
/// to a pass pipeline.
Pipeline,
/// This timer represents a collection of pipeline timers.
PipelineCollection,
/// This timer represents an analysis or pass timer.
PassOrAnalysis
};
struct Timer {
explicit Timer(std::string &&name, TimerKind kind)
: name(std::move(name)), kind(kind) {}
/// Start the timer.
void start() { startTime = std::chrono::system_clock::now(); }
/// Stop the timer.
void stop() {
auto newTime = std::chrono::system_clock::now() - startTime;
wallTime += newTime;
userTime += newTime;
}
/// Get or create a child timer with the provided name and id.
Timer *getChildTimer(const void *id, TimerKind kind,
std::function<std::string()> &&nameBuilder) {
auto &child = children[id];
if (!child)
child = std::make_unique<Timer>(nameBuilder(), kind);
return child.get();
}
/// Returns the total time for this timer in seconds.
TimeRecord getTotalTime() {
// If this is a pass or analysis timer, use the recorded time directly.
if (kind == TimerKind::PassOrAnalysis) {
return TimeRecord(
std::chrono::duration_cast<std::chrono::duration<double>>(wallTime)
.count(),
std::chrono::duration_cast<std::chrono::duration<double>>(userTime)
.count());
}
// Otherwise, accumulate the timing from each of the children.
TimeRecord totalTime;
for (auto &child : children)
totalTime += child.second->getTotalTime();
return totalTime;
}
/// A map of unique identifiers to child timers.
using ChildrenMap = llvm::MapVector<const void *, std::unique_ptr<Timer>>;
/// Merge the timing data from 'other' into this timer.
void merge(Timer &&other) {
if (wallTime < other.wallTime)
wallTime = other.wallTime;
userTime += other.userTime;
mergeChildren(std::move(other.children));
}
/// Merge the timer children in 'otherChildren' with the children of this
/// timer.
void mergeChildren(ChildrenMap &&otherChildren) {
// Check for an empty children list.
if (children.empty()) {
children = std::move(otherChildren);
return;
}
// Pipeline merges are handled separately as the children are merged
// lexicographically.
if (kind == TimerKind::Pipeline) {
assert(children.size() == otherChildren.size() &&
"pipeline merge requires the same number of children");
for (auto it : llvm::zip(children, otherChildren))
std::get<0>(it).second->merge(std::move(*std::get<1>(it).second));
return;
}
// Otherwise, we merge children based upon their timer key.
for (auto &otherChild : otherChildren)
mergeChild(std::move(otherChild));
}
/// Merge in the given child timer and id into this timer.
void mergeChild(ChildrenMap::value_type &&childIt) {
auto &child = children[childIt.first];
if (!child)
child = std::move(childIt.second);
else
child->merge(std::move(*childIt.second));
}
/// Raw timing information.
std::chrono::time_point<std::chrono::system_clock> startTime;
std::chrono::nanoseconds wallTime = std::chrono::nanoseconds(0);
std::chrono::nanoseconds userTime = std::chrono::nanoseconds(0);
/// A map of unique identifiers to child timers.
ChildrenMap children;
/// A descriptive name for this timer.
std::string name;
/// The type of timer this instance represents.
TimerKind kind;
};
struct PassTiming : public PassInstrumentation {
PassTiming(std::unique_ptr<PassManager::PassTimingConfig> config)
: config(std::move(config)) {}
~PassTiming() override { print(); }
/// Setup the instrumentation hooks.
void runBeforePipeline(const OperationName &name,
const PipelineParentInfo &parentInfo) override;
void runAfterPipeline(const OperationName &name,
const PipelineParentInfo &parentInfo) override;
void runBeforePass(Pass *pass, Operation *) override { startPassTimer(pass); }
void runAfterPass(Pass *pass, Operation *) override;
void runAfterPassFailed(Pass *pass, Operation *op) override {
runAfterPass(pass, op);
}
void runBeforeAnalysis(StringRef name, TypeID id, Operation *) override {
startAnalysisTimer(name, id);
}
void runAfterAnalysis(StringRef, TypeID, Operation *) override;
/// Print and clear the timing results.
void print();
/// Start a new timer for the given pass.
void startPassTimer(Pass *pass);
/// Start a new timer for the given analysis.
void startAnalysisTimer(StringRef name, TypeID id);
/// Pop the last active timer for the current thread.
Timer *popLastActiveTimer() {
auto tid = llvm::get_threadid();
auto &activeTimers = activeThreadTimers[tid];
assert(!activeTimers.empty() && "expected active timer");
return activeTimers.pop_back_val();
}
/// Print the timing result in list mode.
void printResultsAsList(raw_ostream &os, Timer *root, TimeRecord totalTime);
/// Print the timing result in pipeline mode.
void printResultsAsPipeline(raw_ostream &os, Timer *root,
TimeRecord totalTime);
/// Returns a timer for the provided identifier and name.
