llvm-project/clang-tools-extra/clangd/SourceCode.cpp

1132 lines
40 KiB
C++

//===--- SourceCode.h - Manipulating source code as strings -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "SourceCode.h"
#include "Context.h"
#include "FuzzyMatch.h"
#include "Logger.h"
#include "Protocol.h"
#include "refactor/Tweak.h"
#include "clang/AST/ASTContext.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TokenKinds.h"
#include "clang/Driver/Types.h"
#include "clang/Format/Format.h"
#include "clang/Lex/Lexer.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/Token.h"
#include "clang/Tooling/Core/Replacement.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LineIterator.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/SHA1.h"
#include "llvm/Support/VirtualFileSystem.h"
#include "llvm/Support/xxhash.h"
#include <algorithm>
#include <cstddef>
#include <string>
#include <vector>
namespace clang {
namespace clangd {
// Here be dragons. LSP positions use columns measured in *UTF-16 code units*!
// Clangd uses UTF-8 and byte-offsets internally, so conversion is nontrivial.
// Iterates over unicode codepoints in the (UTF-8) string. For each,
// invokes CB(UTF-8 length, UTF-16 length), and breaks if it returns true.
// Returns true if CB returned true, false if we hit the end of string.
template <typename Callback>
static bool iterateCodepoints(llvm::StringRef U8, const Callback &CB) {
// A codepoint takes two UTF-16 code unit if it's astral (outside BMP).
// Astral codepoints are encoded as 4 bytes in UTF-8, starting with 11110xxx.
for (size_t I = 0; I < U8.size();) {
unsigned char C = static_cast<unsigned char>(U8[I]);
if (LLVM_LIKELY(!(C & 0x80))) { // ASCII character.
if (CB(1, 1))
return true;
++I;
continue;
}
// This convenient property of UTF-8 holds for all non-ASCII characters.
size_t UTF8Length = llvm::countLeadingOnes(C);
// 0xxx is ASCII, handled above. 10xxx is a trailing byte, invalid here.
// 11111xxx is not valid UTF-8 at all. Assert because it's probably our bug.
assert((UTF8Length >= 2 && UTF8Length <= 4) &&
"Invalid UTF-8, or transcoding bug?");
I += UTF8Length; // Skip over all trailing bytes.
// A codepoint takes two UTF-16 code unit if it's astral (outside BMP).
// Astral codepoints are encoded as 4 bytes in UTF-8 (11110xxx ...)
if (CB(UTF8Length, UTF8Length == 4 ? 2 : 1))
return true;
}
return false;
}
// Returns the byte offset into the string that is an offset of \p Units in
// the specified encoding.
// Conceptually, this converts to the encoding, truncates to CodeUnits,
// converts back to UTF-8, and returns the length in bytes.
static size_t measureUnits(llvm::StringRef U8, int Units, OffsetEncoding Enc,
bool &Valid) {
Valid = Units >= 0;
if (Units <= 0)
return 0;
size_t Result = 0;
switch (Enc) {
case OffsetEncoding::UTF8:
Result = Units;
break;
case OffsetEncoding::UTF16:
Valid = iterateCodepoints(U8, [&](int U8Len, int U16Len) {
Result += U8Len;
Units -= U16Len;
return Units <= 0;
});
if (Units < 0) // Offset in the middle of a surrogate pair.
Valid = false;
break;
case OffsetEncoding::UTF32:
Valid = iterateCodepoints(U8, [&](int U8Len, int U16Len) {
Result += U8Len;
Units--;
return Units <= 0;
});
break;
case OffsetEncoding::UnsupportedEncoding:
llvm_unreachable("unsupported encoding");
}
// Don't return an out-of-range index if we overran.
if (Result > U8.size()) {
Valid = false;
return U8.size();
}
return Result;
}
Key<OffsetEncoding> kCurrentOffsetEncoding;
static OffsetEncoding lspEncoding() {
auto *Enc = Context::current().get(kCurrentOffsetEncoding);
return Enc ? *Enc : OffsetEncoding::UTF16;
}
// Like most strings in clangd, the input is UTF-8 encoded.
size_t lspLength(llvm::StringRef Code) {
size_t Count = 0;
switch (lspEncoding()) {
case OffsetEncoding::UTF8:
Count = Code.size();
break;
case OffsetEncoding::UTF16:
iterateCodepoints(Code, [&](int U8Len, int U16Len) {
Count += U16Len;
return false;
});
break;
case OffsetEncoding::UTF32:
iterateCodepoints(Code, [&](int U8Len, int U16Len) {
++Count;
return false;
});
break;
case OffsetEncoding::UnsupportedEncoding:
llvm_unreachable("unsupported encoding");
}
return Count;
}
llvm::Expected<size_t> positionToOffset(llvm::StringRef Code, Position P,
bool AllowColumnsBeyondLineLength) {
if (P.line < 0)
return llvm::make_error<llvm::StringError>(
llvm::formatv("Line value can't be negative ({0})", P.line),
llvm::errc::invalid_argument);
if (P.character < 0)
return llvm::make_error<llvm::StringError>(
llvm::formatv("Character value can't be negative ({0})", P.character),
llvm::errc::invalid_argument);
size_t StartOfLine = 0;
for (int I = 0; I != P.line; ++I) {
size_t NextNL = Code.find('\n', StartOfLine);
if (NextNL == llvm::StringRef::npos)
return llvm::make_error<llvm::StringError>(
llvm::formatv("Line value is out of range ({0})", P.line),
llvm::errc::invalid_argument);
StartOfLine = NextNL + 1;
}
StringRef Line =
Code.substr(StartOfLine).take_until([](char C) { return C == '\n'; });
// P.character may be in UTF-16, transcode if necessary.
