llvm-project/llvm/lib/Target/AArch64/AArch64CallingConvention.td

512 lines
24 KiB
TableGen

//=- AArch64CallingConv.td - Calling Conventions for AArch64 -*- tablegen -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This describes the calling conventions for AArch64 architecture.
//
//===----------------------------------------------------------------------===//
/// CCIfBigEndian - Match only if we're in big endian mode.
class CCIfBigEndian<CCAction A> :
CCIf<"State.getMachineFunction().getDataLayout().isBigEndian()", A>;
class CCIfILP32<CCAction A> :
CCIf<"State.getMachineFunction().getDataLayout().getPointerSize() == 4", A>;
//===----------------------------------------------------------------------===//
// ARM AAPCS64 Calling Convention
//===----------------------------------------------------------------------===//
let Entry = 1 in
def CC_AArch64_AAPCS : CallingConv<[
CCIfType<[iPTR], CCBitConvertToType<i64>>,
CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
CCIfType<[v2f64, v4f32], CCBitConvertToType<v2i64>>,
// Big endian vectors must be passed as if they were 1-element vectors so that
// their lanes are in a consistent order.
CCIfBigEndian<CCIfType<[v2i32, v2f32, v4i16, v4f16, v4bf16, v8i8],
CCBitConvertToType<f64>>>,
CCIfBigEndian<CCIfType<[v2i64, v2f64, v4i32, v4f32, v8i16, v8f16, v8bf16, v16i8],
CCBitConvertToType<f128>>>,
// In AAPCS, an SRet is passed in X8, not X0 like a normal pointer parameter.
// However, on windows, in some circumstances, the SRet is passed in X0 or X1
// instead. The presence of the inreg attribute indicates that SRet is
// passed in the alternative register (X0 or X1), not X8:
// - X0 for non-instance methods.
// - X1 for instance methods.
// The "sret" attribute identifies indirect returns.
// The "inreg" attribute identifies non-aggregate types.
// The position of the "sret" attribute identifies instance/non-instance
// methods.
// "sret" on argument 0 means non-instance methods.
// "sret" on argument 1 means instance methods.
CCIfInReg<CCIfType<[i64],
CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[X0, X1], [W0, W1]>>>>>,
CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[X8], [W8]>>>,
// Put ByVal arguments directly on the stack. Minimum size and alignment of a
// slot is 64-bit.
CCIfByVal<CCPassByVal<8, 8>>,
// The 'nest' parameter, if any, is passed in X18.
// Darwin uses X18 as the platform register and hence 'nest' isn't currently
// supported there.
CCIfNest<CCAssignToReg<[X18]>>,
// Pass SwiftSelf in a callee saved register.
CCIfSwiftSelf<CCIfType<[i64], CCAssignToRegWithShadow<[X20], [W20]>>>,
// A SwiftError is passed in X21.
CCIfSwiftError<CCIfType<[i64], CCAssignToRegWithShadow<[X21], [W21]>>>,
CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>,
CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16,
nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64],
CCAssignToReg<[Z0, Z1, Z2, Z3, Z4, Z5, Z6, Z7]>>,
CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16,
nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64],
CCPassIndirect<i64>>,
CCIfType<[nxv2i1, nxv4i1, nxv8i1, nxv16i1],
CCAssignToReg<[P0, P1, P2, P3]>>,
CCIfType<[nxv2i1, nxv4i1, nxv8i1, nxv16i1],
CCPassIndirect<i64>>,
// Handle i1, i8, i16, i32, i64, f32, f64 and v2f64 by passing in registers,
// up to eight each of GPR and FPR.
CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
CCIfType<[i32], CCAssignToRegWithShadow<[W0, W1, W2, W3, W4, W5, W6, W7],
[X0, X1, X2, X3, X4, X5, X6, X7]>>,
// i128 is split to two i64s, we can't fit half to register X7.
CCIfType<[i64], CCIfSplit<CCAssignToRegWithShadow<[X0, X2, X4, X6],
[X0, X1, X3, X5]>>>,
// i128 is split to two i64s, and its stack alignment is 16 bytes.
