llvm-project/lld/ELF/Target.cpp

1518 lines
54 KiB
C++

//===- Target.cpp ---------------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Machine-specific things, such as applying relocations, creation of
// GOT or PLT entries, etc., are handled in this file.
//
// Refer the ELF spec for the single letter varaibles, S, A or P, used
// in this file. SA is S+A.
//
//===----------------------------------------------------------------------===//
#include "Target.h"
#include "Error.h"
#include "OutputSections.h"
#include "Symbols.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/ELF.h"
using namespace llvm;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::ELF;
namespace lld {
namespace elf2 {
std::unique_ptr<TargetInfo> Target;
template <endianness E> static void add32(void *P, int32_t V) {
write32<E>(P, read32<E>(P) + V);
}
static void add32le(uint8_t *P, int32_t V) { add32<support::little>(P, V); }
static void or32le(uint8_t *P, int32_t V) { write32le(P, read32le(P) | V); }
template <unsigned N> static void checkInt(int64_t V, uint32_t Type) {
if (isInt<N>(V))
return;
StringRef S = getELFRelocationTypeName(Config->EMachine, Type);
error("Relocation " + S + " out of range");
}
template <unsigned N> static void checkUInt(uint64_t V, uint32_t Type) {
if (isUInt<N>(V))
return;
StringRef S = getELFRelocationTypeName(Config->EMachine, Type);
error("Relocation " + S + " out of range");
}
template <unsigned N> static void checkIntUInt(uint64_t V, uint32_t Type) {
if (isInt<N>(V) || isUInt<N>(V))
return;
StringRef S = getELFRelocationTypeName(Config->EMachine, Type);
error("Relocation " + S + " out of range");
}
template <unsigned N> static void checkAlignment(uint64_t V, uint32_t Type) {
if ((V & (N - 1)) == 0)
return;
StringRef S = getELFRelocationTypeName(Config->EMachine, Type);
error("Improper alignment for relocation " + S);
}
template <class ELFT> bool isGnuIFunc(const SymbolBody &S) {
if (auto *SS = dyn_cast<DefinedElf<ELFT>>(&S))
return SS->Sym.getType() == STT_GNU_IFUNC;
return false;
}
template bool isGnuIFunc<ELF32LE>(const SymbolBody &S);
template bool isGnuIFunc<ELF32BE>(const SymbolBody &S);
template bool isGnuIFunc<ELF64LE>(const SymbolBody &S);
template bool isGnuIFunc<ELF64BE>(const SymbolBody &S);
namespace {
class X86TargetInfo final : public TargetInfo {
public:
X86TargetInfo();
void writeGotPltHeaderEntries(uint8_t *Buf) const override;
unsigned getDynReloc(unsigned Type) const override;
unsigned getTlsGotReloc(unsigned Type) const override;
bool isTlsDynReloc(unsigned Type, const SymbolBody &S) const override;
void writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const override;
void writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr) const override;
void writePltEntry(uint8_t *Buf, uint64_t GotAddr, uint64_t GotEntryAddr,
uint64_t PltEntryAddr, int32_t Index,
unsigned RelOff) const override;
bool needsCopyRel(uint32_t Type, const SymbolBody &S) const override;
bool relocNeedsDynRelative(unsigned Type) const override;
bool relocNeedsGot(uint32_t Type, const SymbolBody &S) const override;
bool relocNeedsPlt(uint32_t Type, const SymbolBody &S) const override;
void relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type, uint64_t P,
uint64_t SA, uint64_t ZA = 0,
uint8_t *PairedLoc = nullptr) const override;
bool isTlsOptimized(unsigned Type, const SymbolBody *S) const override;
unsigned relocateTlsOptimize(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type,
uint64_t P, uint64_t SA,
const SymbolBody &S) const override;
bool isGotRelative(uint32_t Type) const override;
private:
void relocateTlsLdToLe(uint8_t *Loc, uint8_t *BufEnd, uint64_t P,
uint64_t SA) const;
void relocateTlsGdToIe(uint8_t *Loc, uint8_t *BufEnd, uint64_t P,
uint64_t SA) const;
void relocateTlsGdToLe(uint8_t *Loc, uint8_t *BufEnd, uint64_t P,
uint64_t SA) const;
void relocateTlsIeToLe(unsigned Type, uint8_t *Loc, uint8_t *BufEnd,
uint64_t P, uint64_t SA) const;
};
class X86_64TargetInfo final : public TargetInfo {
public:
X86_64TargetInfo();
bool isTlsDynReloc(unsigned Type, const SymbolBody &S) const override;
void writeGotPltHeaderEntries(uint8_t *Buf) const override;
void writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const override;
void writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr) const override;
void writePltEntry(uint8_t *Buf, uint64_t GotAddr, uint64_t GotEntryAddr,
uint64_t PltEntryAddr, int32_t Index,
unsigned RelOff) const override;
bool needsCopyRel(uint32_t Type, const SymbolBody &S) const override;
bool relocNeedsGot(uint32_t Type, const SymbolBody &S) const override;
bool relocNeedsPlt(uint32_t Type, const SymbolBody &S) const override;
void relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type, uint64_t P,
uint64_t SA, uint64_t ZA = 0,
uint8_t *PairedLoc = nullptr) const override;
bool isRelRelative(uint32_t Type) const override;
bool isTlsOptimized(unsigned Type, const SymbolBody *S) const override;
bool isSizeReloc(uint32_t Type) const override;
unsigned relocateTlsOptimize(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type,
uint64_t P, uint64_t SA,
const SymbolBody &S) const override;
private:
void relocateTlsLdToLe(uint8_t *Loc, uint8_t *BufEnd, uint64_t P,
uint64_t SA) const;
void relocateTlsGdToLe(uint8_t *Loc, uint8_t *BufEnd, uint64_t P,
uint64_t SA) const;
void relocateTlsGdToIe(uint8_t *Loc, uint8_t *BufEnd, uint64_t P,
uint64_t SA) const;
void relocateTlsIeToLe(uint8_t *Loc, uint8_t *BufEnd, uint64_t P,
uint64_t SA) const;
};
class PPC64TargetInfo final : public TargetInfo {
public:
PPC64TargetInfo();
void writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const override;
void writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr) const override;
void writePltEntry(uint8_t *Buf, uint64_t GotAddr, uint64_t GotEntryAddr,
uint64_t PltEntryAddr, int32_t Index,
unsigned RelOff) const override;
bool relocNeedsGot(uint32_t Type, const SymbolBody &S) const override;
bool relocNeedsPlt(uint32_t Type, const SymbolBody &S) const override;
void relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type, uint64_t P,
uint64_t SA, uint64_t ZA = 0,
uint8_t *PairedLoc = nullptr) const override;
bool isRelRelative(uint32_t Type) const override;
};
class AArch64TargetInfo final : public TargetInfo {
public:
AArch64TargetInfo();
unsigned getDynReloc(unsigned Type) const override;
void writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const override;
void writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr) const override;
void writePltEntry(uint8_t *Buf, uint64_t GotAddr, uint64_t GotEntryAddr,
uint64_t PltEntryAddr, int32_t Index,
unsigned RelOff) const override;
bool needsCopyRel(uint32_t Type, const SymbolBody &S) const override;