bool Valid;
size_t ByteInLine = measureUnits(Line, P.character, lspEncoding(), Valid);
if (!Valid && !AllowColumnsBeyondLineLength)
return llvm::make_error<llvm::StringError>(
llvm::formatv("{0} offset {1} is invalid for line {2}", lspEncoding(),
P.character, P.line),
llvm::errc::invalid_argument);
return StartOfLine + ByteInLine;
}
Position offsetToPosition(llvm::StringRef Code, size_t Offset) {
Offset = std::min(Code.size(), Offset);
llvm::StringRef Before = Code.substr(0, Offset);
int Lines = Before.count('\n');
size_t PrevNL = Before.rfind('\n');
size_t StartOfLine = (PrevNL == llvm::StringRef::npos) ? 0 : (PrevNL + 1);
Position Pos;
Pos.line = Lines;
Pos.character = lspLength(Before.substr(StartOfLine));
return Pos;
}
Position sourceLocToPosition(const SourceManager &SM, SourceLocation Loc) {
// We use the SourceManager's line tables, but its column number is in bytes.
FileID FID;
unsigned Offset;
std::tie(FID, Offset) = SM.getDecomposedSpellingLoc(Loc);
Position P;
P.line = static_cast<int>(SM.getLineNumber(FID, Offset)) - 1;
bool Invalid = false;
llvm::StringRef Code = SM.getBufferData(FID, &Invalid);
if (!Invalid) {
auto ColumnInBytes = SM.getColumnNumber(FID, Offset) - 1;
auto LineSoFar = Code.substr(Offset - ColumnInBytes, ColumnInBytes);
P.character = lspLength(LineSoFar);
}
return P;
}
bool isSpelledInSource(SourceLocation Loc, const SourceManager &SM) {
if (Loc.isMacroID()) {
std::string PrintLoc = SM.getSpellingLoc(Loc).printToString(SM);
if (llvm::StringRef(PrintLoc).startswith("<scratch") ||
llvm::StringRef(PrintLoc).startswith("<command line>"))
return false;
}
return true;
}
llvm::Optional<Range> getTokenRange(const SourceManager &SM,
const LangOptions &LangOpts,
SourceLocation TokLoc) {
if (!TokLoc.isValid())
return llvm::None;
SourceLocation End = Lexer::getLocForEndOfToken(TokLoc, 0, SM, LangOpts);
if (!End.isValid())
return llvm::None;
return halfOpenToRange(SM, CharSourceRange::getCharRange(TokLoc, End));
}
namespace {
enum TokenFlavor { Identifier, Operator, Whitespace, Other };
bool isOverloadedOperator(const Token &Tok) {
switch (Tok.getKind()) {
#define OVERLOADED_OPERATOR(Name, Spelling, Token, Unary, Binary, MemOnly) \
case tok::Token:
#define OVERLOADED_OPERATOR_MULTI(Name, Spelling, Unary, Binary, MemOnly)
#include "clang/Basic/OperatorKinds.def"
return true;
default:
break;
}
return false;
}
TokenFlavor getTokenFlavor(SourceLocation Loc, const SourceManager &SM,
const LangOptions &LangOpts) {
Token Tok;
Tok.setKind(tok::NUM_TOKENS);
if (Lexer::getRawToken(Loc, Tok, SM, LangOpts,
/*IgnoreWhiteSpace*/ false))
return Other;
// getRawToken will return false without setting Tok when the token is
// whitespace, so if the flag is not set, we are sure this is a whitespace.
if (Tok.is(tok::TokenKind::NUM_TOKENS))
return Whitespace;
if (Tok.is(tok::TokenKind::raw_identifier))
return Identifier;
if (isOverloadedOperator(Tok))
return Operator;
return Other;
}
} // namespace
SourceLocation getBeginningOfIdentifier(const Position &Pos,
const SourceManager &SM,
const LangOptions &LangOpts) {
FileID FID = SM.getMainFileID();
auto Offset = positionToOffset(SM.getBufferData(FID), Pos);
if (!Offset) {
log("getBeginningOfIdentifier: {0}", Offset.takeError());
return SourceLocation();
}
// GetBeginningOfToken(InputLoc) is almost what we want, but does the wrong
// thing if the cursor is at the end of the token (identifier or operator).
// The cases are:
// 1) at the beginning of the token
// 2) at the middle of the token
// 3) at the end of the token
// 4) anywhere outside the identifier or operator
// To distinguish all cases, we lex both at the
// GetBeginningOfToken(InputLoc-1) and GetBeginningOfToken(InputLoc), for
// cases 1 and 4, we just return the original location.
