forked from OSchip/llvm-project
1140 lines
46 KiB
C++
1140 lines
46 KiB
C++
//===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass implements a simple loop unroller. It works best when loops have
|
|
// been canonicalized by the -indvars pass, allowing it to determine the trip
|
|
// counts of loops easily.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/LoopUnrollPass.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/CodeMetrics.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/Analysis/LoopUnrollAnalyzer.h"
|
|
#include "llvm/Analysis/OptimizationDiagnosticInfo.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/InstVisitor.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Scalar/LoopPassManager.h"
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
#include "llvm/Transforms/Utils/UnrollLoop.h"
|
|
#include <climits>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "loop-unroll"
|
|
|
|
static cl::opt<unsigned>
|
|
UnrollThreshold("unroll-threshold", cl::Hidden,
|
|
cl::desc("The cost threshold for loop unrolling"));
|
|
|
|
static cl::opt<unsigned> UnrollPartialThreshold(
|
|
"unroll-partial-threshold", cl::Hidden,
|
|
cl::desc("The cost threshold for partial loop unrolling"));
|
|
|
|
static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
|
|
"unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden,
|
|
cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
|
|
"to the threshold when aggressively unrolling a loop due to the "
|
|
"dynamic cost savings. If completely unrolling a loop will reduce "
|
|
"the total runtime from X to Y, we boost the loop unroll "
|
|
"threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
|
|
"X/Y). This limit avoids excessive code bloat."));
|
|
|
|
static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
|
|
"unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
|
|
cl::desc("Don't allow loop unrolling to simulate more than this number of"
|
|
"iterations when checking full unroll profitability"));
|
|
|
|
static cl::opt<unsigned> UnrollCount(
|
|
"unroll-count", cl::Hidden,
|
|
cl::desc("Use this unroll count for all loops including those with "
|
|
"unroll_count pragma values, for testing purposes"));
|
|
|
|
static cl::opt<unsigned> UnrollMaxCount(
|
|
"unroll-max-count", cl::Hidden,
|
|
cl::desc("Set the max unroll count for partial and runtime unrolling, for"
|
|
"testing purposes"));
|
|
|
|
static cl::opt<unsigned> UnrollFullMaxCount(
|
|
"unroll-full-max-count", cl::Hidden,
|
|
cl::desc(
|
|
"Set the max unroll count for full unrolling, for testing purposes"));
|
|
|
|
static cl::opt<bool>
|
|
UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
|
|
cl::desc("Allows loops to be partially unrolled until "
|
|
"-unroll-threshold loop size is reached."));
|
|
|
|
static cl::opt<bool> UnrollAllowRemainder(
|
|
"unroll-allow-remainder", cl::Hidden,
|
|
cl::desc("Allow generation of a loop remainder (extra iterations) "
|
|
"when unrolling a loop."));
|
|
|
|
static cl::opt<bool>
|
|
UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden,
|
|
cl::desc("Unroll loops with run-time trip counts"));
|
|
|
|
static cl::opt<unsigned> UnrollMaxUpperBound(
|
|
"unroll-max-upperbound", cl::init(8), cl::Hidden,
|
|
cl::desc(
|
|
"The max of trip count upper bound that is considered in unrolling"));
|
|
|
|
static cl::opt<unsigned> PragmaUnrollThreshold(
|
|
"pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
|
|
cl::desc("Unrolled size limit for loops with an unroll(full) or "
|
|
"unroll_count pragma."));
|
|
|
|
static cl::opt<unsigned> FlatLoopTripCountThreshold(
|
|
"flat-loop-tripcount-threshold", cl::init(5), cl::Hidden,
|
|
cl::desc("If the runtime tripcount for the loop is lower than the "
|
|
"threshold, the loop is considered as flat and will be less "
|
|
"aggressively unrolled."));
|
|
|
|
static cl::opt<bool>
|
|
UnrollAllowPeeling("unroll-allow-peeling", cl::Hidden,
|
|
cl::desc("Allows loops to be peeled when the dynamic "
|
|
"trip count is known to be low."));
|
|
|
|
/// A magic value for use with the Threshold parameter to indicate
|
|
/// that the loop unroll should be performed regardless of how much
|
|
/// code expansion would result.
|
|
static const unsigned NoThreshold = UINT_MAX;
|
|
|
|
/// Gather the various unrolling parameters based on the defaults, compiler
|
|
/// flags, TTI overrides and user specified parameters.
