forked from OSchip/llvm-project
933 lines
36 KiB
C++
933 lines
36 KiB
C++
//===- pybind.cpp - MLIR Python bindings ----------------------------------===//
|
|
//
|
|
// Copyright 2019 The MLIR Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
// =============================================================================
|
|
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Support/TargetSelect.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <cstddef>
|
|
#include <unordered_map>
|
|
|
|
#include "mlir-c/Core.h"
|
|
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h"
|
|
#include "mlir/EDSC/Builders.h"
|
|
#include "mlir/EDSC/Helpers.h"
|
|
#include "mlir/EDSC/Intrinsics.h"
|
|
#include "mlir/ExecutionEngine/ExecutionEngine.h"
|
|
#include "mlir/IR/Attributes.h"
|
|
#include "mlir/IR/Function.h"
|
|
#include "mlir/IR/Module.h"
|
|
#include "mlir/IR/Types.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/Pass/PassManager.h"
|
|
#include "mlir/Target/LLVMIR.h"
|
|
#include "mlir/Transforms/Passes.h"
|
|
#include "pybind11/pybind11.h"
|
|
#include "pybind11/pytypes.h"
|
|
#include "pybind11/stl.h"
|
|
|
|
static bool inited = [] {
|
|
llvm::InitializeNativeTarget();
|
|
llvm::InitializeNativeTargetAsmPrinter();
|
|
return true;
|
|
}();
|
|
|
|
namespace mlir {
|
|
namespace edsc {
|
|
namespace python {
|
|
|
|
namespace py = pybind11;
|
|
|
|
struct PythonAttribute;
|
|
struct PythonAttributedType;
|
|
struct PythonBindable;
|
|
struct PythonExpr;
|
|
struct PythonFunctionContext;
|
|
struct PythonStmt;
|
|
struct PythonBlock;
|
|
|
|
struct PythonType {
|
|
PythonType() : type{nullptr} {}
|
|
PythonType(mlir_type_t t) : type{t} {}
|
|
|
|
operator mlir_type_t() const { return type; }
|
|
|
|
PythonAttributedType attachAttributeDict(
|
|
const std::unordered_map<std::string, PythonAttribute> &attrs) const;
|
|
|
|
std::string str() {
|
|
mlir::Type f = mlir::Type::getFromOpaquePointer(type);
|
|
std::string res;
|
|
llvm::raw_string_ostream os(res);
|
|
f.print(os);
|
|
return res;
|
|
}
|
|
|
|
mlir_type_t type;
|
|
};
|
|
|
|
struct PythonValueHandle {
|
|
PythonValueHandle(PythonType type)
|
|
: value(mlir::Type::getFromOpaquePointer(type.type)) {}
|
|
PythonValueHandle(const PythonValueHandle &other) = default;
|
|
PythonValueHandle(const mlir::edsc::ValueHandle &other) : value(other) {}
|
|
operator ValueHandle() const { return value; }
|
|
operator ValueHandle &() { return value; }
|
|
|
|
std::string str() const {
|
|
return std::to_string(reinterpret_cast<intptr_t>(value.getValue()));
|
|
}
|
|
|
|
PythonValueHandle call(const std::vector<PythonValueHandle> &args) {
|
|
assert(value.hasType() && value.getType().isa<FunctionType>() &&
|
|
"can only call function-typed values");
|
|
|
|
std::vector<Value *> argValues;
|
|
argValues.reserve(args.size());
|
|
for (auto arg : args)
|
|
argValues.push_back(arg.value.getValue());
|
|
return ValueHandle::create<CallIndirectOp>(value, argValues);
|
|
}
|
|
|
|
mlir::edsc::ValueHandle value;
|
|
};
|
|
|
|
struct PythonFunction {
|
|
PythonFunction() : function{nullptr} {}
|
|
PythonFunction(mlir_func_t f) : function{f} {}
|
|
PythonFunction(mlir::FuncOp f)
|
|
: function(const_cast<void *>(f.getAsOpaquePointer())) {}
|
|
operator mlir_func_t() { return function; }
|
|
std::string str() {
|
|
mlir::FuncOp f = mlir::FuncOp::getFromOpaquePointer(function);
|
|
std::string res;
|
|
llvm::raw_string_ostream os(res);
|
|
f.print(os);
|
|
return res;
|
|
}
|
|
|
|
// If the function does not yet have an entry block, i.e. if it is a function
|
|
// declaration, add the entry block, transforming the declaration into a
|
|
// definition. Return true if the block was added, false otherwise.
|
|
bool define() {
|
|
auto f = mlir::FuncOp::getFromOpaquePointer(function);
|
|
if (!f.getBlocks().empty())
|
|
return false;
|
|
|
|
f.addEntryBlock();
|
|
return true;
|
|
}
|
|
|
|
PythonValueHandle arg(unsigned index) {
|
|
auto f = mlir::FuncOp::getFromOpaquePointer(function);
|
|
assert(index < f.getNumArguments() && "argument index out of bounds");
|
|
return PythonValueHandle(ValueHandle(f.getArgument(index)));
|
|
}
|
|
|
|
mlir_func_t function;
|
|
};
|
|
|
|
/// Trivial C++ wrappers make use of the EDSC C API.
