llvm-project/clang/lib/Parse/ParseDecl.cpp

5692 lines
201 KiB
C++

//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Declaration portions of the Parser interfaces.
//
//===----------------------------------------------------------------------===//
#include "clang/Parse/Parser.h"
#include "RAIIObjectsForParser.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/Basic/AddressSpaces.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/OpenCL.h"
#include "clang/Parse/ParseDiagnostic.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/ParsedTemplate.h"
#include "clang/Sema/PrettyDeclStackTrace.h"
#include "clang/Sema/Scope.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringSwitch.h"
using namespace clang;
//===----------------------------------------------------------------------===//
// C99 6.7: Declarations.
//===----------------------------------------------------------------------===//
/// ParseTypeName
/// type-name: [C99 6.7.6]
/// specifier-qualifier-list abstract-declarator[opt]
///
/// Called type-id in C++.
TypeResult Parser::ParseTypeName(SourceRange *Range,
Declarator::TheContext Context,
AccessSpecifier AS,
Decl **OwnedType,
ParsedAttributes *Attrs) {
DeclSpecContext DSC = getDeclSpecContextFromDeclaratorContext(Context);
if (DSC == DSC_normal)
DSC = DSC_type_specifier;
// Parse the common declaration-specifiers piece.
DeclSpec DS(AttrFactory);
if (Attrs)
DS.addAttributes(Attrs->getList());
ParseSpecifierQualifierList(DS, AS, DSC);
if (OwnedType)
*OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : 0;
// Parse the abstract-declarator, if present.
Declarator DeclaratorInfo(DS, Context);
ParseDeclarator(DeclaratorInfo);
if (Range)
*Range = DeclaratorInfo.getSourceRange();
if (DeclaratorInfo.isInvalidType())
return true;
return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
}
/// isAttributeLateParsed - Return true if the attribute has arguments that
/// require late parsing.
static bool isAttributeLateParsed(const IdentifierInfo &II) {
return llvm::StringSwitch<bool>(II.getName())
#include "clang/Parse/AttrLateParsed.inc"
.Default(false);
}
/// ParseGNUAttributes - Parse a non-empty attributes list.
///
/// [GNU] attributes:
/// attribute
/// attributes attribute
///
/// [GNU] attribute:
/// '__attribute__' '(' '(' attribute-list ')' ')'
///
/// [GNU] attribute-list:
/// attrib
/// attribute_list ',' attrib
///
/// [GNU] attrib:
/// empty
/// attrib-name
/// attrib-name '(' identifier ')'
/// attrib-name '(' identifier ',' nonempty-expr-list ')'
/// attrib-name '(' argument-expression-list [C99 6.5.2] ')'
///
/// [GNU] attrib-name:
/// identifier
/// typespec
/// typequal
/// storageclass
///
/// Whether an attribute takes an 'identifier' is determined by the
/// attrib-name. GCC's behavior here is not worth imitating:
///
/// * In C mode, if the attribute argument list starts with an identifier
/// followed by a ',' or an ')', and the identifier doesn't resolve to
/// a type, it is parsed as an identifier. If the attribute actually
/// wanted an expression, it's out of luck (but it turns out that no
/// attributes work that way, because C constant expressions are very
/// limited).
/// * In C++ mode, if the attribute argument list starts with an identifier,
/// and the attribute *wants* an identifier, it is parsed as an identifier.
/// At block scope, any additional tokens between the identifier and the
/// ',' or ')' are ignored, otherwise they produce a parse error.
///
/// We follow the C++ model, but don't allow junk after the identifier.
void Parser::ParseGNUAttributes(ParsedAttributes &attrs,
SourceLocation *endLoc,
LateParsedAttrList *LateAttrs) {
assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
while (Tok.is(tok::kw___attribute)) {
ConsumeToken();
if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
"attribute")) {
SkipUntil(tok::r_paren, true); // skip until ) or ;
return;
}
if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
SkipUntil(tok::r_paren, true); // skip until ) or ;
return;
}
// Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
Tok.is(tok::comma)) {
if (Tok.is(tok::comma)) {
// allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
ConsumeToken();
continue;
}
// we have an identifier or declaration specifier (const, int, etc.)