Timer *getTimer(const void *id, TimerKind kind,
std::function<std::string()> &&nameBuilder) {
auto tid = llvm::get_threadid();
// If there is no active timer then add to the root timer.
auto &activeTimers = activeThreadTimers[tid];
Timer *parentTimer;
if (activeTimers.empty()) {
auto &rootTimer = rootTimers[tid];
if (!rootTimer)
rootTimer = std::make_unique<Timer>("root", TimerKind::Pipeline);
parentTimer = rootTimer.get();
} else {
// Otherwise, add this to the active timer.
parentTimer = activeTimers.back();
}
auto timer = parentTimer->getChildTimer(id, kind, std::move(nameBuilder));
activeTimers.push_back(timer);
return timer;
}
/// The root top level timers for each thread.
DenseMap<uint64_t, std::unique_ptr<Timer>> rootTimers;
/// A stack of the currently active pass timers per thread.
DenseMap<uint64_t, SmallVector<Timer *, 4>> activeThreadTimers;
/// The configuration object to use when printing the timing results.
std::unique_ptr<PassManager::PassTimingConfig> config;
/// A mapping of pipeline timers that need to be merged into the parent
/// collection. The timers are mapped to the parent info to merge into.
DenseMap<PipelineParentInfo, SmallVector<Timer::ChildrenMap::value_type, 4>>
pipelinesToMerge;
};
} // end anonymous namespace
void PassTiming::runBeforePipeline(const OperationName &name,
const PipelineParentInfo &parentInfo) {
// We don't actually want to time the pipelines, they gather their total
// from their held passes.
getTimer(name.getAsOpaquePointer(), TimerKind::Pipeline,
[&] { return ("'" + name.getStringRef() + "' Pipeline").str(); });
}
void PassTiming::runAfterPipeline(const OperationName &name,
const PipelineParentInfo &parentInfo) {
// Pop the timer for the pipeline.
auto tid = llvm::get_threadid();
auto &activeTimers = activeThreadTimers[tid];
assert(!activeTimers.empty() && "expected active timer");
activeTimers.pop_back();
// If the current thread is the same as the parent, there is nothing left to
// do.
if (tid == parentInfo.parentThreadID)
return;
// Otherwise, mark the pipeline timer for merging into the correct parent
// thread.
assert(activeTimers.empty() && "expected parent timer to be root");
auto *parentTimer = rootTimers[tid].get();
assert(parentTimer->children.size() == 1 &&
parentTimer->children.count(name.getAsOpaquePointer()) &&
"expected a single pipeline timer");
pipelinesToMerge[parentInfo].push_back(
std::move(*parentTimer->children.begin()));
rootTimers.erase(tid);
}
/// Start a new timer for the given pass.
void PassTiming::startPassTimer(Pass *pass) {
auto kind = isa<OpToOpPassAdaptor>(pass) ? TimerKind::PipelineCollection
: TimerKind::PassOrAnalysis;
Timer *timer = getTimer(pass, kind, [pass]() -> std::string {
if (auto *adaptor = dyn_cast<OpToOpPassAdaptor>(pass))
return adaptor->getAdaptorName();
return std::string(pass->getName());
});
// We don't actually want to time the adaptor passes, they gather their total
// from their held passes.
if (!isa<OpToOpPassAdaptor>(pass))
timer->start();
}
/// Start a new timer for the given analysis.
void PassTiming::startAnalysisTimer(StringRef name, TypeID id) {
Timer *timer = getTimer(id.getAsOpaquePointer(), TimerKind::PassOrAnalysis,
[name] { return "(A) " + name.str(); });
timer->start();
}
/// Stop a pass timer.
void PassTiming::runAfterPass(Pass *pass, Operation *) {
Timer *timer = popLastActiveTimer();
// If this is a pass adaptor, then we need to merge in the timing data for the
// pipelines running on other threads.
if (isa<OpToOpPassAdaptor>(pass)) {
auto toMerge = pipelinesToMerge.find({llvm::get_threadid(), pass});
if (toMerge != pipelinesToMerge.end()) {
for (auto &it : toMerge->second)
timer->mergeChild(std::move(it));
pipelinesToMerge.erase(toMerge);
}
return;
}
timer->stop();
}
/// Stop a timer.
void PassTiming::runAfterAnalysis(StringRef, TypeID, Operation *) {
popLastActiveTimer()->stop();
}
/// Utility to print the timer heading information.
static void printTimerHeader(raw_ostream &os, TimeRecord total) {
os << "===" << std::string(73, '-') << "===\n";
// Figure out how many spaces to description name.
unsigned padding = (80 - kPassTimingDescription.size()) / 2;
os.indent(padding) << kPassTimingDescription << '\n';
os << "===" << std::string(73, '-') << "===\n";
// Print the total time followed by the section headers.
os << llvm::format(" Total Execution Time: %5.4f seconds\n\n", total.wall);
if (total.user != total.wall)
os << " ---User Time---";
os << " ---Wall Time--- --- Name ---\n";
}
/// Utility to print a single line entry in the timer output.
static void printTimeEntry(raw_ostream &os, unsigned indent, StringRef name,
TimeRecord time, TimeRecord totalTime) {
time.print(os, totalTime);
os.indent(indent) << name << "\n";
}
/// Print out the current timing information.
void PassTiming::print() {
// Don't print anything if there is no timing data.
if (rootTimers.empty())
return;
assert(rootTimers.size() == 1 && "expected one remaining root timer");
auto printCallback = [&](raw_ostream &os) {
auto &rootTimer = rootTimers.begin()->second;
// Print the timer header.