bool relocNeedsGot(uint32_t Type, const SymbolBody &S) const override;
bool relocNeedsPlt(uint32_t Type, const SymbolBody &S) const override;
void relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type, uint64_t P,
uint64_t SA, uint64_t ZA = 0,
uint8_t *PairedLoc = nullptr) const override;
};
class AMDGPUTargetInfo final : public TargetInfo {
public:
AMDGPUTargetInfo();
void writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const override;
void writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr) const override;
void writePltEntry(uint8_t *Buf, uint64_t GotAddr, uint64_t GotEntryAddr,
uint64_t PltEntryAddr, int32_t Index,
unsigned RelOff) const override;
bool relocNeedsGot(uint32_t Type, const SymbolBody &S) const override;
bool relocNeedsPlt(uint32_t Type, const SymbolBody &S) const override;
void relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type, uint64_t P,
uint64_t SA, uint64_t ZA = 0,
uint8_t *PairedLoc = nullptr) const override;
};
template <class ELFT> class MipsTargetInfo final : public TargetInfo {
public:
MipsTargetInfo();
void writeGotHeaderEntries(uint8_t *Buf) const override;
void writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const override;
void writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr) const override;
void writePltEntry(uint8_t *Buf, uint64_t GotAddr, uint64_t GotEntryAddr,
uint64_t PltEntryAddr, int32_t Index,
unsigned RelOff) const override;
bool relocNeedsGot(uint32_t Type, const SymbolBody &S) const override;
bool relocNeedsPlt(uint32_t Type, const SymbolBody &S) const override;
void relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type, uint64_t P,
uint64_t SA, uint64_t ZA = 0,
uint8_t *PairedLoc = nullptr) const override;
bool isRelRelative(uint32_t Type) const override;
};
} // anonymous namespace
TargetInfo *createTarget() {
switch (Config->EMachine) {
case EM_386:
return new X86TargetInfo();
case EM_AARCH64:
return new AArch64TargetInfo();
case EM_AMDGPU:
return new AMDGPUTargetInfo();
case EM_MIPS:
switch (Config->EKind) {
case ELF32LEKind:
return new MipsTargetInfo<ELF32LE>();
case ELF32BEKind:
return new MipsTargetInfo<ELF32BE>();
default:
error("Unsupported MIPS target");
}
case EM_PPC64:
return new PPC64TargetInfo();
case EM_X86_64:
return new X86_64TargetInfo();
}
error("Unknown target machine");
}
TargetInfo::~TargetInfo() {}
bool TargetInfo::isTlsOptimized(unsigned Type, const SymbolBody *S) const {
return false;
}
uint64_t TargetInfo::getVAStart() const { return Config->Shared ? 0 : VAStart; }
bool TargetInfo::needsCopyRel(uint32_t Type, const SymbolBody &S) const {
return false;
}
bool TargetInfo::isGotRelative(uint32_t Type) const { return false; }
bool TargetInfo::isRelRelative(uint32_t Type) const { return true; }
bool TargetInfo::isSizeReloc(uint32_t Type) const { return false; }
unsigned TargetInfo::relocateTlsOptimize(uint8_t *Loc, uint8_t *BufEnd,
uint32_t Type, uint64_t P, uint64_t SA,
const SymbolBody &S) const {
return 0;
}
void TargetInfo::writeGotHeaderEntries(uint8_t *Buf) const {}
void TargetInfo::writeGotPltHeaderEntries(uint8_t *Buf) const {}
X86TargetInfo::X86TargetInfo() {
CopyReloc = R_386_COPY;
PCRelReloc = R_386_PC32;
GotReloc = R_386_GLOB_DAT;
PltReloc = R_386_JUMP_SLOT;
IRelativeReloc = R_386_IRELATIVE;
RelativeReloc = R_386_RELATIVE;
TlsGotReloc = R_386_TLS_TPOFF;
TlsGlobalDynamicReloc = R_386_TLS_GD;
TlsLocalDynamicReloc = R_386_TLS_LDM;
TlsModuleIndexReloc = R_386_TLS_DTPMOD32;
TlsOffsetReloc = R_386_TLS_DTPOFF32;
LazyRelocations = true;
PltEntrySize = 16;
PltZeroEntrySize = 16;
}
void X86TargetInfo::writeGotPltHeaderEntries(uint8_t *Buf) const {
write32le(Buf, Out<ELF32LE>::Dynamic->getVA());
}
void X86TargetInfo::writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const {
// Skip 6 bytes of "pushl (GOT+4)"
write32le(Buf, Plt + 6);
}
unsigned X86TargetInfo::getDynReloc(unsigned Type) const {
if (Type == R_386_TLS_LE)
return R_386_TLS_TPOFF;
if (Type == R_386_TLS_LE_32)
return R_386_TLS_TPOFF32;
return Type;
}
unsigned X86TargetInfo::getTlsGotReloc(unsigned Type) const {
if (Type == R_386_TLS_IE)
return Type;
return TlsGotReloc;
}
bool X86TargetInfo::isTlsDynReloc(unsigned Type, const SymbolBody &S) const {
if (Type == R_386_TLS_LE || Type == R_386_TLS_LE_32 ||
Type == R_386_TLS_GOTIE)
return Config->Shared;
if (Type == R_386_TLS_IE)
return canBePreempted(&S, true);
return Type == R_386_TLS_GD;
}
void X86TargetInfo::writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr) const {
// Executable files and shared object files have
// separate procedure linkage tables.
if (Config->Shared) {
const uint8_t V[] = {
0xff, 0xb3, 0x04, 0x00, 0x00, 0x00, // pushl 4(%ebx)
0xff, 0xa3, 0x08, 0x00, 0x00, 0x00, // jmp *8(%ebx)
0x90, 0x90, 0x90, 0x90 // nop;nop;nop;nop
};
memcpy(Buf, V, sizeof(V));
return;
}
const uint8_t PltData[] = {
0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushl (GOT+4)
0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *(GOT+8)
0x90, 0x90, 0x90, 0x90 // nop;nop;nop;nop
};
memcpy(Buf, PltData, sizeof(PltData));
write32le(Buf + 2, GotEntryAddr + 4); // GOT+4
write32le(Buf + 8, GotEntryAddr + 8); // GOT+8
}
void X86TargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotAddr,
uint64_t GotEntryAddr, uint64_t PltEntryAddr,
int32_t Index, unsigned RelOff) const {
const uint8_t Inst[] = {
0xff, 0x00, 0x00, 0x00, 0x00, 0x00, // jmp *foo_in_GOT|*foo@GOT(%ebx)
0x68, 0x00, 0x00, 0x00, 0x00, // pushl $reloc_offset
0xe9, 0x00, 0x00, 0x00, 0x00 // jmp .PLT0@PC
};
memcpy(Buf, Inst, sizeof(Inst));
// jmp *foo@GOT(%ebx) or jmp *foo_in_GOT
Buf[1] = Config->Shared ? 0xa3 : 0x25;
write32le(Buf + 2, Config->Shared ? (GotEntryAddr - GotAddr) : GotEntryAddr);
write32le(Buf + 7, RelOff);
write32le(Buf + 12, -Index * PltEntrySize - PltZeroEntrySize - 16);
}
bool X86TargetInfo::needsCopyRel(uint32_t Type, const SymbolBody &S) const {
if (Type == R_386_32 || Type == R_386_16 || Type == R_386_8)
if (auto *SS = dyn_cast<SharedSymbol<ELF32LE>>(&S))
return SS->Sym.getType() == STT_OBJECT;
return false;
}
bool X86TargetInfo::relocNeedsGot(uint32_t Type, const SymbolBody &S) const {
if (S.isTls() && Type == R_386_TLS_GD)
return Target->isTlsOptimized(Type, &S) && canBePreempted(&S, true);
if (Type == R_386_TLS_GOTIE || Type == R_386_TLS_IE)
return !isTlsOptimized(Type, &S);
return Type == R_386_GOT32 || relocNeedsPlt(Type, S);
}
bool X86TargetInfo::relocNeedsPlt(uint32_t Type, const SymbolBody &S) const {
return isGnuIFunc<ELF32LE>(S) ||
(Type == R_386_PLT32 && canBePreempted(&S, true)) ||
(Type == R_386_PC32 && S.isShared());
}
bool X86TargetInfo::isGotRelative(uint32_t Type) const {
// This relocation does not require got entry,
// but it is relative to got and needs it to be created.