|
|
static TargetTransformInfo::UnrollingPreferences gatherUnrollingPreferences(
|
|
Loop *L, const TargetTransformInfo &TTI, Optional<unsigned> UserThreshold,
|
|
Optional<unsigned> UserCount, Optional<bool> UserAllowPartial,
|
|
Optional<bool> UserRuntime, Optional<bool> UserUpperBound) {
|
|
TargetTransformInfo::UnrollingPreferences UP;
|
|
|
|
// Set up the defaults
|
|
UP.Threshold = 150;
|
|
UP.MaxPercentThresholdBoost = 400;
|
|
UP.OptSizeThreshold = 0;
|
|
UP.PartialThreshold = 150;
|
|
UP.PartialOptSizeThreshold = 0;
|
|
UP.Count = 0;
|
|
UP.PeelCount = 0;
|
|
UP.DefaultUnrollRuntimeCount = 8;
|
|
UP.MaxCount = UINT_MAX;
|
|
UP.FullUnrollMaxCount = UINT_MAX;
|
|
UP.BEInsns = 2;
|
|
UP.Partial = false;
|
|
UP.Runtime = false;
|
|
UP.AllowRemainder = true;
|
|
UP.AllowExpensiveTripCount = false;
|
|
UP.Force = false;
|
|
UP.UpperBound = false;
|
|
UP.AllowPeeling = false;
|
|
|
|
// Override with any target specific settings
|
|
TTI.getUnrollingPreferences(L, UP);
|
|
|
|
// Apply size attributes
|
|
if (L->getHeader()->getParent()->optForSize()) {
|
|
UP.Threshold = UP.OptSizeThreshold;
|
|
UP.PartialThreshold = UP.PartialOptSizeThreshold;
|
|
}
|
|
|
|
// Apply any user values specified by cl::opt
|
|
if (UnrollThreshold.getNumOccurrences() > 0)
|
|
UP.Threshold = UnrollThreshold;
|
|
if (UnrollPartialThreshold.getNumOccurrences() > 0)
|
|
UP.PartialThreshold = UnrollPartialThreshold;
|
|
if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
|
|
UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
|
|
if (UnrollMaxCount.getNumOccurrences() > 0)
|
|
UP.MaxCount = UnrollMaxCount;
|
|
if (UnrollFullMaxCount.getNumOccurrences() > 0)
|
|
UP.FullUnrollMaxCount = UnrollFullMaxCount;
|
|
if (UnrollAllowPartial.getNumOccurrences() > 0)
|
|
UP.Partial = UnrollAllowPartial;
|
|
if (UnrollAllowRemainder.getNumOccurrences() > 0)
|
|
UP.AllowRemainder = UnrollAllowRemainder;
|
|
if (UnrollRuntime.getNumOccurrences() > 0)
|
|
UP.Runtime = UnrollRuntime;
|
|
if (UnrollMaxUpperBound == 0)
|
|
UP.UpperBound = false;
|
|
if (UnrollAllowPeeling.getNumOccurrences() > 0)
|
|
UP.AllowPeeling = UnrollAllowPeeling;
|
|
|
|
// Apply user values provided by argument
|
|
if (UserThreshold.hasValue()) {
|
|
UP.Threshold = *UserThreshold;
|
|
UP.PartialThreshold = *UserThreshold;
|
|
}
|
|
if (UserCount.hasValue())
|
|
UP.Count = *UserCount;
|
|
if (UserAllowPartial.hasValue())
|
|
UP.Partial = *UserAllowPartial;
|
|
if (UserRuntime.hasValue())
|
|
UP.Runtime = *UserRuntime;
|
|
if (UserUpperBound.hasValue())
|
|
UP.UpperBound = *UserUpperBound;
|
|
|
|
return UP;
|
|
}
|
|
|
|
namespace {
|
|
/// A struct to densely store the state of an instruction after unrolling at
|
|
/// each iteration.
|
|
///
|
|
/// This is designed to work like a tuple of <Instruction *, int> for the
|
|
/// purposes of hashing and lookup, but to be able to associate two boolean
|
|
/// states with each key.
|
|
struct UnrolledInstState {
|
|
Instruction *I;
|
|
int Iteration : 30;
|
|
unsigned IsFree : 1;
|
|
unsigned IsCounted : 1;
|
|
};
|
|
|
|
/// Hashing and equality testing for a set of the instruction states.
|
|
struct UnrolledInstStateKeyInfo {
|
|
typedef DenseMapInfo<Instruction *> PtrInfo;
|
|
typedef DenseMapInfo<std::pair<Instruction *, int>> PairInfo;
|
|
static inline UnrolledInstState getEmptyKey() {
|
|
return {PtrInfo::getEmptyKey(), 0, 0, 0};
|
|
}
|
|
static inline UnrolledInstState getTombstoneKey() {
|
|
return {PtrInfo::getTombstoneKey(), 0, 0, 0};
|
|
}
|
|
static inline unsigned getHashValue(const UnrolledInstState &S) {
|
|
return PairInfo::getHashValue({S.I, S.Iteration});
|
|
}
|
|
static inline bool isEqual(const UnrolledInstState &LHS,
|
|
const UnrolledInstState &RHS) {
|
|
return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
|
|
}
|
|
};
|
|
}
|
|
|
|
namespace {
|
|
struct EstimatedUnrollCost {
|
|
/// \brief The estimated cost after unrolling.
|
|
unsigned UnrolledCost;
|
|
|
|
/// \brief The estimated dynamic cost of executing the instructions in the
|
|
/// rolled form.
|
|
unsigned RolledDynamicCost;
|
|
};
|
|
}
|
|
|
|
/// \brief Figure out if the loop is worth full unrolling.
|
|
///
|
|
/// Complete loop unrolling can make some loads constant, and we need to know
|
|
/// if that would expose any further optimization opportunities. This routine
|
|
/// estimates this optimization. It computes cost of unrolled loop
|
|
/// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
|
|
/// dynamic cost we mean that we won't count costs of blocks that are known not
|
|
/// to be executed (i.e. if we have a branch in the loop and we know that at the
|
|
/// given iteration its condition would be resolved to true, we won't add up the
|
|
/// cost of the 'false'-block).
|
|
/// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
|
|
/// the analysis failed (no benefits expected from the unrolling, or the loop is
|
|
/// too big to analyze), the returned value is None.
|
|
static Optional<EstimatedUnrollCost>
|
|
analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, DominatorTree &DT,
|
|
ScalarEvolution &SE, const TargetTransformInfo &TTI,
|
|
unsigned MaxUnrolledLoopSize) {
|
|
// We want to be able to scale offsets by the trip count and add more offsets
|
|
// to them without checking for overflows, and we already don't want to
|
|
// analyze *massive* trip counts, so we force the max to be reasonably small.
|
|
assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) &&
|
|
"The unroll iterations max is too large!");
|
|
|
|
// Only analyze inner loops. We can't properly estimate cost of nested loops
|
|
// and we won't visit inner loops again anyway.
|
|
if (!L->empty())
|
|
return None;
|
|
|
|
// Don't simulate loops with a big or unknown tripcount
|
|
if (!UnrollMaxIterationsCountToAnalyze || !TripCount ||
|
|
TripCount > UnrollMaxIterationsCountToAnalyze)
|
|
return None;
|
|
|
|
SmallSetVector<BasicBlock *, 16> BBWorklist;
|
|
SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
|
|
DenseMap<Value *, Constant *> SimplifiedValues;
|
|
SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues;
|
|
|
|
// The estimated cost of the unrolled form of the loop. We try to estimate
|
|
// this by simplifying as much as we can while computing the estimate.
|
|
unsigned UnrolledCost = 0;
|
|
|
|
// We also track the estimated dynamic (that is, actually executed) cost in
|
|
// the rolled form. This helps identify cases when the savings from unrolling
|
|
// aren't just exposing dead control flows, but actual reduced dynamic
|
|
// instructions due to the simplifications which we expect to occur after
|
|
// unrolling.
