llvm-project/compiler-rt/lib/sanitizer_common/sanitizer_common.h

489 lines
14 KiB
C++

//===-- sanitizer_common.h --------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is shared between AddressSanitizer and ThreadSanitizer
// run-time libraries.
// It declares common functions and classes that are used in both runtimes.
// Implementation of some functions are provided in sanitizer_common, while
// others must be defined by run-time library itself.
//===----------------------------------------------------------------------===//
#ifndef SANITIZER_COMMON_H
#define SANITIZER_COMMON_H
#include "sanitizer_internal_defs.h"
#include "sanitizer_libc.h"
#include "sanitizer_mutex.h"
namespace __sanitizer {
struct StackTrace;
// Constants.
const uptr kWordSize = SANITIZER_WORDSIZE / 8;
const uptr kWordSizeInBits = 8 * kWordSize;
#if defined(__powerpc__) || defined(__powerpc64__)
const uptr kCacheLineSize = 128;
#else
const uptr kCacheLineSize = 64;
#endif
const uptr kMaxPathLength = 512;
extern const char *SanitizerToolName; // Can be changed by the tool.
uptr GetPageSize();
uptr GetPageSizeCached();
uptr GetMmapGranularity();
uptr GetMaxVirtualAddress();
// Threads
uptr GetTid();
uptr GetThreadSelf();
void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
uptr *stack_bottom);
void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
uptr *tls_addr, uptr *tls_size);
// Memory management
void *MmapOrDie(uptr size, const char *mem_type);
void UnmapOrDie(void *addr, uptr size);
void *MmapFixedNoReserve(uptr fixed_addr, uptr size);
void *MmapFixedOrDie(uptr fixed_addr, uptr size);
void *Mprotect(uptr fixed_addr, uptr size);
// Map aligned chunk of address space; size and alignment are powers of two.
void *MmapAlignedOrDie(uptr size, uptr alignment, const char *mem_type);
// Used to check if we can map shadow memory to a fixed location.
bool MemoryRangeIsAvailable(uptr range_start, uptr range_end);
void FlushUnneededShadowMemory(uptr addr, uptr size);
// InternalScopedBuffer can be used instead of large stack arrays to
// keep frame size low.
// FIXME: use InternalAlloc instead of MmapOrDie once
// InternalAlloc is made libc-free.
template<typename T>
class InternalScopedBuffer {
public:
explicit InternalScopedBuffer(uptr cnt) {
cnt_ = cnt;
ptr_ = (T*)MmapOrDie(cnt * sizeof(T), "InternalScopedBuffer");
}
~InternalScopedBuffer() {
UnmapOrDie(ptr_, cnt_ * sizeof(T));
}
T &operator[](uptr i) { return ptr_[i]; }
T *data() { return ptr_; }
uptr size() { return cnt_ * sizeof(T); }
private:
T *ptr_;
uptr cnt_;
// Disallow evil constructors.
InternalScopedBuffer(const InternalScopedBuffer&);
void operator=(const InternalScopedBuffer&);
};
class InternalScopedString : public InternalScopedBuffer<char> {
public:
explicit InternalScopedString(uptr max_length)
: InternalScopedBuffer<char>(max_length), length_(0) {
(*this)[0] = '\0';
}
uptr length() { return length_; }
void clear() {
(*this)[0] = '\0';
length_ = 0;
}
void append(const char *format, ...);
private:
uptr length_;
};
// Simple low-level (mmap-based) allocator for internal use. Doesn't have
// constructor, so all instances of LowLevelAllocator should be
// linker initialized.
class LowLevelAllocator {
public:
// Requires an external lock.
void *Allocate(uptr size);
private:
char *allocated_end_;
char *allocated_current_;
};
typedef void (*LowLevelAllocateCallback)(uptr ptr, uptr size);
// Allows to register tool-specific callbacks for LowLevelAllocator.