IdentifierInfo *AttrName = Tok.getIdentifierInfo();
SourceLocation AttrNameLoc = ConsumeToken();
if (Tok.is(tok::l_paren)) {
// handle "parameterized" attributes
if (LateAttrs && isAttributeLateParsed(*AttrName)) {
LateParsedAttribute *LA =
new LateParsedAttribute(this, *AttrName, AttrNameLoc);
LateAttrs->push_back(LA);
// Attributes in a class are parsed at the end of the class, along
// with other late-parsed declarations.
if (!ClassStack.empty() && !LateAttrs->parseSoon())
getCurrentClass().LateParsedDeclarations.push_back(LA);
// consume everything up to and including the matching right parens
ConsumeAndStoreUntil(tok::r_paren, LA->Toks, true, false);
Token Eof;
Eof.startToken();
Eof.setLocation(Tok.getLocation());
LA->Toks.push_back(Eof);
} else {
ParseGNUAttributeArgs(AttrName, AttrNameLoc, attrs, endLoc,
0, SourceLocation(), AttributeList::AS_GNU);
}
} else {
attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0, 0,
AttributeList::AS_GNU);
}
}
if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
SkipUntil(tok::r_paren, false);
SourceLocation Loc = Tok.getLocation();
if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
SkipUntil(tok::r_paren, false);
}
if (endLoc)
*endLoc = Loc;
}
}
/// \brief Determine whether the given attribute has all expression arguments.
static bool attributeHasExprArgs(const IdentifierInfo &II) {
return llvm::StringSwitch<bool>(II.getName())
#include "clang/Parse/AttrExprArgs.inc"
.Default(false);
}
IdentifierLoc *Parser::ParseIdentifierLoc() {
assert(Tok.is(tok::identifier) && "expected an identifier");
IdentifierLoc *IL = IdentifierLoc::create(Actions.Context,
Tok.getLocation(),
Tok.getIdentifierInfo());
ConsumeToken();
return IL;
}
/// Parse the arguments to a parameterized GNU attribute or
/// a C++11 attribute in "gnu" namespace.
void Parser::ParseGNUAttributeArgs(IdentifierInfo *AttrName,
SourceLocation AttrNameLoc,
ParsedAttributes &Attrs,
SourceLocation *EndLoc,
IdentifierInfo *ScopeName,
SourceLocation ScopeLoc,
AttributeList::Syntax Syntax) {
assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
// Availability attributes have their own grammar.
if (AttrName->isStr("availability")) {
ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc);
return;
}
// Thread safety attributes fit into the FIXME case above, so we
// just parse the arguments as a list of expressions
if (IsThreadSafetyAttribute(AttrName->getName())) {
ParseThreadSafetyAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc);
return;
}
// Type safety attributes have their own grammar.
if (AttrName->isStr("type_tag_for_datatype")) {
ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc);
return;
}
ConsumeParen(); // ignore the left paren loc for now
bool BuiltinType = false;
ArgsVector ArgExprs;
TypeResult T;
SourceRange TypeRange;
bool TypeParsed = false;
switch (Tok.getKind()) {
case tok::kw_char:
case tok::kw_wchar_t:
case tok::kw_char16_t:
case tok::kw_char32_t:
case tok::kw_bool:
case tok::kw_short:
case tok::kw_int:
case tok::kw_long:
case tok::kw___int64:
case tok::kw___int128:
case tok::kw_signed:
case tok::kw_unsigned:
case tok::kw_float:
case tok::kw_double:
case tok::kw_void:
case tok::kw_typeof:
// __attribute__(( vec_type_hint(char) ))
BuiltinType = true;
T = ParseTypeName(&TypeRange);
TypeParsed = true;
break;
case tok::identifier: {
if (AttrName->isStr("vec_type_hint")) {
T = ParseTypeName(&TypeRange);
TypeParsed = true;
break;
}
// If this attribute doesn't want an 'identifier' argument, then this
// argument should be parsed as an expression.