// Here we request for that.
return Type == R_386_GOTOFF;
}
void X86TargetInfo::relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type,
uint64_t P, uint64_t SA, uint64_t ZA,
uint8_t *PairedLoc) const {
switch (Type) {
case R_386_32:
add32le(Loc, SA);
break;
case R_386_GOT32:
case R_386_GOTOFF:
add32le(Loc, SA - Out<ELF32LE>::Got->getVA());
break;
case R_386_GOTPC:
add32le(Loc, SA + Out<ELF32LE>::Got->getVA() - P);
break;
case R_386_PC32:
case R_386_PLT32:
add32le(Loc, SA - P);
break;
case R_386_TLS_GD:
case R_386_TLS_LDM:
case R_386_TLS_TPOFF: {
uint64_t V = SA - Out<ELF32LE>::Got->getVA() -
Out<ELF32LE>::Got->getNumEntries() * 4;
checkInt<32>(V, Type);
write32le(Loc, V);
break;
}
case R_386_TLS_IE:
case R_386_TLS_LDO_32:
write32le(Loc, SA);
break;
case R_386_TLS_LE:
write32le(Loc, SA - Out<ELF32LE>::TlsPhdr->p_memsz);
break;
case R_386_TLS_LE_32:
write32le(Loc, Out<ELF32LE>::TlsPhdr->p_memsz - SA);
break;
default:
error("unrecognized reloc " + Twine(Type));
}
}
bool X86TargetInfo::isTlsOptimized(unsigned Type, const SymbolBody *S) const {
if (Config->Shared || (S && !S->isTls()))
return false;
return Type == R_386_TLS_LDO_32 || Type == R_386_TLS_LDM ||
Type == R_386_TLS_GD ||
(Type == R_386_TLS_IE && !canBePreempted(S, true)) ||
(Type == R_386_TLS_GOTIE && !canBePreempted(S, true));
}
bool X86TargetInfo::relocNeedsDynRelative(unsigned Type) const {
return Config->Shared && Type == R_386_TLS_IE;
}
unsigned X86TargetInfo::relocateTlsOptimize(uint8_t *Loc, uint8_t *BufEnd,
uint32_t Type, uint64_t P,
uint64_t SA,
const SymbolBody &S) const {
switch (Type) {
case R_386_TLS_GD:
if (canBePreempted(&S, true))
relocateTlsGdToIe(Loc, BufEnd, P, SA);
else
relocateTlsGdToLe(Loc, BufEnd, P, SA);
// The next relocation should be against __tls_get_addr, so skip it
return 1;
case R_386_TLS_GOTIE:
case R_386_TLS_IE:
relocateTlsIeToLe(Type, Loc, BufEnd, P, SA);
return 0;
case R_386_TLS_LDM:
relocateTlsLdToLe(Loc, BufEnd, P, SA);
// The next relocation should be against __tls_get_addr, so skip it
return 1;
case R_386_TLS_LDO_32:
relocateOne(Loc, BufEnd, R_386_TLS_LE, P, SA);
return 0;
}
llvm_unreachable("Unknown TLS optimization");
}
// "Ulrich Drepper, ELF Handling For Thread-Local Storage" (5.1
// IA-32 Linker Optimizations, http://www.akkadia.org/drepper/tls.pdf) shows
// how GD can be optimized to IE:
// leal x@tlsgd(, %ebx, 1),
// call __tls_get_addr@plt
// Is converted to:
// movl %gs:0, %eax
// addl x@gotntpoff(%ebx), %eax
void X86TargetInfo::relocateTlsGdToIe(uint8_t *Loc, uint8_t *BufEnd, uint64_t P,
uint64_t SA) const {
const uint8_t Inst[] = {
0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
0x03, 0x83, 0x00, 0x00, 0x00, 0x00 // addl 0(%ebx), %eax
};
memcpy(Loc - 3, Inst, sizeof(Inst));
relocateOne(Loc + 5, BufEnd, R_386_32, P,
SA - Out<ELF32LE>::Got->getVA() -
Out<ELF32LE>::Got->getNumEntries() * 4);
}
// GD can be optimized to LE:
// leal x@tlsgd(, %ebx, 1),
// call __tls_get_addr@plt
// Can be converted to:
// movl %gs:0,%eax
// addl $x@ntpoff,%eax
// But gold emits subl $foo@tpoff,%eax instead of addl.
// These instructions are completely equal in behavior.
// This method generates subl to be consistent with gold.
void X86TargetInfo::relocateTlsGdToLe(uint8_t *Loc, uint8_t *BufEnd, uint64_t P,
uint64_t SA) const {
const uint8_t Inst[] = {
0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
0x81, 0xe8, 0x00, 0x00, 0x00, 0x00 // subl 0(%ebx), %eax
};
memcpy(Loc - 3, Inst, sizeof(Inst));
relocateOne(Loc + 5, BufEnd, R_386_32, P,
Out<ELF32LE>::TlsPhdr->p_memsz - SA);
}
// LD can be optimized to LE:
// leal foo(%reg),%eax
// call ___tls_get_addr
// Is converted to:
// movl %gs:0,%eax
// nop
// leal 0(%esi,1),%esi
void X86TargetInfo::relocateTlsLdToLe(uint8_t *Loc, uint8_t *BufEnd, uint64_t P,
uint64_t SA) const {
const uint8_t Inst[] = {
0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0,%eax
0x90, // nop
0x8d, 0x74, 0x26, 0x00 // leal 0(%esi,1),%esi
};
memcpy(Loc - 2, Inst, sizeof(Inst));
}
// In some conditions, relocations can be optimized to avoid using GOT.
// This function does that for Initial Exec to Local Exec case.
// Read "ELF Handling For Thread-Local Storage, 5.1
// IA-32 Linker Optimizations" (http://www.akkadia.org/drepper/tls.pdf)
// by Ulrich Drepper for details.
void X86TargetInfo::relocateTlsIeToLe(unsigned Type, uint8_t *Loc,
uint8_t *BufEnd, uint64_t P,
uint64_t SA) const {
// Ulrich's document section 6.2 says that @gotntpoff can
// be used with MOVL or ADDL instructions.
// @indntpoff is similar to @gotntpoff, but for use in
// position dependent code.
uint8_t *Inst = Loc - 2;
uint8_t *Op = Loc - 1;
uint8_t Reg = (Loc[-1] >> 3) & 7;
bool IsMov = *Inst == 0x8b;
if (Type == R_386_TLS_IE) {
// For R_386_TLS_IE relocation we perform the next transformations:
// MOVL foo@INDNTPOFF,%EAX is transformed to MOVL $foo,%EAX
// MOVL foo@INDNTPOFF,%REG is transformed to MOVL $foo,%REG
// ADDL foo@INDNTPOFF,%REG is transformed to ADDL $foo,%REG
// First one is special because when EAX is used the sequence is 5 bytes
// long, otherwise it is 6 bytes.
if (*Op == 0xa1) {
*Op = 0xb8;
} else {
*Inst = IsMov ? 0xc7 : 0x81;
*Op = 0xc0 | ((*Op >> 3) & 7);
}
} else {
// R_386_TLS_GOTIE relocation can be optimized to
// R_386_TLS_LE so that it does not use GOT.
// "MOVL foo@GOTTPOFF(%RIP), %REG" is transformed to "MOVL $foo, %REG".