|
|
unsigned RolledDynamicCost = 0;
|
|
|
|
// We track the simplification of each instruction in each iteration. We use
|
|
// this to recursively merge costs into the unrolled cost on-demand so that
|
|
// we don't count the cost of any dead code. This is essentially a map from
|
|
// <instruction, int> to <bool, bool>, but stored as a densely packed struct.
|
|
DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
|
|
|
|
// A small worklist used to accumulate cost of instructions from each
|
|
// observable and reached root in the loop.
|
|
SmallVector<Instruction *, 16> CostWorklist;
|
|
|
|
// PHI-used worklist used between iterations while accumulating cost.
|
|
SmallVector<Instruction *, 4> PHIUsedList;
|
|
|
|
// Helper function to accumulate cost for instructions in the loop.
|
|
auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
|
|
assert(Iteration >= 0 && "Cannot have a negative iteration!");
|
|
assert(CostWorklist.empty() && "Must start with an empty cost list");
|
|
assert(PHIUsedList.empty() && "Must start with an empty phi used list");
|
|
CostWorklist.push_back(&RootI);
|
|
for (;; --Iteration) {
|
|
do {
|
|
Instruction *I = CostWorklist.pop_back_val();
|
|
|
|
// InstCostMap only uses I and Iteration as a key, the other two values
|
|
// don't matter here.
|
|
auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
|
|
if (CostIter == InstCostMap.end())
|
|
// If an input to a PHI node comes from a dead path through the loop
|
|
// we may have no cost data for it here. What that actually means is
|
|
// that it is free.
|
|
continue;
|
|
auto &Cost = *CostIter;
|
|
if (Cost.IsCounted)
|
|
// Already counted this instruction.
|
|
continue;
|
|
|
|
// Mark that we are counting the cost of this instruction now.
|
|
Cost.IsCounted = true;
|
|
|
|
// If this is a PHI node in the loop header, just add it to the PHI set.
|
|
if (auto *PhiI = dyn_cast<PHINode>(I))
|
|
if (PhiI->getParent() == L->getHeader()) {
|
|
assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
|
|
"inherently simplify during unrolling.");
|
|
if (Iteration == 0)
|
|
continue;
|
|
|
|
// Push the incoming value from the backedge into the PHI used list
|
|
// if it is an in-loop instruction. We'll use this to populate the
|
|
// cost worklist for the next iteration (as we count backwards).
|
|
if (auto *OpI = dyn_cast<Instruction>(
|
|
PhiI->getIncomingValueForBlock(L->getLoopLatch())))
|
|
if (L->contains(OpI))
|
|
PHIUsedList.push_back(OpI);
|
|
continue;
|
|
}
|
|
|
|
// First accumulate the cost of this instruction.
|
|
if (!Cost.IsFree) {
|
|
UnrolledCost += TTI.getUserCost(I);
|
|
DEBUG(dbgs() << "Adding cost of instruction (iteration " << Iteration
|
|
<< "): ");
|
|
DEBUG(I->dump());
|
|
}
|
|
|
|
// We must count the cost of every operand which is not free,
|
|
// recursively. If we reach a loop PHI node, simply add it to the set
|
|
// to be considered on the next iteration (backwards!).
|
|
for (Value *Op : I->operands()) {
|
|
// Check whether this operand is free due to being a constant or
|
|
// outside the loop.
|
|
auto *OpI = dyn_cast<Instruction>(Op);
|
|
if (!OpI || !L->contains(OpI))
|
|
continue;
|
|
|
|
// Otherwise accumulate its cost.
|
|
CostWorklist.push_back(OpI);
|
|
}
|
|
} while (!CostWorklist.empty());
|
|
|
|
if (PHIUsedList.empty())
|
|
// We've exhausted the search.
|
|
break;
|
|
|
|
assert(Iteration > 0 &&
|
|
"Cannot track PHI-used values past the first iteration!");
|
|
CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
|
|
PHIUsedList.clear();
|
|
}
|
|
};
|
|
|
|
// Ensure that we don't violate the loop structure invariants relied on by
|
|
// this analysis.
|
|
assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
|
|
assert(L->isLCSSAForm(DT) &&
|
|
"Must have loops in LCSSA form to track live-out values.");
|
|
|
|
DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
|
|
|
|
// Simulate execution of each iteration of the loop counting instructions,
|
|
// which would be simplified.
|
|
// Since the same load will take different values on different iterations,
|
|
// we literally have to go through all loop's iterations.
|
|
for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
|
|
DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
|
|
|
|
// Prepare for the iteration by collecting any simplified entry or backedge
|
|
// inputs.
|
|
for (Instruction &I : *L->getHeader()) {
|
|
auto *PHI = dyn_cast<PHINode>(&I);
|
|
if (!PHI)
|
|
break;
|
|
|
|
// The loop header PHI nodes must have exactly two input: one from the
|
|
// loop preheader and one from the loop latch.
|
|
assert(
|
|
PHI->getNumIncomingValues() == 2 &&
|
|
"Must have an incoming value only for the preheader and the latch.");
|
|
|
|
Value *V = PHI->getIncomingValueForBlock(
|
|
Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
|
|
Constant *C = dyn_cast<Constant>(V);
|
|
if (Iteration != 0 && !C)
|
|
C = SimplifiedValues.lookup(V);
|
|
if (C)
|
|
SimplifiedInputValues.push_back({PHI, C});
|
|
}
|
|
|
|
// Now clear and re-populate the map for the next iteration.
|
|
SimplifiedValues.clear();
|
|
while (!SimplifiedInputValues.empty())
|
|
SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
|
|
|
|
UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
|
|
|
|
BBWorklist.clear();
|
|
BBWorklist.insert(L->getHeader());
|
|
// Note that we *must not* cache the size, this loop grows the worklist.
|
|
for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
|
|
BasicBlock *BB = BBWorklist[Idx];
|
|
|
|
// Visit all instructions in the given basic block and try to simplify
|
|
// it. We don't change the actual IR, just count optimization
|
|
// opportunities.