SourceLocation InputLoc = SM.getComposedLoc(FID, *Offset);
if (*Offset == 0) // Case 1 or 4.
return InputLoc;
SourceLocation Before = SM.getComposedLoc(FID, *Offset - 1);
SourceLocation BeforeTokBeginning =
Lexer::GetBeginningOfToken(Before, SM, LangOpts);
TokenFlavor BeforeKind = getTokenFlavor(BeforeTokBeginning, SM, LangOpts);
SourceLocation CurrentTokBeginning =
Lexer::GetBeginningOfToken(InputLoc, SM, LangOpts);
TokenFlavor CurrentKind = getTokenFlavor(CurrentTokBeginning, SM, LangOpts);
// At the middle of the token.
if (BeforeTokBeginning == CurrentTokBeginning) {
// For interesting token, we return the beginning of the token.
if (CurrentKind == Identifier || CurrentKind == Operator)
return CurrentTokBeginning;
// otherwise, we return the original loc.
return InputLoc;
}
// Whitespace is not interesting.
if (BeforeKind == Whitespace)
return CurrentTokBeginning;
if (CurrentKind == Whitespace)
return BeforeTokBeginning;
// The cursor is at the token boundary, e.g. "Before^Current", we prefer
// identifiers to other tokens.
if (CurrentKind == Identifier)
return CurrentTokBeginning;
if (BeforeKind == Identifier)
return BeforeTokBeginning;
// Then prefer overloaded operators to other tokens.
if (CurrentKind == Operator)
return CurrentTokBeginning;
if (BeforeKind == Operator)
return BeforeTokBeginning;
// Non-interesting case, we just return the original location.
return InputLoc;
}
bool isValidFileRange(const SourceManager &Mgr, SourceRange R) {
if (!R.getBegin().isValid() || !R.getEnd().isValid())
return false;
FileID BeginFID;
size_t BeginOffset = 0;
std::tie(BeginFID, BeginOffset) = Mgr.getDecomposedLoc(R.getBegin());
FileID EndFID;
size_t EndOffset = 0;
std::tie(EndFID, EndOffset) = Mgr.getDecomposedLoc(R.getEnd());
return BeginFID.isValid() && BeginFID == EndFID && BeginOffset <= EndOffset;
}
bool halfOpenRangeContains(const SourceManager &Mgr, SourceRange R,
SourceLocation L) {
assert(isValidFileRange(Mgr, R));
FileID BeginFID;
size_t BeginOffset = 0;
std::tie(BeginFID, BeginOffset) = Mgr.getDecomposedLoc(R.getBegin());
size_t EndOffset = Mgr.getFileOffset(R.getEnd());
FileID LFid;
size_t LOffset;
std::tie(LFid, LOffset) = Mgr.getDecomposedLoc(L);
return BeginFID == LFid && BeginOffset <= LOffset && LOffset < EndOffset;
}
bool halfOpenRangeTouches(const SourceManager &Mgr, SourceRange R,
SourceLocation L) {
return L == R.getEnd() || halfOpenRangeContains(Mgr, R, L);
}
SourceLocation includeHashLoc(FileID IncludedFile, const SourceManager &SM) {
assert(SM.getLocForEndOfFile(IncludedFile).isFileID());
FileID IncludingFile;
unsigned Offset;
std::tie(IncludingFile, Offset) =
SM.getDecomposedExpansionLoc(SM.getIncludeLoc(IncludedFile));
bool Invalid = false;
llvm::StringRef Buf = SM.getBufferData(IncludingFile, &Invalid);
if (Invalid)
return SourceLocation();
// Now buf is "...\n#include <foo>\n..."
// and Offset points here: ^
// Rewind to the preceding # on the line.
assert(Offset < Buf.size());
for (;; --Offset) {
if (Buf[Offset] == '#')
return SM.getComposedLoc(IncludingFile, Offset);
if (Buf[Offset] == '\n' || Offset == 0) // no hash, what's going on?
return SourceLocation();
}
}
static unsigned getTokenLengthAtLoc(SourceLocation Loc, const SourceManager &SM,
const LangOptions &LangOpts) {
Token TheTok;
if (Lexer::getRawToken(Loc, TheTok, SM, LangOpts))
return 0;
// FIXME: Here we check whether the token at the location is a greatergreater
// (>>) token and consider it as a single greater (>). This is to get it
// working for templates but it isn't correct for the right shift operator. We
// can avoid this by using half open char ranges in getFileRange() but getting
// token ending is not well supported in macroIDs.
if (TheTok.is(tok::greatergreater))
return 1;
return TheTok.getLength();
}
// Returns location of the last character of the token at a given loc
static SourceLocation getLocForTokenEnd(SourceLocation BeginLoc,
const SourceManager &SM,
const LangOptions &LangOpts) {
unsigned Len = getTokenLengthAtLoc(BeginLoc, SM, LangOpts);
return BeginLoc.getLocWithOffset(Len ? Len - 1 : 0);
}
// Returns location of the starting of the token at a given EndLoc
static SourceLocation getLocForTokenBegin(SourceLocation EndLoc,
const SourceManager &SM,
const LangOptions &LangOpts) {
return EndLoc.getLocWithOffset(
-(signed)getTokenLengthAtLoc(EndLoc, SM, LangOpts));
}
// Converts a char source range to a token range.
static SourceRange toTokenRange(CharSourceRange Range, const SourceManager &SM,
const LangOptions &LangOpts) {
if (!Range.isTokenRange())
Range.setEnd(getLocForTokenBegin(Range.getEnd(), SM, LangOpts));
return Range.getAsRange();
}
// Returns the union of two token ranges.