CCIfType<[i64], CCIfSplit<CCAssignToStackWithShadow<8, 16, [X7]>>>,
CCIfType<[i64], CCAssignToRegWithShadow<[X0, X1, X2, X3, X4, X5, X6, X7],
[W0, W1, W2, W3, W4, W5, W6, W7]>>,
CCIfType<[f16], CCAssignToRegWithShadow<[H0, H1, H2, H3, H4, H5, H6, H7],
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
CCIfType<[bf16], CCAssignToRegWithShadow<[H0, H1, H2, H3, H4, H5, H6, H7],
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
CCIfType<[f32], CCAssignToRegWithShadow<[S0, S1, S2, S3, S4, S5, S6, S7],
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
CCIfType<[f64], CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
// If more than will fit in registers, pass them on the stack instead.
CCIfType<[i1, i8, i16, f16, bf16], CCAssignToStack<8, 8>>,
CCIfType<[i32, f32], CCAssignToStack<8, 8>>,
CCIfType<[i64, f64, v1f64, v2f32, v1i64, v2i32, v4i16, v8i8, v4f16, v4bf16],
CCAssignToStack<8, 8>>,
CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
CCAssignToStack<16, 16>>
]>;
let Entry = 1 in
def RetCC_AArch64_AAPCS : CallingConv<[
CCIfType<[iPTR], CCBitConvertToType<i64>>,
CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
CCIfType<[v2f64, v4f32], CCBitConvertToType<v2i64>>,
CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>,
CCIfSwiftError<CCIfType<[i64], CCAssignToRegWithShadow<[X21], [W21]>>>,
// Big endian vectors must be passed as if they were 1-element vectors so that
// their lanes are in a consistent order.
CCIfBigEndian<CCIfType<[v2i32, v2f32, v4i16, v4f16, v4bf16, v8i8],
CCBitConvertToType<f64>>>,
CCIfBigEndian<CCIfType<[v2i64, v2f64, v4i32, v4f32, v8i16, v8f16, v8bf16, v16i8],
CCBitConvertToType<f128>>>,
CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
CCIfType<[i32], CCAssignToRegWithShadow<[W0, W1, W2, W3, W4, W5, W6, W7],
[X0, X1, X2, X3, X4, X5, X6, X7]>>,
CCIfType<[i64], CCAssignToRegWithShadow<[X0, X1, X2, X3, X4, X5, X6, X7],
[W0, W1, W2, W3, W4, W5, W6, W7]>>,
CCIfType<[f16], CCAssignToRegWithShadow<[H0, H1, H2, H3, H4, H5, H6, H7],
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
CCIfType<[bf16], CCAssignToRegWithShadow<[H0, H1, H2, H3, H4, H5, H6, H7],
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
CCIfType<[f32], CCAssignToRegWithShadow<[S0, S1, S2, S3, S4, S5, S6, S7],
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
CCIfType<[f64], CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
CCIfType<[f128, v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
CCIfType<[nxv16i8, nxv8i16, nxv4i32, nxv2i64, nxv2f16, nxv4f16, nxv8f16,
nxv2bf16, nxv4bf16, nxv8bf16, nxv2f32, nxv4f32, nxv2f64],
CCAssignToReg<[Z0, Z1, Z2, Z3, Z4, Z5, Z6, Z7]>>,
CCIfType<[nxv2i1, nxv4i1, nxv8i1, nxv16i1],
CCAssignToReg<[P0, P1, P2, P3]>>
]>;
// Vararg functions on windows pass floats in integer registers
let Entry = 1 in
def CC_AArch64_Win64_VarArg : CallingConv<[
CCIfType<[f16, bf16, f32], CCPromoteToType<f64>>,
CCIfType<[f64], CCBitConvertToType<i64>>,
CCDelegateTo<CC_AArch64_AAPCS>
]>;
// Windows Control Flow Guard checks take a single argument (the target function
// address) and have no return value.
let Entry = 1 in
def CC_AArch64_Win64_CFGuard_Check : CallingConv<[
CCIfType<[i64], CCAssignToReg<[X15]>>
]>;
// Darwin uses a calling convention which differs in only two ways
// from the standard one at this level:
// + i128s (i.e. split i64s) don't need even registers.