|
|
struct PythonMLIRModule {
|
|
PythonMLIRModule()
|
|
: mlirContext(),
|
|
module(mlir::ModuleOp::create(mlir::UnknownLoc::get(&mlirContext))),
|
|
moduleManager(*module) {}
|
|
|
|
PythonType makeScalarType(const std::string &mlirElemType,
|
|
unsigned bitwidth) {
|
|
return ::makeScalarType(mlir_context_t{&mlirContext}, mlirElemType.c_str(),
|
|
bitwidth);
|
|
}
|
|
PythonType makeMemRefType(PythonType elemType, std::vector<int64_t> sizes) {
|
|
return ::makeMemRefType(mlir_context_t{&mlirContext}, elemType,
|
|
int64_list_t{sizes.data(), sizes.size()});
|
|
}
|
|
PythonType makeIndexType() {
|
|
return ::makeIndexType(mlir_context_t{&mlirContext});
|
|
}
|
|
|
|
// Declare a function with the given name, input types and their attributes,
|
|
// output types, and function attributes, but do not define it.
|
|
PythonFunction declareFunction(const std::string &name,
|
|
const py::list &inputs,
|
|
const std::vector<PythonType> &outputTypes,
|
|
const py::kwargs &funcAttributes);
|
|
|
|
// Declare a function with the given name, input types and their attributes,
|
|
// output types, and function attributes.
|
|
PythonFunction makeFunction(const std::string &name, const py::list &inputs,
|
|
const std::vector<PythonType> &outputTypes,
|
|
const py::kwargs &funcAttributes) {
|
|
auto declaration =
|
|
declareFunction(name, inputs, outputTypes, funcAttributes);
|
|
declaration.define();
|
|
return declaration;
|
|
}
|
|
|
|
// Create a custom op given its name and arguments.
|
|
PythonExpr op(const std::string &name, PythonType type,
|
|
const py::list &arguments, const py::list &successors,
|
|
py::kwargs attributes);
|
|
|
|
// Create an integer attribute.
|
|
PythonAttribute integerAttr(PythonType type, int64_t value);
|
|
|
|
// Create a boolean attribute.
|
|
PythonAttribute boolAttr(bool value);
|
|
|
|
void compile() {
|
|
PassManager manager;
|
|
manager.addPass(mlir::createCanonicalizerPass());
|
|
manager.addPass(mlir::createCSEPass());
|
|
manager.addPass(mlir::createLowerAffinePass());
|
|
manager.addPass(mlir::createConvertToLLVMIRPass());
|
|
if (failed(manager.run(*module))) {
|
|
llvm::errs() << "conversion to the LLVM IR dialect failed\n";
|
|
return;
|
|
}
|
|
|
|
auto created = mlir::ExecutionEngine::create(*module);
|
|
llvm::handleAllErrors(created.takeError(),
|
|
[](const llvm::ErrorInfoBase &b) {
|
|
b.log(llvm::errs());
|
|
assert(false);
|
|
});
|
|
engine = std::move(*created);
|
|
}
|
|
|
|
std::string getIR() {
|
|
std::string res;
|
|
llvm::raw_string_ostream os(res);
|
|
module->print(os);
|
|
return res;
|
|
}
|
|
|
|
uint64_t getEngineAddress() {
|
|
assert(engine && "module must be compiled into engine first");
|
|
return reinterpret_cast<uint64_t>(reinterpret_cast<void *>(engine.get()));
|
|
}
|
|
|
|
PythonFunction getNamedFunction(const std::string &name) {
|
|
return moduleManager.lookupSymbol<FuncOp>(name);
|
|
}
|
|
|
|
PythonFunctionContext
|
|
makeFunctionContext(const std::string &name, const py::list &inputs,
|
|
const std::vector<PythonType> &outputs,
|
|
const py::kwargs &attributes);
|
|
|
|
private:
|
|
mlir::MLIRContext mlirContext;
|
|
// One single module in a python-exposed MLIRContext for now.
|
|
mlir::OwningModuleRef module;
|
|
mlir::ModuleManager moduleManager;
|
|
std::unique_ptr<mlir::ExecutionEngine> engine;
|
|
};
|
|
|
|
struct PythonFunctionContext {
|
|
PythonFunctionContext(PythonFunction f) : function(f) {}
|
|
PythonFunctionContext(PythonMLIRModule &module, const std::string &name,
|
|
const py::list &inputs,
|
|
const std::vector<PythonType> &outputs,
|
|
const py::kwargs &attributes) {
|
|
auto function = module.declareFunction(name, inputs, outputs, attributes);
|
|
function.define();
|
|
}
|
|
|
|
PythonFunction enter() {
|
|
assert(function.function && "function is not set up");
|
|
auto mlirFunc = mlir::FuncOp::getFromOpaquePointer(function.function);
|
|
contextBuilder.emplace(mlirFunc.getBody());
|
|
context = new mlir::edsc::ScopedContext(*contextBuilder, mlirFunc.getLoc());
|
|
return function;
|
|
}
|
|
|
|
void exit(py::object, py::object, py::object) {
|
|
delete context;
|
|
context = nullptr;
|
|
contextBuilder.reset();
|
|
}
|
|
|
|
PythonFunction function;
|
|
mlir::edsc::ScopedContext *context;
|
|
llvm::Optional<OpBuilder> contextBuilder;
|
|
};
|
|
|
|
PythonFunctionContext PythonMLIRModule::makeFunctionContext(
|
|
const std::string &name, const py::list &inputs,
|
|
const std::vector<PythonType> &outputs, const py::kwargs &attributes) {
|
|
auto func = declareFunction(name, inputs, outputs, attributes);
