forked from OSchip/llvm-project
1327 lines
49 KiB
C++
1327 lines
49 KiB
C++
//===- StackColoring.cpp --------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass implements the stack-coloring optimization that looks for
|
|
// lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END),
|
|
// which represent the possible lifetime of stack slots. It attempts to
|
|
// merge disjoint stack slots and reduce the used stack space.
|
|
// NOTE: This pass is not StackSlotColoring, which optimizes spill slots.
|
|
//
|
|
// TODO: In the future we plan to improve stack coloring in the following ways:
|
|
// 1. Allow merging multiple small slots into a single larger slot at different
|
|
// offsets.
|
|
// 2. Merge this pass with StackSlotColoring and allow merging of allocas with
|
|
// spill slots.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/CodeGen/LiveInterval.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/SelectionDAGNodes.h"
|
|
#include "llvm/CodeGen/SlotIndexes.h"
|
|
#include "llvm/CodeGen/TargetOpcodes.h"
|
|
#include "llvm/CodeGen/WinEHFuncInfo.h"
|
|
#include "llvm/Config/llvm-config.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "stack-coloring"
|
|
|
|
static cl::opt<bool>
|
|
DisableColoring("no-stack-coloring",
|
|
cl::init(false), cl::Hidden,
|
|
cl::desc("Disable stack coloring"));
|
|
|
|
/// The user may write code that uses allocas outside of the declared lifetime
|
|
/// zone. This can happen when the user returns a reference to a local
|
|
/// data-structure. We can detect these cases and decide not to optimize the
|
|
/// code. If this flag is enabled, we try to save the user. This option
|
|
/// is treated as overriding LifetimeStartOnFirstUse below.
|
|
static cl::opt<bool>
|
|
ProtectFromEscapedAllocas("protect-from-escaped-allocas",
|
|
cl::init(false), cl::Hidden,
|
|
cl::desc("Do not optimize lifetime zones that "
|
|
"are broken"));
|
|
|
|
/// Enable enhanced dataflow scheme for lifetime analysis (treat first
|
|
/// use of stack slot as start of slot lifetime, as opposed to looking
|
|
/// for LIFETIME_START marker). See "Implementation notes" below for
|
|
/// more info.
|
|
static cl::opt<bool>
|
|
LifetimeStartOnFirstUse("stackcoloring-lifetime-start-on-first-use",
|
|
cl::init(true), cl::Hidden,
|
|
cl::desc("Treat stack lifetimes as starting on first use, not on START marker."));
|
|
|
|
|
|
STATISTIC(NumMarkerSeen, "Number of lifetime markers found.");
|
|
STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots.");
|
|
STATISTIC(StackSlotMerged, "Number of stack slot merged.");
|
|
STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region");
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// StackColoring Pass
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Stack Coloring reduces stack usage by merging stack slots when they
|
|
// can't be used together. For example, consider the following C program:
|
|
//
|
|
// void bar(char *, int);
|
|
// void foo(bool var) {
|
|
// A: {
|
|
// char z[4096];
|
|
// bar(z, 0);
|
|
// }
|
|
//
|
|
// char *p;
|
|
// char x[4096];
|
|
// char y[4096];
|
|
// if (var) {
|
|
// p = x;
|
|
// } else {
|
|
// bar(y, 1);
|
|
// p = y + 1024;
|
|
// }
|
|
// B:
|
|
// bar(p, 2);
|
|
// }
|
|
//
|
|
// Naively-compiled, this program would use 12k of stack space. However, the
|
|
// stack slot corresponding to `z` is always destroyed before either of the
|
|
// stack slots for `x` or `y` are used, and then `x` is only used if `var`
|
|
// is true, while `y` is only used if `var` is false. So in no time are 2
|
|
// of the stack slots used together, and therefore we can merge them,
|
|
// compiling the function using only a single 4k alloca:
|
|
//
|
|
// void foo(bool var) { // equivalent
|
|
// char x[4096];
|
|
// char *p;
|
|
// bar(x, 0);
|
|
// if (var) {
|
|
// p = x;
|
|
// } else {
|
|
// bar(x, 1);
|
|
// p = x + 1024;
|
|
// }
|
|
// bar(p, 2);
|
|
// }
|
|
//
|
|
// This is an important optimization if we want stack space to be under
|
|
// control in large functions, both open-coded ones and ones created by
|
|
// inlining.
|
|
//
|
|
// Implementation Notes:
|
|
// ---------------------
|
|
//
|
|
// An important part of the above reasoning is that `z` can't be accessed
|
|
// while the latter 2 calls to `bar` are running. This is justified because
|
|
// `z`'s lifetime is over after we exit from block `A:`, so any further
|
|
// accesses to it would be UB. The way we represent this information
|
|
// in LLVM is by having frontends delimit blocks with `lifetime.start`
|
|
// and `lifetime.end` intrinsics.
|
|
//
|
|
// The effect of these intrinsics seems to be as follows (maybe I should
|
|
// specify this in the reference?):
|
|
//
|
|
// L1) at start, each stack-slot is marked as *out-of-scope*, unless no
|
|
// lifetime intrinsic refers to that stack slot, in which case
|
|
// it is marked as *in-scope*.
|
|
// L2) on a `lifetime.start`, a stack slot is marked as *in-scope* and
|
|
// the stack slot is overwritten with `undef`.
|
|
// L3) on a `lifetime.end`, a stack slot is marked as *out-of-scope*.
|
|
// L4) on function exit, all stack slots are marked as *out-of-scope*.
|
|
// L5) `lifetime.end` is a no-op when called on a slot that is already
|
|
// *out-of-scope*.
|
|
// L6) memory accesses to *out-of-scope* stack slots are UB.
|
|
// L7) when a stack-slot is marked as *out-of-scope*, all pointers to it
|
|
// are invalidated, unless the slot is "degenerate". This is used to
|
|
// justify not marking slots as in-use until the pointer to them is
|
|
// used, but feels a bit hacky in the presence of things like LICM. See
|
|
// the "Degenerate Slots" section for more details.
|
|
//
|
|
// Now, let's ground stack coloring on these rules. We'll define a slot
|
|
// as *in-use* at a (dynamic) point in execution if it either can be
|
|
// written to at that point, or if it has a live and non-undef content
|
|
// at that point.
|
|
//
|
|
// Obviously, slots that are never *in-use* together can be merged, and
|
|
// in our example `foo`, the slots for `x`, `y` and `z` are never
|
|
// in-use together (of course, sometimes slots that *are* in-use together
|
|
// might still be mergable, but we don't care about that here).
|
|
//
|
|
// In this implementation, we successively merge pairs of slots that are
|
|
// not *in-use* together. We could be smarter - for example, we could merge
|
|
// a single large slot with 2 small slots, or we could construct the
|
|
// interference graph and run a "smart" graph coloring algorithm, but with
|
|
// that aside, how do we find out whether a pair of slots might be *in-use*
|
|
// together?
|
|
//
|
|
// From our rules, we see that *out-of-scope* slots are never *in-use*,
|
|
// and from (L7) we see that "non-degenerate" slots remain non-*in-use*
|
|
// until their address is taken. Therefore, we can approximate slot activity
|
|
// using dataflow.
