forked from OSchip/llvm-project
703 lines
30 KiB
C++
703 lines
30 KiB
C++
//===- AArch64SpeculationHardening.cpp - Harden Against Missspeculation --===//
|
||
//
|
||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
// See https://llvm.org/LICENSE.txt for license information.
|
||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
//
|
||
// This file contains a pass to insert code to mitigate against side channel
|
||
// vulnerabilities that may happen under control flow miss-speculation.
|
||
//
|
||
// The pass implements tracking of control flow miss-speculation into a "taint"
|
||
// register. That taint register can then be used to mask off registers with
|
||
// sensitive data when executing under miss-speculation, a.k.a. "transient
|
||
// execution".
|
||
// This pass is aimed at mitigating against SpectreV1-style vulnarabilities.
|
||
//
|
||
// It also implements speculative load hardening, i.e. using the taint register
|
||
// to automatically mask off loaded data.
|
||
//
|
||
// As a possible follow-on improvement, also an intrinsics-based approach as
|
||
// explained at https://lwn.net/Articles/759423/ could be implemented on top of
|
||
// the current design.
|
||
//
|
||
// For AArch64, the following implementation choices are made to implement the
|
||
// tracking of control flow miss-speculation into a taint register:
|
||
// Some of these are different than the implementation choices made in
|
||
// the similar pass implemented in X86SpeculativeLoadHardening.cpp, as
|
||
// the instruction set characteristics result in different trade-offs.
|
||
// - The speculation hardening is done after register allocation. With a
|
||
// relative abundance of registers, one register is reserved (X16) to be
|
||
// the taint register. X16 is expected to not clash with other register
|
||
// reservation mechanisms with very high probability because:
|
||
// . The AArch64 ABI doesn't guarantee X16 to be retained across any call.
|
||
// . The only way to request X16 to be used as a programmer is through
|
||
// inline assembly. In the rare case a function explicitly demands to
|
||
// use X16/W16, this pass falls back to hardening against speculation
|
||
// by inserting a DSB SYS/ISB barrier pair which will prevent control
|
||
// flow speculation.
|
||
// - It is easy to insert mask operations at this late stage as we have
|
||
// mask operations available that don't set flags.
|
||
// - The taint variable contains all-ones when no miss-speculation is detected,
|
||
// and contains all-zeros when miss-speculation is detected. Therefore, when
|
||
// masking, an AND instruction (which only changes the register to be masked,
|
||
// no other side effects) can easily be inserted anywhere that's needed.
|
||
// - The tracking of miss-speculation is done by using a data-flow conditional
|
||
// select instruction (CSEL) to evaluate the flags that were also used to
|
||
// make conditional branch direction decisions. Speculation of the CSEL
|
||
// instruction can be limited with a CSDB instruction - so the combination of
|
||
// CSEL + a later CSDB gives the guarantee that the flags as used in the CSEL
|
||
// aren't speculated. When conditional branch direction gets miss-speculated,
|
||
// the semantics of the inserted CSEL instruction is such that the taint
|
||
// register will contain all zero bits.
|
||
// One key requirement for this to work is that the conditional branch is
|
||
// followed by an execution of the CSEL instruction, where the CSEL
|
||
// instruction needs to use the same flags status as the conditional branch.
|
||
// This means that the conditional branches must not be implemented as one
|
||
// of the AArch64 conditional branches that do not use the flags as input
|
||
// (CB(N)Z and TB(N)Z). This is implemented by ensuring in the instruction
|
||
// selectors to not produce these instructions when speculation hardening
|
||
// is enabled. This pass will assert if it does encounter such an instruction.
|
||
// - On function call boundaries, the miss-speculation state is transferred from
|
||
// the taint register X16 to be encoded in the SP register as value 0.
|
||
//
|
||
// For the aspect of automatically hardening loads, using the taint register,
|
||
// (a.k.a. speculative load hardening, see
|
||
// https://llvm.org/docs/SpeculativeLoadHardening.html), the following
|
||
// implementation choices are made for AArch64:
|
||
// - Many of the optimizations described at
|
||
// https://llvm.org/docs/SpeculativeLoadHardening.html to harden fewer
|
||
// loads haven't been implemented yet - but for some of them there are
|
||
// FIXMEs in the code.
|
||
// - loads that load into general purpose (X or W) registers get hardened by
|
||
// masking the loaded data. For loads that load into other registers, the
|
||
// address loaded from gets hardened. It is expected that hardening the
|
||
// loaded data may be more efficient; but masking data in registers other
|
||
// than X or W is not easy and may result in being slower than just
|
||
// hardening the X address register loaded from.