// To find the maximum of the Ends of the ranges, we compare the location of the
// last character of the token.
static SourceRange unionTokenRange(SourceRange R1, SourceRange R2,
const SourceManager &SM,
const LangOptions &LangOpts) {
SourceLocation Begin =
SM.isBeforeInTranslationUnit(R1.getBegin(), R2.getBegin())
? R1.getBegin()
: R2.getBegin();
SourceLocation End =
SM.isBeforeInTranslationUnit(getLocForTokenEnd(R1.getEnd(), SM, LangOpts),
getLocForTokenEnd(R2.getEnd(), SM, LangOpts))
? R2.getEnd()
: R1.getEnd();
return SourceRange(Begin, End);
}
// Given a range whose endpoints may be in different expansions or files,
// tries to find a range within a common file by following up the expansion and
// include location in each.
static SourceRange rangeInCommonFile(SourceRange R, const SourceManager &SM,
const LangOptions &LangOpts) {
// Fast path for most common cases.
if (SM.isWrittenInSameFile(R.getBegin(), R.getEnd()))
return R;
// Record the stack of expansion locations for the beginning, keyed by FileID.
llvm::DenseMap<FileID, SourceLocation> BeginExpansions;
for (SourceLocation Begin = R.getBegin(); Begin.isValid();
Begin = Begin.isFileID()
? includeHashLoc(SM.getFileID(Begin), SM)
: SM.getImmediateExpansionRange(Begin).getBegin()) {
BeginExpansions[SM.getFileID(Begin)] = Begin;
}
// Move up the stack of expansion locations for the end until we find the
// location in BeginExpansions with that has the same file id.
for (SourceLocation End = R.getEnd(); End.isValid();
End = End.isFileID() ? includeHashLoc(SM.getFileID(End), SM)
: toTokenRange(SM.getImmediateExpansionRange(End),
SM, LangOpts)
.getEnd()) {
auto It = BeginExpansions.find(SM.getFileID(End));
if (It != BeginExpansions.end()) {
if (SM.getFileOffset(It->second) > SM.getFileOffset(End))
return SourceLocation();
return {It->second, End};
}
}
return SourceRange();
}
// Find an expansion range (not necessarily immediate) the ends of which are in
// the same file id.
static SourceRange
getExpansionTokenRangeInSameFile(SourceLocation Loc, const SourceManager &SM,
const LangOptions &LangOpts) {
return rangeInCommonFile(
toTokenRange(SM.getImmediateExpansionRange(Loc), SM, LangOpts), SM,
LangOpts);
}
// Returns the file range for a given Location as a Token Range
// This is quite similar to getFileLoc in SourceManager as both use
// getImmediateExpansionRange and getImmediateSpellingLoc (for macro IDs).
// However:
// - We want to maintain the full range information as we move from one file to
// the next. getFileLoc only uses the BeginLoc of getImmediateExpansionRange.
// - We want to split '>>' tokens as the lexer parses the '>>' in nested
// template instantiations as a '>>' instead of two '>'s.
// There is also getExpansionRange but it simply calls
// getImmediateExpansionRange on the begin and ends separately which is wrong.
static SourceRange getTokenFileRange(SourceLocation Loc,
const SourceManager &SM,
const LangOptions &LangOpts) {
SourceRange FileRange = Loc;
while (!FileRange.getBegin().isFileID()) {
if (SM.isMacroArgExpansion(FileRange.getBegin())) {
FileRange = unionTokenRange(
SM.getImmediateSpellingLoc(FileRange.getBegin()),
SM.getImmediateSpellingLoc(FileRange.getEnd()), SM, LangOpts);
assert(SM.isWrittenInSameFile(FileRange.getBegin(), FileRange.getEnd()));
} else {
SourceRange ExpansionRangeForBegin =
getExpansionTokenRangeInSameFile(FileRange.getBegin(), SM, LangOpts);
SourceRange ExpansionRangeForEnd =
getExpansionTokenRangeInSameFile(FileRange.getEnd(), SM, LangOpts);
if (ExpansionRangeForBegin.isInvalid() ||
ExpansionRangeForEnd.isInvalid())
return SourceRange();
assert(SM.isWrittenInSameFile(ExpansionRangeForBegin.getBegin(),
ExpansionRangeForEnd.getBegin()) &&