|
|
for (Instruction &I : *BB) {
|
|
if (isa<DbgInfoIntrinsic>(I))
|
|
continue;
|
|
|
|
// Track this instruction's expected baseline cost when executing the
|
|
// rolled loop form.
|
|
RolledDynamicCost += TTI.getUserCost(&I);
|
|
|
|
// Visit the instruction to analyze its loop cost after unrolling,
|
|
// and if the visitor returns true, mark the instruction as free after
|
|
// unrolling and continue.
|
|
bool IsFree = Analyzer.visit(I);
|
|
bool Inserted = InstCostMap.insert({&I, (int)Iteration,
|
|
(unsigned)IsFree,
|
|
/*IsCounted*/ false}).second;
|
|
(void)Inserted;
|
|
assert(Inserted && "Cannot have a state for an unvisited instruction!");
|
|
|
|
if (IsFree)
|
|
continue;
|
|
|
|
// Can't properly model a cost of a call.
|
|
// FIXME: With a proper cost model we should be able to do it.
|
|
if(isa<CallInst>(&I))
|
|
return None;
|
|
|
|
// If the instruction might have a side-effect recursively account for
|
|
// the cost of it and all the instructions leading up to it.
|
|
if (I.mayHaveSideEffects())
|
|
AddCostRecursively(I, Iteration);
|
|
|
|
// If unrolled body turns out to be too big, bail out.
|
|
if (UnrolledCost > MaxUnrolledLoopSize) {
|
|
DEBUG(dbgs() << " Exceeded threshold.. exiting.\n"
|
|
<< " UnrolledCost: " << UnrolledCost
|
|
<< ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
|
|
<< "\n");
|
|
return None;
|
|
}
|
|
}
|
|
|
|
TerminatorInst *TI = BB->getTerminator();
|
|
|
|
// Add in the live successors by first checking whether we have terminator
|
|
// that may be simplified based on the values simplified by this call.
|
|
BasicBlock *KnownSucc = nullptr;
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
|
|
if (BI->isConditional()) {
|
|
if (Constant *SimpleCond =
|
|
SimplifiedValues.lookup(BI->getCondition())) {
|
|
// Just take the first successor if condition is undef
|
|
if (isa<UndefValue>(SimpleCond))
|
|
KnownSucc = BI->getSuccessor(0);
|
|
else if (ConstantInt *SimpleCondVal =
|
|
dyn_cast<ConstantInt>(SimpleCond))
|
|
KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
|
|
}
|
|
}
|
|
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
|
|
if (Constant *SimpleCond =
|
|
SimplifiedValues.lookup(SI->getCondition())) {
|
|
// Just take the first successor if condition is undef
|
|
if (isa<UndefValue>(SimpleCond))
|
|
KnownSucc = SI->getSuccessor(0);
|
|
else if (ConstantInt *SimpleCondVal =
|
|
dyn_cast<ConstantInt>(SimpleCond))
|
|
KnownSucc = SI->findCaseValue(SimpleCondVal).getCaseSuccessor();
|
|
}
|
|
}
|
|
if (KnownSucc) {
|
|
if (L->contains(KnownSucc))
|
|
BBWorklist.insert(KnownSucc);
|
|
else
|
|
ExitWorklist.insert({BB, KnownSucc});
|
|
continue;
|
|
}
|
|
|
|
// Add BB's successors to the worklist.
|
|
for (BasicBlock *Succ : successors(BB))
|
|
if (L->contains(Succ))
|
|
BBWorklist.insert(Succ);
|
|
else
|
|
ExitWorklist.insert({BB, Succ});
|
|
AddCostRecursively(*TI, Iteration);
|
|
}
|
|
|
|
// If we found no optimization opportunities on the first iteration, we
|
|
// won't find them on later ones too.
|
|
if (UnrolledCost == RolledDynamicCost) {
|
|
DEBUG(dbgs() << " No opportunities found.. exiting.\n"
|
|
<< " UnrolledCost: " << UnrolledCost << "\n");
|
|
return None;
|
|
}
|
|
}
|
|
|
|
while (!ExitWorklist.empty()) {
|
|
BasicBlock *ExitingBB, *ExitBB;
|
|
std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
|
|
|
|
for (Instruction &I : *ExitBB) {
|
|
auto *PN = dyn_cast<PHINode>(&I);
|
|
if (!PN)
|
|
break;
|
|
|
|
Value *Op = PN->getIncomingValueForBlock(ExitingBB);
|
|
if (auto *OpI = dyn_cast<Instruction>(Op))
|
|
if (L->contains(OpI))
|
|
AddCostRecursively(*OpI, TripCount - 1);
|
|
}
|
|
}
|
|
|
|
DEBUG(dbgs() << "Analysis finished:\n"
|
|
<< "UnrolledCost: " << UnrolledCost << ", "
|
|
<< "RolledDynamicCost: " << RolledDynamicCost << "\n");
|
|
return {{UnrolledCost, RolledDynamicCost}};
|
|
}
|
|
|
|
/// ApproximateLoopSize - Approximate the size of the loop.
|
|
static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls,
|
|
bool &NotDuplicatable, bool &Convergent,
|
|
const TargetTransformInfo &TTI,
|
|
AssumptionCache *AC, unsigned BEInsns) {
|
|
SmallPtrSet<const Value *, 32> EphValues;
|
|
CodeMetrics::collectEphemeralValues(L, AC, EphValues);
|
|
|
|
CodeMetrics Metrics;
|
|
for (BasicBlock *BB : L->blocks())
|
|
Metrics.analyzeBasicBlock(BB, TTI, EphValues);
|
|
NumCalls = Metrics.NumInlineCandidates;
|
|
NotDuplicatable = Metrics.notDuplicatable;
|
|
Convergent = Metrics.convergent;
|
|
|
|
unsigned LoopSize = Metrics.NumInsts;
|
|
|
|
// Don't allow an estimate of size zero. This would allows unrolling of loops
|
|
// with huge iteration counts, which is a compile time problem even if it's
|
|
// not a problem for code quality. Also, the code using this size may assume
|
|
// that each loop has at least three instructions (likely a conditional
|
|
// branch, a comparison feeding that branch, and some kind of loop increment
|
|
// feeding that comparison instruction).