|
|
func.define();
|
|
return PythonFunctionContext(func);
|
|
}
|
|
|
|
struct PythonBlockHandle {
|
|
PythonBlockHandle() : value(nullptr) {}
|
|
PythonBlockHandle(const PythonBlockHandle &other) = default;
|
|
PythonBlockHandle(const mlir::edsc::BlockHandle &other) : value(other) {}
|
|
operator mlir::edsc::BlockHandle() const { return value; }
|
|
|
|
PythonValueHandle arg(int index) { return arguments[index]; }
|
|
|
|
std::string str() {
|
|
std::string s;
|
|
llvm::raw_string_ostream os(s);
|
|
value.getBlock()->print(os);
|
|
return os.str();
|
|
}
|
|
|
|
mlir::edsc::BlockHandle value;
|
|
std::vector<mlir::edsc::ValueHandle> arguments;
|
|
};
|
|
|
|
struct PythonLoopContext {
|
|
PythonLoopContext(PythonValueHandle lb, PythonValueHandle ub, int64_t step)
|
|
: lb(lb), ub(ub), step(step) {}
|
|
PythonLoopContext(const PythonLoopContext &) = delete;
|
|
PythonLoopContext(PythonLoopContext &&) = default;
|
|
PythonLoopContext &operator=(const PythonLoopContext &) = delete;
|
|
PythonLoopContext &operator=(PythonLoopContext &&) = default;
|
|
~PythonLoopContext() { assert(!builder && "did not exit from the context"); }
|
|
|
|
PythonValueHandle enter() {
|
|
ValueHandle iv(lb.value.getType());
|
|
builder = new LoopBuilder(&iv, lb.value, ub.value, step);
|
|
return iv;
|
|
}
|
|
|
|
void exit(py::object, py::object, py::object) {
|
|
(*builder)({}); // exit from the builder's scope.
|
|
delete builder;
|
|
builder = nullptr;
|
|
}
|
|
|
|
PythonValueHandle lb, ub;
|
|
int64_t step;
|
|
LoopBuilder *builder = nullptr;
|
|
};
|
|
|
|
struct PythonLoopNestContext {
|
|
PythonLoopNestContext(const std::vector<PythonValueHandle> &lbs,
|
|
const std::vector<PythonValueHandle> &ubs,
|
|
const std::vector<int64_t> steps)
|
|
: lbs(lbs), ubs(ubs), steps(steps) {
|
|
assert(lbs.size() == ubs.size() && lbs.size() == steps.size() &&
|
|
"expected the same number of lower, upper bounds, and steps");
|
|
}
|
|
PythonLoopNestContext(const PythonLoopNestContext &) = delete;
|
|
PythonLoopNestContext(PythonLoopNestContext &&) = default;
|
|
PythonLoopNestContext &operator=(const PythonLoopNestContext &) = delete;
|
|
PythonLoopNestContext &operator=(PythonLoopNestContext &&) = default;
|
|
~PythonLoopNestContext() {
|
|
assert(!builder && "did not exit from the context");
|
|
}
|
|
|
|
std::vector<PythonValueHandle> enter() {
|
|
if (steps.empty())
|
|
return {};
|
|
|
|
auto type = mlir_type_t(lbs.front().value.getType().getAsOpaquePointer());
|
|
std::vector<PythonValueHandle> handles(steps.size(),
|
|
PythonValueHandle(type));
|
|
std::vector<ValueHandle *> handlePtrs;
|
|
handlePtrs.reserve(steps.size());
|
|
for (auto &h : handles)
|
|
handlePtrs.push_back(&h.value);
|
|
builder = new LoopNestBuilder(
|
|
handlePtrs, std::vector<ValueHandle>(lbs.begin(), lbs.end()),
|
|
std::vector<ValueHandle>(ubs.begin(), ubs.end()), steps);
|
|
return handles;
|
|
}
|
|
|
|
void exit(py::object, py::object, py::object) {
|
|
(*builder)({}); // exit from the builder's scope.
|
|
delete builder;
|
|
builder = nullptr;
|
|
}
|
|
|
|
std::vector<PythonValueHandle> lbs;
|
|
std::vector<PythonValueHandle> ubs;
|
|
std::vector<int64_t> steps;
|
|
LoopNestBuilder *builder = nullptr;
|
|
};
|
|
|
|
struct PythonBlockAppender {
|
|
PythonBlockAppender(const PythonBlockHandle &handle) : handle(handle) {}
|
|
PythonBlockHandle handle;
|
|
};
|
|
|
|
struct PythonBlockContext {
|
|
public:
|
|
PythonBlockContext() {
|
|
createBlockBuilder();
|
|
clearBuilder();
|
|
}
|
|
PythonBlockContext(const std::vector<PythonType> &argTypes) {
|
|
handle.arguments.reserve(argTypes.size());
|
|
for (const auto &t : argTypes) {
|
|
auto type =
|
|
Type::getFromOpaquePointer(reinterpret_cast<const void *>(t.type));
|
|
handle.arguments.emplace_back(type);
|
|
}
|
|
createBlockBuilder();
|
|
clearBuilder();
|
|
}
|
|
PythonBlockContext(const PythonBlockAppender &a) : handle(a.handle) {}
|
|
PythonBlockContext(const PythonBlockContext &) = delete;
|
|
PythonBlockContext(PythonBlockContext &&) = default;
|
|
PythonBlockContext &operator=(const PythonBlockContext &) = delete;
|
|
PythonBlockContext &operator=(PythonBlockContext &&) = default;
|
|
~PythonBlockContext() {
|
|
assert(!builder && "did not exit from the block context");
|
|
}
|
|
|
|
// EDSC maintain an implicit stack of builders (mostly for keeping track of
|
|
// insretion points); every operation gets inserted using the top-of-the-stack
|
|
// builder. Creating a new EDSC Builder automatically puts it on the stack,
|
|
// effectively entering the block for it.