|
||
// - On AArch64, CSDB instructions are inserted between the masking of the
|
||
// register and its first use, to ensure there's no non-control-flow
|
||
// speculation that might undermine the hardening mechanism.
|
||
//
|
||
// Future extensions/improvements could be:
|
||
// - Implement this functionality using full speculation barriers, akin to the
|
||
// x86-slh-lfence option. This may be more useful for the intrinsics-based
|
||
// approach than for the SLH approach to masking.
|
||
// Note that this pass already inserts the full speculation barriers if the
|
||
// function for some niche reason makes use of X16/W16.
|
||
// - no indirect branch misprediction gets protected/instrumented; but this
|
||
// could be done for some indirect branches, such as switch jump tables.
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "AArch64InstrInfo.h"
|
||
#include "AArch64Subtarget.h"
|
||
#include "Utils/AArch64BaseInfo.h"
|
||
#include "llvm/ADT/BitVector.h"
|
||
#include "llvm/ADT/SmallVector.h"
|
||
#include "llvm/CodeGen/MachineBasicBlock.h"
|
||
#include "llvm/CodeGen/MachineFunction.h"
|
||
#include "llvm/CodeGen/MachineFunctionPass.h"
|
||
#include "llvm/CodeGen/MachineInstr.h"
|
||
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
||
#include "llvm/CodeGen/MachineOperand.h"
|
||
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
||
#include "llvm/CodeGen/RegisterScavenging.h"
|
||
#include "llvm/IR/DebugLoc.h"
|
||
#include "llvm/Pass.h"
|
||
#include "llvm/Support/CodeGen.h"
|
||
#include "llvm/Support/Debug.h"
|
||
#include "llvm/Target/TargetMachine.h"
|
||
#include <cassert>
|
||
|
||
using namespace llvm;
|
||
|
||
#define DEBUG_TYPE "aarch64-speculation-hardening"
|
||
|
||
#define AARCH64_SPECULATION_HARDENING_NAME "AArch64 speculation hardening pass"
|
||
|
||
static cl::opt<bool> HardenLoads("aarch64-slh-loads", cl::Hidden,
|
||
cl::desc("Sanitize loads from memory."),
|
||
cl::init(true));
|
||
|
||
namespace {
|
||
|
||
class AArch64SpeculationHardening : public MachineFunctionPass {
|
||
public:
|
||
const TargetInstrInfo *TII;
|
||
const TargetRegisterInfo *TRI;
|
||
|
||
static char ID;
|
||
|
||
AArch64SpeculationHardening() : MachineFunctionPass(ID) {
|
||
initializeAArch64SpeculationHardeningPass(*PassRegistry::getPassRegistry());
|
||
}
|
||
|
||
bool runOnMachineFunction(MachineFunction &Fn) override;
|
||
|
||
StringRef getPassName() const override {
|
||
return AARCH64_SPECULATION_HARDENING_NAME;
|
||
}
|
||
|
||
private:
|
||
unsigned MisspeculatingTaintReg;
|
||
unsigned MisspeculatingTaintReg32Bit;
|
||
bool UseControlFlowSpeculationBarrier;
|
||
BitVector RegsNeedingCSDBBeforeUse;
|
||
BitVector RegsAlreadyMasked;
|
||
|
||
bool functionUsesHardeningRegister(MachineFunction &MF) const;
|
||
bool instrumentControlFlow(MachineBasicBlock &MBB,
|
||
bool &UsesFullSpeculationBarrier);
|
||
bool endsWithCondControlFlow(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
|
||
MachineBasicBlock *&FBB,
|
||
AArch64CC::CondCode &CondCode) const;
|
||
void insertTrackingCode(MachineBasicBlock &SplitEdgeBB,
|
||
AArch64CC::CondCode &CondCode, DebugLoc DL) const;
|
||
void insertSPToRegTaintPropagation(MachineBasicBlock &MBB,
|
||
MachineBasicBlock::iterator MBBI) const;
|
||
void insertRegToSPTaintPropagation(MachineBasicBlock &MBB,
|
||
MachineBasicBlock::iterator MBBI,
|
||
unsigned TmpReg) const;
|
||
void insertFullSpeculationBarrier(MachineBasicBlock &MBB,
|
||
MachineBasicBlock::iterator MBBI,
|
||
DebugLoc DL) const;
|
||
|
||
bool slhLoads(MachineBasicBlock &MBB);
|
||
bool makeGPRSpeculationSafe(MachineBasicBlock &MBB,
|
||
MachineBasicBlock::iterator MBBI,
|
||
MachineInstr &MI, unsigned Reg);
|
||
bool lowerSpeculationSafeValuePseudos(MachineBasicBlock &MBB,
|
||
bool UsesFullSpeculationBarrier);
|
||
bool expandSpeculationSafeValue(MachineBasicBlock &MBB,
|
||
MachineBasicBlock::iterator MBBI,
|
||
bool UsesFullSpeculationBarrier);
|
||
bool insertCSDB(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
|
||
DebugLoc DL);
|
||
};
|
||
|
||
} // end anonymous namespace
|
||
|
||
char AArch64SpeculationHardening::ID = 0;
|
||
|
||
INITIALIZE_PASS(AArch64SpeculationHardening, "aarch64-speculation-hardening",
|
||
AARCH64_SPECULATION_HARDENING_NAME, false, false)
|
||
|
||
bool AArch64SpeculationHardening::endsWithCondControlFlow(
|
||
MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
|
||
AArch64CC::CondCode &CondCode) const {
|
||
SmallVector<MachineOperand, 1> analyzeBranchCondCode;
|
||
if (TII->analyzeBranch(MBB, TBB, FBB, analyzeBranchCondCode, false))
|
||
return false;
|
||
|
||
// Ignore if the BB ends in an unconditional branch/fall-through.