|
|
LoopSize = std::max(LoopSize, BEInsns + 1);
|
|
|
|
return LoopSize;
|
|
}
|
|
|
|
// Returns the loop hint metadata node with the given name (for example,
|
|
// "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is
|
|
// returned.
|
|
static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
|
|
if (MDNode *LoopID = L->getLoopID())
|
|
return GetUnrollMetadata(LoopID, Name);
|
|
return nullptr;
|
|
}
|
|
|
|
// Returns true if the loop has an unroll(full) pragma.
|
|
static bool HasUnrollFullPragma(const Loop *L) {
|
|
return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
|
|
}
|
|
|
|
// Returns true if the loop has an unroll(enable) pragma. This metadata is used
|
|
// for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
|
|
static bool HasUnrollEnablePragma(const Loop *L) {
|
|
return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
|
|
}
|
|
|
|
// Returns true if the loop has an unroll(disable) pragma.
|
|
static bool HasUnrollDisablePragma(const Loop *L) {
|
|
return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable");
|
|
}
|
|
|
|
// Returns true if the loop has an runtime unroll(disable) pragma.
|
|
static bool HasRuntimeUnrollDisablePragma(const Loop *L) {
|
|
return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
|
|
}
|
|
|
|
// If loop has an unroll_count pragma return the (necessarily
|
|
// positive) value from the pragma. Otherwise return 0.
|
|
static unsigned UnrollCountPragmaValue(const Loop *L) {
|
|
MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
|
|
if (MD) {
|
|
assert(MD->getNumOperands() == 2 &&
|
|
"Unroll count hint metadata should have two operands.");
|
|
unsigned Count =
|
|
mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
|
|
assert(Count >= 1 && "Unroll count must be positive.");
|
|
return Count;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Remove existing unroll metadata and add unroll disable metadata to
|
|
// indicate the loop has already been unrolled. This prevents a loop
|
|
// from being unrolled more than is directed by a pragma if the loop
|
|
// unrolling pass is run more than once (which it generally is).
|
|
static void SetLoopAlreadyUnrolled(Loop *L) {
|
|
MDNode *LoopID = L->getLoopID();
|
|
// First remove any existing loop unrolling metadata.
|
|
SmallVector<Metadata *, 4> MDs;
|
|
// Reserve first location for self reference to the LoopID metadata node.
|
|
MDs.push_back(nullptr);
|
|
|
|
if (LoopID) {
|
|
for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
|
|
bool IsUnrollMetadata = false;
|
|
MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
|
|
if (MD) {
|
|
const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
|
|
IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
|
|
}
|
|
if (!IsUnrollMetadata)
|
|
MDs.push_back(LoopID->getOperand(i));
|
|
}
|
|
}
|
|
|
|
// Add unroll(disable) metadata to disable future unrolling.
|
|
LLVMContext &Context = L->getHeader()->getContext();
|
|
SmallVector<Metadata *, 1> DisableOperands;
|
|
DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
|
|
MDNode *DisableNode = MDNode::get(Context, DisableOperands);
|
|
MDs.push_back(DisableNode);
|
|
|
|
MDNode *NewLoopID = MDNode::get(Context, MDs);
|
|
// Set operand 0 to refer to the loop id itself.
|
|
NewLoopID->replaceOperandWith(0, NewLoopID);
|
|
L->setLoopID(NewLoopID);
|
|
}
|
|
|
|
// Computes the boosting factor for complete unrolling.
|
|
// If fully unrolling the loop would save a lot of RolledDynamicCost, it would
|
|
// be beneficial to fully unroll the loop even if unrolledcost is large. We
|
|
// use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
|
|
// the unroll threshold.
|
|
static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
|
|
unsigned MaxPercentThresholdBoost) {
|
|
if (Cost.RolledDynamicCost >= UINT_MAX / 100)
|
|
return 100;
|
|
else if (Cost.UnrolledCost != 0)
|
|
// The boosting factor is RolledDynamicCost / UnrolledCost
|
|
return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
|
|
MaxPercentThresholdBoost);
|
|
else
|
|
return MaxPercentThresholdBoost;
|
|
}
|
|
|
|
// Returns loop size estimation for unrolled loop.
|
|
static uint64_t getUnrolledLoopSize(
|
|
unsigned LoopSize,
|
|
TargetTransformInfo::UnrollingPreferences &UP) {
|
|
assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!");
|
|
return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns;
|
|
}
|
|
|
|
// Returns true if unroll count was set explicitly.
|
|
// Calculates unroll count and writes it to UP.Count.
|
|
static bool computeUnrollCount(
|
|
Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
|
|
ScalarEvolution *SE, OptimizationRemarkEmitter *ORE, unsigned &TripCount,
|
|
unsigned MaxTripCount, unsigned &TripMultiple, unsigned LoopSize,
|
|
TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) {
|
|
// Check for explicit Count.
|
|
// 1st priority is unroll count set by "unroll-count" option.
|
|
bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
|
|
if (UserUnrollCount) {
|
|
UP.Count = UnrollCount;
|
|
UP.AllowExpensiveTripCount = true;
|
|
UP.Force = true;
|
|
if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold)
|
|
return true;
|
|
}
|
|
|
|
// 2nd priority is unroll count set by pragma.
|
|
unsigned PragmaCount = UnrollCountPragmaValue(L);
|
|
if (PragmaCount > 0) {
|
|
UP.Count = PragmaCount;
|
|
UP.Runtime = true;
|
|
UP.AllowExpensiveTripCount = true;
|
|
UP.Force = true;
|
|
if (UP.AllowRemainder &&
|
|
getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
|
|
return true;
|
|
}
|
|
bool PragmaFullUnroll = HasUnrollFullPragma(L);
|
|
if (PragmaFullUnroll && TripCount != 0) {
|
|
UP.Count = TripCount;
|
|
if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold)
|
|
return false;
|
|
}
|
|
|
|
bool PragmaEnableUnroll = HasUnrollEnablePragma(L);
|
|
bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
|
|
PragmaEnableUnroll || UserUnrollCount;
|
|
|
|
if (ExplicitUnroll && TripCount != 0) {
|
|
// If the loop has an unrolling pragma, we want to be more aggressive with
|
|
// unrolling limits. Set thresholds to at least the PragmaThreshold value
|
|
// which is larger than the default limits.