"Both Expansion ranges should be in same file.");
FileRange = unionTokenRange(ExpansionRangeForBegin, ExpansionRangeForEnd,
SM, LangOpts);
}
}
return FileRange;
}
bool isInsideMainFile(SourceLocation Loc, const SourceManager &SM) {
return Loc.isValid() && SM.isWrittenInMainFile(SM.getExpansionLoc(Loc));
}
llvm::Optional<SourceRange> toHalfOpenFileRange(const SourceManager &SM,
const LangOptions &LangOpts,
SourceRange R) {
SourceRange R1 = getTokenFileRange(R.getBegin(), SM, LangOpts);
if (!isValidFileRange(SM, R1))
return llvm::None;
SourceRange R2 = getTokenFileRange(R.getEnd(), SM, LangOpts);
if (!isValidFileRange(SM, R2))
return llvm::None;
SourceRange Result =
rangeInCommonFile(unionTokenRange(R1, R2, SM, LangOpts), SM, LangOpts);
unsigned TokLen = getTokenLengthAtLoc(Result.getEnd(), SM, LangOpts);
// Convert from closed token range to half-open (char) range
Result.setEnd(Result.getEnd().getLocWithOffset(TokLen));
if (!isValidFileRange(SM, Result))
return llvm::None;
return Result;
}
llvm::StringRef toSourceCode(const SourceManager &SM, SourceRange R) {
assert(isValidFileRange(SM, R));
bool Invalid = false;
auto *Buf = SM.getBuffer(SM.getFileID(R.getBegin()), &Invalid);
assert(!Invalid);
size_t BeginOffset = SM.getFileOffset(R.getBegin());
size_t EndOffset = SM.getFileOffset(R.getEnd());
return Buf->getBuffer().substr(BeginOffset, EndOffset - BeginOffset);
}
llvm::Expected<SourceLocation> sourceLocationInMainFile(const SourceManager &SM,
Position P) {
llvm::StringRef Code = SM.getBuffer(SM.getMainFileID())->getBuffer();
auto Offset =
positionToOffset(Code, P, /*AllowColumnBeyondLineLength=*/false);
if (!Offset)
return Offset.takeError();
return SM.getLocForStartOfFile(SM.getMainFileID()).getLocWithOffset(*Offset);
}
Range halfOpenToRange(const SourceManager &SM, CharSourceRange R) {
// Clang is 1-based, LSP uses 0-based indexes.
Position Begin = sourceLocToPosition(SM, R.getBegin());
Position End = sourceLocToPosition(SM, R.getEnd());
return {Begin, End};
}
std::pair<size_t, size_t> offsetToClangLineColumn(llvm::StringRef Code,
size_t Offset) {
Offset = std::min(Code.size(), Offset);
llvm::StringRef Before = Code.substr(0, Offset);
int Lines = Before.count('\n');
size_t PrevNL = Before.rfind('\n');
size_t StartOfLine = (PrevNL == llvm::StringRef::npos) ? 0 : (PrevNL + 1);
return {Lines + 1, Offset - StartOfLine + 1};
}
std::pair<StringRef, StringRef> splitQualifiedName(StringRef QName) {
size_t Pos = QName.rfind("::");
if (Pos == llvm::StringRef::npos)
return {llvm::StringRef(), QName};
return {QName.substr(0, Pos + 2), QName.substr(Pos + 2)};
}
TextEdit replacementToEdit(llvm::StringRef Code,
const tooling::Replacement &R) {
Range ReplacementRange = {
offsetToPosition(Code, R.getOffset()),
offsetToPosition(Code, R.getOffset() + R.getLength())};
return {ReplacementRange, R.getReplacementText()};
}
std::vector<TextEdit> replacementsToEdits(llvm::StringRef Code,
const tooling::Replacements &Repls) {
std::vector<TextEdit> Edits;
for (const auto &R : Repls)
Edits.push_back(replacementToEdit(Code, R));
return Edits;
}
llvm::Optional<std::string> getCanonicalPath(const FileEntry *F,
const SourceManager &SourceMgr) {
if (!F)
return None;
llvm::SmallString<128> FilePath = F->getName();
if (!llvm::sys::path::is_absolute(FilePath)) {
if (auto EC =
SourceMgr.getFileManager().getVirtualFileSystem().makeAbsolute(
FilePath)) {
elog("Could not turn relative path '{0}' to absolute: {1}", FilePath,
EC.message());
return None;
}
}
// Handle the symbolic link path case where the current working directory
// (getCurrentWorkingDirectory) is a symlink. We always want to the real
// file path (instead of the symlink path) for the C++ symbols.