// "ADDL foo@GOTNTPOFF(%RIP), %REG" is transformed to "LEAL foo(%REG), %REG"
// Note: gold converts to ADDL instead of LEAL.
*Inst = IsMov ? 0xc7 : 0x8d;
if (IsMov)
*Op = 0xc0 | ((*Op >> 3) & 7);
else
*Op = 0x80 | Reg | (Reg << 3);
}
relocateOne(Loc, BufEnd, R_386_TLS_LE, P, SA);
}
X86_64TargetInfo::X86_64TargetInfo() {
CopyReloc = R_X86_64_COPY;
PCRelReloc = R_X86_64_PC32;
GotReloc = R_X86_64_GLOB_DAT;
PltReloc = R_X86_64_JUMP_SLOT;
RelativeReloc = R_X86_64_RELATIVE;
IRelativeReloc = R_X86_64_IRELATIVE;
TlsGotReloc = R_X86_64_TPOFF64;
TlsLocalDynamicReloc = R_X86_64_TLSLD;
TlsGlobalDynamicReloc = R_X86_64_TLSGD;
TlsModuleIndexReloc = R_X86_64_DTPMOD64;
TlsOffsetReloc = R_X86_64_DTPOFF64;
LazyRelocations = true;
PltEntrySize = 16;
PltZeroEntrySize = 16;
}
void X86_64TargetInfo::writeGotPltHeaderEntries(uint8_t *Buf) const {
write64le(Buf, Out<ELF64LE>::Dynamic->getVA());
}
void X86_64TargetInfo::writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const {
// Skip 6 bytes of "jmpq *got(%rip)"
write32le(Buf, Plt + 6);
}
void X86_64TargetInfo::writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr) const {
const uint8_t PltData[] = {
0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushq GOT+8(%rip)
0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *GOT+16(%rip)
0x0f, 0x1f, 0x40, 0x00 // nopl 0x0(rax)
};
memcpy(Buf, PltData, sizeof(PltData));
write32le(Buf + 2, GotEntryAddr - PltEntryAddr + 2); // GOT+8
write32le(Buf + 8, GotEntryAddr - PltEntryAddr + 4); // GOT+16
}
void X86_64TargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotAddr,
uint64_t GotEntryAddr,
uint64_t PltEntryAddr, int32_t Index,
unsigned RelOff) const {
const uint8_t Inst[] = {
0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmpq *got(%rip)
0x68, 0x00, 0x00, 0x00, 0x00, // pushq <relocation index>
0xe9, 0x00, 0x00, 0x00, 0x00 // jmpq plt[0]
};
memcpy(Buf, Inst, sizeof(Inst));
write32le(Buf + 2, GotEntryAddr - PltEntryAddr - 6);
write32le(Buf + 7, Index);
write32le(Buf + 12, -Index * PltEntrySize - PltZeroEntrySize - 16);
}
bool X86_64TargetInfo::needsCopyRel(uint32_t Type, const SymbolBody &S) const {
if (Type == R_X86_64_32S || Type == R_X86_64_32 || Type == R_X86_64_PC32 ||
Type == R_X86_64_64)
if (auto *SS = dyn_cast<SharedSymbol<ELF64LE>>(&S))
return SS->Sym.getType() == STT_OBJECT;
return false;
}
bool X86_64TargetInfo::relocNeedsGot(uint32_t Type, const SymbolBody &S) const {
if (Type == R_X86_64_TLSGD)
return Target->isTlsOptimized(Type, &S) && canBePreempted(&S, true);
if (Type == R_X86_64_GOTTPOFF)
return !isTlsOptimized(Type, &S);
return Type == R_X86_64_GOTPCREL || relocNeedsPlt(Type, S);
}
bool X86_64TargetInfo::isTlsDynReloc(unsigned Type, const SymbolBody &S) const {
return Type == R_X86_64_GOTTPOFF || Type == R_X86_64_TLSGD;
}
bool X86_64TargetInfo::relocNeedsPlt(uint32_t Type, const SymbolBody &S) const {
if (needsCopyRel(Type, S))
return false;
if (isGnuIFunc<ELF64LE>(S))
return true;
switch (Type) {
default:
return false;
case R_X86_64_32:
case R_X86_64_64:
case R_X86_64_PC32:
// This relocation is defined to have a value of (S + A - P).
// The problems start when a non PIC program calls a function in a shared
// library.
// In an ideal world, we could just report an error saying the relocation
// can overflow at runtime.
// In the real world with glibc, crt1.o has a R_X86_64_PC32 pointing to
// libc.so.
//
// The general idea on how to handle such cases is to create a PLT entry
// and use that as the function value.
//
// For the static linking part, we just return true and everything else
// will use the the PLT entry as the address.
//
// The remaining (unimplemented) problem is making sure pointer equality
// still works. We need the help of the dynamic linker for that. We
// let it know that we have a direct reference to a so symbol by creating
// an undefined symbol with a non zero st_value. Seeing that, the
// dynamic linker resolves the symbol to the value of the symbol we created.
// This is true even for got entries, so pointer equality is maintained.
// To avoid an infinite loop, the only entry that points to the
// real function is a dedicated got entry used by the plt. That is
// identified by special relocation types (R_X86_64_JUMP_SLOT,
// R_386_JMP_SLOT, etc).
return S.isShared();
case R_X86_64_PLT32:
return canBePreempted(&S, true);
}
}
bool X86_64TargetInfo::isRelRelative(uint32_t Type) const {
switch (Type) {
default:
return false;
case R_X86_64_DTPOFF32:
case R_X86_64_DTPOFF64:
case R_X86_64_PC8:
case R_X86_64_PC16:
case R_X86_64_PC32:
case R_X86_64_PC64:
case R_X86_64_PLT32:
return true;
}
}
bool X86_64TargetInfo::isSizeReloc(uint32_t Type) const {
return Type == R_X86_64_SIZE32 || Type == R_X86_64_SIZE64;
}
bool X86_64TargetInfo::isTlsOptimized(unsigned Type,
const SymbolBody *S) const {
if (Config->Shared || (S && !S->isTls()))
return false;
return Type == R_X86_64_TLSGD || Type == R_X86_64_TLSLD ||
Type == R_X86_64_DTPOFF32 ||
(Type == R_X86_64_GOTTPOFF && !canBePreempted(S, true));
}
// "Ulrich Drepper, ELF Handling For Thread-Local Storage" (5.5
// x86-x64 linker optimizations, http://www.akkadia.org/drepper/tls.pdf) shows
// how LD can be optimized to LE:
// leaq bar@tlsld(%rip), %rdi
// callq __tls_get_addr@PLT
// leaq bar@dtpoff(%rax), %rcx
// Is converted to:
// .word 0x6666
// .byte 0x66
// mov %fs:0,%rax
// leaq bar@tpoff(%rax), %rcx
void X86_64TargetInfo::relocateTlsLdToLe(uint8_t *Loc, uint8_t *BufEnd,
uint64_t P, uint64_t SA) const {
const uint8_t Inst[] = {
0x66, 0x66, //.word 0x6666
0x66, //.byte 0x66
0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax
};
memcpy(Loc - 3, Inst, sizeof(Inst));
}
// "Ulrich Drepper, ELF Handling For Thread-Local Storage" (5.5
// x86-x64 linker optimizations, http://www.akkadia.org/drepper/tls.pdf) shows
// how GD can be optimized to LE:
// .byte 0x66
// leaq x@tlsgd(%rip), %rdi
// .word 0x6666
// rex64
// call __tls_get_addr@plt
// Is converted to:
// mov %fs:0x0,%rax
// lea x@tpoff,%rax
void X86_64TargetInfo::relocateTlsGdToLe(uint8_t *Loc, uint8_t *BufEnd,
uint64_t P, uint64_t SA) const {
const uint8_t Inst[] = {
0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax
0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff,%rax
};
memcpy(Loc - 4, Inst, sizeof(Inst));
relocateOne(Loc + 8, BufEnd, R_X86_64_TPOFF32, P, SA);
}
// "Ulrich Drepper, ELF Handling For Thread-Local Storage" (5.5
// x86-x64 linker optimizations, http://www.akkadia.org/drepper/tls.pdf) shows
// how GD can be optimized to IE:
// .byte 0x66
// leaq x@tlsgd(%rip), %rdi
// .word 0x6666
// rex64
// call __tls_get_addr@plt
// Is converted to:
// mov %fs:0x0,%rax
// addq x@tpoff,%rax
void X86_64TargetInfo::relocateTlsGdToIe(uint8_t *Loc, uint8_t *BufEnd,
uint64_t P, uint64_t SA) const {
const uint8_t Inst[] = {
0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax
0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00 // addq x@tpoff,%rax
};
memcpy(Loc - 4, Inst, sizeof(Inst));
relocateOne(Loc + 8, BufEnd, R_X86_64_TPOFF64, P + 12, SA);
}
// In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to
// R_X86_64_TPOFF32 so that it does not use GOT.