|
|
UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
|
|
UP.PartialThreshold =
|
|
std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
|
|
}
|
|
|
|
// 3rd priority is full unroll count.
|
|
// Full unroll makes sense only when TripCount or its upper bound could be
|
|
// statically calculated.
|
|
// Also we need to check if we exceed FullUnrollMaxCount.
|
|
// If using the upper bound to unroll, TripMultiple should be set to 1 because
|
|
// we do not know when loop may exit.
|
|
// MaxTripCount and ExactTripCount cannot both be non zero since we only
|
|
// compute the former when the latter is zero.
|
|
unsigned ExactTripCount = TripCount;
|
|
assert((ExactTripCount == 0 || MaxTripCount == 0) &&
|
|
"ExtractTripCound and MaxTripCount cannot both be non zero.");
|
|
unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount;
|
|
UP.Count = FullUnrollTripCount;
|
|
if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) {
|
|
// When computing the unrolled size, note that BEInsns are not replicated
|
|
// like the rest of the loop body.
|
|
if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) {
|
|
UseUpperBound = (MaxTripCount == FullUnrollTripCount);
|
|
TripCount = FullUnrollTripCount;
|
|
TripMultiple = UP.UpperBound ? 1 : TripMultiple;
|
|
return ExplicitUnroll;
|
|
} else {
|
|
// The loop isn't that small, but we still can fully unroll it if that
|
|
// helps to remove a significant number of instructions.
|
|
// To check that, run additional analysis on the loop.
|
|
if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
|
|
L, FullUnrollTripCount, DT, *SE, TTI,
|
|
UP.Threshold * UP.MaxPercentThresholdBoost / 100)) {
|
|
unsigned Boost =
|
|
getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost);
|
|
if (Cost->UnrolledCost < UP.Threshold * Boost / 100) {
|
|
UseUpperBound = (MaxTripCount == FullUnrollTripCount);
|
|
TripCount = FullUnrollTripCount;
|
|
TripMultiple = UP.UpperBound ? 1 : TripMultiple;
|
|
return ExplicitUnroll;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// 4rd priority is partial unrolling.
|
|
// Try partial unroll only when TripCount could be staticaly calculated.
|
|
if (TripCount) {
|
|
UP.Partial |= ExplicitUnroll;
|
|
if (!UP.Partial) {
|
|
DEBUG(dbgs() << " will not try to unroll partially because "
|
|
<< "-unroll-allow-partial not given\n");
|
|
UP.Count = 0;
|
|
return false;
|
|
}
|
|
if (UP.Count == 0)
|
|
UP.Count = TripCount;
|
|
if (UP.PartialThreshold != NoThreshold) {
|
|
// Reduce unroll count to be modulo of TripCount for partial unrolling.
|
|
if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
|
|
UP.Count =
|
|
(std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) /
|
|
(LoopSize - UP.BEInsns);
|
|
if (UP.Count > UP.MaxCount)
|
|
UP.Count = UP.MaxCount;
|
|
while (UP.Count != 0 && TripCount % UP.Count != 0)
|
|
UP.Count--;
|
|
if (UP.AllowRemainder && UP.Count <= 1) {
|
|
// If there is no Count that is modulo of TripCount, set Count to
|
|
// largest power-of-two factor that satisfies the threshold limit.
|
|
// As we'll create fixup loop, do the type of unrolling only if
|
|
// remainder loop is allowed.
|
|
UP.Count = UP.DefaultUnrollRuntimeCount;
|
|
while (UP.Count != 0 &&
|
|
getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
|
|
UP.Count >>= 1;
|
|
}
|
|
if (UP.Count < 2) {
|
|
if (PragmaEnableUnroll)
|
|
ORE->emit(
|
|
OptimizationRemarkMissed(DEBUG_TYPE, "UnrollAsDirectedTooLarge",
|
|
L->getStartLoc(), L->getHeader())
|
|
<< "Unable to unroll loop as directed by unroll(enable) pragma "
|
|
"because unrolled size is too large.");
|
|
UP.Count = 0;
|
|
}
|
|
} else {
|
|
UP.Count = TripCount;
|
|
}
|
|
if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
|
|
UP.Count != TripCount)
|
|
ORE->emit(
|
|
OptimizationRemarkMissed(DEBUG_TYPE, "FullUnrollAsDirectedTooLarge",
|
|
L->getStartLoc(), L->getHeader())
|
|
<< "Unable to fully unroll loop as directed by unroll pragma because "
|
|
"unrolled size is too large.");
|
|
return ExplicitUnroll;
|
|
}
|
|
assert(TripCount == 0 &&
|
|
"All cases when TripCount is constant should be covered here.");
|
|
if (PragmaFullUnroll)
|
|
ORE->emit(
|
|
OptimizationRemarkMissed(DEBUG_TYPE,
|
|
"CantFullUnrollAsDirectedRuntimeTripCount",
|
|
L->getStartLoc(), L->getHeader())
|
|
<< "Unable to fully unroll loop as directed by unroll(full) pragma "
|
|
"because loop has a runtime trip count.");
|
|
|
|
// 5th priority is loop peeling
|
|
computePeelCount(L, LoopSize, UP);
|
|
if (UP.PeelCount) {
|
|
UP.Runtime = false;
|
|
UP.Count = 1;
|
|
return ExplicitUnroll;
|
|
}
|
|
|
|
// 6th priority is runtime unrolling.
|
|
// Don't unroll a runtime trip count loop when it is disabled.
|
|
if (HasRuntimeUnrollDisablePragma(L)) {
|
|
UP.Count = 0;
|
|
return false;
|
|
}
|
|
|
|
// Check if the runtime trip count is too small when profile is available.