//
// Consider the following example:
//
// src dir: /project/src/foo.h
// current working directory (symlink): /tmp/build -> /project/src/
//
// The file path of Symbol is "/project/src/foo.h" instead of
// "/tmp/build/foo.h"
if (auto Dir = SourceMgr.getFileManager().getDirectory(
llvm::sys::path::parent_path(FilePath))) {
llvm::SmallString<128> RealPath;
llvm::StringRef DirName = SourceMgr.getFileManager().getCanonicalName(*Dir);
llvm::sys::path::append(RealPath, DirName,
llvm::sys::path::filename(FilePath));
return RealPath.str().str();
}
return FilePath.str().str();
}
TextEdit toTextEdit(const FixItHint &FixIt, const SourceManager &M,
const LangOptions &L) {
TextEdit Result;
Result.range =
halfOpenToRange(M, Lexer::makeFileCharRange(FixIt.RemoveRange, M, L));
Result.newText = FixIt.CodeToInsert;
return Result;
}
bool isRangeConsecutive(const Range &Left, const Range &Right) {
return Left.end.line == Right.start.line &&
Left.end.character == Right.start.character;
}
FileDigest digest(llvm::StringRef Content) {
uint64_t Hash{llvm::xxHash64(Content)};
FileDigest Result;
for (unsigned I = 0; I < Result.size(); ++I) {
Result[I] = uint8_t(Hash);
Hash >>= 8;
}
return Result;
}
llvm::Optional<FileDigest> digestFile(const SourceManager &SM, FileID FID) {
bool Invalid = false;
llvm::StringRef Content = SM.getBufferData(FID, &Invalid);
if (Invalid)
return None;
return digest(Content);
}
format::FormatStyle getFormatStyleForFile(llvm::StringRef File,
llvm::StringRef Content,
llvm::vfs::FileSystem *FS) {
auto Style = format::getStyle(format::DefaultFormatStyle, File,
format::DefaultFallbackStyle, Content, FS);
if (!Style) {
log("getStyle() failed for file {0}: {1}. Fallback is LLVM style.", File,
Style.takeError());
Style = format::getLLVMStyle();
}
return *Style;
}
llvm::Expected<tooling::Replacements>
cleanupAndFormat(StringRef Code, const tooling::Replacements &Replaces,
const format::FormatStyle &Style) {
auto CleanReplaces = cleanupAroundReplacements(Code, Replaces, Style);
if (!CleanReplaces)
return CleanReplaces;
return formatReplacements(Code, std::move(*CleanReplaces), Style);
}
static void
lex(llvm::StringRef Code, const LangOptions &LangOpts,
llvm::function_ref<void(const clang::Token &, const SourceManager &SM)>
Action) {
// FIXME: InMemoryFileAdapter crashes unless the buffer is null terminated!
std::string NullTerminatedCode = Code.str();
SourceManagerForFile FileSM("dummy.cpp", NullTerminatedCode);
auto &SM = FileSM.get();
auto FID = SM.getMainFileID();
// Create a raw lexer (with no associated preprocessor object).
Lexer Lex(FID, SM.getBuffer(FID), SM, LangOpts);
Token Tok;
while (!Lex.LexFromRawLexer(Tok))
Action(Tok, SM);
// LexFromRawLexer returns true after it lexes last token, so we still have
// one more token to report.
Action(Tok, SM);
}
llvm::StringMap<unsigned> collectIdentifiers(llvm::StringRef Content,
const format::FormatStyle &Style) {
llvm::StringMap<unsigned> Identifiers;
auto LangOpt = format::getFormattingLangOpts(Style);
lex(Content, LangOpt, [&](const clang::Token &Tok, const SourceManager &) {
if (Tok.getKind() == tok::raw_identifier)
++Identifiers[Tok.getRawIdentifier()];
});
return Identifiers;
}
std::vector<Range> collectIdentifierRanges(llvm::StringRef Identifier,
llvm::StringRef Content,
const LangOptions &LangOpts) {
std::vector<Range> Ranges;
lex(Content, LangOpts, [&](const clang::Token &Tok, const SourceManager &SM) {
if (Tok.getKind() != tok::raw_identifier)
return;
if (Tok.getRawIdentifier() != Identifier)
return;
auto Range = getTokenRange(SM, LangOpts, Tok.getLocation());
if (!Range)
return;
Ranges.push_back(*Range);
});
return Ranges;
}
namespace {
struct NamespaceEvent {
enum {
BeginNamespace, // namespace <ns> {. Payload is resolved <ns>.
EndNamespace, // } // namespace <ns>. Payload is resolved *outer*
// namespace.
UsingDirective // using namespace <ns>. Payload is unresolved <ns>.
} Trigger;
std::string Payload;
Position Pos;
};
// Scans C++ source code for constructs that change the visible namespaces.
void parseNamespaceEvents(llvm::StringRef Code,
const format::FormatStyle &Style,
llvm::function_ref<void(NamespaceEvent)> Callback) {
// Stack of enclosing namespaces, e.g. {"clang", "clangd"}
std::vector<std::string> Enclosing; // Contains e.g. "clang", "clangd"
// Stack counts open braces. true if the brace opened a namespace.
std::vector<bool> BraceStack;
enum {
Default,
Namespace, // just saw 'namespace'
NamespaceName, // just saw 'namespace' NSName
Using, // just saw 'using'
UsingNamespace, // just saw 'using namespace'
UsingNamespaceName, // just saw 'using namespace' NSName
} State = Default;
std::string NSName;
NamespaceEvent Event;
lex(Code, format::getFormattingLangOpts(Style),
[&](const clang::Token &Tok,const SourceManager &SM) {
Event.Pos = sourceLocToPosition(SM, Tok.getLocation());
switch (Tok.getKind()) {
case tok::raw_identifier:
// In raw mode, this could be a keyword or a name.
switch (State) {
case UsingNamespace:
case UsingNamespaceName:
NSName.append(Tok.getRawIdentifier());
State = UsingNamespaceName;
break;
case Namespace:
case NamespaceName:
NSName.append(Tok.getRawIdentifier());
State = NamespaceName;
break;
case Using:
State =
(Tok.getRawIdentifier() == "namespace") ? UsingNamespace : Default;
break;
case Default:
NSName.clear();
if (Tok.getRawIdentifier() == "namespace")
State = Namespace;
else if (Tok.getRawIdentifier() == "using")
State = Using;
break;
}
break;
case tok::coloncolon:
// This can come at the beginning or in the middle of a namespace name.