|
|
void createBlockBuilder() {
|
|
if (handle.value.getBlock()) {
|
|
builder = new BlockBuilder(handle.value, mlir::edsc::Append());
|
|
} else {
|
|
std::vector<ValueHandle *> args;
|
|
args.reserve(handle.arguments.size());
|
|
for (auto &a : handle.arguments)
|
|
args.push_back(&a);
|
|
builder = new BlockBuilder(&handle.value, args);
|
|
}
|
|
}
|
|
|
|
PythonBlockHandle enter() {
|
|
createBlockBuilder();
|
|
return handle;
|
|
}
|
|
|
|
void exit(py::object, py::object, py::object) { clearBuilder(); }
|
|
|
|
PythonBlockHandle getHandle() { return handle; }
|
|
|
|
// EDSC maintain an implicit stack of builders (mostly for keeping track of
|
|
// insretion points); every operation gets inserted using the top-of-the-stack
|
|
// builder. Calling operator() on a builder pops the builder from the stack,
|
|
// effectively resetting the insertion point to its position before we entered
|
|
// the block.
|
|
void clearBuilder() {
|
|
(*builder)({}); // exit from the builder's scope.
|
|
delete builder;
|
|
builder = nullptr;
|
|
}
|
|
|
|
PythonBlockHandle handle;
|
|
BlockBuilder *builder = nullptr;
|
|
};
|
|
|
|
struct PythonAttribute {
|
|
PythonAttribute() : attr(nullptr) {}
|
|
PythonAttribute(const mlir_attr_t &a) : attr(a) {}
|
|
PythonAttribute(const PythonAttribute &other) = default;
|
|
operator mlir_attr_t() { return attr; }
|
|
|
|
std::string str() const {
|
|
if (!attr)
|
|
return "##null attr##";
|
|
|
|
std::string res;
|
|
llvm::raw_string_ostream os(res);
|
|
Attribute::getFromOpaquePointer(reinterpret_cast<const void *>(attr))
|
|
.print(os);
|
|
return res;
|
|
}
|
|
|
|
mlir_attr_t attr;
|
|
};
|
|
|
|
struct PythonAttributedType {
|
|
PythonAttributedType() : type(nullptr) {}
|
|
PythonAttributedType(mlir_type_t t) : type(t) {}
|
|
PythonAttributedType(
|
|
PythonType t,
|
|
const std::unordered_map<std::string, PythonAttribute> &attributes =
|
|
std::unordered_map<std::string, PythonAttribute>())
|
|
: type(t), attrs(attributes) {}
|
|
|
|
operator mlir_type_t() const { return type.type; }
|
|
operator PythonType() const { return type; }
|
|
|
|
// Return a vector of named attribute descriptors. The vector owns the
|
|
// mlir_named_attr_t objects it contains, but not the names and attributes
|
|
// those objects point to (names and opaque pointers to attributes are owned
|
|
// by `this`).
|
|
std::vector<mlir_named_attr_t> getNamedAttrs() const {
|
|
std::vector<mlir_named_attr_t> result;
|
|
result.reserve(attrs.size());
|
|
for (const auto &namedAttr : attrs)
|
|
result.push_back({namedAttr.first.c_str(), namedAttr.second.attr});
|
|
return result;
|
|
}
|
|
|
|
std::string str() {
|
|
mlir::Type t = mlir::Type::getFromOpaquePointer(type);
|
|
std::string res;
|
|
llvm::raw_string_ostream os(res);
|
|
t.print(os);
|
|
if (attrs.empty())
|
|
return os.str();
|
|
|
|
os << '{';
|
|
bool first = true;
|
|
for (const auto &namedAttr : attrs) {
|
|
if (first)
|
|
first = false;
|
|
else
|
|
os << ", ";
|
|
os << namedAttr.first << ": " << namedAttr.second.str();
|
|
}
|
|
os << '}';
|
|
|
|
return os.str();
|
|
}
|
|
|
|
private:
|
|
PythonType type;
|
|
std::unordered_map<std::string, PythonAttribute> attrs;
|
|
};
|
|
|
|
struct PythonIndexedValue {
|
|
explicit PythonIndexedValue(PythonType type)
|
|
: indexed(Type::getFromOpaquePointer(type.type)) {}
|
|
explicit PythonIndexedValue(const IndexedValue &other) : indexed(other) {}
|
|
PythonIndexedValue(PythonValueHandle handle) : indexed(handle.value) {}
|
|
PythonIndexedValue(const PythonIndexedValue &other) = default;
|
|
|
|
// Create a new indexed value with the same base as this one but with indices
|
|
// provided as arguments.
|
|
PythonIndexedValue index(const std::vector<PythonValueHandle> &indices) {
|
|
std::vector<ValueHandle> handles(indices.begin(), indices.end());
|
|
return PythonIndexedValue(IndexedValue(indexed(handles)));
|
|
}
|
|
|
|
void store(const std::vector<PythonValueHandle> &indices,
|
|
PythonValueHandle value) {
|
|
// Uses the overloaded `opreator=` to emit a store.