if (attributeHasExprArgs(*AttrName))
break;
ArgExprs.push_back(ParseIdentifierLoc());
} break;
default:
break;
}
bool isInvalid = false;
bool isParmType = false;
if (!BuiltinType && !AttrName->isStr("vec_type_hint") &&
(!ArgExprs.empty() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren))) {
// Eat the comma.
if (!ArgExprs.empty())
ConsumeToken();
// Parse the non-empty comma-separated list of expressions.
while (1) {
ExprResult ArgExpr(ParseAssignmentExpression());
if (ArgExpr.isInvalid()) {
SkipUntil(tok::r_paren);
return;
}
ArgExprs.push_back(ArgExpr.release());
if (Tok.isNot(tok::comma))
break;
ConsumeToken(); // Eat the comma, move to the next argument
}
}
else if (Tok.is(tok::less) && AttrName->isStr("iboutletcollection")) {
if (!ExpectAndConsume(tok::less, diag::err_expected_less_after, "<",
tok::greater)) {
while (Tok.is(tok::identifier)) {
ConsumeToken();
if (Tok.is(tok::greater))
break;
if (Tok.is(tok::comma)) {
ConsumeToken();
continue;
}
}
if (Tok.isNot(tok::greater))
Diag(Tok, diag::err_iboutletcollection_with_protocol);
SkipUntil(tok::r_paren, false, true); // skip until ')'
}
} else if (AttrName->isStr("vec_type_hint")) {
if (T.get() && !T.isInvalid())
isParmType = true;
else {
if (Tok.is(tok::identifier))
ConsumeToken();
if (TypeParsed)
isInvalid = true;
}
}
SourceLocation RParen = Tok.getLocation();
if (!ExpectAndConsume(tok::r_paren, diag::err_expected_rparen) &&
!isInvalid) {
SourceLocation AttrLoc = ScopeLoc.isValid() ? ScopeLoc : AttrNameLoc;
if (isParmType) {
Attrs.addNewTypeAttr(AttrName, SourceRange(AttrLoc, RParen), ScopeName,
ScopeLoc, T.get(), Syntax);
} else {
AttributeList *attr = Attrs.addNew(
AttrName, SourceRange(AttrLoc, RParen), ScopeName, ScopeLoc,
ArgExprs.data(), ArgExprs.size(), Syntax);
if (BuiltinType &&
attr->getKind() == AttributeList::AT_IBOutletCollection)
Diag(Tok, diag::err_iboutletcollection_builtintype);
}
}
}
/// \brief Parses a single argument for a declspec, including the
/// surrounding parens.
void Parser::ParseMicrosoftDeclSpecWithSingleArg(IdentifierInfo *AttrName,
SourceLocation AttrNameLoc,
ParsedAttributes &Attrs)
{
BalancedDelimiterTracker T(*this, tok::l_paren);
if (T.expectAndConsume(diag::err_expected_lparen_after,
AttrName->getNameStart(), tok::r_paren))
return;
ExprResult ArgExpr(ParseConstantExpression());
if (ArgExpr.isInvalid()) {
T.skipToEnd();
return;
}
ArgsUnion ExprList = ArgExpr.take();
Attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, &ExprList, 1,
AttributeList::AS_Declspec);
T.consumeClose();
}
/// \brief Determines whether a declspec is a "simple" one requiring no
/// arguments.
bool Parser::IsSimpleMicrosoftDeclSpec(IdentifierInfo *Ident) {
return llvm::StringSwitch<bool>(Ident->getName())
.Case("dllimport", true)
.Case("dllexport", true)
.Case("noreturn", true)
.Case("nothrow", true)
.Case("noinline", true)
.Case("naked", true)
.Case("appdomain", true)
.Case("process", true)
.Case("jitintrinsic", true)
.Case("noalias", true)
.Case("restrict", true)
.Case("novtable", true)
.Case("selectany", true)
.Case("thread", true)
.Case("safebuffers", true )
.Default(false);
}
/// \brief Attempts to parse a declspec which is not simple (one that takes
/// parameters). Will return false if we properly handled the declspec, or
/// true if it is an unknown declspec.