// + Stack slots are sized as needed rather than being at least 64-bit.
let Entry = 1 in
def CC_AArch64_DarwinPCS : CallingConv<[
CCIfType<[iPTR], CCBitConvertToType<i64>>,
CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
// An SRet is passed in X8, not X0 like a normal pointer parameter.
CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[X8], [W8]>>>,
// Put ByVal arguments directly on the stack. Minimum size and alignment of a
// slot is 64-bit.
CCIfByVal<CCPassByVal<8, 8>>,
// Pass SwiftSelf in a callee saved register.
CCIfSwiftSelf<CCIfType<[i64], CCAssignToRegWithShadow<[X20], [W20]>>>,
// A SwiftError is passed in X21.
CCIfSwiftError<CCIfType<[i64], CCAssignToRegWithShadow<[X21], [W21]>>>,
CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Block">>,
// Handle i1, i8, i16, i32, i64, f32, f64 and v2f64 by passing in registers,
// up to eight each of GPR and FPR.
CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
CCIfType<[i32], CCAssignToRegWithShadow<[W0, W1, W2, W3, W4, W5, W6, W7],
[X0, X1, X2, X3, X4, X5, X6, X7]>>,
// i128 is split to two i64s, we can't fit half to register X7.
CCIfType<[i64],
CCIfSplit<CCAssignToRegWithShadow<[X0, X1, X2, X3, X4, X5, X6],
[W0, W1, W2, W3, W4, W5, W6]>>>,
// i128 is split to two i64s, and its stack alignment is 16 bytes.
CCIfType<[i64], CCIfSplit<CCAssignToStackWithShadow<8, 16, [X7]>>>,
CCIfType<[i64], CCAssignToRegWithShadow<[X0, X1, X2, X3, X4, X5, X6, X7],
[W0, W1, W2, W3, W4, W5, W6, W7]>>,
CCIfType<[f16], CCAssignToRegWithShadow<[H0, H1, H2, H3, H4, H5, H6, H7],
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
CCIfType<[bf16], CCAssignToRegWithShadow<[H0, H1, H2, H3, H4, H5, H6, H7],
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
CCIfType<[f32], CCAssignToRegWithShadow<[S0, S1, S2, S3, S4, S5, S6, S7],
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
CCIfType<[f64], CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
CCIfType<[v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
// If more than will fit in registers, pass them on the stack instead.
CCIf<"ValVT == MVT::i1 || ValVT == MVT::i8", CCAssignToStack<1, 1>>,
CCIf<"ValVT == MVT::i16 || ValVT == MVT::f16 || ValVT == MVT::bf16",
CCAssignToStack<2, 2>>,
CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
// Re-demote pointers to 32-bits so we don't end up storing 64-bit
// values and clobbering neighbouring stack locations. Not very pretty.
CCIfPtr<CCIfILP32<CCTruncToType<i32>>>,
CCIfPtr<CCIfILP32<CCAssignToStack<4, 4>>>,
CCIfType<[i64, f64, v1f64, v2f32, v1i64, v2i32, v4i16, v8i8, v4f16, v4bf16],
CCAssignToStack<8, 8>>,
CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
CCAssignToStack<16, 16>>
]>;
let Entry = 1 in
def CC_AArch64_DarwinPCS_VarArg : CallingConv<[
CCIfType<[iPTR], CCBitConvertToType<i64>>,
CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
CCIfConsecutiveRegs<CCCustom<"CC_AArch64_Custom_Stack_Block">>,
// Handle all scalar types as either i64 or f64.
CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
CCIfType<[f16, bf16, f32], CCPromoteToType<f64>>,
// Everything is on the stack.
// i128 is split to two i64s, and its stack alignment is 16 bytes.
