llvm-project/polly
Tobias Grosser 56ac181189 RegisterPasses: Remove unreachable default case in switch
llvm-svn: 166397
2012-10-21 18:31:27 +00:00
..
autoconf Detect the isl code generation feature correctly 2012-10-02 19:50:22 +00:00
cmake Introduce a separate file for CMake macros 2012-10-21 15:51:49 +00:00
docs
include isl-codegen: Support '<' and '>' 2012-10-16 07:29:13 +00:00
lib RegisterPasses: Remove unreachable default case in switch 2012-10-21 18:31:27 +00:00
test isl scheduler: Do not fail when returning an empty band list 2012-10-16 07:29:19 +00:00
tools Update libGPURuntime to be dual licensed under MIT and UIUC license. 2012-07-06 10:40:15 +00:00
utils isl scheduler: Do not fail when returning an empty band list 2012-10-16 07:29:19 +00:00
www www: Correct command line that loads polly into dragonegg 2012-10-21 17:33:00 +00:00
CMakeLists.txt Introduce a separate file for CMake macros 2012-10-21 15:51:49 +00:00
CREDITS.txt (Test commit for polly) 2011-07-16 13:30:03 +00:00
LICENSE.txt Happy new year 2012! 2012-01-01 08:16:56 +00:00
Makefile Revert "Fix a bug introduced by r153739: We are not able to provide the correct" 2012-04-11 07:43:13 +00:00
Makefile.common.in
Makefile.config.in Add support for libpluto as the scheduling optimizer. 2012-08-02 07:47:26 +00:00
README Trivial change to the README, mainly to test commit access. 2012-10-09 04:59:42 +00:00
configure Detect the isl code generation feature correctly 2012-10-02 19:50:22 +00:00

README

Polly - Polyhedral optimizations for LLVM
-----------------------------------------
http://polly.llvm.org/

Polly uses a mathematical representation, the polyhedral model, to represent and
transform loops and other control flow structures. Using an abstract
representation it is possible to reason about transformations in a more general
way and to use highly optimized linear programming libraries to figure out the
optimal loop structure. These transformations can be used to do constant
propagation through arrays, remove dead loop iterations, optimize loops for
cache locality, optimize arrays, apply advanced automatic parallelization, drive
vectorization, or they can be used to do software pipelining.