void Parser::ParseComplexMicrosoftDeclSpec(IdentifierInfo *Ident,
SourceLocation Loc,
ParsedAttributes &Attrs) {
// Try to handle the easy case first -- these declspecs all take a single
// parameter as their argument.
if (llvm::StringSwitch<bool>(Ident->getName())
.Case("uuid", true)
.Case("align", true)
.Case("allocate", true)
.Default(false)) {
ParseMicrosoftDeclSpecWithSingleArg(Ident, Loc, Attrs);
} else if (Ident->getName() == "deprecated") {
// The deprecated declspec has an optional single argument, so we will
// check for a l-paren to decide whether we should parse an argument or
// not.
if (Tok.getKind() == tok::l_paren)
ParseMicrosoftDeclSpecWithSingleArg(Ident, Loc, Attrs);
else
Attrs.addNew(Ident, Loc, 0, Loc, 0, 0, AttributeList::AS_Declspec);
} else if (Ident->getName() == "property") {
// The property declspec is more complex in that it can take one or two
// assignment expressions as a parameter, but the lhs of the assignment
// must be named get or put.
if (Tok.isNot(tok::l_paren)) {
Diag(Tok.getLocation(), diag::err_expected_lparen_after)
<< Ident->getNameStart();
return;
}
BalancedDelimiterTracker T(*this, tok::l_paren);
T.expectAndConsume(diag::err_expected_lparen_after,
Ident->getNameStart(), tok::r_paren);
enum AccessorKind {
AK_Invalid = -1,
AK_Put = 0, AK_Get = 1 // indices into AccessorNames
};
IdentifierInfo *AccessorNames[] = { 0, 0 };
bool HasInvalidAccessor = false;
// Parse the accessor specifications.
while (true) {
// Stop if this doesn't look like an accessor spec.
if (!Tok.is(tok::identifier)) {
// If the user wrote a completely empty list, use a special diagnostic.
if (Tok.is(tok::r_paren) && !HasInvalidAccessor &&
AccessorNames[AK_Put] == 0 && AccessorNames[AK_Get] == 0) {
Diag(Loc, diag::err_ms_property_no_getter_or_putter);
break;
}
Diag(Tok.getLocation(), diag::err_ms_property_unknown_accessor);
break;
}
AccessorKind Kind;
SourceLocation KindLoc = Tok.getLocation();
StringRef KindStr = Tok.getIdentifierInfo()->getName();
if (KindStr == "get") {
Kind = AK_Get;
} else if (KindStr == "put") {
Kind = AK_Put;
// Recover from the common mistake of using 'set' instead of 'put'.
} else if (KindStr == "set") {
Diag(KindLoc, diag::err_ms_property_has_set_accessor)
<< FixItHint::CreateReplacement(KindLoc, "put");
Kind = AK_Put;
// Handle the mistake of forgetting the accessor kind by skipping
// this accessor.
} else if (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)) {
Diag(KindLoc, diag::err_ms_property_missing_accessor_kind);
ConsumeToken();
HasInvalidAccessor = true;
goto next_property_accessor;
// Otherwise, complain about the unknown accessor kind.
} else {
Diag(KindLoc, diag::err_ms_property_unknown_accessor);
HasInvalidAccessor = true;
Kind = AK_Invalid;
// Try to keep parsing unless it doesn't look like an accessor spec.
if (!NextToken().is(tok::equal)) break;
}
// Consume the identifier.
ConsumeToken();
// Consume the '='.
if (Tok.is(tok::equal)) {
ConsumeToken();
} else {
Diag(Tok.getLocation(), diag::err_ms_property_expected_equal)
<< KindStr;
break;
}
// Expect the method name.
if (!Tok.is(tok::identifier)) {
Diag(Tok.getLocation(), diag::err_ms_property_expected_accessor_name);
break;
}
if (Kind == AK_Invalid) {
// Just drop invalid accessors.
} else if (AccessorNames[Kind] != NULL) {
// Complain about the repeated accessor, ignore it, and keep parsing.