|
|
if (L->getHeader()->getParent()->getEntryCount()) {
|
|
if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
|
|
if (*ProfileTripCount < FlatLoopTripCountThreshold)
|
|
return false;
|
|
else
|
|
UP.AllowExpensiveTripCount = true;
|
|
}
|
|
}
|
|
|
|
// Reduce count based on the type of unrolling and the threshold values.
|
|
UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
|
|
if (!UP.Runtime) {
|
|
DEBUG(dbgs() << " will not try to unroll loop with runtime trip count "
|
|
<< "-unroll-runtime not given\n");
|
|
UP.Count = 0;
|
|
return false;
|
|
}
|
|
if (UP.Count == 0)
|
|
UP.Count = UP.DefaultUnrollRuntimeCount;
|
|
|
|
// Reduce unroll count to be the largest power-of-two factor of
|
|
// the original count which satisfies the threshold limit.
|
|
while (UP.Count != 0 &&
|
|
getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold)
|
|
UP.Count >>= 1;
|
|
|
|
#ifndef NDEBUG
|
|
unsigned OrigCount = UP.Count;
|
|
#endif
|
|
|
|
if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
|
|
while (UP.Count != 0 && TripMultiple % UP.Count != 0)
|
|
UP.Count >>= 1;
|
|
DEBUG(dbgs() << "Remainder loop is restricted (that could architecture "
|
|
"specific or because the loop contains a convergent "
|
|
"instruction), so unroll count must divide the trip "
|
|
"multiple, "
|
|
<< TripMultiple << ". Reducing unroll count from "
|
|
<< OrigCount << " to " << UP.Count << ".\n");
|
|
using namespace ore;
|
|
if (PragmaCount > 0 && !UP.AllowRemainder)
|
|
ORE->emit(
|
|
OptimizationRemarkMissed(DEBUG_TYPE,
|
|
"DifferentUnrollCountFromDirected",
|
|
L->getStartLoc(), L->getHeader())
|
|
<< "Unable to unroll loop the number of times directed by "
|
|
"unroll_count pragma because remainder loop is restricted "
|
|
"(that could architecture specific or because the loop "
|
|
"contains a convergent instruction) and so must have an unroll "
|
|
"count that divides the loop trip multiple of "
|
|
<< NV("TripMultiple", TripMultiple) << ". Unrolling instead "
|
|
<< NV("UnrollCount", UP.Count) << " time(s).");
|
|
}
|
|
|
|
if (UP.Count > UP.MaxCount)
|
|
UP.Count = UP.MaxCount;
|
|
DEBUG(dbgs() << " partially unrolling with count: " << UP.Count << "\n");
|
|
if (UP.Count < 2)
|
|
UP.Count = 0;
|
|
return ExplicitUnroll;
|
|
}
|
|
|
|
static bool tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI,
|
|
ScalarEvolution *SE, const TargetTransformInfo &TTI,
|
|
AssumptionCache &AC, OptimizationRemarkEmitter &ORE,
|
|
bool PreserveLCSSA,
|
|
Optional<unsigned> ProvidedCount,
|
|
Optional<unsigned> ProvidedThreshold,
|
|
Optional<bool> ProvidedAllowPartial,
|
|
Optional<bool> ProvidedRuntime,
|
|
Optional<bool> ProvidedUpperBound) {
|
|
DEBUG(dbgs() << "Loop Unroll: F[" << L->getHeader()->getParent()->getName()
|
|
<< "] Loop %" << L->getHeader()->getName() << "\n");
|
|
if (HasUnrollDisablePragma(L))
|
|
return false;
|
|
if (!L->isLoopSimplifyForm()) {
|
|
DEBUG(
|
|
dbgs() << " Not unrolling loop which is not in loop-simplify form.\n");
|
|
return false;
|
|
}
|
|
|
|
unsigned NumInlineCandidates;
|
|
bool NotDuplicatable;
|
|
bool Convergent;
|
|
TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
|
|
L, TTI, ProvidedThreshold, ProvidedCount, ProvidedAllowPartial,
|
|
ProvidedRuntime, ProvidedUpperBound);
|
|
// Exit early if unrolling is disabled.
|
|
if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0))
|
|
return false;
|
|
unsigned LoopSize = ApproximateLoopSize(
|
|
L, NumInlineCandidates, NotDuplicatable, Convergent, TTI, &AC, UP.BEInsns);
|
|
DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n");
|
|
if (NotDuplicatable) {
|
|
DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable"
|
|
<< " instructions.\n");
|
|
return false;
|
|
}
|
|
if (NumInlineCandidates != 0) {
|
|
DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n");
|
|
return false;
|
|
}
|
|
|
|
// Find trip count and trip multiple if count is not available
|
|
unsigned TripCount = 0;
|
|
unsigned MaxTripCount = 0;
|
|
unsigned TripMultiple = 1;
|
|
// If there are multiple exiting blocks but one of them is the latch, use the
|
|
// latch for the trip count estimation. Otherwise insist on a single exiting
|
|
// block for the trip count estimation.
|
|
BasicBlock *ExitingBlock = L->getLoopLatch();
|
|
if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
|
|
ExitingBlock = L->getExitingBlock();
|
|
if (ExitingBlock) {
|
|
TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
|
|
TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
|
|
}
|
|
|
|
// If the loop contains a convergent operation, the prelude we'd add
|
|
// to do the first few instructions before we hit the unrolled loop
|
|
// is unsafe -- it adds a control-flow dependency to the convergent
|
|
// operation. Therefore restrict remainder loop (try unrollig without).
|
|
//
|
|
// TODO: This is quite conservative. In practice, convergent_op()
|
|
// is likely to be called unconditionally in the loop. In this
|
|
// case, the program would be ill-formed (on most architectures)
|
|
// unless n were the same on all threads in a thread group.
|
|
// Assuming n is the same on all threads, any kind of unrolling is
|
|
// safe. But currently llvm's notion of convergence isn't powerful
|
|
// enough to express this.
|
|
if (Convergent)
|
|
UP.AllowRemainder = false;
|
|
|
|
// Try to find the trip count upper bound if we cannot find the exact trip
|
|
// count.
|
|
bool MaxOrZero = false;
|
|
if (!TripCount) {
|
|
MaxTripCount = SE->getSmallConstantMaxTripCount(L);
|
|
MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L);
|
|
// We can unroll by the upper bound amount if it's generally allowed or if
|
|
// we know that the loop is executed either the upper bound or zero times.