|
||
if (analyzeBranchCondCode.empty())
|
||
return false;
|
||
|
||
// If the BB ends with a single conditional branch, FBB will be set to
|
||
// nullptr (see API docs for TII->analyzeBranch). For the rest of the
|
||
// analysis we want the FBB block to be set always.
|
||
assert(TBB != nullptr);
|
||
if (FBB == nullptr)
|
||
FBB = MBB.getFallThrough();
|
||
|
||
// If both the true and the false condition jump to the same basic block,
|
||
// there isn't need for any protection - whether the branch is speculated
|
||
// correctly or not, we end up executing the architecturally correct code.
|
||
if (TBB == FBB)
|
||
return false;
|
||
|
||
assert(MBB.succ_size() == 2);
|
||
// translate analyzeBranchCondCode to CondCode.
|
||
assert(analyzeBranchCondCode.size() == 1 && "unknown Cond array format");
|
||
CondCode = AArch64CC::CondCode(analyzeBranchCondCode[0].getImm());
|
||
return true;
|
||
}
|
||
|
||
void AArch64SpeculationHardening::insertFullSpeculationBarrier(
|
||
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
|
||
DebugLoc DL) const {
|
||
// A full control flow speculation barrier consists of (DSB SYS + ISB)
|
||
BuildMI(MBB, MBBI, DL, TII->get(AArch64::DSB)).addImm(0xf);
|
||
BuildMI(MBB, MBBI, DL, TII->get(AArch64::ISB)).addImm(0xf);
|
||
}
|
||
|
||
void AArch64SpeculationHardening::insertTrackingCode(
|
||
MachineBasicBlock &SplitEdgeBB, AArch64CC::CondCode &CondCode,
|
||
DebugLoc DL) const {
|
||
if (UseControlFlowSpeculationBarrier) {
|
||
insertFullSpeculationBarrier(SplitEdgeBB, SplitEdgeBB.begin(), DL);
|
||
} else {
|
||
BuildMI(SplitEdgeBB, SplitEdgeBB.begin(), DL, TII->get(AArch64::CSELXr))
|
||
.addDef(MisspeculatingTaintReg)
|
||
.addUse(MisspeculatingTaintReg)
|
||
.addUse(AArch64::XZR)
|
||
.addImm(CondCode);
|
||
SplitEdgeBB.addLiveIn(AArch64::NZCV);
|
||
}
|
||
}
|
||
|
||
bool AArch64SpeculationHardening::instrumentControlFlow(
|
||
MachineBasicBlock &MBB, bool &UsesFullSpeculationBarrier) {
|
||
LLVM_DEBUG(dbgs() << "Instrument control flow tracking on MBB: " << MBB);
|
||
|
||
bool Modified = false;
|
||
MachineBasicBlock *TBB = nullptr;
|
||
MachineBasicBlock *FBB = nullptr;
|
||
AArch64CC::CondCode CondCode;
|
||
|
||
if (!endsWithCondControlFlow(MBB, TBB, FBB, CondCode)) {
|
||
LLVM_DEBUG(dbgs() << "... doesn't end with CondControlFlow\n");
|
||
} else {
|
||
// Now insert:
|
||
// "CSEL MisSpeculatingR, MisSpeculatingR, XZR, cond" on the True edge and
|
||
// "CSEL MisSpeculatingR, MisSpeculatingR, XZR, Invertcond" on the False
|
||
// edge.