|
|
index(indices).indexed = value.value;
|
|
}
|
|
|
|
PythonValueHandle load(const std::vector<PythonValueHandle> &indices) {
|
|
// Uses the overloaded cast to `ValueHandle` to emit a load.
|
|
return static_cast<ValueHandle>(index(indices).indexed);
|
|
}
|
|
|
|
IndexedValue indexed;
|
|
};
|
|
|
|
template <typename ListTy, typename PythonTy, typename Ty>
|
|
ListTy makeCList(SmallVectorImpl<Ty> &owning, const py::list &list) {
|
|
for (auto &inp : list) {
|
|
owning.push_back(Ty{inp.cast<PythonTy>()});
|
|
}
|
|
return ListTy{owning.data(), owning.size()};
|
|
}
|
|
|
|
static mlir_type_list_t makeCTypes(llvm::SmallVectorImpl<mlir_type_t> &owning,
|
|
const py::list &types) {
|
|
return makeCList<mlir_type_list_t, PythonType>(owning, types);
|
|
}
|
|
|
|
PythonFunction
|
|
PythonMLIRModule::declareFunction(const std::string &name,
|
|
const py::list &inputs,
|
|
const std::vector<PythonType> &outputTypes,
|
|
const py::kwargs &funcAttributes) {
|
|
|
|
std::vector<PythonAttributedType> attributedInputs;
|
|
attributedInputs.reserve(inputs.size());
|
|
for (const auto &in : inputs) {
|
|
std::string className = in.get_type().str();
|
|
if (className.find(".Type'") != std::string::npos)
|
|
attributedInputs.emplace_back(in.cast<PythonType>());
|
|
else
|
|
attributedInputs.push_back(in.cast<PythonAttributedType>());
|
|
}
|
|
|
|
// Create the function type.
|
|
std::vector<mlir_type_t> ins(attributedInputs.begin(),
|
|
attributedInputs.end());
|
|
std::vector<mlir_type_t> outs(outputTypes.begin(), outputTypes.end());
|
|
auto funcType = ::makeFunctionType(
|
|
mlir_context_t{&mlirContext}, mlir_type_list_t{ins.data(), ins.size()},
|
|
mlir_type_list_t{outs.data(), outs.size()});
|
|
|
|
// Build the list of function attributes.
|
|
std::vector<mlir::NamedAttribute> attrs;
|
|
attrs.reserve(funcAttributes.size());
|
|
for (const auto &named : funcAttributes)
|
|
attrs.emplace_back(
|
|
Identifier::get(std::string(named.first.str()), &mlirContext),
|
|
mlir::Attribute::getFromOpaquePointer(reinterpret_cast<const void *>(
|
|
named.second.cast<PythonAttribute>().attr)));
|
|
|
|
// Build the list of lists of function argument attributes.
|
|
std::vector<mlir::NamedAttributeList> inputAttrs;
|
|
inputAttrs.reserve(attributedInputs.size());
|
|
for (const auto &in : attributedInputs) {
|
|
std::vector<mlir::NamedAttribute> inAttrs;
|
|
for (const auto &named : in.getNamedAttrs())
|
|
inAttrs.emplace_back(Identifier::get(named.name, &mlirContext),
|
|
mlir::Attribute::getFromOpaquePointer(
|
|
reinterpret_cast<const void *>(named.value)));
|
|
inputAttrs.emplace_back(inAttrs);
|
|
}
|
|
|
|
// Create the function itself.
|
|
auto func = mlir::FuncOp::create(
|
|
UnknownLoc::get(&mlirContext), name,
|
|
mlir::Type::getFromOpaquePointer(funcType).cast<FunctionType>(), attrs,
|
|
inputAttrs);
|
|
moduleManager.insert(func);
|
|
return func;
|
|
}
|
|
|
|
PythonAttributedType PythonType::attachAttributeDict(
|
|
const std::unordered_map<std::string, PythonAttribute> &attrs) const {
|
|
return PythonAttributedType(*this, attrs);
|
|
}
|
|
|
|
PythonAttribute PythonMLIRModule::integerAttr(PythonType type, int64_t value) {
|
|
return PythonAttribute(::makeIntegerAttr(type, value));
|
|
}
|
|
|
|
PythonAttribute PythonMLIRModule::boolAttr(bool value) {
|
|
return PythonAttribute(::makeBoolAttr(&mlirContext, value));
|
|
}
|
|
|
|
PYBIND11_MODULE(pybind, m) {
|
|
m.doc() =
|
|
"Python bindings for MLIR Embedded Domain-Specific Components (EDSCs)";
|
|
m.def("version", []() { return "EDSC Python extensions v1.0"; });
|
|
|
|
py::class_<PythonLoopContext>(
|
|
m, "LoopContext", "A context for building the body of a 'for' loop")
|
|
.def(py::init<PythonValueHandle, PythonValueHandle, int64_t>())
|
|
.def("__enter__", &PythonLoopContext::enter)
|
|
.def("__exit__", &PythonLoopContext::exit);
|
|
|
|
py::class_<PythonLoopNestContext>(m, "LoopNestContext",
|
|
"A context for building the body of a the "
|
|
"innermost loop in a nest of 'for' loops")
|
|
.def(py::init<const std::vector<PythonValueHandle> &,
|
|
const std::vector<PythonValueHandle> &,
|
|
const std::vector<int64_t> &>())
|
|
.def("__enter__", &PythonLoopNestContext::enter)