|
|
// (MaxOrZero unrolling keeps only the first loop test, so the number of
|
|
// loop tests remains the same compared to the non-unrolled version, whereas
|
|
// the generic upper bound unrolling keeps all but the last loop test so the
|
|
// number of loop tests goes up which may end up being worse on targets with
|
|
// constriained branch predictor resources so is controlled by an option.)
|
|
// In addition we only unroll small upper bounds.
|
|
if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) {
|
|
MaxTripCount = 0;
|
|
}
|
|
}
|
|
|
|
// computeUnrollCount() decides whether it is beneficial to use upper bound to
|
|
// fully unroll the loop.
|
|
bool UseUpperBound = false;
|
|
bool IsCountSetExplicitly =
|
|
computeUnrollCount(L, TTI, DT, LI, SE, &ORE, TripCount, MaxTripCount,
|
|
TripMultiple, LoopSize, UP, UseUpperBound);
|
|
if (!UP.Count)
|
|
return false;
|
|
// Unroll factor (Count) must be less or equal to TripCount.
|
|
if (TripCount && UP.Count > TripCount)
|
|
UP.Count = TripCount;
|
|
|
|
// Unroll the loop.
|
|
if (!UnrollLoop(L, UP.Count, TripCount, UP.Force, UP.Runtime,
|
|
UP.AllowExpensiveTripCount, UseUpperBound, MaxOrZero,
|
|
TripMultiple, UP.PeelCount, LI, SE, &DT, &AC, &ORE,
|
|
PreserveLCSSA))
|
|
return false;
|
|
|
|
// If loop has an unroll count pragma or unrolled by explicitly set count
|
|
// mark loop as unrolled to prevent unrolling beyond that requested.
|
|
// If the loop was peeled, we already "used up" the profile information
|
|
// we had, so we don't want to unroll or peel again.
|
|
if (IsCountSetExplicitly || UP.PeelCount)
|
|
SetLoopAlreadyUnrolled(L);
|
|
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
class LoopUnroll : public LoopPass {
|
|
public:
|
|
static char ID; // Pass ID, replacement for typeid
|
|
LoopUnroll(Optional<unsigned> Threshold = None,
|
|
Optional<unsigned> Count = None,
|
|
Optional<bool> AllowPartial = None, Optional<bool> Runtime = None,
|
|
Optional<bool> UpperBound = None)
|
|
: LoopPass(ID), ProvidedCount(std::move(Count)),
|
|
ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
|
|
ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound) {
|
|
initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
Optional<unsigned> ProvidedCount;
|
|
Optional<unsigned> ProvidedThreshold;
|
|
Optional<bool> ProvidedAllowPartial;
|
|
Optional<bool> ProvidedRuntime;
|
|
Optional<bool> ProvidedUpperBound;
|
|
|
|
bool runOnLoop(Loop *L, LPPassManager &) override {
|
|
if (skipLoop(L))
|
|
return false;
|
|
|
|
Function &F = *L->getHeader()->getParent();
|
|
|
|
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
|
const TargetTransformInfo &TTI =
|
|
getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
|
auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
|
|
// For the old PM, we can't use OptimizationRemarkEmitter as an analysis
|
|
// pass. Function analyses need to be preserved across loop transformations
|
|
// but ORE cannot be preserved (see comment before the pass definition).
|
|
OptimizationRemarkEmitter ORE(&F);
|
|
bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
|
|
|
|
return tryToUnrollLoop(L, DT, LI, SE, TTI, AC, ORE, PreserveLCSSA,
|
|
ProvidedCount, ProvidedThreshold,
|
|
ProvidedAllowPartial, ProvidedRuntime,
|
|
ProvidedUpperBound);
|
|
}
|
|
|
|
/// This transformation requires natural loop information & requires that
|
|
/// loop preheaders be inserted into the CFG...
|
|
///
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
// FIXME: Loop passes are required to preserve domtree, and for now we just
|
|
// recreate dom info if anything gets unrolled.
|
|
getLoopAnalysisUsage(AU);
|
|
}
|
|
};
|
|
}
|
|
|
|
char LoopUnroll::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
|
INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
|
|
|
|
Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial,
|
|
int Runtime, int UpperBound) {
|
|
// TODO: It would make more sense for this function to take the optionals
|
|
// directly, but that's dangerous since it would silently break out of tree
|
|
// callers.
|
|
return new LoopUnroll(Threshold == -1 ? None : Optional<unsigned>(Threshold),
|
|
Count == -1 ? None : Optional<unsigned>(Count),
|
|
AllowPartial == -1 ? None
|
|
: Optional<bool>(AllowPartial),
|
|
Runtime == -1 ? None : Optional<bool>(Runtime),
|
|
UpperBound == -1 ? None : Optional<bool>(UpperBound));
|
|
}
|
|
|
|
Pass *llvm::createSimpleLoopUnrollPass() {
|
|
return llvm::createLoopUnrollPass(-1, -1, 0, 0, 0);
|
|
}
|
|
|
|
PreservedAnalyses LoopUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
|
|
LoopStandardAnalysisResults &AR,
|
|
LPMUpdater &) {
|
|
const auto &FAM =
|
|
AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
|
|
Function *F = L.getHeader()->getParent();
|
|
|
|
auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
|
|
// FIXME: This should probably be optional rather than required.
|
|
if (!ORE)
|
|
report_fatal_error("LoopUnrollPass: OptimizationRemarkEmitterAnalysis not "
|
|
"cached at a higher level");
|
|
|
|
bool Changed = tryToUnrollLoop(&L, AR.DT, &AR.LI, &AR.SE, AR.TTI, AR.AC, *ORE,
|
|
/*PreserveLCSSA*/ true, ProvidedCount,
|
|
ProvidedThreshold, ProvidedAllowPartial,
|
|
ProvidedRuntime, ProvidedUpperBound);
|
|
if (!Changed)
|
|
return PreservedAnalyses::all();
|
|
|
|
return getLoopPassPreservedAnalyses();
|
|
}
|