|
||
AArch64CC::CondCode InvCondCode = AArch64CC::getInvertedCondCode(CondCode);
|
||
|
||
MachineBasicBlock *SplitEdgeTBB = MBB.SplitCriticalEdge(TBB, *this);
|
||
MachineBasicBlock *SplitEdgeFBB = MBB.SplitCriticalEdge(FBB, *this);
|
||
|
||
assert(SplitEdgeTBB != nullptr);
|
||
assert(SplitEdgeFBB != nullptr);
|
||
|
||
DebugLoc DL;
|
||
if (MBB.instr_end() != MBB.instr_begin())
|
||
DL = (--MBB.instr_end())->getDebugLoc();
|
||
|
||
insertTrackingCode(*SplitEdgeTBB, CondCode, DL);
|
||
insertTrackingCode(*SplitEdgeFBB, InvCondCode, DL);
|
||
|
||
LLVM_DEBUG(dbgs() << "SplitEdgeTBB: " << *SplitEdgeTBB << "\n");
|
||
LLVM_DEBUG(dbgs() << "SplitEdgeFBB: " << *SplitEdgeFBB << "\n");
|
||
Modified = true;
|
||
}
|
||
|
||
// Perform correct code generation around function calls and before returns.
|
||
// The below variables record the return/terminator instructions and the call
|
||
// instructions respectively; including which register is available as a
|
||
// temporary register just before the recorded instructions.
|
||
SmallVector<std::pair<MachineInstr *, unsigned>, 4> ReturnInstructions;
|
||
SmallVector<std::pair<MachineInstr *, unsigned>, 4> CallInstructions;
|
||
// if a temporary register is not available for at least one of the
|
||
// instructions for which we need to transfer taint to the stack pointer, we
|
||
// need to insert a full speculation barrier.
|
||
// TmpRegisterNotAvailableEverywhere tracks that condition.
|
||
bool TmpRegisterNotAvailableEverywhere = false;
|
||
|
||
RegScavenger RS;
|
||
RS.enterBasicBlock(MBB);
|
||
|
||
for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); I++) {
|
||
MachineInstr &MI = *I;
|
||
if (!MI.isReturn() && !MI.isCall())
|
||
continue;
|
||
|
||
// The RegScavenger represents registers available *after* the MI
|
||
// instruction pointed to by RS.getCurrentPosition().
|
||
// We need to have a register that is available *before* the MI is executed.
|
||
if (I != MBB.begin())
|
||
RS.forward(std::prev(I));
|
||
// FIXME: The below just finds *a* unused register. Maybe code could be
|
||
// optimized more if this looks for the register that isn't used for the
|
||
// longest time around this place, to enable more scheduling freedom. Not
|
||
// sure if that would actually result in a big performance difference
|
||
// though. Maybe RegisterScavenger::findSurvivorBackwards has some logic
|
||
// already to do this - but it's unclear if that could easily be used here.
|
||
unsigned TmpReg = RS.FindUnusedReg(&AArch64::GPR64commonRegClass);
|
||
LLVM_DEBUG(dbgs() << "RS finds "
|
||
<< ((TmpReg == 0) ? "no register " : "register ");
|
||
if (TmpReg != 0) dbgs() << printReg(TmpReg, TRI) << " ";
|
||
dbgs() << "to be available at MI " << MI);
|
||
if (TmpReg == 0)
|
||
TmpRegisterNotAvailableEverywhere = true;
|
||
if (MI.isReturn())
|
||
ReturnInstructions.push_back({&MI, TmpReg});
|
||
else if (MI.isCall())
|
||
CallInstructions.push_back({&MI, TmpReg});
|
||
}
|
||
|
||
if (TmpRegisterNotAvailableEverywhere) {
|
||
// When a temporary register is not available everywhere in this basic
|
||
// basic block where a propagate-taint-to-sp operation is needed, just
|
||
// emit a full speculation barrier at the start of this basic block, which
|
||
// renders the taint/speculation tracking in this basic block unnecessary.