|
|
//
|
|
// A subtle point: naively, we might try to figure out which pairs of
|
|
// stack-slots interfere by propagating `S in-use` through the CFG for every
|
|
// stack-slot `S`, and having `S` and `T` interfere if there is a CFG point in
|
|
// which they are both *in-use*.
|
|
//
|
|
// That is sound, but overly conservative in some cases: in our (artificial)
|
|
// example `foo`, either `x` or `y` might be in use at the label `B:`, but
|
|
// as `x` is only in use if we came in from the `var` edge and `y` only
|
|
// if we came from the `!var` edge, they still can't be in use together.
|
|
// See PR32488 for an important real-life case.
|
|
//
|
|
// If we wanted to find all points of interference precisely, we could
|
|
// propagate `S in-use` and `S&T in-use` predicates through the CFG. That
|
|
// would be precise, but requires propagating `O(n^2)` dataflow facts.
|
|
//
|
|
// However, we aren't interested in the *set* of points of interference
|
|
// between 2 stack slots, only *whether* there *is* such a point. So we
|
|
// can rely on a little trick: for `S` and `T` to be in-use together,
|
|
// one of them needs to become in-use while the other is in-use (or
|
|
// they might both become in use simultaneously). We can check this
|
|
// by also keeping track of the points at which a stack slot might *start*
|
|
// being in-use.
|
|
//
|
|
// Exact first use:
|
|
// ----------------
|
|
//
|
|
// Consider the following motivating example:
|
|
//
|
|
// int foo() {
|
|
// char b1[1024], b2[1024];
|
|
// if (...) {
|
|
// char b3[1024];
|
|
// <uses of b1, b3>;
|
|
// return x;
|
|
// } else {
|
|
// char b4[1024], b5[1024];
|
|
// <uses of b2, b4, b5>;
|
|
// return y;
|
|
// }
|
|
// }
|
|
//
|
|
// In the code above, "b3" and "b4" are declared in distinct lexical
|
|
// scopes, meaning that it is easy to prove that they can share the
|
|
// same stack slot. Variables "b1" and "b2" are declared in the same
|
|
// scope, meaning that from a lexical point of view, their lifetimes
|
|
// overlap. From a control flow pointer of view, however, the two
|
|
// variables are accessed in disjoint regions of the CFG, thus it
|
|
// should be possible for them to share the same stack slot. An ideal
|
|
// stack allocation for the function above would look like:
|
|
//
|
|
// slot 0: b1, b2
|
|
// slot 1: b3, b4
|
|
// slot 2: b5
|
|
//
|
|
// Achieving this allocation is tricky, however, due to the way
|
|
// lifetime markers are inserted. Here is a simplified view of the
|
|
// control flow graph for the code above:
|
|
//
|
|
// +------ block 0 -------+
|
|
// 0| LIFETIME_START b1, b2 |
|
|
// 1| <test 'if' condition> |
|
|
// +-----------------------+
|
|
// ./ \.
|
|
// +------ block 1 -------+ +------ block 2 -------+
|
|
// 2| LIFETIME_START b3 | 5| LIFETIME_START b4, b5 |
|
|
// 3| <uses of b1, b3> | 6| <uses of b2, b4, b5> |
|
|
// 4| LIFETIME_END b3 | 7| LIFETIME_END b4, b5 |
|
|
// +-----------------------+ +-----------------------+
|
|
// \. /.
|
|
// +------ block 3 -------+
|
|
// 8| <cleanupcode> |
|
|
// 9| LIFETIME_END b1, b2 |
|
|
// 10| return |
|
|
// +-----------------------+
|
|
//
|
|
// If we create live intervals for the variables above strictly based
|
|
// on the lifetime markers, we'll get the set of intervals on the
|
|
// left. If we ignore the lifetime start markers and instead treat a
|
|
// variable's lifetime as beginning with the first reference to the
|
|
// var, then we get the intervals on the right.
|
|
//
|
|
// LIFETIME_START First Use
|
|
// b1: [0,9] [3,4] [8,9]
|
|
// b2: [0,9] [6,9]
|
|
// b3: [2,4] [3,4]
|
|
// b4: [5,7] [6,7]
|
|
// b5: [5,7] [6,7]
|
|
//
|
|
// For the intervals on the left, the best we can do is overlap two
|
|
// variables (b3 and b4, for example); this gives us a stack size of
|
|
// 4*1024 bytes, not ideal. When treating first-use as the start of a
|
|
// lifetime, we can additionally overlap b1 and b5, giving us a 3*1024
|
|
// byte stack (better).
|
|
//
|
|
// Degenerate Slots:
|
|
// -----------------
|
|
//
|
|
// Relying entirely on first-use of stack slots is problematic,
|
|
// however, due to the fact that optimizations can sometimes migrate
|
|
// uses of a variable outside of its lifetime start/end region. Here
|
|
// is an example:
|
|
//
|
|
// int bar() {
|
|
// char b1[1024], b2[1024];
|
|
// if (...) {
|
|
// <uses of b2>
|
|
// return y;
|
|
// } else {
|
|
// <uses of b1>
|
|
// while (...) {
|
|
// char b3[1024];
|
|
// <uses of b3>
|
|
// }
|
|
// }
|
|
// }
|
|
//
|
|
// Before optimization, the control flow graph for the code above
|
|
// might look like the following:
|
|
//
|
|
// +------ block 0 -------+
|
|
// 0| LIFETIME_START b1, b2 |
|
|
// 1| <test 'if' condition> |
|
|
// +-----------------------+
|
|
// ./ \.
|
|
// +------ block 1 -------+ +------- block 2 -------+
|
|
// 2| <uses of b2> | 3| <uses of b1> |
|
|
// +-----------------------+ +-----------------------+
|
|
// | |
|
|
// | +------- block 3 -------+ <-\.
|
|
// | 4| <while condition> | |
|
|
// | +-----------------------+ |
|
|
// | / | |
|
|
// | / +------- block 4 -------+
|
|
// \ / 5| LIFETIME_START b3 | |
|
|
// \ / 6| <uses of b3> | |
|
|
// \ / 7| LIFETIME_END b3 | |
|
|
// \ | +------------------------+ |
|
|
// \ | \ /
|
|
// +------ block 5 -----+ \---------------
|
|
// 8| <cleanupcode> |
|
|
// 9| LIFETIME_END b1, b2 |
|
|
// 10| return |
|
|
// +---------------------+
|
|
//
|
|
// During optimization, however, it can happen that an instruction
|
|
// computing an address in "b3" (for example, a loop-invariant GEP) is
|
|
// hoisted up out of the loop from block 4 to block 2. [Note that
|
|
// this is not an actual load from the stack, only an instruction that
|
|
// computes the address to be loaded]. If this happens, there is now a
|
|
// path leading from the first use of b3 to the return instruction
|
|
// that does not encounter the b3 LIFETIME_END, hence b3's lifetime is
|
|
// now larger than if we were computing live intervals strictly based
|
|
// on lifetime markers. In the example above, this lengthened lifetime
|
|
// would mean that it would appear illegal to overlap b3 with b2.