|
|
.def("__exit__", &PythonLoopNestContext::exit);
|
|
|
|
m.def("constant_index", [](int64_t val) -> PythonValueHandle {
|
|
return ValueHandle(index_t(val));
|
|
});
|
|
m.def("constant_int", [](int64_t val, int width) -> PythonValueHandle {
|
|
return ValueHandle::create<ConstantIntOp>(val, width);
|
|
});
|
|
m.def("constant_float", [](double val, PythonType type) -> PythonValueHandle {
|
|
FloatType floatType =
|
|
Type::getFromOpaquePointer(type.type).cast<FloatType>();
|
|
assert(floatType);
|
|
auto value = APFloat(val);
|
|
bool lostPrecision;
|
|
value.convert(floatType.getFloatSemantics(), APFloat::rmNearestTiesToEven,
|
|
&lostPrecision);
|
|
return ValueHandle::create<ConstantFloatOp>(value, floatType);
|
|
});
|
|
m.def("constant_function", [](PythonFunction func) -> PythonValueHandle {
|
|
auto function = FuncOp::getFromOpaquePointer(func.function);
|
|
auto attr = SymbolRefAttr::get(function.getName(), function.getContext());
|
|
return ValueHandle::create<ConstantOp>(function.getType(), attr);
|
|
});
|
|
m.def("appendTo", [](const PythonBlockHandle &handle) {
|
|
return PythonBlockAppender(handle);
|
|
});
|
|
m.def(
|
|
"ret",
|
|
[](const std::vector<PythonValueHandle> &args) {
|
|
std::vector<ValueHandle> values(args.begin(), args.end());
|
|
(intrinsics::ret(ArrayRef<ValueHandle>{values})); // vexing parse
|
|
return PythonValueHandle(nullptr);
|
|
},
|
|
py::arg("args") = std::vector<PythonValueHandle>());
|
|
m.def(
|
|
"br",
|
|
[](const PythonBlockHandle &dest,
|
|
const std::vector<PythonValueHandle> &args) {
|
|
std::vector<ValueHandle> values(args.begin(), args.end());
|
|
intrinsics::br(dest, values);
|
|
return PythonValueHandle(nullptr);
|
|
},
|
|
py::arg("dest"), py::arg("args") = std::vector<PythonValueHandle>());
|
|
m.def(
|
|
"cond_br",
|
|
[](PythonValueHandle condition, const PythonBlockHandle &trueDest,
|
|
const std::vector<PythonValueHandle> &trueArgs,
|
|
const PythonBlockHandle &falseDest,
|
|
const std::vector<PythonValueHandle> &falseArgs) -> PythonValueHandle {
|
|
std::vector<ValueHandle> trueArguments(trueArgs.begin(),
|
|
trueArgs.end());
|
|
std::vector<ValueHandle> falseArguments(falseArgs.begin(),
|
|
falseArgs.end());
|
|
intrinsics::cond_br(condition, trueDest, trueArguments, falseDest,
|
|
falseArguments);
|
|
return PythonValueHandle(nullptr);
|
|
});
|
|
m.def("select",
|
|
[](PythonValueHandle condition, PythonValueHandle trueValue,
|
|
PythonValueHandle falseValue) -> PythonValueHandle {
|
|
return ValueHandle::create<SelectOp>(condition.value, trueValue.value,
|
|
falseValue.value);
|
|
});
|
|
m.def("op",
|
|
[](const std::string &name,
|
|
const std::vector<PythonValueHandle> &operands,
|
|
const std::vector<PythonType> &resultTypes,
|
|
const py::kwargs &attributes) -> PythonValueHandle {
|
|
std::vector<ValueHandle> operandHandles(operands.begin(),
|
|
operands.end());
|
|
std::vector<Type> types;
|
|
types.reserve(resultTypes.size());
|
|
for (auto t : resultTypes)
|
|
types.push_back(Type::getFromOpaquePointer(t.type));
|
|
|
|
std::vector<NamedAttribute> attrs;
|
|
attrs.reserve(attributes.size());
|
|
for (const auto &a : attributes) {
|
|
std::string name = a.first.str();
|
|
auto pyAttr = a.second.cast<PythonAttribute>();
|
|
auto cppAttr = Attribute::getFromOpaquePointer(pyAttr.attr);
|
|
auto identifier =
|
|
Identifier::get(name, ScopedContext::getContext());
|
|
attrs.emplace_back(identifier, cppAttr);
|
|
}
|
|
|
|
return ValueHandle::create(name, operandHandles, types, attrs);
|
|
});
|
|
|
|
py::class_<PythonFunction>(m, "Function", "Wrapping class for mlir::FuncOp.")
|
|
.def(py::init<PythonFunction>())
|
|
.def("__str__", &PythonFunction::str)
|
|
.def("define", &PythonFunction::define,
|
|
"Adds a body to the function if it does not already have one. "
|
|
"Returns true if the body was added")
|
|
.def("arg", &PythonFunction::arg,
|
|
"Get the ValueHandle to the indexed argument of the function");
|
|
|
|
py::class_<PythonAttribute>(m, "Attribute",
|
|
"Wrapping class for mlir::Attribute")
|
|
.def(py::init<PythonAttribute>())
|
|
.def("__str__", &PythonAttribute::str);
|
|
|
|
py::class_<PythonType>(m, "Type", "Wrapping class for mlir::Type.")