|
||
insertFullSpeculationBarrier(MBB, MBB.begin(),
|
||
(MBB.begin())->getDebugLoc());
|
||
UsesFullSpeculationBarrier = true;
|
||
Modified = true;
|
||
} else {
|
||
for (auto MI_Reg : ReturnInstructions) {
|
||
assert(MI_Reg.second != 0);
|
||
LLVM_DEBUG(
|
||
dbgs()
|
||
<< " About to insert Reg to SP taint propagation with temp register "
|
||
<< printReg(MI_Reg.second, TRI)
|
||
<< " on instruction: " << *MI_Reg.first);
|
||
insertRegToSPTaintPropagation(MBB, MI_Reg.first, MI_Reg.second);
|
||
Modified = true;
|
||
}
|
||
|
||
for (auto MI_Reg : CallInstructions) {
|
||
assert(MI_Reg.second != 0);
|
||
LLVM_DEBUG(dbgs() << " About to insert Reg to SP and back taint "
|
||
"propagation with temp register "
|
||
<< printReg(MI_Reg.second, TRI)
|
||
<< " around instruction: " << *MI_Reg.first);
|
||
// Just after the call:
|
||
insertSPToRegTaintPropagation(
|
||
MBB, std::next((MachineBasicBlock::iterator)MI_Reg.first));
|
||
// Just before the call:
|
||
insertRegToSPTaintPropagation(MBB, MI_Reg.first, MI_Reg.second);
|
||
Modified = true;
|
||
}
|
||
}
|
||
return Modified;
|
||
}
|
||
|
||
void AArch64SpeculationHardening::insertSPToRegTaintPropagation(
|
||
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
|
||
// If full control flow speculation barriers are used, emit a control flow
|
||
// barrier to block potential miss-speculation in flight coming in to this
|
||
// function.
|
||
if (UseControlFlowSpeculationBarrier) {
|
||
insertFullSpeculationBarrier(MBB, MBBI, DebugLoc());
|
||
return;
|
||
}
|
||
|
||
// CMP SP, #0 === SUBS xzr, SP, #0
|
||
BuildMI(MBB, MBBI, DebugLoc(), TII->get(AArch64::SUBSXri))
|
||
.addDef(AArch64::XZR)
|
||
.addUse(AArch64::SP)
|
||
.addImm(0)
|
||
.addImm(0); // no shift
|
||
// CSETM x16, NE === CSINV x16, xzr, xzr, EQ
|
||
BuildMI(MBB, MBBI, DebugLoc(), TII->get(AArch64::CSINVXr))
|
||
.addDef(MisspeculatingTaintReg)
|
||
.addUse(AArch64::XZR)
|
||
.addUse(AArch64::XZR)
|
||
.addImm(AArch64CC::EQ);
|
||
}
|
||
|
||
void AArch64SpeculationHardening::insertRegToSPTaintPropagation(
|
||
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
|
||
unsigned TmpReg) const {
|
||
// If full control flow speculation barriers are used, there will not be
|
||
// miss-speculation when returning from this function, and therefore, also
|
||
// no need to encode potential miss-speculation into the stack pointer.
|
||
if (UseControlFlowSpeculationBarrier)
|
||
return;
|
||
|
||
// mov Xtmp, SP === ADD Xtmp, SP, #0
|
||
BuildMI(MBB, MBBI, DebugLoc(), TII->get(AArch64::ADDXri))
|
||
.addDef(TmpReg)
|
||
.addUse(AArch64::SP)
|
||
.addImm(0)
|
||
.addImm(0); // no shift
|
||
// and Xtmp, Xtmp, TaintReg === AND Xtmp, Xtmp, TaintReg, #0
|
||
BuildMI(MBB, MBBI, DebugLoc(), TII->get(AArch64::ANDXrs))
|
||
.addDef(TmpReg, RegState::Renamable)
|
||
.addUse(TmpReg, RegState::Kill | RegState::Renamable)
|
||
.addUse(MisspeculatingTaintReg, RegState::Kill)
|
||
.addImm(0);
|
||
// mov SP, Xtmp === ADD SP, Xtmp, #0
|
||
BuildMI(MBB, MBBI, DebugLoc(), TII->get(AArch64::ADDXri))
|
||
.addDef(AArch64::SP)
|
||
.addUse(TmpReg, RegState::Kill)
|
||
.addImm(0)
|
||
.addImm(0); // no shift
|
||
}
|
||
|
||
bool AArch64SpeculationHardening::functionUsesHardeningRegister(
|
||
MachineFunction &MF) const {
|
||
for (MachineBasicBlock &MBB : MF) {
|
||
for (MachineInstr &MI : MBB) {
|
||
// treat function calls specially, as the hardening register does not
|
||
// need to remain live across function calls.
|
||
if (MI.isCall())
|
||
continue;
|
||
if (MI.readsRegister(MisspeculatingTaintReg, TRI) ||
|
||
MI.modifiesRegister(MisspeculatingTaintReg, TRI))
|
||
return true;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
// Make GPR register Reg speculation-safe by putting it through the
|
||
// SpeculationSafeValue pseudo instruction, if we can't prove that
|
||
// the value in the register has already been hardened.