// This function does that. Read "ELF Handling For Thread-Local Storage,
// 5.5 x86-x64 linker optimizations" (http://www.akkadia.org/drepper/tls.pdf)
// by Ulrich Drepper for details.
void X86_64TargetInfo::relocateTlsIeToLe(uint8_t *Loc, uint8_t *BufEnd,
uint64_t P, uint64_t SA) const {
// Ulrich's document section 6.5 says that @gottpoff(%rip) must be
// used in MOVQ or ADDQ instructions only.
// "MOVQ foo@GOTTPOFF(%RIP), %REG" is transformed to "MOVQ $foo, %REG".
// "ADDQ foo@GOTTPOFF(%RIP), %REG" is transformed to "LEAQ foo(%REG), %REG"
// (if the register is not RSP/R12) or "ADDQ $foo, %RSP".
// Opcodes info can be found at http://ref.x86asm.net/coder64.html#x48.
uint8_t *Prefix = Loc - 3;
uint8_t *Inst = Loc - 2;
uint8_t *RegSlot = Loc - 1;
uint8_t Reg = Loc[-1] >> 3;
bool IsMov = *Inst == 0x8b;
bool RspAdd = !IsMov && Reg == 4;
// r12 and rsp registers requires special handling.
// Problem is that for other registers, for example leaq 0xXXXXXXXX(%r11),%r11
// result out is 7 bytes: 4d 8d 9b XX XX XX XX,
// but leaq 0xXXXXXXXX(%r12),%r12 is 8 bytes: 4d 8d a4 24 XX XX XX XX.
// The same true for rsp. So we convert to addq for them, saving 1 byte that
// we dont have.
if (RspAdd)
*Inst = 0x81;
else
*Inst = IsMov ? 0xc7 : 0x8d;
if (*Prefix == 0x4c)
*Prefix = (IsMov || RspAdd) ? 0x49 : 0x4d;
*RegSlot = (IsMov || RspAdd) ? (0xc0 | Reg) : (0x80 | Reg | (Reg << 3));
relocateOne(Loc, BufEnd, R_X86_64_TPOFF32, P, SA);
}
// This function applies a TLS relocation with an optimization as described
// in the Ulrich's document. As a result of rewriting instructions at the
// relocation target, relocations immediately follow the TLS relocation (which
// would be applied to rewritten instructions) may have to be skipped.
// This function returns a number of relocations that need to be skipped.
unsigned X86_64TargetInfo::relocateTlsOptimize(uint8_t *Loc, uint8_t *BufEnd,
uint32_t Type, uint64_t P,
uint64_t SA,
const SymbolBody &S) const {
switch (Type) {
case R_X86_64_DTPOFF32:
relocateOne(Loc, BufEnd, R_X86_64_TPOFF32, P, SA);
return 0;
case R_X86_64_GOTTPOFF:
relocateTlsIeToLe(Loc, BufEnd, P, SA);
return 0;
case R_X86_64_TLSGD: {
if (canBePreempted(&S, true))
relocateTlsGdToIe(Loc, BufEnd, P, SA);
else
relocateTlsGdToLe(Loc, BufEnd, P, SA);
// The next relocation should be against __tls_get_addr, so skip it
return 1;
}
case R_X86_64_TLSLD:
relocateTlsLdToLe(Loc, BufEnd, P, SA);
// The next relocation should be against __tls_get_addr, so skip it
return 1;
}
llvm_unreachable("Unknown TLS optimization");
}
void X86_64TargetInfo::relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type,
uint64_t P, uint64_t SA, uint64_t ZA,
uint8_t *PairedLoc) const {
switch (Type) {
case R_X86_64_32:
checkUInt<32>(SA, Type);
write32le(Loc, SA);
break;
case R_X86_64_32S:
checkInt<32>(SA, Type);
write32le(Loc, SA);
break;
case R_X86_64_64:
write64le(Loc, SA);
break;
case R_X86_64_DTPOFF32:
write32le(Loc, SA);
break;
case R_X86_64_DTPOFF64:
write64le(Loc, SA);
break;
case R_X86_64_GOTPCREL:
case R_X86_64_PC32:
case R_X86_64_PLT32:
case R_X86_64_TLSGD:
case R_X86_64_TLSLD:
write32le(Loc, SA - P);
break;
case R_X86_64_SIZE32:
write32le(Loc, ZA);
break;
case R_X86_64_SIZE64:
write64le(Loc, ZA);
break;
case R_X86_64_TPOFF32: {
uint64_t Val = SA - Out<ELF64LE>::TlsPhdr->p_memsz;
checkInt<32>(Val, Type);
write32le(Loc, Val);
break;
}
case R_X86_64_TPOFF64:
write32le(Loc, SA - P);
break;
default:
error("unrecognized reloc " + Twine(Type));
}
}
// Relocation masks following the #lo(value), #hi(value), #ha(value),
// #higher(value), #highera(value), #highest(value), and #highesta(value)
// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
// document.
static uint16_t applyPPCLo(uint64_t V) { return V; }
static uint16_t applyPPCHi(uint64_t V) { return V >> 16; }
static uint16_t applyPPCHa(uint64_t V) { return (V + 0x8000) >> 16; }
static uint16_t applyPPCHigher(uint64_t V) { return V >> 32; }
static uint16_t applyPPCHighera(uint64_t V) { return (V + 0x8000) >> 32; }
static uint16_t applyPPCHighest(uint64_t V) { return V >> 48; }
static uint16_t applyPPCHighesta(uint64_t V) { return (V + 0x8000) >> 48; }
PPC64TargetInfo::PPC64TargetInfo() {
PCRelReloc = R_PPC64_REL24;
GotReloc = R_PPC64_GLOB_DAT;
RelativeReloc = R_PPC64_RELATIVE;
PltEntrySize = 32;
// We need 64K pages (at least under glibc/Linux, the loader won't
// set different permissions on a finer granularity than that).
PageSize = 65536;
// The PPC64 ELF ABI v1 spec, says:
//
// It is normally desirable to put segments with different characteristics
// in separate 256 Mbyte portions of the address space, to give the
// operating system full paging flexibility in the 64-bit address space.
//
// And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers
// use 0x10000000 as the starting address.
VAStart = 0x10000000;
}
uint64_t getPPC64TocBase() {
// The TOC consists of sections .got, .toc, .tocbss, .plt in that
// order. The TOC starts where the first of these sections starts.