|
|
//
|
|
// To deal with this such cases, the code in ::collectMarkers() below
|
|
// tries to identify "degenerate" slots -- those slots where on a single
|
|
// forward pass through the CFG we encounter a first reference to slot
|
|
// K before we hit the slot K lifetime start marker. For such slots,
|
|
// we fall back on using the lifetime start marker as the beginning of
|
|
// the variable's lifetime. NB: with this implementation, slots can
|
|
// appear degenerate in cases where there is unstructured control flow:
|
|
//
|
|
// if (q) goto mid;
|
|
// if (x > 9) {
|
|
// int b[100];
|
|
// memcpy(&b[0], ...);
|
|
// mid: b[k] = ...;
|
|
// abc(&b);
|
|
// }
|
|
//
|
|
// If in RPO ordering chosen to walk the CFG we happen to visit the b[k]
|
|
// before visiting the memcpy block (which will contain the lifetime start
|
|
// for "b" then it will appear that 'b' has a degenerate lifetime.
|
|
//
|
|
|
|
namespace {
|
|
|
|
/// StackColoring - A machine pass for merging disjoint stack allocations,
|
|
/// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
|
|
class StackColoring : public MachineFunctionPass {
|
|
MachineFrameInfo *MFI;
|
|
MachineFunction *MF;
|
|
|
|
/// A class representing liveness information for a single basic block.
|
|
/// Each bit in the BitVector represents the liveness property
|
|
/// for a different stack slot.
|
|
struct BlockLifetimeInfo {
|
|
/// Which slots BEGINs in each basic block.
|
|
BitVector Begin;
|
|
|
|
/// Which slots ENDs in each basic block.
|
|
BitVector End;
|
|
|
|
/// Which slots are marked as LIVE_IN, coming into each basic block.
|
|
BitVector LiveIn;
|
|
|
|
/// Which slots are marked as LIVE_OUT, coming out of each basic block.
|
|
BitVector LiveOut;
|
|
};
|
|
|
|
/// Maps active slots (per bit) for each basic block.
|
|
using LivenessMap = DenseMap<const MachineBasicBlock *, BlockLifetimeInfo>;
|
|
LivenessMap BlockLiveness;
|
|
|
|
/// Maps serial numbers to basic blocks.
|
|
DenseMap<const MachineBasicBlock *, int> BasicBlocks;
|
|
|
|
/// Maps basic blocks to a serial number.
|
|
SmallVector<const MachineBasicBlock *, 8> BasicBlockNumbering;
|
|
|
|
/// Maps slots to their use interval. Outside of this interval, slots
|
|
/// values are either dead or `undef` and they will not be written to.
|
|
SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals;
|
|
|
|
/// Maps slots to the points where they can become in-use.
|
|
SmallVector<SmallVector<SlotIndex, 4>, 16> LiveStarts;
|
|
|
|
/// VNInfo is used for the construction of LiveIntervals.
|
|
VNInfo::Allocator VNInfoAllocator;
|
|
|
|
/// SlotIndex analysis object.
|
|
SlotIndexes *Indexes;
|
|
|
|
/// The list of lifetime markers found. These markers are to be removed
|
|
/// once the coloring is done.
|
|
SmallVector<MachineInstr*, 8> Markers;
|
|
|
|
/// Record the FI slots for which we have seen some sort of
|
|
/// lifetime marker (either start or end).
|
|
BitVector InterestingSlots;
|
|
|
|
/// FI slots that need to be handled conservatively (for these
|
|
/// slots lifetime-start-on-first-use is disabled).
|
|
BitVector ConservativeSlots;
|
|
|
|
/// Number of iterations taken during data flow analysis.
|
|
unsigned NumIterations;
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
StackColoring() : MachineFunctionPass(ID) {
|
|
initializeStackColoringPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
|
bool runOnMachineFunction(MachineFunction &Func) override;
|
|
|
|
private:
|
|
/// Used in collectMarkers
|
|
using BlockBitVecMap = DenseMap<const MachineBasicBlock *, BitVector>;
|
|
|
|
/// Debug.
|
|
void dump() const;
|
|
void dumpIntervals() const;
|
|
void dumpBB(MachineBasicBlock *MBB) const;
|
|
void dumpBV(const char *tag, const BitVector &BV) const;
|
|
|
|
/// Removes all of the lifetime marker instructions from the function.
|
|
/// \returns true if any markers were removed.
|
|
bool removeAllMarkers();
|
|
|
|
/// Scan the machine function and find all of the lifetime markers.
|
|
/// Record the findings in the BEGIN and END vectors.
|
|
/// \returns the number of markers found.
|
|
unsigned collectMarkers(unsigned NumSlot);
|
|
|
|
/// Perform the dataflow calculation and calculate the lifetime for each of
|
|
/// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and
|
|
/// LifetimeLIVE_OUT maps that represent which stack slots are live coming
|
|
/// in and out blocks.
|
|
void calculateLocalLiveness();
|
|
|
|
/// Returns TRUE if we're using the first-use-begins-lifetime method for
|
|
/// this slot (if FALSE, then the start marker is treated as start of lifetime).
|
|
bool applyFirstUse(int Slot) {
|
|
if (!LifetimeStartOnFirstUse || ProtectFromEscapedAllocas)
|
|
return false;
|
|
if (ConservativeSlots.test(Slot))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// Examines the specified instruction and returns TRUE if the instruction
|
|
/// represents the start or end of an interesting lifetime. The slot or slots
|
|
/// starting or ending are added to the vector "slots" and "isStart" is set
|
|
/// accordingly.
|
|
/// \returns True if inst contains a lifetime start or end
|
|
bool isLifetimeStartOrEnd(const MachineInstr &MI,
|
|
SmallVector<int, 4> &slots,
|
|
bool &isStart);
|
|
|
|
/// Construct the LiveIntervals for the slots.
|
|
void calculateLiveIntervals(unsigned NumSlots);
|
|
|
|
/// Go over the machine function and change instructions which use stack
|
|
/// slots to use the joint slots.
|
|
void remapInstructions(DenseMap<int, int> &SlotRemap);
|
|
|
|
/// The input program may contain instructions which are not inside lifetime
|
|
/// markers. This can happen due to a bug in the compiler or due to a bug in
|
|
/// user code (for example, returning a reference to a local variable).
|
|
/// This procedure checks all of the instructions in the function and
|
|
/// invalidates lifetime ranges which do not contain all of the instructions
|
|
/// which access that frame slot.
|
|
void removeInvalidSlotRanges();
|
|
|
|
/// Map entries which point to other entries to their destination.
|
|
/// A->B->C becomes A->C.