TimeRecord totalTime = rootTimer->getTotalTime();
printTimerHeader(os, totalTime);
// Defer to a specialized printer for each display mode.
switch (config->getDisplayMode()) {
case PassDisplayMode::List:
printResultsAsList(os, rootTimer.get(), totalTime);
break;
case PassDisplayMode::Pipeline:
printResultsAsPipeline(os, rootTimer.get(), totalTime);
break;
}
printTimeEntry(os, 0, "Total", totalTime, totalTime);
os.flush();
// Reset root timers.
rootTimers.clear();
activeThreadTimers.clear();
};
config->printTiming(printCallback);
}
// The default implementation for printTiming uses
// `llvm::CreateInfoOutputFile()` as stream, it can be overridden by clients
// to customize the output.
void PassManager::PassTimingConfig::printTiming(PrintCallbackFn printCallback) {
printCallback(*llvm::CreateInfoOutputFile());
}
/// Print the timing result in list mode.
void PassTiming::printResultsAsList(raw_ostream &os, Timer *root,
TimeRecord totalTime) {
llvm::StringMap<TimeRecord> mergedTimings;
std::function<void(Timer *)> addTimer = [&](Timer *timer) {
// Only add timing information for passes and analyses.
if (timer->kind == TimerKind::PassOrAnalysis)
mergedTimings[timer->name] += timer->getTotalTime();
for (auto &children : timer->children)
addTimer(children.second.get());
};
// Add each of the top level timers.
for (auto &topLevelTimer : root->children)
addTimer(topLevelTimer.second.get());
// Sort the timing information by wall time.
std::vector<std::pair<StringRef, TimeRecord>> timerNameAndTime;
for (auto &it : mergedTimings)
timerNameAndTime.emplace_back(it.first(), it.second);
llvm::array_pod_sort(timerNameAndTime.begin(), timerNameAndTime.end(),
[](const std::pair<StringRef, TimeRecord> *lhs,
const std::pair<StringRef, TimeRecord> *rhs) {
return llvm::array_pod_sort_comparator<double>(
&rhs->second.wall, &lhs->second.wall);
});
// Print the timing information sequentially.
for (auto &timeData : timerNameAndTime)
printTimeEntry(os, 0, timeData.first, timeData.second, totalTime);
}
/// Print the timing result in pipeline mode.
void PassTiming::printResultsAsPipeline(raw_ostream &os, Timer *root,
TimeRecord totalTime) {
std::function<void(unsigned, Timer *)> printTimer = [&](unsigned indent,
Timer *timer) {
// If this is a timer for a pipeline collection and the collection only has
// one pipeline child, then only print the child.
if (timer->kind == TimerKind::PipelineCollection &&
timer->children.size() == 1)
return printTimer(indent, timer->children.begin()->second.get());
printTimeEntry(os, indent, timer->name, timer->getTotalTime(), totalTime);
// If this timer is a pipeline, then print the children in-order.
if (timer->kind == TimerKind::Pipeline) {
for (auto &child : timer->children)
printTimer(indent + 2, child.second.get());
return;
}
// Otherwise, sort the children by name to give a deterministic ordering
// when emitting the time.
SmallVector<Timer *, 4> children;
children.reserve(timer->children.size());
for (auto &child : timer->children)
children.push_back(child.second.get());
llvm::array_pod_sort(children.begin(), children.end(),
[](Timer *const *lhs, Timer *const *rhs) {
return (*lhs)->name.compare((*rhs)->name);
});
for (auto &child : children)
printTimer(indent + 2, child);
};
// Print each of the top level timers.
for (auto &topLevelTimer : root->children)
printTimer(0, topLevelTimer.second.get());
}
// Out-of-line as key function.
PassManager::PassTimingConfig::~PassTimingConfig() {}
//===----------------------------------------------------------------------===//
// PassManager
//===----------------------------------------------------------------------===//
/// Add an instrumentation to time the execution of passes and the computation
/// of analyses.
void PassManager::enableTiming(std::unique_ptr<PassTimingConfig> config) {
// Check if pass timing is already enabled.
if (passTiming)
return;
if (!config)
config = std::make_unique<PassManager::PassTimingConfig>();
addInstrumentation(std::make_unique<PassTiming>(std::move(config)));
passTiming = true;
}