CCIfType<[i64], CCIfSplit<CCAssignToStack<8, 16>>>,
CCIfType<[i64, f64, v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
CCAssignToStack<8, 8>>,
CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
CCAssignToStack<16, 16>>
]>;
// In the ILP32 world, the minimum stack slot size is 4 bytes. Otherwise the
// same as the normal Darwin VarArgs handling.
let Entry = 1 in
def CC_AArch64_DarwinPCS_ILP32_VarArg : CallingConv<[
CCIfType<[v2f32], CCBitConvertToType<v2i32>>,
CCIfType<[v2f64, v4f32, f128], CCBitConvertToType<v2i64>>,
// Handle all scalar types as either i32 or f32.
CCIfType<[i8, i16], CCPromoteToType<i32>>,
CCIfType<[f16, bf16], CCPromoteToType<f32>>,
// Everything is on the stack.
// i128 is split to two i64s, and its stack alignment is 16 bytes.
CCIfPtr<CCIfILP32<CCTruncToType<i32>>>,
CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
CCIfType<[i64], CCIfSplit<CCAssignToStack<8, 16>>>,
CCIfType<[i64, f64, v1i64, v2i32, v4i16, v8i8, v1f64, v2f32, v4f16, v4bf16],
CCAssignToStack<8, 8>>,
CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, v2f64, v8f16, v8bf16],
CCAssignToStack<16, 16>>
]>;
// The WebKit_JS calling convention only passes the first argument (the callee)
// in register and the remaining arguments on stack. We allow 32bit stack slots,
// so that WebKit can write partial values in the stack and define the other
// 32bit quantity as undef.
let Entry = 1 in
def CC_AArch64_WebKit_JS : CallingConv<[
// Handle i1, i8, i16, i32, and i64 passing in register X0 (W0).
CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
CCIfType<[i32], CCAssignToRegWithShadow<[W0], [X0]>>,
CCIfType<[i64], CCAssignToRegWithShadow<[X0], [W0]>>,
// Pass the remaining arguments on the stack instead.
CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
CCIfType<[i64, f64], CCAssignToStack<8, 8>>
]>;
let Entry = 1 in
def RetCC_AArch64_WebKit_JS : CallingConv<[
CCIfType<[i32], CCAssignToRegWithShadow<[W0, W1, W2, W3, W4, W5, W6, W7],
[X0, X1, X2, X3, X4, X5, X6, X7]>>,
CCIfType<[i64], CCAssignToRegWithShadow<[X0, X1, X2, X3, X4, X5, X6, X7],
[W0, W1, W2, W3, W4, W5, W6, W7]>>,
CCIfType<[f32], CCAssignToRegWithShadow<[S0, S1, S2, S3, S4, S5, S6, S7],
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
CCIfType<[f64], CCAssignToRegWithShadow<[D0, D1, D2, D3, D4, D5, D6, D7],
[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>
]>;
//===----------------------------------------------------------------------===//
// ARM64 Calling Convention for GHC
//===----------------------------------------------------------------------===//
// This calling convention is specific to the Glasgow Haskell Compiler.
// The only documentation is the GHC source code, specifically the C header
// file:
//
// https://github.com/ghc/ghc/blob/master/includes/stg/MachRegs.h
//
// which defines the registers for the Spineless Tagless G-Machine (STG) that
// GHC uses to implement lazy evaluation. The generic STG machine has a set of
// registers which are mapped to appropriate set of architecture specific
// registers for each CPU architecture.
//
// The STG Machine is documented here:
//
// https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/GeneratedCode
//
// The AArch64 register mapping is under the heading "The ARMv8/AArch64 ABI
// register mapping".
let Entry = 1 in
def CC_AArch64_GHC : CallingConv<[
CCIfType<[iPTR], CCBitConvertToType<i64>>,
// Handle all vector types as either f64 or v2f64.
CCIfType<[v1i64, v2i32, v4i16, v8i8, v2f32], CCBitConvertToType<f64>>,
CCIfType<[v2i64, v4i32, v8i16, v16i8, v4f32, f128], CCBitConvertToType<v2f64>>,
CCIfType<[v2f64], CCAssignToReg<[Q4, Q5]>>,
CCIfType<[f32], CCAssignToReg<[S8, S9, S10, S11]>>,
CCIfType<[f64], CCAssignToReg<[D12, D13, D14, D15]>>,
// Promote i8/i16/i32 arguments to i64.
CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
// Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
CCIfType<[i64], CCAssignToReg<[X19, X20, X21, X22, X23, X24, X25, X26, X27, X28]>>
]>;
// The order of the callee-saves in this file is important, because the
// FrameLowering code will use this order to determine the layout the
// callee-save area in the stack frame. As can be observed below, Darwin
// requires the frame-record (LR, FP) to be at the top the callee-save area,
// whereas for other platforms they are at the bottom.
// FIXME: LR is only callee-saved in the sense that *we* preserve it and are
// presumably a callee to someone. External functions may not do so, but this
// is currently safe since BL has LR as an implicit-def and what happens after a
// tail call doesn't matter.
//
// It would be better to model its preservation semantics properly (create a
// vreg on entry, use it in RET & tail call generation; make that vreg def if we
// end up saving LR as part of a call frame). Watch this space...
def CSR_AArch64_AAPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24,
X25, X26, X27, X28, LR, FP,
D8, D9, D10, D11,
D12, D13, D14, D15)>;
// A variant for treating X18 as callee saved, when interfacing with
// code that needs X18 to be preserved.
def CSR_AArch64_AAPCS_X18 : CalleeSavedRegs<(add X18, CSR_AArch64_AAPCS)>;
// Win64 has unwinding codes for an (FP,LR) pair, save_fplr and save_fplr_x.
// We put FP before LR, so that frame lowering logic generates (FP,LR) pairs,
// and not (LR,FP) pairs.
def CSR_Win_AArch64_AAPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24,
X25, X26, X27, X28, FP, LR,
D8, D9, D10, D11,
D12, D13, D14, D15)>;
// The Control Flow Guard check call uses a custom calling convention that also
// preserves X0-X8 and Q0-Q7.
def CSR_Win_AArch64_CFGuard_Check : CalleeSavedRegs<(add CSR_Win_AArch64_AAPCS,
(sequence "X%u", 0, 8),
(sequence "Q%u", 0, 7))>;
// AArch64 PCS for vector functions (VPCS)
// must (additionally) preserve full Q8-Q23 registers
def CSR_AArch64_AAVPCS : CalleeSavedRegs<(add X19, X20, X21, X22, X23, X24,
X25, X26, X27, X28, LR, FP,
(sequence "Q%u", 8, 23))>;
// Functions taking SVE arguments or returning an SVE type
// must (additionally) preserve full Z8-Z23 and predicate registers P4-P15
def CSR_AArch64_SVE_AAPCS : CalleeSavedRegs<(add (sequence "Z%u", 8, 23),
(sequence "P%u", 4, 15),
X19, X20, X21, X22, X23, X24,
X25, X26, X27, X28, LR, FP)>;
// Constructors and destructors return 'this' in the iOS 64-bit C++ ABI; since
// 'this' and the pointer return value are both passed in X0 in these cases,
// this can be partially modelled by treating X0 as a callee-saved register;
// only the resulting RegMask is used; the SaveList is ignored
//
// (For generic ARM 64-bit ABI code, clang will not generate constructors or
// destructors with 'this' returns, so this RegMask will not be used in that
// case)
def CSR_AArch64_AAPCS_ThisReturn : CalleeSavedRegs<(add CSR_AArch64_AAPCS, X0)>;
def CSR_AArch64_AAPCS_SwiftError
: CalleeSavedRegs<(sub CSR_AArch64_AAPCS, X21)>;
// The ELF stub used for TLS-descriptor access saves every feasible
// register. Only X0 and LR are clobbered.
def CSR_AArch64_TLS_ELF
: CalleeSavedRegs<(add (sequence "X%u", 1, 28), FP,
(sequence "Q%u", 0, 31))>;
def CSR_AArch64_AllRegs
: CalleeSavedRegs<(add (sequence "W%u", 0, 30), WSP,
(sequence "X%u", 0, 28), FP, LR, SP,
(sequence "B%u", 0, 31), (sequence "H%u", 0, 31),
(sequence "S%u", 0, 31), (sequence "D%u", 0, 31),
(sequence "Q%u", 0, 31))>;
def CSR_AArch64_NoRegs : CalleeSavedRegs<(add)>;
def CSR_AArch64_RT_MostRegs : CalleeSavedRegs<(add CSR_AArch64_AAPCS,
(sequence "X%u", 9, 15))>;
def CSR_AArch64_StackProbe_Windows
: CalleeSavedRegs<(add (sequence "X%u", 0, 15),
(sequence "X%u", 18, 28), FP, SP,
(sequence "Q%u", 0, 31))>;
// Darwin variants of AAPCS.