switch (State) {
case UsingNamespace:
case UsingNamespaceName:
NSName.append("::");
State = UsingNamespaceName;
break;
case NamespaceName:
NSName.append("::");
State = NamespaceName;
break;
case Namespace: // Not legal here.
case Using:
case Default:
State = Default;
break;
}
break;
case tok::l_brace:
// Record which { started a namespace, so we know when } ends one.
if (State == NamespaceName) {
// Parsed: namespace <name> {
BraceStack.push_back(true);
Enclosing.push_back(NSName);
Event.Trigger = NamespaceEvent::BeginNamespace;
Event.Payload = llvm::join(Enclosing, "::");
Callback(Event);
} else {
// This case includes anonymous namespaces (State = Namespace).
// For our purposes, they're not namespaces and we ignore them.
BraceStack.push_back(false);
}
State = Default;
break;
case tok::r_brace:
// If braces are unmatched, we're going to be confused, but don't crash.
if (!BraceStack.empty()) {
if (BraceStack.back()) {
// Parsed: } // namespace
Enclosing.pop_back();
Event.Trigger = NamespaceEvent::EndNamespace;
Event.Payload = llvm::join(Enclosing, "::");
Callback(Event);
}
BraceStack.pop_back();
}
break;
case tok::semi:
if (State == UsingNamespaceName) {
// Parsed: using namespace <name> ;
Event.Trigger = NamespaceEvent::UsingDirective;
Event.Payload = std::move(NSName);
Callback(Event);
}
State = Default;
break;
default:
State = Default;
break;
}
});
}
// Returns the prefix namespaces of NS: {"" ... NS}.
llvm::SmallVector<llvm::StringRef, 8> ancestorNamespaces(llvm::StringRef NS) {
llvm::SmallVector<llvm::StringRef, 8> Results;
Results.push_back(NS.take_front(0));
NS.split(Results, "::", /*MaxSplit=*/-1, /*KeepEmpty=*/false);
for (llvm::StringRef &R : Results)
R = NS.take_front(R.end() - NS.begin());
return Results;
}
} // namespace
std::vector<std::string> visibleNamespaces(llvm::StringRef Code,
const format::FormatStyle &Style) {
std::string Current;
// Map from namespace to (resolved) namespaces introduced via using directive.
llvm::StringMap<llvm::StringSet<>> UsingDirectives;
parseNamespaceEvents(Code, Style, [&](NamespaceEvent Event) {
llvm::StringRef NS = Event.Payload;
switch (Event.Trigger) {
case NamespaceEvent::BeginNamespace:
case NamespaceEvent::EndNamespace:
Current = std::move(Event.Payload);
break;
case NamespaceEvent::UsingDirective:
if (NS.consume_front("::"))
UsingDirectives[Current].insert(NS);
else {
for (llvm::StringRef Enclosing : ancestorNamespaces(Current)) {
if (Enclosing.empty())
UsingDirectives[Current].insert(NS);
else
UsingDirectives[Current].insert((Enclosing + "::" + NS).str());
}
}
break;
}
});
std::vector<std::string> Found;
for (llvm::StringRef Enclosing : ancestorNamespaces(Current)) {
Found.push_back(Enclosing);
auto It = UsingDirectives.find(Enclosing);
if (It != UsingDirectives.end())
for (const auto &Used : It->second)
Found.push_back(Used.getKey());
}
llvm::sort(Found, [&](const std::string &LHS, const std::string &RHS) {
if (Current == RHS)
return false;
if (Current == LHS)
return true;
return LHS < RHS;
});
Found.erase(std::unique(Found.begin(), Found.end()), Found.end());
return Found;
}
llvm::StringSet<> collectWords(llvm::StringRef Content) {
// We assume short words are not significant.
// We may want to consider other stopwords, e.g. language keywords.
// (A very naive implementation showed no benefit, but lexing might do better)
static constexpr int MinWordLength = 4;
std::vector<CharRole> Roles(Content.size());
calculateRoles(Content, Roles);
llvm::StringSet<> Result;
llvm::SmallString<256> Word;
auto Flush = [&] {
if (Word.size() >= MinWordLength) {
for (char &C : Word)
C = llvm::toLower(C);
Result.insert(Word);
}
Word.clear();
};
for (unsigned I = 0; I < Content.size(); ++I) {
switch (Roles[I]) {
case Head:
Flush();
LLVM_FALLTHROUGH;
case Tail:
Word.push_back(Content[I]);
break;
case Unknown:
case Separator:
Flush();
break;
}
}
Flush();
return Result;
}
llvm::Optional<DefinedMacro> locateMacroAt(SourceLocation Loc,
Preprocessor &PP) {
const auto &SM = PP.getSourceManager();
const auto &LangOpts = PP.getLangOpts();
Token Result;
if (Lexer::getRawToken(SM.getSpellingLoc(Loc), Result, SM, LangOpts, false))
return None;
if (Result.is(tok::raw_identifier))
PP.LookUpIdentifierInfo(Result);
IdentifierInfo *IdentifierInfo = Result.getIdentifierInfo();
if (!IdentifierInfo || !IdentifierInfo->hadMacroDefinition())
return None;
std::pair<FileID, unsigned int> DecLoc = SM.getDecomposedExpansionLoc(Loc);
// Get the definition just before the searched location so that a macro
// referenced in a '#undef MACRO' can still be found.