|
|
.def(py::init<PythonType>())
|
|
.def("__call__", &PythonType::attachAttributeDict,
|
|
"Attach the attributes to these type, making it suitable for "
|
|
"constructing functions with argument attributes")
|
|
.def("__str__", &PythonType::str);
|
|
|
|
py::class_<PythonAttributedType>(
|
|
m, "AttributedType",
|
|
"A class containing a wrapped mlir::Type and a wrapped "
|
|
"mlir::NamedAttributeList that are used together, e.g. in function "
|
|
"argument declaration")
|
|
.def(py::init<PythonAttributedType>())
|
|
.def("__str__", &PythonAttributedType::str);
|
|
|
|
py::class_<PythonMLIRModule>(
|
|
m, "MLIRModule",
|
|
"An MLIRModule is the abstraction that owns the allocations to support "
|
|
"compilation of a single mlir::ModuleOp into an ExecutionEngine backed "
|
|
"by "
|
|
"the LLVM ORC JIT. A typical flow consists in creating an MLIRModule, "
|
|
"adding functions, compiling the module to obtain an ExecutionEngine on "
|
|
"which named functions may be called. For now the only means to retrieve "
|
|
"the ExecutionEngine is by calling `get_engine_address`. This mode of "
|
|
"execution is limited to passing the pointer to C++ where the function "
|
|
"is called. Extending the API to allow calling JIT compiled functions "
|
|
"directly require integration with a tensor library (e.g. numpy). This "
|
|
"is left as the prerogative of libraries and frameworks for now.")
|
|
.def(py::init<>())
|
|
.def("boolAttr", &PythonMLIRModule::boolAttr,
|
|
"Creates an mlir::BoolAttr with the given value")
|
|
.def(
|
|
"integerAttr", &PythonMLIRModule::integerAttr,
|
|
"Creates an mlir::IntegerAttr of the given type with the given value "
|
|
"in the context associated with this MLIR module.")
|
|
.def("declare_function", &PythonMLIRModule::declareFunction,
|
|
"Declares a new mlir::FuncOp in the current mlir::ModuleOp. The "
|
|
"function arguments can have attributes. The function has no "
|
|
"definition and can be linked to an external library.")
|
|
.def("make_function", &PythonMLIRModule::makeFunction,
|
|
"Defines a new mlir::FuncOp in the current mlir::ModuleOp.")
|
|
.def("function_context", &PythonMLIRModule::makeFunctionContext,
|
|
"Defines a new mlir::FuncOp in the mlir::ModuleOp and creates the "
|
|
"function context for building the body of the function.")
|
|
.def("get_function", &PythonMLIRModule::getNamedFunction,
|
|
"Looks up the function with the given name in the module.")
|
|
.def(
|
|
"make_scalar_type",
|
|
[](PythonMLIRModule &instance, const std::string &type,
|
|
unsigned bitwidth) {
|
|
return instance.makeScalarType(type, bitwidth);
|
|
},
|
|
py::arg("type"), py::arg("bitwidth") = 0,
|
|
"Returns a scalar mlir::Type using the following convention:\n"
|
|
" - makeScalarType(c, \"bf16\") return an "
|
|
"`mlir::FloatType::getBF16`\n"
|
|
" - makeScalarType(c, \"f16\") return an `mlir::FloatType::getF16`\n"
|
|
" - makeScalarType(c, \"f32\") return an `mlir::FloatType::getF32`\n"
|
|
" - makeScalarType(c, \"f64\") return an `mlir::FloatType::getF64`\n"
|
|
" - makeScalarType(c, \"index\") return an `mlir::IndexType::get`\n"
|
|
" - makeScalarType(c, \"i\", bitwidth) return an "
|
|
"`mlir::IntegerType::get(bitwidth)`\n\n"
|
|
" No other combinations are currently supported.")
|
|
.def("make_memref_type", &PythonMLIRModule::makeMemRefType,
|
|
"Returns an mlir::MemRefType of an elemental scalar. -1 is used to "
|
|
"denote symbolic dimensions in the resulting memref shape.")
|
|
.def("make_index_type", &PythonMLIRModule::makeIndexType,
|
|
"Returns an mlir::IndexType")
|
|
.def("compile", &PythonMLIRModule::compile,
|
|
"Compiles the mlir::ModuleOp to LLVMIR a creates new opaque "
|
|
"ExecutionEngine backed by the ORC JIT.")
|
|
.def("get_ir", &PythonMLIRModule::getIR,
|
|
"Returns a dump of the MLIR representation of the module. This is "
|
|
"used for serde to support out-of-process execution as well as "
|
|
"debugging purposes.")
|
|
.def("get_engine_address", &PythonMLIRModule::getEngineAddress,
|
|
"Returns the address of the compiled ExecutionEngine. This is used "
|
|
"for in-process execution.")