|
||
bool AArch64SpeculationHardening::makeGPRSpeculationSafe(
|
||
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, MachineInstr &MI,
|
||
unsigned Reg) {
|
||
assert(AArch64::GPR32allRegClass.contains(Reg) ||
|
||
AArch64::GPR64allRegClass.contains(Reg));
|
||
|
||
// Loads cannot directly load a value into the SP (nor WSP).
|
||
// Therefore, if Reg is SP or WSP, it is because the instruction loads from
|
||
// the stack through the stack pointer.
|
||
//
|
||
// Since the stack pointer is never dynamically controllable, don't harden it.
|
||
if (Reg == AArch64::SP || Reg == AArch64::WSP)
|
||
return false;
|
||
|
||
// Do not harden the register again if already hardened before.
|
||
if (RegsAlreadyMasked[Reg])
|
||
return false;
|
||
|
||
const bool Is64Bit = AArch64::GPR64allRegClass.contains(Reg);
|
||
LLVM_DEBUG(dbgs() << "About to harden register : " << Reg << "\n");
|
||
BuildMI(MBB, MBBI, MI.getDebugLoc(),
|
||
TII->get(Is64Bit ? AArch64::SpeculationSafeValueX
|
||
: AArch64::SpeculationSafeValueW))
|
||
.addDef(Reg)
|
||
.addUse(Reg);
|
||
RegsAlreadyMasked.set(Reg);
|
||
return true;
|
||
}
|
||
|
||
bool AArch64SpeculationHardening::slhLoads(MachineBasicBlock &MBB) {
|
||
bool Modified = false;
|
||
|
||
LLVM_DEBUG(dbgs() << "slhLoads running on MBB: " << MBB);
|
||
|
||
RegsAlreadyMasked.reset();
|
||
|
||
MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
|
||
MachineBasicBlock::iterator NextMBBI;
|
||
for (; MBBI != E; MBBI = NextMBBI) {
|
||
MachineInstr &MI = *MBBI;
|
||
NextMBBI = std::next(MBBI);
|
||
// Only harden loaded values or addresses used in loads.
|
||
if (!MI.mayLoad())
|
||
continue;
|
||
|
||
LLVM_DEBUG(dbgs() << "About to harden: " << MI);
|
||
|
||
// For general purpose register loads, harden the registers loaded into.
|
||
// For other loads, harden the address loaded from.
|
||
// Masking the loaded value is expected to result in less performance
|
||
// overhead, as the load can still execute speculatively in comparison to
|
||
// when the address loaded from gets masked. However, masking is only
|
||
// easy to do efficiently on GPR registers, so for loads into non-GPR
|
||
// registers (e.g. floating point loads), mask the address loaded from.
|
||
bool AllDefsAreGPR = llvm::all_of(MI.defs(), [&](MachineOperand &Op) {
|
||
return Op.isReg() && (AArch64::GPR32allRegClass.contains(Op.getReg()) ||
|
||
AArch64::GPR64allRegClass.contains(Op.getReg()));
|
||
});
|
||
// FIXME: it might be a worthwhile optimization to not mask loaded
|
||
// values if all the registers involved in address calculation are already
|
||
// hardened, leading to this load not able to execute on a miss-speculated
|
||
// path.
|
||
bool HardenLoadedData = AllDefsAreGPR;
|
||
bool HardenAddressLoadedFrom = !HardenLoadedData;
|
||
|
||
// First remove registers from AlreadyMaskedRegisters if their value is
|
||
// updated by this instruction - it makes them contain a new value that is
|
||
// not guaranteed to already have been masked.
|
||
for (MachineOperand Op : MI.defs())
|
||
for (MCRegAliasIterator AI(Op.getReg(), TRI, true); AI.isValid(); ++AI)
|
||
RegsAlreadyMasked.reset(*AI);
|
||
|
||
// FIXME: loads from the stack with an immediate offset from the stack
|
||
// pointer probably shouldn't be hardened, which could result in a
|
||
// significant optimization. See section "Don’t check loads from
|
||
// compile-time constant stack offsets", in
|
||
// https://llvm.org/docs/SpeculativeLoadHardening.html
|
||
|
||
if (HardenLoadedData)
|
||
for (auto Def : MI.defs()) {
|
||
if (Def.isDead())
|
||
// Do not mask a register that is not used further.
|
||
continue;
|
||
// FIXME: For pre/post-increment addressing modes, the base register
|
||
// used in address calculation is also defined by this instruction.