SourceLocation BeforeSearchedLocation =
SM.getMacroArgExpandedLocation(SM.getLocForStartOfFile(DecLoc.first)
.getLocWithOffset(DecLoc.second - 1));
MacroDefinition MacroDef =
PP.getMacroDefinitionAtLoc(IdentifierInfo, BeforeSearchedLocation);
if (auto *MI = MacroDef.getMacroInfo())
return DefinedMacro{IdentifierInfo->getName(), MI};
return None;
}
llvm::Expected<std::string> Edit::apply() const {
return tooling::applyAllReplacements(InitialCode, Replacements);
}
std::vector<TextEdit> Edit::asTextEdits() const {
return replacementsToEdits(InitialCode, Replacements);
}
bool Edit::canApplyTo(llvm::StringRef Code) const {
// Create line iterators, since line numbers are important while applying our
// edit we cannot skip blank lines.
auto LHS = llvm::MemoryBuffer::getMemBuffer(Code);
llvm::line_iterator LHSIt(*LHS, /*SkipBlanks=*/false);
auto RHS = llvm::MemoryBuffer::getMemBuffer(InitialCode);
llvm::line_iterator RHSIt(*RHS, /*SkipBlanks=*/false);
// Compare the InitialCode we prepared the edit for with the Code we received
// line by line to make sure there are no differences.
// FIXME: This check is too conservative now, it should be enough to only
// check lines around the replacements contained inside the Edit.
while (!LHSIt.is_at_eof() && !RHSIt.is_at_eof()) {
if (*LHSIt != *RHSIt)
return false;
++LHSIt;
++RHSIt;
}
// After we reach EOF for any of the files we make sure the other one doesn't
// contain any additional content except empty lines, they should not
// interfere with the edit we produced.
while (!LHSIt.is_at_eof()) {
if (!LHSIt->empty())
return false;
++LHSIt;
}
while (!RHSIt.is_at_eof()) {
if (!RHSIt->empty())
return false;
++RHSIt;
}
return true;
}
llvm::Error reformatEdit(Edit &E, const format::FormatStyle &Style) {
if (auto NewEdits = cleanupAndFormat(E.InitialCode, E.Replacements, Style))
E.Replacements = std::move(*NewEdits);
else
return NewEdits.takeError();
return llvm::Error::success();
}
EligibleRegion getEligiblePoints(llvm::StringRef Code,
llvm::StringRef FullyQualifiedName,
const format::FormatStyle &Style) {
EligibleRegion ER;
// Start with global namespace.
std::vector<std::string> Enclosing = {""};
// FIXME: In addition to namespaces try to generate events for function
// definitions as well. One might use a closing parantheses(")" followed by an
// opening brace "{" to trigger the start.
parseNamespaceEvents(Code, Style, [&](NamespaceEvent Event) {
// Using Directives only introduces declarations to current scope, they do
// not change the current namespace, so skip them.
if (Event.Trigger == NamespaceEvent::UsingDirective)
return;
// Do not qualify the global namespace.
if (!Event.Payload.empty())
Event.Payload.append("::");
std::string CurrentNamespace;
if (Event.Trigger == NamespaceEvent::BeginNamespace) {
Enclosing.emplace_back(std::move(Event.Payload));
CurrentNamespace = Enclosing.back();
// parseNameSpaceEvents reports the beginning position of a token; we want
// to insert after '{', so increment by one.
++Event.Pos.character;
} else {
// Event.Payload points to outer namespace when exiting a scope, so use
// the namespace we've last entered instead.
CurrentNamespace = std::move(Enclosing.back());
Enclosing.pop_back();
assert(Enclosing.back() == Event.Payload);
}
// Ignore namespaces that are not a prefix of the target.
if (!FullyQualifiedName.startswith(CurrentNamespace))
return;
// Prefer the namespace that shares the longest prefix with target.
if (CurrentNamespace.size() > ER.EnclosingNamespace.size()) {
ER.EligiblePoints.clear();
ER.EnclosingNamespace = CurrentNamespace;
}
if (CurrentNamespace.size() == ER.EnclosingNamespace.size())
ER.EligiblePoints.emplace_back(std::move(Event.Pos));
});
// If there were no shared namespaces just return EOF.
if (ER.EligiblePoints.empty()) {
assert(ER.EnclosingNamespace.empty());
ER.EligiblePoints.emplace_back(offsetToPosition(Code, Code.size()));
}
return ER;
}
bool isHeaderFile(llvm::StringRef FileName,
llvm::Optional<LangOptions> LangOpts) {
// Respect the langOpts, for non-file-extension cases, e.g. standard library
// files.
if (LangOpts && LangOpts->IsHeaderFile)
return true;
namespace types = clang::driver::types;
auto Lang = types::lookupTypeForExtension(
llvm::sys::path::extension(FileName).substr(1));
return Lang != types::TY_INVALID && types::onlyPrecompileType(Lang);
}
} // namespace clangd
} // namespace clang