|
|
.def("__str__", &PythonMLIRModule::getIR,
|
|
"Get the string representation of the module");
|
|
|
|
py::class_<PythonFunctionContext>(
|
|
m, "FunctionContext", "A wrapper around mlir::edsc::ScopedContext")
|
|
.def(py::init<PythonFunction>())
|
|
.def("__enter__", &PythonFunctionContext::enter)
|
|
.def("__exit__", &PythonFunctionContext::exit);
|
|
|
|
{
|
|
using namespace mlir::edsc::op;
|
|
py::class_<PythonValueHandle>(m, "ValueHandle",
|
|
"A wrapper around mlir::edsc::ValueHandle")
|
|
.def(py::init<PythonType>())
|
|
.def(py::init<PythonValueHandle>())
|
|
.def("__add__",
|
|
[](PythonValueHandle lhs, PythonValueHandle rhs)
|
|
-> PythonValueHandle { return lhs.value + rhs.value; })
|
|
.def("__sub__",
|
|
[](PythonValueHandle lhs, PythonValueHandle rhs)
|
|
-> PythonValueHandle { return lhs.value - rhs.value; })
|
|
.def("__mul__",
|
|
[](PythonValueHandle lhs, PythonValueHandle rhs)
|
|
-> PythonValueHandle { return lhs.value * rhs.value; })
|
|
.def("__div__",
|
|
[](PythonValueHandle lhs, PythonValueHandle rhs)
|
|
-> PythonValueHandle { return lhs.value / rhs.value; })
|
|
.def("__truediv__",
|
|
[](PythonValueHandle lhs, PythonValueHandle rhs)
|
|
-> PythonValueHandle { return lhs.value / rhs.value; })
|
|
.def("__floordiv__",
|
|
[](PythonValueHandle lhs, PythonValueHandle rhs)
|
|
-> PythonValueHandle { return floorDiv(lhs, rhs); })
|
|
.def("__mod__",
|
|
[](PythonValueHandle lhs, PythonValueHandle rhs)
|
|
-> PythonValueHandle { return lhs.value % rhs.value; })
|
|
.def("__lt__",
|
|
[](PythonValueHandle lhs,
|
|
PythonValueHandle rhs) -> PythonValueHandle {
|
|
return ValueHandle::create<CmpIOp>(CmpIPredicate::SLT, lhs.value,
|
|
rhs.value);
|
|
})
|
|
.def("__le__",
|
|
[](PythonValueHandle lhs,
|
|
PythonValueHandle rhs) -> PythonValueHandle {
|
|
return ValueHandle::create<CmpIOp>(CmpIPredicate::SLE, lhs.value,
|
|
rhs.value);
|
|
})
|
|
.def("__gt__",
|
|
[](PythonValueHandle lhs,
|
|
PythonValueHandle rhs) -> PythonValueHandle {
|
|
return ValueHandle::create<CmpIOp>(CmpIPredicate::SGT, lhs.value,
|
|
rhs.value);
|
|
})
|
|
.def("__ge__",
|
|
[](PythonValueHandle lhs,
|
|
PythonValueHandle rhs) -> PythonValueHandle {
|
|
return ValueHandle::create<CmpIOp>(CmpIPredicate::SGE, lhs.value,
|
|
rhs.value);
|
|
})
|
|
.def("__eq__",
|
|
[](PythonValueHandle lhs,
|
|
PythonValueHandle rhs) -> PythonValueHandle {
|
|
return ValueHandle::create<CmpIOp>(CmpIPredicate::EQ, lhs.value,
|
|
rhs.value);
|
|
})
|
|
.def("__ne__",
|
|
[](PythonValueHandle lhs,
|
|
PythonValueHandle rhs) -> PythonValueHandle {
|
|
return ValueHandle::create<CmpIOp>(CmpIPredicate::NE, lhs.value,
|
|
rhs.value);
|
|
})
|
|
.def("__invert__",
|
|
[](PythonValueHandle handle) -> PythonValueHandle {
|
|
return !handle.value;
|
|
})
|
|
.def("__and__",
|
|
[](PythonValueHandle lhs, PythonValueHandle rhs)
|
|
-> PythonValueHandle { return lhs.value && rhs.value; })
|
|
.def("__or__",
|
|
[](PythonValueHandle lhs, PythonValueHandle rhs)
|
|
-> PythonValueHandle { return lhs.value || rhs.value; })
|
|
.def("__call__", &PythonValueHandle::call);
|
|
}
|
|
|
|
py::class_<PythonBlockAppender>(
|
|
m, "BlockAppender",
|
|
"A dummy class signaling BlockContext to append IR to the given block "
|
|
"instead of creating a new block")
|
|
.def(py::init<const PythonBlockHandle &>());
|
|
py::class_<PythonBlockHandle>(m, "BlockHandle",
|
|
"A wrapper around mlir::edsc::BlockHandle")
|
|
.def(py::init<PythonBlockHandle>())
|
|
.def("arg", &PythonBlockHandle::arg);
|
|
|
|
py::class_<PythonBlockContext>(m, "BlockContext",
|
|
"A wrapper around mlir::edsc::BlockBuilder")
|
|
.def(py::init<>())
|
|
.def(py::init<const std::vector<PythonType> &>())
|
|
.def(py::init<const PythonBlockAppender &>())
|
|
.def("__enter__", &PythonBlockContext::enter)
|
|
.def("__exit__", &PythonBlockContext::exit)
|
|
.def("handle", &PythonBlockContext::getHandle);
|
|
|
|
py::class_<PythonIndexedValue>(m, "IndexedValue",
|
|
"A wrapper around mlir::edsc::IndexedValue")
|
|
.def(py::init<PythonValueHandle>())
|
|
.def("load", &PythonIndexedValue::load)
|
|
.def("store", &PythonIndexedValue::store);
|
|
}
|
|
|
|
} // namespace python
|
|
} // namespace edsc
|
|
} // namespace mlir
|