|
|
void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots);
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char StackColoring::ID = 0;
|
|
|
|
char &llvm::StackColoringID = StackColoring::ID;
|
|
|
|
INITIALIZE_PASS_BEGIN(StackColoring, DEBUG_TYPE,
|
|
"Merge disjoint stack slots", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
|
|
INITIALIZE_PASS_END(StackColoring, DEBUG_TYPE,
|
|
"Merge disjoint stack slots", false, false)
|
|
|
|
void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<SlotIndexes>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD void StackColoring::dumpBV(const char *tag,
|
|
const BitVector &BV) const {
|
|
dbgs() << tag << " : { ";
|
|
for (unsigned I = 0, E = BV.size(); I != E; ++I)
|
|
dbgs() << BV.test(I) << " ";
|
|
dbgs() << "}\n";
|
|
}
|
|
|
|
LLVM_DUMP_METHOD void StackColoring::dumpBB(MachineBasicBlock *MBB) const {
|
|
LivenessMap::const_iterator BI = BlockLiveness.find(MBB);
|
|
assert(BI != BlockLiveness.end() && "Block not found");
|
|
const BlockLifetimeInfo &BlockInfo = BI->second;
|
|
|
|
dumpBV("BEGIN", BlockInfo.Begin);
|
|
dumpBV("END", BlockInfo.End);
|
|
dumpBV("LIVE_IN", BlockInfo.LiveIn);
|
|
dumpBV("LIVE_OUT", BlockInfo.LiveOut);
|
|
}
|
|
|
|
LLVM_DUMP_METHOD void StackColoring::dump() const {
|
|
for (MachineBasicBlock *MBB : depth_first(MF)) {
|
|
dbgs() << "Inspecting block #" << MBB->getNumber() << " ["
|
|
<< MBB->getName() << "]\n";
|
|
dumpBB(MBB);
|
|
}
|
|
}
|
|
|
|
LLVM_DUMP_METHOD void StackColoring::dumpIntervals() const {
|
|
for (unsigned I = 0, E = Intervals.size(); I != E; ++I) {
|
|
dbgs() << "Interval[" << I << "]:\n";
|
|
Intervals[I]->dump();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static inline int getStartOrEndSlot(const MachineInstr &MI)
|
|
{
|
|
assert((MI.getOpcode() == TargetOpcode::LIFETIME_START ||
|
|
MI.getOpcode() == TargetOpcode::LIFETIME_END) &&
|
|
"Expected LIFETIME_START or LIFETIME_END op");
|
|
const MachineOperand &MO = MI.getOperand(0);
|
|
int Slot = MO.getIndex();
|
|
if (Slot >= 0)
|
|
return Slot;
|
|
return -1;
|
|
}
|
|
|
|
// At the moment the only way to end a variable lifetime is with
|
|
// a VARIABLE_LIFETIME op (which can't contain a start). If things
|
|
// change and the IR allows for a single inst that both begins
|
|
// and ends lifetime(s), this interface will need to be reworked.
|
|
bool StackColoring::isLifetimeStartOrEnd(const MachineInstr &MI,
|
|
SmallVector<int, 4> &slots,
|
|
bool &isStart) {
|
|
if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
|
|
MI.getOpcode() == TargetOpcode::LIFETIME_END) {
|
|
int Slot = getStartOrEndSlot(MI);
|
|
if (Slot < 0)
|
|
return false;
|
|
if (!InterestingSlots.test(Slot))
|
|
return false;
|
|
slots.push_back(Slot);
|
|
if (MI.getOpcode() == TargetOpcode::LIFETIME_END) {
|
|
isStart = false;
|
|
return true;
|
|
}
|
|
if (!applyFirstUse(Slot)) {
|
|
isStart = true;
|
|
return true;
|
|
}
|
|
} else if (LifetimeStartOnFirstUse && !ProtectFromEscapedAllocas) {
|
|
if (!MI.isDebugInstr()) {
|
|
bool found = false;
|
|
for (const MachineOperand &MO : MI.operands()) {
|
|
if (!MO.isFI())
|
|
continue;
|
|
int Slot = MO.getIndex();
|
|
if (Slot<0)
|
|
continue;
|
|
if (InterestingSlots.test(Slot) && applyFirstUse(Slot)) {
|
|
slots.push_back(Slot);
|
|
found = true;
|
|
}
|
|
}
|
|
if (found) {
|
|
isStart = true;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
unsigned StackColoring::collectMarkers(unsigned NumSlot) {
|
|
unsigned MarkersFound = 0;
|
|
BlockBitVecMap SeenStartMap;
|
|
InterestingSlots.clear();
|
|
InterestingSlots.resize(NumSlot);
|
|
ConservativeSlots.clear();
|
|
ConservativeSlots.resize(NumSlot);
|
|
|
|
// number of start and end lifetime ops for each slot
|
|
SmallVector<int, 8> NumStartLifetimes(NumSlot, 0);
|
|
SmallVector<int, 8> NumEndLifetimes(NumSlot, 0);
|
|
|
|
// Step 1: collect markers and populate the "InterestingSlots"
|
|
// and "ConservativeSlots" sets.
|
|
for (MachineBasicBlock *MBB : depth_first(MF)) {
|
|
// Compute the set of slots for which we've seen a START marker but have
|
|
// not yet seen an END marker at this point in the walk (e.g. on entry
|
|
// to this bb).
|
|
BitVector BetweenStartEnd;
|
|
BetweenStartEnd.resize(NumSlot);
|
|
for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
|
|
PE = MBB->pred_end(); PI != PE; ++PI) {
|
|
BlockBitVecMap::const_iterator I = SeenStartMap.find(*PI);
|
|
if (I != SeenStartMap.end()) {
|
|
BetweenStartEnd |= I->second;
|
|
}
|
|
}
|
|
|
|
// Walk the instructions in the block to look for start/end ops.
|
|
for (MachineInstr &MI : *MBB) {
|
|
if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
|
|
MI.getOpcode() == TargetOpcode::LIFETIME_END) {
|
|
int Slot = getStartOrEndSlot(MI);
|
|
if (Slot < 0)
|
|
continue;
|
|
InterestingSlots.set(Slot);
|
|
if (MI.getOpcode() == TargetOpcode::LIFETIME_START) {
|
|
BetweenStartEnd.set(Slot);
|
|
NumStartLifetimes[Slot] += 1;
|
|
} else {
|
|
BetweenStartEnd.reset(Slot);
|
|
NumEndLifetimes[Slot] += 1;
|
|
}
|
|
const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
|
|
if (Allocation) {
|
|
LLVM_DEBUG(dbgs() << "Found a lifetime ");
|
|
LLVM_DEBUG(dbgs() << (MI.getOpcode() == TargetOpcode::LIFETIME_START
|
|
? "start"
|
|
: "end"));
|
|
LLVM_DEBUG(dbgs() << " marker for slot #" << Slot);
|
|
LLVM_DEBUG(dbgs()
|
|
<< " with allocation: " << Allocation->getName() << "\n");
|
|
}
|
|
Markers.push_back(&MI);
|
|
MarkersFound += 1;
|
|
} else {
|
|
for (const MachineOperand &MO : MI.operands()) {
|
|
if (!MO.isFI())
|
|
continue;
|
|
int Slot = MO.getIndex();
|
|
if (Slot < 0)
|
|
continue;
|
|
if (! BetweenStartEnd.test(Slot)) {
|
|
ConservativeSlots.set(Slot);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
BitVector &SeenStart = SeenStartMap[MBB];
|
|
SeenStart |= BetweenStartEnd;
|
|
}
|
|
if (!MarkersFound) {
|
|
return 0;
|
|
}
|
|
|
|
// PR27903: slots with multiple start or end lifetime ops are not
|
|
// safe to enable for "lifetime-start-on-first-use".