// Darwin puts the frame-record at the top of the callee-save area.
def CSR_Darwin_AArch64_AAPCS : CalleeSavedRegs<(add LR, FP, X19, X20, X21, X22,
X23, X24, X25, X26, X27, X28,
D8, D9, D10, D11,
D12, D13, D14, D15)>;
def CSR_Darwin_AArch64_AAVPCS : CalleeSavedRegs<(add LR, FP, X19, X20, X21,
X22, X23, X24, X25, X26, X27,
X28, (sequence "Q%u", 8, 23))>;
def CSR_Darwin_AArch64_AAPCS_ThisReturn
: CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS, X0)>;
def CSR_Darwin_AArch64_AAPCS_SwiftError
: CalleeSavedRegs<(sub CSR_Darwin_AArch64_AAPCS, X21)>;
// The function used by Darwin to obtain the address of a thread-local variable
// guarantees more than a normal AAPCS function. x16 and x17 are used on the
// fast path for calculation, but other registers except X0 (argument/return)
// and LR (it is a call, after all) are preserved.
def CSR_Darwin_AArch64_TLS
: CalleeSavedRegs<(add (sub (sequence "X%u", 1, 28), X16, X17),
FP,
(sequence "Q%u", 0, 31))>;
// We can only handle a register pair with adjacent registers, the register pair
// should belong to the same class as well. Since the access function on the
// fast path calls a function that follows CSR_Darwin_AArch64_TLS,
// CSR_Darwin_AArch64_CXX_TLS should be a subset of CSR_Darwin_AArch64_TLS.
def CSR_Darwin_AArch64_CXX_TLS
: CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS,
(sub (sequence "X%u", 1, 28), X15, X16, X17, X18),
(sequence "D%u", 0, 31))>;
// CSRs that are handled by prologue, epilogue.
def CSR_Darwin_AArch64_CXX_TLS_PE
: CalleeSavedRegs<(add LR, FP)>;
// CSRs that are handled explicitly via copies.
def CSR_Darwin_AArch64_CXX_TLS_ViaCopy
: CalleeSavedRegs<(sub CSR_Darwin_AArch64_CXX_TLS, LR, FP)>;
def CSR_Darwin_AArch64_RT_MostRegs
: CalleeSavedRegs<(add CSR_Darwin_AArch64_AAPCS, (sequence "X%u", 9, 15))>;
// Variants of the standard calling conventions for shadow call stack.
// These all preserve x18 in addition to any other registers.
def CSR_AArch64_NoRegs_SCS
: CalleeSavedRegs<(add CSR_AArch64_NoRegs, X18)>;
def CSR_AArch64_AllRegs_SCS
: CalleeSavedRegs<(add CSR_AArch64_AllRegs, X18)>;
def CSR_AArch64_AAPCS_SwiftError_SCS
: CalleeSavedRegs<(add CSR_AArch64_AAPCS_SwiftError, X18)>;
def CSR_AArch64_RT_MostRegs_SCS
: CalleeSavedRegs<(add CSR_AArch64_RT_MostRegs, X18)>;
def CSR_AArch64_AAVPCS_SCS
: CalleeSavedRegs<(add CSR_AArch64_AAVPCS, X18)>;
def CSR_AArch64_SVE_AAPCS_SCS
: CalleeSavedRegs<(add CSR_AArch64_SVE_AAPCS, X18)>;
def CSR_AArch64_AAPCS_SCS
: CalleeSavedRegs<(add CSR_AArch64_AAPCS, X18)>;