// Passing NULL removes the callback.
void SetLowLevelAllocateCallback(LowLevelAllocateCallback callback);
// IO
void RawWrite(const char *buffer);
bool PrintsToTty();
// Caching version of PrintsToTty(). Not thread-safe.
bool PrintsToTtyCached();
void Printf(const char *format, ...);
void Report(const char *format, ...);
void SetPrintfAndReportCallback(void (*callback)(const char *));
// Can be used to prevent mixing error reports from different sanitizers.
extern StaticSpinMutex CommonSanitizerReportMutex;
void MaybeOpenReportFile();
extern fd_t report_fd;
extern bool log_to_file;
extern char report_path_prefix[4096];
extern uptr report_fd_pid;
uptr OpenFile(const char *filename, bool write);
// Opens the file 'file_name" and reads up to 'max_len' bytes.
// The resulting buffer is mmaped and stored in '*buff'.
// The size of the mmaped region is stored in '*buff_size',
// Returns the number of read bytes or 0 if file can not be opened.
uptr ReadFileToBuffer(const char *file_name, char **buff,
uptr *buff_size, uptr max_len);
// Maps given file to virtual memory, and returns pointer to it
// (or NULL if the mapping failes). Stores the size of mmaped region
// in '*buff_size'.
void *MapFileToMemory(const char *file_name, uptr *buff_size);
// Error report formatting.
const char *StripPathPrefix(const char *filepath,
const char *strip_file_prefix);
void PrintSourceLocation(InternalScopedString *buffer, const char *file,
int line, int column);
void PrintModuleAndOffset(InternalScopedString *buffer,
const char *module, uptr offset);
// OS
void DisableCoreDumper();
void DumpProcessMap();
bool FileExists(const char *filename);
const char *GetEnv(const char *name);
bool SetEnv(const char *name, const char *value);
const char *GetPwd();
char *FindPathToBinary(const char *name);
u32 GetUid();
void ReExec();
bool StackSizeIsUnlimited();
void SetStackSizeLimitInBytes(uptr limit);
void PrepareForSandboxing();
void InitTlsSize();
uptr GetTlsSize();
// Other
void SleepForSeconds(int seconds);
void SleepForMillis(int millis);
u64 NanoTime();
int Atexit(void (*function)(void));
void SortArray(uptr *array, uptr size);
// Strip the directories from the module name, return a new string allocated
// with internal_strdup.
char *StripModuleName(const char *module);
// Exit
void NORETURN Abort();
void NORETURN Die();
void NORETURN
CheckFailed(const char *file, int line, const char *cond, u64 v1, u64 v2);
// Set the name of the current thread to 'name', return true on succees.
// The name may be truncated to a system-dependent limit.
bool SanitizerSetThreadName(const char *name);
// Get the name of the current thread (no more than max_len bytes),
// return true on succees. name should have space for at least max_len+1 bytes.
bool SanitizerGetThreadName(char *name, int max_len);
// Specific tools may override behavior of "Die" and "CheckFailed" functions
// to do tool-specific job.
typedef void (*DieCallbackType)(void);
void SetDieCallback(DieCallbackType);
DieCallbackType GetDieCallback();
typedef void (*CheckFailedCallbackType)(const char *, int, const char *,
u64, u64);
void SetCheckFailedCallback(CheckFailedCallbackType callback);
// We don't want a summary too long.
const int kMaxSummaryLength = 1024;
// Construct a one-line string:
// SUMMARY: SanitizerToolName: error_message
// and pass it to __sanitizer_report_error_summary.