// FIXME: This obviously does not do the right thing when there is no .got
// section, but there is a .toc or .tocbss section.
uint64_t TocVA = Out<ELF64BE>::Got->getVA();
if (!TocVA)
TocVA = Out<ELF64BE>::Plt->getVA();
// Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
// thus permitting a full 64 Kbytes segment. Note that the glibc startup
// code (crt1.o) assumes that you can get from the TOC base to the
// start of the .toc section with only a single (signed) 16-bit relocation.
return TocVA + 0x8000;
}
void PPC64TargetInfo::writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const {}
void PPC64TargetInfo::writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr) const {}
void PPC64TargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotAddr,
uint64_t GotEntryAddr,
uint64_t PltEntryAddr, int32_t Index,
unsigned RelOff) const {
uint64_t Off = GotEntryAddr - getPPC64TocBase();
// FIXME: What we should do, in theory, is get the offset of the function
// descriptor in the .opd section, and use that as the offset from %r2 (the
// TOC-base pointer). Instead, we have the GOT-entry offset, and that will
// be a pointer to the function descriptor in the .opd section. Using
// this scheme is simpler, but requires an extra indirection per PLT dispatch.
write32be(Buf, 0xf8410028); // std %r2, 40(%r1)
write32be(Buf + 4, 0x3d620000 | applyPPCHa(Off)); // addis %r11, %r2, X@ha
write32be(Buf + 8, 0xe98b0000 | applyPPCLo(Off)); // ld %r12, X@l(%r11)
write32be(Buf + 12, 0xe96c0000); // ld %r11,0(%r12)
write32be(Buf + 16, 0x7d6903a6); // mtctr %r11
write32be(Buf + 20, 0xe84c0008); // ld %r2,8(%r12)
write32be(Buf + 24, 0xe96c0010); // ld %r11,16(%r12)
write32be(Buf + 28, 0x4e800420); // bctr
}
bool PPC64TargetInfo::relocNeedsGot(uint32_t Type, const SymbolBody &S) const {
if (relocNeedsPlt(Type, S))
return true;
switch (Type) {
default: return false;
case R_PPC64_GOT16:
case R_PPC64_GOT16_DS:
case R_PPC64_GOT16_HA:
case R_PPC64_GOT16_HI:
case R_PPC64_GOT16_LO:
case R_PPC64_GOT16_LO_DS:
return true;
}
}
bool PPC64TargetInfo::relocNeedsPlt(uint32_t Type, const SymbolBody &S) const {
// These are function calls that need to be redirected through a PLT stub.
return Type == R_PPC64_REL24 && canBePreempted(&S, false);
}
bool PPC64TargetInfo::isRelRelative(uint32_t Type) const {
switch (Type) {
default:
return true;
case R_PPC64_ADDR64:
case R_PPC64_TOC:
return false;
}
}
void PPC64TargetInfo::relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type,
uint64_t P, uint64_t SA, uint64_t ZA,
uint8_t *PairedLoc) const {
uint64_t TB = getPPC64TocBase();
// For a TOC-relative relocation, adjust the addend and proceed in terms of
// the corresponding ADDR16 relocation type.
switch (Type) {
case R_PPC64_TOC16: Type = R_PPC64_ADDR16; SA -= TB; break;
case R_PPC64_TOC16_DS: Type = R_PPC64_ADDR16_DS; SA -= TB; break;
case R_PPC64_TOC16_HA: Type = R_PPC64_ADDR16_HA; SA -= TB; break;
case R_PPC64_TOC16_HI: Type = R_PPC64_ADDR16_HI; SA -= TB; break;
case R_PPC64_TOC16_LO: Type = R_PPC64_ADDR16_LO; SA -= TB; break;
case R_PPC64_TOC16_LO_DS: Type = R_PPC64_ADDR16_LO_DS; SA -= TB; break;
default: break;
}
switch (Type) {
case R_PPC64_ADDR14: {
checkAlignment<4>(SA, Type);
// Preserve the AA/LK bits in the branch instruction
uint8_t AALK = Loc[3];
write16be(Loc + 2, (AALK & 3) | (SA & 0xfffc));
break;
}
case R_PPC64_ADDR16:
checkInt<16>(SA, Type);
write16be(Loc, SA);
break;
case R_PPC64_ADDR16_DS:
checkInt<16>(SA, Type);
write16be(Loc, (read16be(Loc) & 3) | (SA & ~3));
break;
case R_PPC64_ADDR16_HA:
write16be(Loc, applyPPCHa(SA));
break;
case R_PPC64_ADDR16_HI:
write16be(Loc, applyPPCHi(SA));
break;
case R_PPC64_ADDR16_HIGHER:
write16be(Loc, applyPPCHigher(SA));
break;
case R_PPC64_ADDR16_HIGHERA:
write16be(Loc, applyPPCHighera(SA));
break;
case R_PPC64_ADDR16_HIGHEST:
write16be(Loc, applyPPCHighest(SA));
break;
case R_PPC64_ADDR16_HIGHESTA:
write16be(Loc, applyPPCHighesta(SA));
break;
case R_PPC64_ADDR16_LO:
write16be(Loc, applyPPCLo(SA));
break;
case R_PPC64_ADDR16_LO_DS:
write16be(Loc, (read16be(Loc) & 3) | (applyPPCLo(SA) & ~3));
break;
case R_PPC64_ADDR32:
checkInt<32>(SA, Type);
write32be(Loc, SA);
break;
case R_PPC64_ADDR64:
write64be(Loc, SA);
break;
case R_PPC64_REL16_HA:
write16be(Loc, applyPPCHa(SA - P));
break;
case R_PPC64_REL16_HI:
write16be(Loc, applyPPCHi(SA - P));
break;
case R_PPC64_REL16_LO:
write16be(Loc, applyPPCLo(SA - P));
break;
case R_PPC64_REL24: {
// If we have an undefined weak symbol, we might get here with a symbol
// address of zero. That could overflow, but the code must be unreachable,
// so don't bother doing anything at all.
if (!SA)
break;
uint64_t PltStart = Out<ELF64BE>::Plt->getVA();
uint64_t PltEnd = PltStart + Out<ELF64BE>::Plt->getSize();
bool InPlt = PltStart <= SA && SA < PltEnd;
if (!InPlt && Out<ELF64BE>::Opd) {
// If this is a local call, and we currently have the address of a
// function-descriptor, get the underlying code address instead.
uint64_t OpdStart = Out<ELF64BE>::Opd->getVA();
uint64_t OpdEnd = OpdStart + Out<ELF64BE>::Opd->getSize();
bool InOpd = OpdStart <= SA && SA < OpdEnd;
if (InOpd)
SA = read64be(&Out<ELF64BE>::OpdBuf[SA - OpdStart]);
}
uint32_t Mask = 0x03FFFFFC;
checkInt<24>(SA - P, Type);
write32be(Loc, (read32be(Loc) & ~Mask) | ((SA - P) & Mask));
uint32_t Nop = 0x60000000;
if (InPlt && Loc + 8 <= BufEnd && read32be(Loc + 4) == Nop)
write32be(Loc + 4, 0xe8410028); // ld %r2, 40(%r1)
break;
}
case R_PPC64_REL32:
checkInt<32>(SA - P, Type);
write32be(Loc, SA - P);
break;
case R_PPC64_REL64:
write64be(Loc, SA - P);
break;
case R_PPC64_TOC:
write64be(Loc, SA);
break;
default:
error("unrecognized reloc " + Twine(Type));
}
}
AArch64TargetInfo::AArch64TargetInfo() {
CopyReloc = R_AARCH64_COPY;
GotReloc = R_AARCH64_GLOB_DAT;
PltReloc = R_AARCH64_JUMP_SLOT;
LazyRelocations = true;
PltEntrySize = 16;
PltZeroEntrySize = 32;
}
unsigned AArch64TargetInfo::getDynReloc(unsigned Type) const {
if (Type == R_AARCH64_ABS32 || Type == R_AARCH64_ABS64)
return Type;
StringRef S = getELFRelocationTypeName(EM_AARCH64, Type);
error("Relocation " + S + " cannot be used when making a shared object; "
"recompile with -fPIC.");
}
void AArch64TargetInfo::writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const {
write64le(Buf, Out<ELF64LE>::Plt->getVA());
}
void AArch64TargetInfo::writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr) const {
const uint8_t PltData[] = {
0xf0, 0x7b, 0xbf, 0xa9, // stp x16, x30, [sp,#-16]!