|
|
for (unsigned slot = 0; slot < NumSlot; ++slot)
|
|
if (NumStartLifetimes[slot] > 1 || NumEndLifetimes[slot] > 1)
|
|
ConservativeSlots.set(slot);
|
|
LLVM_DEBUG(dumpBV("Conservative slots", ConservativeSlots));
|
|
|
|
// Step 2: compute begin/end sets for each block
|
|
|
|
// NOTE: We use a depth-first iteration to ensure that we obtain a
|
|
// deterministic numbering.
|
|
for (MachineBasicBlock *MBB : depth_first(MF)) {
|
|
// Assign a serial number to this basic block.
|
|
BasicBlocks[MBB] = BasicBlockNumbering.size();
|
|
BasicBlockNumbering.push_back(MBB);
|
|
|
|
// Keep a reference to avoid repeated lookups.
|
|
BlockLifetimeInfo &BlockInfo = BlockLiveness[MBB];
|
|
|
|
BlockInfo.Begin.resize(NumSlot);
|
|
BlockInfo.End.resize(NumSlot);
|
|
|
|
SmallVector<int, 4> slots;
|
|
for (MachineInstr &MI : *MBB) {
|
|
bool isStart = false;
|
|
slots.clear();
|
|
if (isLifetimeStartOrEnd(MI, slots, isStart)) {
|
|
if (!isStart) {
|
|
assert(slots.size() == 1 && "unexpected: MI ends multiple slots");
|
|
int Slot = slots[0];
|
|
if (BlockInfo.Begin.test(Slot)) {
|
|
BlockInfo.Begin.reset(Slot);
|
|
}
|
|
BlockInfo.End.set(Slot);
|
|
} else {
|
|
for (auto Slot : slots) {
|
|
LLVM_DEBUG(dbgs() << "Found a use of slot #" << Slot);
|
|
LLVM_DEBUG(dbgs()
|
|
<< " at " << printMBBReference(*MBB) << " index ");
|
|
LLVM_DEBUG(Indexes->getInstructionIndex(MI).print(dbgs()));
|
|
const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
|
|
if (Allocation) {
|
|
LLVM_DEBUG(dbgs()
|
|
<< " with allocation: " << Allocation->getName());
|
|
}
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
if (BlockInfo.End.test(Slot)) {
|
|
BlockInfo.End.reset(Slot);
|
|
}
|
|
BlockInfo.Begin.set(Slot);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Update statistics.
|
|
NumMarkerSeen += MarkersFound;
|
|
return MarkersFound;
|
|
}
|
|
|
|
void StackColoring::calculateLocalLiveness() {
|
|
unsigned NumIters = 0;
|
|
bool changed = true;
|
|
while (changed) {
|
|
changed = false;
|
|
++NumIters;
|
|
|
|
for (const MachineBasicBlock *BB : BasicBlockNumbering) {
|
|
// Use an iterator to avoid repeated lookups.
|
|
LivenessMap::iterator BI = BlockLiveness.find(BB);
|
|
assert(BI != BlockLiveness.end() && "Block not found");
|
|
BlockLifetimeInfo &BlockInfo = BI->second;
|
|
|
|
// Compute LiveIn by unioning together the LiveOut sets of all preds.
|
|
BitVector LocalLiveIn;
|
|
for (MachineBasicBlock::const_pred_iterator PI = BB->pred_begin(),
|
|
PE = BB->pred_end(); PI != PE; ++PI) {
|
|
LivenessMap::const_iterator I = BlockLiveness.find(*PI);
|
|
// PR37130: transformations prior to stack coloring can
|
|
// sometimes leave behind statically unreachable blocks; these
|
|
// can be safely skipped here.
|
|
if (I != BlockLiveness.end())
|
|
LocalLiveIn |= I->second.LiveOut;
|
|
}
|
|
|
|
// Compute LiveOut by subtracting out lifetimes that end in this
|
|
// block, then adding in lifetimes that begin in this block. If
|
|
// we have both BEGIN and END markers in the same basic block
|
|
// then we know that the BEGIN marker comes after the END,
|
|
// because we already handle the case where the BEGIN comes
|
|
// before the END when collecting the markers (and building the
|
|
// BEGIN/END vectors).
|
|
BitVector LocalLiveOut = LocalLiveIn;
|
|
LocalLiveOut.reset(BlockInfo.End);
|
|
LocalLiveOut |= BlockInfo.Begin;
|
|
|
|
// Update block LiveIn set, noting whether it has changed.
|
|
if (LocalLiveIn.test(BlockInfo.LiveIn)) {
|
|
changed = true;
|
|
BlockInfo.LiveIn |= LocalLiveIn;
|
|
}
|
|
|
|
// Update block LiveOut set, noting whether it has changed.
|
|
if (LocalLiveOut.test(BlockInfo.LiveOut)) {
|
|
changed = true;
|
|
BlockInfo.LiveOut |= LocalLiveOut;
|
|
}
|
|
}
|
|
} // while changed.
|
|
|
|
NumIterations = NumIters;
|
|
}
|
|
|
|
void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
|
|
SmallVector<SlotIndex, 16> Starts;
|
|
SmallVector<bool, 16> DefinitelyInUse;
|
|
|
|
// For each block, find which slots are active within this block
|
|
// and update the live intervals.
|
|
for (const MachineBasicBlock &MBB : *MF) {
|
|
Starts.clear();
|
|
Starts.resize(NumSlots);
|
|
DefinitelyInUse.clear();
|
|
DefinitelyInUse.resize(NumSlots);
|
|
|
|
// Start the interval of the slots that we previously found to be 'in-use'.
|
|
BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB];
|
|
for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1;
|
|
pos = MBBLiveness.LiveIn.find_next(pos)) {
|
|
Starts[pos] = Indexes->getMBBStartIdx(&MBB);
|
|
}
|
|
|
|
// Create the interval for the basic blocks containing lifetime begin/end.
|
|
for (const MachineInstr &MI : MBB) {
|
|
SmallVector<int, 4> slots;
|
|
bool IsStart = false;
|
|
if (!isLifetimeStartOrEnd(MI, slots, IsStart))
|
|
continue;
|
|
SlotIndex ThisIndex = Indexes->getInstructionIndex(MI);
|
|
for (auto Slot : slots) {
|
|
if (IsStart) {
|
|
// If a slot is already definitely in use, we don't have to emit
|
|
// a new start marker because there is already a pre-existing
|
|
// one.