void ReportErrorSummary(const char *error_message);
// Same as above, but construct error_message as:
// error_type: file:line function
void ReportErrorSummary(const char *error_type, const char *file,
int line, const char *function);
void ReportErrorSummary(const char *error_type, StackTrace *trace);
// Math
#if SANITIZER_WINDOWS && !defined(__clang__) && !defined(__GNUC__)
extern "C" {
unsigned char _BitScanForward(unsigned long *index, unsigned long mask); // NOLINT
unsigned char _BitScanReverse(unsigned long *index, unsigned long mask); // NOLINT
#if defined(_WIN64)
unsigned char _BitScanForward64(unsigned long *index, unsigned __int64 mask); // NOLINT
unsigned char _BitScanReverse64(unsigned long *index, unsigned __int64 mask); // NOLINT
#endif
}
#endif
INLINE uptr MostSignificantSetBitIndex(uptr x) {
CHECK_NE(x, 0U);
unsigned long up; // NOLINT
#if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__)
up = SANITIZER_WORDSIZE - 1 - __builtin_clzl(x);
#elif defined(_WIN64)
_BitScanReverse64(&up, x);
#else
_BitScanReverse(&up, x);
#endif
return up;
}
INLINE bool IsPowerOfTwo(uptr x) {
return (x & (x - 1)) == 0;
}
INLINE uptr RoundUpToPowerOfTwo(uptr size) {
CHECK(size);
if (IsPowerOfTwo(size)) return size;
uptr up = MostSignificantSetBitIndex(size);
CHECK(size < (1ULL << (up + 1)));
CHECK(size > (1ULL << up));
return 1UL << (up + 1);
}
INLINE uptr RoundUpTo(uptr size, uptr boundary) {
CHECK(IsPowerOfTwo(boundary));
return (size + boundary - 1) & ~(boundary - 1);
}
INLINE uptr RoundDownTo(uptr x, uptr boundary) {
return x & ~(boundary - 1);
}
INLINE bool IsAligned(uptr a, uptr alignment) {
return (a & (alignment - 1)) == 0;
}
INLINE uptr Log2(uptr x) {
CHECK(IsPowerOfTwo(x));
#if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__)
return __builtin_ctzl(x);
#elif defined(_WIN64)
unsigned long ret; // NOLINT
_BitScanForward64(&ret, x);
return ret;
#else
unsigned long ret; // NOLINT
_BitScanForward(&ret, x);
return ret;
#endif
}
// Don't use std::min, std::max or std::swap, to minimize dependency
// on libstdc++.
template<class T> T Min(T a, T b) { return a < b ? a : b; }
template<class T> T Max(T a, T b) { return a > b ? a : b; }
template<class T> void Swap(T& a, T& b) {
T tmp = a;
a = b;
b = tmp;
}
// Char handling
INLINE bool IsSpace(int c) {
return (c == ' ') || (c == '\n') || (c == '\t') ||
(c == '\f') || (c == '\r') || (c == '\v');
}
INLINE bool IsDigit(int c) {
return (c >= '0') && (c <= '9');
}
INLINE int ToLower(int c) {
return (c >= 'A' && c <= 'Z') ? (c + 'a' - 'A') : c;
}
#if SANITIZER_WORDSIZE == 64
# define FIRST_32_SECOND_64(a, b) (b)
#else
# define FIRST_32_SECOND_64(a, b) (a)
#endif
// A low-level vector based on mmap. May incur a significant memory overhead for
// small vectors.
// WARNING: The current implementation supports only POD types.
template<typename T>
class InternalMmapVector {
public:
explicit InternalMmapVector(uptr initial_capacity) {
CHECK_GT(initial_capacity, 0);
capacity_ = initial_capacity;
size_ = 0;
data_ = (T *)MmapOrDie(capacity_ * sizeof(T), "InternalMmapVector");
}
~InternalMmapVector() {
UnmapOrDie(data_, capacity_ * sizeof(T));
}
T &operator[](uptr i) {
CHECK_LT(i, size_);
return data_[i];
}
const T &operator[](uptr i) const {
CHECK_LT(i, size_);
return data_[i];
}
void push_back(const T &element) {
CHECK_LE(size_, capacity_);
if (size_ == capacity_) {
uptr new_capacity = RoundUpToPowerOfTwo(size_ + 1);
Resize(new_capacity);
}
data_[size_++] = element;
}
T &back() {
CHECK_GT(size_, 0);
return data_[size_ - 1];
}
void pop_back() {
CHECK_GT(size_, 0);
size_--;
}
uptr size() const {
return size_;
}
const T *data() const {
return data_;
}
uptr capacity() const {
return capacity_;
}
void clear() { size_ = 0; }
private:
void Resize(uptr new_capacity) {
CHECK_GT(new_capacity, 0);
CHECK_LE(size_, new_capacity);
T *new_data = (T *)MmapOrDie(new_capacity * sizeof(T),
"InternalMmapVector");
internal_memcpy(new_data, data_, size_ * sizeof(T));
T *old_data = data_;
data_ = new_data;
UnmapOrDie(old_data, capacity_ * sizeof(T));
capacity_ = new_capacity;
}
// Disallow evil constructors.