0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[2]))
0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.plt.got[2]))]
0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.plt.got[2]))
0x20, 0x02, 0x1f, 0xd6, // br x17
0x1f, 0x20, 0x03, 0xd5, // nop
0x1f, 0x20, 0x03, 0xd5, // nop
0x1f, 0x20, 0x03, 0xd5 // nop
};
memcpy(Buf, PltData, sizeof(PltData));
relocateOne(Buf + 4, Buf + 8, R_AARCH64_ADR_PREL_PG_HI21, PltEntryAddr + 4,
GotEntryAddr + 16);
relocateOne(Buf + 8, Buf + 12, R_AARCH64_LDST64_ABS_LO12_NC, PltEntryAddr + 8,
GotEntryAddr + 16);
relocateOne(Buf + 12, Buf + 16, R_AARCH64_ADD_ABS_LO12_NC, PltEntryAddr + 12,
GotEntryAddr + 16);
}
void AArch64TargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotAddr,
uint64_t GotEntryAddr,
uint64_t PltEntryAddr, int32_t Index,
unsigned RelOff) const {
const uint8_t Inst[] = {
0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[n]))
0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.plt.got[n]))]
0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.plt.got[n]))
0x20, 0x02, 0x1f, 0xd6 // br x17
};
memcpy(Buf, Inst, sizeof(Inst));
relocateOne(Buf, Buf + 4, R_AARCH64_ADR_PREL_PG_HI21, PltEntryAddr,
GotEntryAddr);
relocateOne(Buf + 4, Buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, PltEntryAddr + 4,
GotEntryAddr);
relocateOne(Buf + 8, Buf + 12, R_AARCH64_ADD_ABS_LO12_NC, PltEntryAddr + 8,
GotEntryAddr);
}
bool AArch64TargetInfo::needsCopyRel(uint32_t Type, const SymbolBody &S) const {
if (Config->Shared)
return false;
switch (Type) {
default:
return false;
case R_AARCH64_ABS16:
case R_AARCH64_ABS32:
case R_AARCH64_ABS64:
case R_AARCH64_ADD_ABS_LO12_NC:
case R_AARCH64_ADR_PREL_LO21:
case R_AARCH64_ADR_PREL_PG_HI21:
case R_AARCH64_LDST8_ABS_LO12_NC:
case R_AARCH64_LDST32_ABS_LO12_NC:
case R_AARCH64_LDST64_ABS_LO12_NC:
if (auto *SS = dyn_cast<SharedSymbol<ELF64LE>>(&S))
return SS->Sym.getType() == STT_OBJECT;
return false;
}
}
bool AArch64TargetInfo::relocNeedsGot(uint32_t Type,
const SymbolBody &S) const {
return Type == R_AARCH64_ADR_GOT_PAGE || Type == R_AARCH64_LD64_GOT_LO12_NC ||
relocNeedsPlt(Type, S);
}
bool AArch64TargetInfo::relocNeedsPlt(uint32_t Type,
const SymbolBody &S) const {
switch (Type) {
default:
return false;
case R_AARCH64_CALL26:
case R_AARCH64_JUMP26:
return canBePreempted(&S, true);
}
}
static void updateAArch64Adr(uint8_t *L, uint64_t Imm) {
uint32_t ImmLo = (Imm & 0x3) << 29;
uint32_t ImmHi = ((Imm & 0x1FFFFC) >> 2) << 5;
uint64_t Mask = (0x3 << 29) | (0x7FFFF << 5);
write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
}
// Page(Expr) is the page address of the expression Expr, defined
// as (Expr & ~0xFFF). (This applies even if the machine page size
// supported by the platform has a different value.)
static uint64_t getAArch64Page(uint64_t Expr) {
return Expr & (~static_cast<uint64_t>(0xFFF));
}
void AArch64TargetInfo::relocateOne(uint8_t *Loc, uint8_t *BufEnd,
uint32_t Type, uint64_t P, uint64_t SA,
uint64_t ZA, uint8_t *PairedLoc) const {
switch (Type) {
case R_AARCH64_ABS16:
checkIntUInt<16>(SA, Type);
write16le(Loc, SA);
break;
case R_AARCH64_ABS32:
checkIntUInt<32>(SA, Type);
write32le(Loc, SA);
break;
case R_AARCH64_ABS64:
write64le(Loc, SA);
break;
case R_AARCH64_ADD_ABS_LO12_NC:
// This relocation stores 12 bits and there's no instruction
// to do it. Instead, we do a 32 bits store of the value
// of r_addend bitwise-or'ed Loc. This assumes that the addend
// bits in Loc are zero.
or32le(Loc, (SA & 0xFFF) << 10);
break;
case R_AARCH64_ADR_GOT_PAGE: {
uint64_t X = getAArch64Page(SA) - getAArch64Page(P);
checkInt<33>(X, Type);
updateAArch64Adr(Loc, (X >> 12) & 0x1FFFFF); // X[32:12]
break;
}
case R_AARCH64_ADR_PREL_LO21: {
uint64_t X = SA - P;
checkInt<21>(X, Type);
updateAArch64Adr(Loc, X & 0x1FFFFF);
break;
}
case R_AARCH64_ADR_PREL_PG_HI21: {
uint64_t X = getAArch64Page(SA) - getAArch64Page(P);
checkInt<33>(X, Type);
updateAArch64Adr(Loc, (X >> 12) & 0x1FFFFF); // X[32:12]
break;
}
case R_AARCH64_CALL26:
case R_AARCH64_JUMP26: {
uint64_t X = SA - P;
checkInt<28>(X, Type);
or32le(Loc, (X & 0x0FFFFFFC) >> 2);
break;
}
case R_AARCH64_LD64_GOT_LO12_NC:
checkAlignment<8>(SA, Type);
or32le(Loc, (SA & 0xFF8) << 7);
break;
case R_AARCH64_LDST8_ABS_LO12_NC:
or32le(Loc, (SA & 0xFFF) << 10);
break;
case R_AARCH64_LDST32_ABS_LO12_NC:
or32le(Loc, (SA & 0xFFC) << 8);
break;
case R_AARCH64_LDST64_ABS_LO12_NC:
or32le(Loc, (SA & 0xFF8) << 7);
break;
case R_AARCH64_PREL16:
checkIntUInt<16>(SA - P, Type);
write16le(Loc, SA - P);
break;
case R_AARCH64_PREL32:
checkIntUInt<32>(SA - P, Type);
write32le(Loc, SA - P);
break;
case R_AARCH64_PREL64:
write64le(Loc, SA - P);
break;
default:
error("unrecognized reloc " + Twine(Type));
}
}
AMDGPUTargetInfo::AMDGPUTargetInfo() {}
void AMDGPUTargetInfo::writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const {
llvm_unreachable("not implemented");
}
void AMDGPUTargetInfo::writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr) const {
llvm_unreachable("not implemented");
}
void AMDGPUTargetInfo::writePltEntry(uint8_t *Buf, uint64_t GotAddr,
uint64_t GotEntryAddr,
uint64_t PltEntryAddr, int32_t Index,
unsigned RelOff) const {
llvm_unreachable("not implemented");
}
bool AMDGPUTargetInfo::relocNeedsGot(uint32_t Type, const SymbolBody &S) const {
return false;
}
bool AMDGPUTargetInfo::relocNeedsPlt(uint32_t Type, const SymbolBody &S) const {
return false;
}
// Implementing relocations for AMDGPU is low priority since most
// programs don't use relocations now. Thus, this function is not
// actually called (relocateOne is called for each relocation).