|
||
// It might be a worthwhile optimization to not harden that
|
||
// base register increment/decrement when the increment/decrement is
|
||
// an immediate.
|
||
Modified |= makeGPRSpeculationSafe(MBB, NextMBBI, MI, Def.getReg());
|
||
}
|
||
|
||
if (HardenAddressLoadedFrom)
|
||
for (auto Use : MI.uses()) {
|
||
if (!Use.isReg())
|
||
continue;
|
||
Register Reg = Use.getReg();
|
||
// Some loads of floating point data have implicit defs/uses on a
|
||
// super register of that floating point data. Some examples:
|
||
// $s0 = LDRSui $sp, 22, implicit-def $q0
|
||
// $q0 = LD1i64 $q0, 1, renamable $x0
|
||
// We need to filter out these uses for non-GPR register which occur
|
||
// because the load partially fills a non-GPR register with the loaded
|
||
// data. Just skipping all non-GPR registers is safe (for now) as all
|
||
// AArch64 load instructions only use GPR registers to perform the
|
||
// address calculation. FIXME: However that might change once we can
|
||
// produce SVE gather instructions.
|
||
if (!(AArch64::GPR32allRegClass.contains(Reg) ||
|
||
AArch64::GPR64allRegClass.contains(Reg)))
|
||
continue;
|
||
Modified |= makeGPRSpeculationSafe(MBB, MBBI, MI, Reg);
|
||
}
|
||
}
|
||
return Modified;
|
||
}
|
||
|
||
/// \brief If MBBI references a pseudo instruction that should be expanded
|
||
/// here, do the expansion and return true. Otherwise return false.
|
||
bool AArch64SpeculationHardening::expandSpeculationSafeValue(
|
||
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
|
||
bool UsesFullSpeculationBarrier) {
|
||
MachineInstr &MI = *MBBI;
|
||
unsigned Opcode = MI.getOpcode();
|
||
bool Is64Bit = true;
|
||
|
||
switch (Opcode) {
|
||
default:
|
||
break;
|
||
case AArch64::SpeculationSafeValueW:
|
||
Is64Bit = false;
|
||
LLVM_FALLTHROUGH;
|
||
case AArch64::SpeculationSafeValueX:
|
||
// Just remove the SpeculationSafe pseudo's if control flow
|
||
// miss-speculation isn't happening because we're already inserting barriers
|
||
// to guarantee that.
|
||
if (!UseControlFlowSpeculationBarrier && !UsesFullSpeculationBarrier) {
|
||
Register DstReg = MI.getOperand(0).getReg();
|
||
Register SrcReg = MI.getOperand(1).getReg();
|
||
// Mark this register and all its aliasing registers as needing to be
|
||
// value speculation hardened before its next use, by using a CSDB
|
||
// barrier instruction.
|
||
for (MachineOperand Op : MI.defs())
|
||
for (MCRegAliasIterator AI(Op.getReg(), TRI, true); AI.isValid(); ++AI)
|
||
RegsNeedingCSDBBeforeUse.set(*AI);
|
||
|
||
// Mask off with taint state.
|
||
BuildMI(MBB, MBBI, MI.getDebugLoc(),
|
||
Is64Bit ? TII->get(AArch64::ANDXrs) : TII->get(AArch64::ANDWrs))
|
||
.addDef(DstReg)
|
||
.addUse(SrcReg, RegState::Kill)
|
||
.addUse(Is64Bit ? MisspeculatingTaintReg
|
||
: MisspeculatingTaintReg32Bit)
|
||
.addImm(0);
|
||
}
|
||
MI.eraseFromParent();
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
bool AArch64SpeculationHardening::insertCSDB(MachineBasicBlock &MBB,
|
||
MachineBasicBlock::iterator MBBI,
|
||
DebugLoc DL) {
|
||
assert(!UseControlFlowSpeculationBarrier && "No need to insert CSDBs when "
|
||
"control flow miss-speculation "
|
||
"is already blocked");
|
||
// insert data value speculation barrier (CSDB)
|
||
BuildMI(MBB, MBBI, DL, TII->get(AArch64::HINT)).addImm(0x14);
|
||
RegsNeedingCSDBBeforeUse.reset();
|
||
return true;
|
||
}
|
||
|
||
bool AArch64SpeculationHardening::lowerSpeculationSafeValuePseudos(
|
||
MachineBasicBlock &MBB, bool UsesFullSpeculationBarrier) {
|
||
bool Modified = false;
|
||
|
||
RegsNeedingCSDBBeforeUse.reset();
|
||
|
||
// The following loop iterates over all instructions in the basic block,
|
||
// and performs 2 operations:
|
||
// 1. Insert a CSDB at this location if needed.