InternalMmapVector(const InternalMmapVector&);
void operator=(const InternalMmapVector&);
T *data_;
uptr capacity_;
uptr size_;
};
// HeapSort for arrays and InternalMmapVector.
template<class Container, class Compare>
void InternalSort(Container *v, uptr size, Compare comp) {
if (size < 2)
return;
// Stage 1: insert elements to the heap.
for (uptr i = 1; i < size; i++) {
uptr j, p;
for (j = i; j > 0; j = p) {
p = (j - 1) / 2;
if (comp((*v)[p], (*v)[j]))
Swap((*v)[j], (*v)[p]);
else
break;
}
}
// Stage 2: swap largest element with the last one,
// and sink the new top.
for (uptr i = size - 1; i > 0; i--) {
Swap((*v)[0], (*v)[i]);
uptr j, max_ind;
for (j = 0; j < i; j = max_ind) {
uptr left = 2 * j + 1;
uptr right = 2 * j + 2;
max_ind = j;
if (left < i && comp((*v)[max_ind], (*v)[left]))
max_ind = left;
if (right < i && comp((*v)[max_ind], (*v)[right]))
max_ind = right;
if (max_ind != j)
Swap((*v)[j], (*v)[max_ind]);
else
break;
}
}
}
template<class Container, class Value, class Compare>
uptr InternalBinarySearch(const Container &v, uptr first, uptr last,
const Value &val, Compare comp) {
uptr not_found = last + 1;
while (last >= first) {
uptr mid = (first + last) / 2;
if (comp(v[mid], val))
first = mid + 1;
else if (comp(val, v[mid]))
last = mid - 1;
else
return mid;
}
return not_found;
}
// Represents a binary loaded into virtual memory (e.g. this can be an
// executable or a shared object).
class LoadedModule {
public:
LoadedModule(const char *module_name, uptr base_address);
void addAddressRange(uptr beg, uptr end);
bool containsAddress(uptr address) const;
const char *full_name() const { return full_name_; }
uptr base_address() const { return base_address_; }
private:
struct AddressRange {
uptr beg;
uptr end;
};
char *full_name_;
uptr base_address_;
static const uptr kMaxNumberOfAddressRanges = 6;
AddressRange ranges_[kMaxNumberOfAddressRanges];
uptr n_ranges_;
};
// OS-dependent function that fills array with descriptions of at most
// "max_modules" currently loaded modules. Returns the number of
// initialized modules. If filter is nonzero, ignores modules for which
// filter(full_name) is false.
typedef bool (*string_predicate_t)(const char *);
uptr GetListOfModules(LoadedModule *modules, uptr max_modules,
string_predicate_t filter);
#if SANITIZER_POSIX
const uptr kPthreadDestructorIterations = 4;
#else
// Unused on Windows.
const uptr kPthreadDestructorIterations = 0;
#endif
// Callback type for iterating over a set of memory ranges.
typedef void (*RangeIteratorCallback)(uptr begin, uptr end, void *arg);
} // namespace __sanitizer
inline void *operator new(__sanitizer::operator_new_size_type size,
__sanitizer::LowLevelAllocator &alloc) {
return alloc.Allocate(size);
}
#endif // SANITIZER_COMMON_H