|
|
if (!DefinitelyInUse[Slot]) {
|
|
LiveStarts[Slot].push_back(ThisIndex);
|
|
DefinitelyInUse[Slot] = true;
|
|
}
|
|
if (!Starts[Slot].isValid())
|
|
Starts[Slot] = ThisIndex;
|
|
} else {
|
|
if (Starts[Slot].isValid()) {
|
|
VNInfo *VNI = Intervals[Slot]->getValNumInfo(0);
|
|
Intervals[Slot]->addSegment(
|
|
LiveInterval::Segment(Starts[Slot], ThisIndex, VNI));
|
|
Starts[Slot] = SlotIndex(); // Invalidate the start index
|
|
DefinitelyInUse[Slot] = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Finish up started segments
|
|
for (unsigned i = 0; i < NumSlots; ++i) {
|
|
if (!Starts[i].isValid())
|
|
continue;
|
|
|
|
SlotIndex EndIdx = Indexes->getMBBEndIdx(&MBB);
|
|
VNInfo *VNI = Intervals[i]->getValNumInfo(0);
|
|
Intervals[i]->addSegment(LiveInterval::Segment(Starts[i], EndIdx, VNI));
|
|
}
|
|
}
|
|
}
|
|
|
|
bool StackColoring::removeAllMarkers() {
|
|
unsigned Count = 0;
|
|
for (MachineInstr *MI : Markers) {
|
|
MI->eraseFromParent();
|
|
Count++;
|
|
}
|
|
Markers.clear();
|
|
|
|
LLVM_DEBUG(dbgs() << "Removed " << Count << " markers.\n");
|
|
return Count;
|
|
}
|
|
|
|
void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
|
|
unsigned FixedInstr = 0;
|
|
unsigned FixedMemOp = 0;
|
|
unsigned FixedDbg = 0;
|
|
|
|
// Remap debug information that refers to stack slots.
|
|
for (auto &VI : MF->getVariableDbgInfo()) {
|
|
if (!VI.Var)
|
|
continue;
|
|
if (SlotRemap.count(VI.Slot)) {
|
|
LLVM_DEBUG(dbgs() << "Remapping debug info for ["
|
|
<< cast<DILocalVariable>(VI.Var)->getName() << "].\n");
|
|
VI.Slot = SlotRemap[VI.Slot];
|
|
FixedDbg++;
|
|
}
|
|
}
|
|
|
|
// Keep a list of *allocas* which need to be remapped.
|
|
DenseMap<const AllocaInst*, const AllocaInst*> Allocas;
|
|
|
|
// Keep a list of allocas which has been affected by the remap.
|
|
SmallPtrSet<const AllocaInst*, 32> MergedAllocas;
|
|
|
|
for (const std::pair<int, int> &SI : SlotRemap) {
|
|
const AllocaInst *From = MFI->getObjectAllocation(SI.first);
|
|
const AllocaInst *To = MFI->getObjectAllocation(SI.second);
|
|
assert(To && From && "Invalid allocation object");
|
|
Allocas[From] = To;
|
|
|
|
// If From is before wo, its possible that there is a use of From between
|
|
// them.
|
|
if (From->comesBefore(To))
|
|
const_cast<AllocaInst*>(To)->moveBefore(const_cast<AllocaInst*>(From));
|
|
|
|
// AA might be used later for instruction scheduling, and we need it to be
|
|
// able to deduce the correct aliasing releationships between pointers
|
|
// derived from the alloca being remapped and the target of that remapping.
|
|
// The only safe way, without directly informing AA about the remapping
|
|
// somehow, is to directly update the IR to reflect the change being made
|
|
// here.
|
|
Instruction *Inst = const_cast<AllocaInst *>(To);
|
|
if (From->getType() != To->getType()) {
|
|
BitCastInst *Cast = new BitCastInst(Inst, From->getType());
|
|
Cast->insertAfter(Inst);
|
|
Inst = Cast;
|
|
}
|
|
|
|
// We keep both slots to maintain AliasAnalysis metadata later.
|
|
MergedAllocas.insert(From);
|
|
MergedAllocas.insert(To);
|
|
|
|
// Transfer the stack protector layout tag, but make sure that SSPLK_AddrOf
|
|
// does not overwrite SSPLK_SmallArray or SSPLK_LargeArray, and make sure
|
|
// that SSPLK_SmallArray does not overwrite SSPLK_LargeArray.
|
|
MachineFrameInfo::SSPLayoutKind FromKind
|
|
= MFI->getObjectSSPLayout(SI.first);
|
|
MachineFrameInfo::SSPLayoutKind ToKind = MFI->getObjectSSPLayout(SI.second);
|
|
if (FromKind != MachineFrameInfo::SSPLK_None &&
|
|
(ToKind == MachineFrameInfo::SSPLK_None ||
|
|
(ToKind != MachineFrameInfo::SSPLK_LargeArray &&
|
|
FromKind != MachineFrameInfo::SSPLK_AddrOf)))
|
|
MFI->setObjectSSPLayout(SI.second, FromKind);
|
|
|
|
// The new alloca might not be valid in a llvm.dbg.declare for this
|
|
// variable, so undef out the use to make the verifier happy.
|
|
AllocaInst *FromAI = const_cast<AllocaInst *>(From);
|
|
if (FromAI->isUsedByMetadata())
|
|
ValueAsMetadata::handleRAUW(FromAI, UndefValue::get(FromAI->getType()));
|
|
for (auto &Use : FromAI->uses()) {
|
|
if (BitCastInst *BCI = dyn_cast<BitCastInst>(Use.get()))
|
|
if (BCI->isUsedByMetadata())
|
|
ValueAsMetadata::handleRAUW(BCI, UndefValue::get(BCI->getType()));
|
|
}
|
|
|
|
// Note that this will not replace uses in MMOs (which we'll update below),
|
|
// or anywhere else (which is why we won't delete the original
|
|
// instruction).
|
|
FromAI->replaceAllUsesWith(Inst);
|
|
}
|
|
|
|
// Remap all instructions to the new stack slots.
|
|
std::vector<std::vector<MachineMemOperand *>> SSRefs(
|
|
MFI->getObjectIndexEnd());
|
|
for (MachineBasicBlock &BB : *MF)
|
|
for (MachineInstr &I : BB) {
|
|
// Skip lifetime markers. We'll remove them soon.
|
|
if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
|
|
I.getOpcode() == TargetOpcode::LIFETIME_END)
|
|
continue;
|
|
|
|
// Update the MachineMemOperand to use the new alloca.
|
|
for (MachineMemOperand *MMO : I.memoperands()) {
|
|
// We've replaced IR-level uses of the remapped allocas, so we only
|
|
// need to replace direct uses here.
|
|
const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(MMO->getValue());
|
|
if (!AI)
|
|
continue;
|
|
|
|
if (!Allocas.count(AI))
|
|
continue;
|
|
|
|
MMO->setValue(Allocas[AI]);
|
|
FixedMemOp++;
|
|
}
|
|
|
|
// Update all of the machine instruction operands.
|
|
for (MachineOperand &MO : I.operands()) {
|
|
if (!MO.isFI())
|
|
continue;
|
|
int FromSlot = MO.getIndex();
|
|
|
|
// Don't touch arguments.
|
|
if (FromSlot<0)
|
|
continue;
|
|
|
|
// Only look at mapped slots.
|
|
if (!SlotRemap.count(FromSlot))
|
|
continue;
|
|
|
|
// In a debug build, check that the instruction that we are modifying is
|
|
// inside the expected live range. If the instruction is not inside
|
|
// the calculated range then it means that the alloca usage moved
|
|
// outside of the lifetime markers, or that the user has a bug.