// That's why the AMDGPU port works without implementing this function.
void AMDGPUTargetInfo::relocateOne(uint8_t *Loc, uint8_t *BufEnd, uint32_t Type,
uint64_t P, uint64_t SA, uint64_t ZA,
uint8_t *PairedLoc) const {
llvm_unreachable("not implemented");
}
template <class ELFT> MipsTargetInfo<ELFT>::MipsTargetInfo() {
PageSize = 65536;
GotHeaderEntriesNum = 2;
}
template <class ELFT>
void MipsTargetInfo<ELFT>::writeGotHeaderEntries(uint8_t *Buf) const {
typedef typename ELFFile<ELFT>::Elf_Off Elf_Off;
auto *P = reinterpret_cast<Elf_Off *>(Buf);
// Module pointer
P[1] = ELFT::Is64Bits ? 0x8000000000000000 : 0x80000000;
}
template <class ELFT>
void MipsTargetInfo<ELFT>::writeGotPltEntry(uint8_t *Buf, uint64_t Plt) const {}
template <class ELFT>
void MipsTargetInfo<ELFT>::writePltZeroEntry(uint8_t *Buf, uint64_t GotEntryAddr,
uint64_t PltEntryAddr) const {}
template <class ELFT>
void MipsTargetInfo<ELFT>::writePltEntry(uint8_t *Buf, uint64_t GotAddr,
uint64_t GotEntryAddr,
uint64_t PltEntryAddr, int32_t Index,
unsigned RelOff) const {}
template <class ELFT>
bool MipsTargetInfo<ELFT>::relocNeedsGot(uint32_t Type,
const SymbolBody &S) const {
return Type == R_MIPS_GOT16 || Type == R_MIPS_CALL16;
}
template <class ELFT>
bool MipsTargetInfo<ELFT>::relocNeedsPlt(uint32_t Type,
const SymbolBody &S) const {
return false;
}
static uint16_t mipsHigh(uint64_t V) { return (V + 0x8000) >> 16; }
template <endianness E, uint8_t BSIZE>
static void applyMipsPcReloc(uint8_t *Loc, uint32_t Type, uint64_t P,
uint64_t SA) {
uint32_t Mask = ~(0xffffffff << BSIZE);
uint32_t Instr = read32<E>(Loc);
int64_t A = SignExtend64<BSIZE + 2>((Instr & Mask) << 2);
checkAlignment<4>(SA + A, Type);
int64_t V = SA + A - P;
checkInt<BSIZE + 2>(V, Type);
write32<E>(Loc, (Instr & ~Mask) | ((V >> 2) & Mask));
}
template <class ELFT>
void MipsTargetInfo<ELFT>::relocateOne(uint8_t *Loc, uint8_t *BufEnd,
uint32_t Type, uint64_t P, uint64_t SA,
uint64_t ZA, uint8_t *PairedLoc) const {
const endianness E = ELFT::TargetEndianness;
switch (Type) {
case R_MIPS_32:
add32<E>(Loc, SA);
break;
case R_MIPS_CALL16:
case R_MIPS_GOT16: {
int64_t V = SA - getMipsGpAddr<ELFT>();
if (Type == R_MIPS_GOT16)
checkInt<16>(V, Type);
write32<E>(Loc, (read32<E>(Loc) & 0xffff0000) | (V & 0xffff));
break;
}
case R_MIPS_GPREL16: {
uint32_t Instr = read32<E>(Loc);
int64_t V = SA + SignExtend64<16>(Instr & 0xffff) - getMipsGpAddr<ELFT>();
checkInt<16>(V, Type);
write32<E>(Loc, (Instr & 0xffff0000) | (V & 0xffff));
break;
}
case R_MIPS_GPREL32:
write32<E>(Loc, SA + int32_t(read32<E>(Loc)) - getMipsGpAddr<ELFT>());
break;
case R_MIPS_HI16: {
uint32_t Instr = read32<E>(Loc);
if (PairedLoc) {
uint64_t AHL = ((Instr & 0xffff) << 16) +
SignExtend64<16>(read32<E>(PairedLoc) & 0xffff);
write32<E>(Loc, (Instr & 0xffff0000) | mipsHigh(SA + AHL));
} else {
warning("Can't find matching R_MIPS_LO16 relocation for R_MIPS_HI16");
write32<E>(Loc, (Instr & 0xffff0000) | mipsHigh(SA));
}
break;
}
case R_MIPS_JALR:
// Ignore this optimization relocation for now
break;
case R_MIPS_LO16: {
uint32_t Instr = read32<E>(Loc);
int64_t AHL = SignExtend64<16>(Instr & 0xffff);
write32<E>(Loc, (Instr & 0xffff0000) | ((SA + AHL) & 0xffff));
break;
}
case R_MIPS_PC16:
applyMipsPcReloc<E, 16>(Loc, Type, P, SA);
break;
case R_MIPS_PC19_S2:
applyMipsPcReloc<E, 19>(Loc, Type, P, SA);
break;
case R_MIPS_PC21_S2:
applyMipsPcReloc<E, 21>(Loc, Type, P, SA);
break;
case R_MIPS_PC26_S2:
applyMipsPcReloc<E, 26>(Loc, Type, P, SA);
break;
case R_MIPS_PCHI16: {
uint32_t Instr = read32<E>(Loc);
if (PairedLoc) {
uint64_t AHL = ((Instr & 0xffff) << 16) +
SignExtend64<16>(read32<E>(PairedLoc) & 0xffff);
write32<E>(Loc, (Instr & 0xffff0000) | mipsHigh(SA + AHL - P));
} else {
warning("Can't find matching R_MIPS_PCLO16 relocation for R_MIPS_PCHI16");
write32<E>(Loc, (Instr & 0xffff0000) | mipsHigh(SA - P));
}
break;
}
case R_MIPS_PCLO16: {
uint32_t Instr = read32<E>(Loc);
int64_t AHL = SignExtend64<16>(Instr & 0xffff);
write32<E>(Loc, (Instr & 0xffff0000) | ((SA + AHL - P) & 0xffff));
break;
}
default:
error("unrecognized reloc " + Twine(Type));
}
}
template <class ELFT>
bool MipsTargetInfo<ELFT>::isRelRelative(uint32_t Type) const {
switch (Type) {
default:
return false;
case R_MIPS_PC16:
case R_MIPS_PC19_S2:
case R_MIPS_PC21_S2:
case R_MIPS_PC26_S2:
case R_MIPS_PCHI16:
case R_MIPS_PCLO16:
return true;
}
}
// _gp is a MIPS-specific ABI-defined symbol which points to
// a location that is relative to GOT. This function returns
// the value for the symbol.
template <class ELFT> typename ELFFile<ELFT>::uintX_t getMipsGpAddr() {
unsigned GPOffset = 0x7ff0;
if (uint64_t V = Out<ELFT>::Got->getVA())
return V + GPOffset;
return 0;
}
template uint32_t getMipsGpAddr<ELF32LE>();
template uint32_t getMipsGpAddr<ELF32BE>();
template uint64_t getMipsGpAddr<ELF64LE>();
template uint64_t getMipsGpAddr<ELF64BE>();
}
}