|
||
// 2. Expand the SpeculationSafeValuePseudo if the current instruction is
|
||
// one.
|
||
//
|
||
// The insertion of the CSDB is done as late as possible (i.e. just before
|
||
// the use of a masked register), in the hope that that will reduce the
|
||
// total number of CSDBs in a block when there are multiple masked registers
|
||
// in the block.
|
||
MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
|
||
DebugLoc DL;
|
||
while (MBBI != E) {
|
||
MachineInstr &MI = *MBBI;
|
||
DL = MI.getDebugLoc();
|
||
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
|
||
|
||
// First check if a CSDB needs to be inserted due to earlier registers
|
||
// that were masked and that are used by the next instruction.
|
||
// Also emit the barrier on any potential control flow changes.
|
||
bool NeedToEmitBarrier = false;
|
||
if (RegsNeedingCSDBBeforeUse.any() && (MI.isCall() || MI.isTerminator()))
|
||
NeedToEmitBarrier = true;
|
||
if (!NeedToEmitBarrier)
|
||
for (MachineOperand Op : MI.uses())
|
||
if (Op.isReg() && RegsNeedingCSDBBeforeUse[Op.getReg()]) {
|
||
NeedToEmitBarrier = true;
|
||
break;
|
||
}
|
||
|
||
if (NeedToEmitBarrier && !UsesFullSpeculationBarrier)
|
||
Modified |= insertCSDB(MBB, MBBI, DL);
|
||
|
||
Modified |=
|
||
expandSpeculationSafeValue(MBB, MBBI, UsesFullSpeculationBarrier);
|
||
|
||
MBBI = NMBBI;
|
||
}
|
||
|
||
if (RegsNeedingCSDBBeforeUse.any() && !UsesFullSpeculationBarrier)
|
||
Modified |= insertCSDB(MBB, MBBI, DL);
|
||
|
||
return Modified;
|
||
}
|
||
|
||
bool AArch64SpeculationHardening::runOnMachineFunction(MachineFunction &MF) {
|
||
if (!MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening))
|
||
return false;
|
||
|
||
MisspeculatingTaintReg = AArch64::X16;
|
||
MisspeculatingTaintReg32Bit = AArch64::W16;
|
||
TII = MF.getSubtarget().getInstrInfo();
|
||
TRI = MF.getSubtarget().getRegisterInfo();
|
||
RegsNeedingCSDBBeforeUse.resize(TRI->getNumRegs());
|
||
RegsAlreadyMasked.resize(TRI->getNumRegs());
|
||
UseControlFlowSpeculationBarrier = functionUsesHardeningRegister(MF);
|
||
|
||
bool Modified = false;
|
||
|
||
// Step 1: Enable automatic insertion of SpeculationSafeValue.
|
||
if (HardenLoads) {
|
||
LLVM_DEBUG(
|
||
dbgs() << "***** AArch64SpeculationHardening - automatic insertion of "
|
||
"SpeculationSafeValue intrinsics *****\n");
|
||
for (auto &MBB : MF)
|
||
Modified |= slhLoads(MBB);
|
||
}
|
||
|
||
// 2. Add instrumentation code to function entry and exits.
|
||
LLVM_DEBUG(
|
||
dbgs()
|
||
<< "***** AArch64SpeculationHardening - track control flow *****\n");
|
||
|
||
SmallVector<MachineBasicBlock *, 2> EntryBlocks;
|
||
EntryBlocks.push_back(&MF.front());
|
||
for (const LandingPadInfo &LPI : MF.getLandingPads())
|
||
EntryBlocks.push_back(LPI.LandingPadBlock);
|
||
for (auto Entry : EntryBlocks)
|
||
insertSPToRegTaintPropagation(
|
||
*Entry, Entry->SkipPHIsLabelsAndDebug(Entry->begin()));
|
||
|
||
// 3. Add instrumentation code to every basic block.
|
||
for (auto &MBB : MF) {
|
||
bool UsesFullSpeculationBarrier = false;
|
||
Modified |= instrumentControlFlow(MBB, UsesFullSpeculationBarrier);
|
||
Modified |=
|
||
lowerSpeculationSafeValuePseudos(MBB, UsesFullSpeculationBarrier);
|
||
}
|
||
|
||
return Modified;
|
||
}
|
||
|
||
/// \brief Returns an instance of the pseudo instruction expansion pass.
|
||
FunctionPass *llvm::createAArch64SpeculationHardeningPass() {
|
||
return new AArch64SpeculationHardening();
|
||
}
|