|
|
// NOTE: Alloca address calculations which happen outside the lifetime
|
|
// zone are okay, despite the fact that we don't have a good way
|
|
// for validating all of the usages of the calculation.
|
|
#ifndef NDEBUG
|
|
bool TouchesMemory = I.mayLoadOrStore();
|
|
// If we *don't* protect the user from escaped allocas, don't bother
|
|
// validating the instructions.
|
|
if (!I.isDebugInstr() && TouchesMemory && ProtectFromEscapedAllocas) {
|
|
SlotIndex Index = Indexes->getInstructionIndex(I);
|
|
const LiveInterval *Interval = &*Intervals[FromSlot];
|
|
assert(Interval->find(Index) != Interval->end() &&
|
|
"Found instruction usage outside of live range.");
|
|
}
|
|
#endif
|
|
|
|
// Fix the machine instructions.
|
|
int ToSlot = SlotRemap[FromSlot];
|
|
MO.setIndex(ToSlot);
|
|
FixedInstr++;
|
|
}
|
|
|
|
// We adjust AliasAnalysis information for merged stack slots.
|
|
SmallVector<MachineMemOperand *, 2> NewMMOs;
|
|
bool ReplaceMemOps = false;
|
|
for (MachineMemOperand *MMO : I.memoperands()) {
|
|
// Collect MachineMemOperands which reference
|
|
// FixedStackPseudoSourceValues with old frame indices.
|
|
if (const auto *FSV = dyn_cast_or_null<FixedStackPseudoSourceValue>(
|
|
MMO->getPseudoValue())) {
|
|
int FI = FSV->getFrameIndex();
|
|
auto To = SlotRemap.find(FI);
|
|
if (To != SlotRemap.end())
|
|
SSRefs[FI].push_back(MMO);
|
|
}
|
|
|
|
// If this memory location can be a slot remapped here,
|
|
// we remove AA information.
|
|
bool MayHaveConflictingAAMD = false;
|
|
if (MMO->getAAInfo()) {
|
|
if (const Value *MMOV = MMO->getValue()) {
|
|
SmallVector<Value *, 4> Objs;
|
|
getUnderlyingObjectsForCodeGen(MMOV, Objs);
|
|
|
|
if (Objs.empty())
|
|
MayHaveConflictingAAMD = true;
|
|
else
|
|
for (Value *V : Objs) {
|
|
// If this memory location comes from a known stack slot
|
|
// that is not remapped, we continue checking.
|
|
// Otherwise, we need to invalidate AA infomation.
|
|
const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(V);
|
|
if (AI && MergedAllocas.count(AI)) {
|
|
MayHaveConflictingAAMD = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (MayHaveConflictingAAMD) {
|
|
NewMMOs.push_back(MF->getMachineMemOperand(MMO, AAMDNodes()));
|
|
ReplaceMemOps = true;
|
|
} else {
|
|
NewMMOs.push_back(MMO);
|
|
}
|
|
}
|
|
|
|
// If any memory operand is updated, set memory references of
|
|
// this instruction.
|
|
if (ReplaceMemOps)
|
|
I.setMemRefs(*MF, NewMMOs);
|
|
}
|
|
|
|
// Rewrite MachineMemOperands that reference old frame indices.
|
|
for (auto E : enumerate(SSRefs))
|
|
if (!E.value().empty()) {
|
|
const PseudoSourceValue *NewSV =
|
|
MF->getPSVManager().getFixedStack(SlotRemap.find(E.index())->second);
|
|
for (MachineMemOperand *Ref : E.value())
|
|
Ref->setValue(NewSV);
|
|
}
|
|
|
|
// Update the location of C++ catch objects for the MSVC personality routine.
|
|
if (WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo())
|
|
for (WinEHTryBlockMapEntry &TBME : EHInfo->TryBlockMap)
|
|
for (WinEHHandlerType &H : TBME.HandlerArray)
|
|
if (H.CatchObj.FrameIndex != std::numeric_limits<int>::max() &&
|
|
SlotRemap.count(H.CatchObj.FrameIndex))
|
|
H.CatchObj.FrameIndex = SlotRemap[H.CatchObj.FrameIndex];
|
|
|
|
LLVM_DEBUG(dbgs() << "Fixed " << FixedMemOp << " machine memory operands.\n");
|
|
LLVM_DEBUG(dbgs() << "Fixed " << FixedDbg << " debug locations.\n");
|
|
LLVM_DEBUG(dbgs() << "Fixed " << FixedInstr << " machine instructions.\n");
|
|
}
|
|
|
|
void StackColoring::removeInvalidSlotRanges() {
|
|
for (MachineBasicBlock &BB : *MF)
|
|
for (MachineInstr &I : BB) {
|
|
if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
|
|
I.getOpcode() == TargetOpcode::LIFETIME_END || I.isDebugInstr())
|
|
continue;
|
|
|
|
// Some intervals are suspicious! In some cases we find address
|
|
// calculations outside of the lifetime zone, but not actual memory
|
|
// read or write. Memory accesses outside of the lifetime zone are a clear
|
|
// violation, but address calculations are okay. This can happen when
|
|
// GEPs are hoisted outside of the lifetime zone.
|
|
// So, in here we only check instructions which can read or write memory.
|
|
if (!I.mayLoad() && !I.mayStore())
|
|
continue;
|
|
|
|
// Check all of the machine operands.
|
|
for (const MachineOperand &MO : I.operands()) {
|
|
if (!MO.isFI())
|
|
continue;
|
|
|
|
int Slot = MO.getIndex();
|
|
|
|
if (Slot<0)
|
|
continue;
|
|
|
|
if (Intervals[Slot]->empty())
|
|
continue;
|
|
|
|
// Check that the used slot is inside the calculated lifetime range.
|
|
// If it is not, warn about it and invalidate the range.
|
|
LiveInterval *Interval = &*Intervals[Slot];
|
|
SlotIndex Index = Indexes->getInstructionIndex(I);
|
|
if (Interval->find(Index) == Interval->end()) {
|
|
Interval->clear();
|
|
LLVM_DEBUG(dbgs() << "Invalidating range #" << Slot << "\n");
|
|
EscapedAllocas++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap,
|
|
unsigned NumSlots) {
|
|
// Expunge slot remap map.
|
|
for (unsigned i=0; i < NumSlots; ++i) {
|
|
// If we are remapping i
|
|
if (SlotRemap.count(i)) {
|
|
int Target = SlotRemap[i];
|
|
// As long as our target is mapped to something else, follow it.
|
|
while (SlotRemap.count(Target)) {
|
|
Target = SlotRemap[Target];
|
|
SlotRemap[i] = Target;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
|
|
LLVM_DEBUG(dbgs() << "********** Stack Coloring **********\n"
|
|
<< "********** Function: " << Func.getName() << '\n');
|
|
MF = &Func;
|
|
MFI = &MF->getFrameInfo();
|
|
Indexes = &getAnalysis<SlotIndexes>();
|
|
BlockLiveness.clear();
|
|
BasicBlocks.clear();
|
|
BasicBlockNumbering.clear();
|
|
Markers.clear();
|
|
Intervals.clear();
|
|
LiveStarts.clear();
|
|
VNInfoAllocator.Reset();
|
|
|
|
unsigned NumSlots = MFI->getObjectIndexEnd();
|
|
|
|
// If there are no stack slots then there are no markers to remove.
|
|
if (!NumSlots)
|
|
return false;
|
|
|
|
SmallVector<int, 8> SortedSlots;
|
|
SortedSlots.reserve(NumSlots);
|
|
Intervals.reserve(NumSlots);
|
|
LiveStarts.resize(NumSlots);
|
|
|
|
unsigned NumMarkers = collectMarkers(NumSlots);
|
|
|
|
unsigned TotalSize = 0;
|
|
LLVM_DEBUG(dbgs() << "Found " << NumMarkers << " markers and " << NumSlots
|
|
<< " slots\n");
|
|
LLVM_DEBUG(dbgs() << "Slot structure:\n");
|
|
|
|
for (int i=0; i < MFI->getObjectIndexEnd(); ++i) {
|
|
LLVM_DEBUG(dbgs() << "Slot #" << i << " - " << MFI->getObjectSize(i)
|
|
<< " bytes.\n");
|
|
TotalSize += MFI->getObjectSize(i);
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Total Stack size: " << TotalSize << " bytes\n\n");
|
|
|
|
// Don't continue because there are not enough lifetime markers, or the
|
|
// stack is too small, or we are told not to optimize the slots.
|
|
if (NumMarkers < 2 || TotalSize < 16 || DisableColoring ||
|
|
skipFunction(Func.getFunction())) {
|
|
LLVM_DEBUG(dbgs() << "Will not try to merge slots.\n");
|
|
return removeAllMarkers();
|
|
}
|
|
|
|
for (unsigned i=0; i < NumSlots; ++i) {
|
|
std::unique_ptr<LiveInterval> LI(new LiveInterval(i, 0));
|
|
LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator);
|
|
Intervals.push_back(std::move(LI));
|
|
SortedSlots.push_back(i);
|
|
}
|
|
|
|
// Calculate the liveness of each block.
|
|
calculateLocalLiveness();
|
|
LLVM_DEBUG(dbgs() << "Dataflow iterations: " << NumIterations << "\n");
|
|
LLVM_DEBUG(dump());
|
|
|
|
// Propagate the liveness information.
|
|
calculateLiveIntervals(NumSlots);
|
|
LLVM_DEBUG(dumpIntervals());
|
|
|
|
// Search for allocas which are used outside of the declared lifetime
|
|
// markers.
|
|
if (ProtectFromEscapedAllocas)
|
|
removeInvalidSlotRanges();
|
|
|
|
// Maps old slots to new slots.
|
|
DenseMap<int, int> SlotRemap;
|
|
unsigned RemovedSlots = 0;
|
|
unsigned ReducedSize = 0;
|
|
|
|
// Do not bother looking at empty intervals.
|
|
for (unsigned I = 0; I < NumSlots; ++I) {
|
|
if (Intervals[SortedSlots[I]]->empty())
|
|
SortedSlots[I] = -1;
|
|
}
|
|
|
|
// This is a simple greedy algorithm for merging allocas. First, sort the
|
|
// slots, placing the largest slots first. Next, perform an n^2 scan and look
|
|
// for disjoint slots. When you find disjoint slots, merge the samller one
|
|
// into the bigger one and update the live interval. Remove the small alloca
|
|
// and continue.
|
|
|
|
// Sort the slots according to their size. Place unused slots at the end.
|
|
// Use stable sort to guarantee deterministic code generation.
|
|
llvm::stable_sort(SortedSlots, [this](int LHS, int RHS) {
|
|
// We use -1 to denote a uninteresting slot. Place these slots at the end.
|
|
if (LHS == -1)
|
|
return false;
|
|
if (RHS == -1)
|
|
return true;
|
|
// Sort according to size.
|
|
return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS);
|
|
});
|
|
|
|
for (auto &s : LiveStarts)
|
|
llvm::sort(s);
|
|
|
|
bool Changed = true;
|
|
while (Changed) {
|
|
Changed = false;
|
|
for (unsigned I = 0; I < NumSlots; ++I) {
|
|
if (SortedSlots[I] == -1)
|
|
continue;
|
|
|
|
for (unsigned J=I+1; J < NumSlots; ++J) {
|
|
if (SortedSlots[J] == -1)
|
|
continue;
|
|
|
|
int FirstSlot = SortedSlots[I];
|
|
int SecondSlot = SortedSlots[J];
|
|
LiveInterval *First = &*Intervals[FirstSlot];
|
|
LiveInterval *Second = &*Intervals[SecondSlot];
|
|
auto &FirstS = LiveStarts[FirstSlot];
|
|
auto &SecondS = LiveStarts[SecondSlot];
|
|
assert(!First->empty() && !Second->empty() && "Found an empty range");
|
|
|
|
// Merge disjoint slots. This is a little bit tricky - see the
|
|
// Implementation Notes section for an explanation.
|
|
if (!First->isLiveAtIndexes(SecondS) &&
|
|
!Second->isLiveAtIndexes(FirstS)) {
|
|
Changed = true;
|
|
First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0));
|
|
|
|
int OldSize = FirstS.size();
|
|
FirstS.append(SecondS.begin(), SecondS.end());
|
|
auto Mid = FirstS.begin() + OldSize;
|
|
std::inplace_merge(FirstS.begin(), Mid, FirstS.end());
|
|
|
|
SlotRemap[SecondSlot] = FirstSlot;
|
|
SortedSlots[J] = -1;
|
|
LLVM_DEBUG(dbgs() << "Merging #" << FirstSlot << " and slots #"
|
|
<< SecondSlot << " together.\n");
|
|
Align MaxAlignment = std::max(MFI->getObjectAlign(FirstSlot),
|
|
MFI->getObjectAlign(SecondSlot));
|
|
|
|
assert(MFI->getObjectSize(FirstSlot) >=
|
|
MFI->getObjectSize(SecondSlot) &&
|
|
"Merging a small object into a larger one");
|
|
|
|
RemovedSlots+=1;
|
|
ReducedSize += MFI->getObjectSize(SecondSlot);
|
|
MFI->setObjectAlignment(FirstSlot, MaxAlignment);
|
|
MFI->RemoveStackObject(SecondSlot);
|
|
}
|
|
}
|
|
}
|
|
}// While changed.
|
|
|
|
// Record statistics.
|
|
StackSpaceSaved += ReducedSize;
|
|
StackSlotMerged += RemovedSlots;
|
|
LLVM_DEBUG(dbgs() << "Merge " << RemovedSlots << " slots. Saved "
|
|
<< ReducedSize << " bytes\n");
|
|
|
|
// Scan the entire function and update all machine operands that use frame
|
|
// indices to use the remapped frame index.
|
|
expungeSlotMap(SlotRemap, NumSlots);
|
|
remapInstructions(SlotRemap);
|
|
|
|
return removeAllMarkers();
|
|
}
|