Diag(KindLoc, diag::err_ms_property_duplicate_accessor) << KindStr;
} else {
AccessorNames[Kind] = Tok.getIdentifierInfo();
}
ConsumeToken();
next_property_accessor:
// Keep processing accessors until we run out.
if (Tok.is(tok::comma)) {
ConsumeAnyToken();
continue;
// If we run into the ')', stop without consuming it.
} else if (Tok.is(tok::r_paren)) {
break;
} else {
Diag(Tok.getLocation(), diag::err_ms_property_expected_comma_or_rparen);
break;
}
}
// Only add the property attribute if it was well-formed.
if (!HasInvalidAccessor) {
Attrs.addNewPropertyAttr(Ident, Loc, 0, SourceLocation(),
AccessorNames[AK_Get], AccessorNames[AK_Put],
AttributeList::AS_Declspec);
}
T.skipToEnd();
} else {
// We don't recognize this as a valid declspec, but instead of creating the
// attribute and allowing sema to warn about it, we will warn here instead.
// This is because some attributes have multiple spellings, but we need to
// disallow that for declspecs (such as align vs aligned). If we made the
// attribute, we'd have to split the valid declspec spelling logic into
// both locations.
Diag(Loc, diag::warn_ms_declspec_unknown) << Ident;
// If there's an open paren, we should eat the open and close parens under
// the assumption that this unknown declspec has parameters.
BalancedDelimiterTracker T(*this, tok::l_paren);
if (!T.consumeOpen())
T.skipToEnd();
}
}
/// [MS] decl-specifier:
/// __declspec ( extended-decl-modifier-seq )
///
/// [MS] extended-decl-modifier-seq:
/// extended-decl-modifier[opt]
/// extended-decl-modifier extended-decl-modifier-seq
void Parser::ParseMicrosoftDeclSpec(ParsedAttributes &Attrs) {
assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
ConsumeToken();
BalancedDelimiterTracker T(*this, tok::l_paren);
if (T.expectAndConsume(diag::err_expected_lparen_after, "__declspec",
tok::r_paren))
return;
// An empty declspec is perfectly legal and should not warn. Additionally,
// you can specify multiple attributes per declspec.
while (Tok.getKind() != tok::r_paren) {
// We expect either a well-known identifier or a generic string. Anything
// else is a malformed declspec.
bool IsString = Tok.getKind() == tok::string_literal ? true : false;
if (!IsString && Tok.getKind() != tok::identifier &&
Tok.getKind() != tok::kw_restrict) {
Diag(Tok, diag::err_ms_declspec_type);
T.skipToEnd();
return;
}
IdentifierInfo *AttrName;
SourceLocation AttrNameLoc;
if (IsString) {
SmallString<8> StrBuffer;
bool Invalid = false;
StringRef Str = PP.getSpelling(Tok, StrBuffer, &Invalid);
if (Invalid) {
T.skipToEnd();
return;
}
AttrName = PP.getIdentifierInfo(Str);
AttrNameLoc = ConsumeStringToken();
} else {
AttrName = Tok.getIdentifierInfo();
AttrNameLoc = ConsumeToken();
}
if (IsString || IsSimpleMicrosoftDeclSpec(AttrName))
// If we have a generic string, we will allow it because there is no
// documented list of allowable string declspecs, but we know they exist
// (for instance, SAL declspecs in older versions of MSVC).
//
// Alternatively, if the identifier is a simple one, then it requires no
// arguments and can be turned into an attribute directly.
Attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0, 0,
AttributeList::AS_Declspec);
else
ParseComplexMicrosoftDeclSpec(AttrName, AttrNameLoc, Attrs);
}
T.consumeClose();
}
void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
// Treat these like attributes
while (Tok.is(tok::kw___fastcall) || Tok.is(tok::kw___stdcall) ||
Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___cdecl) ||
Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64) ||
Tok.is(tok::kw___ptr32) || Tok.is(tok::kw___unaligned) ||
Tok.is(tok::kw___sptr) || Tok.is(tok::kw___uptr)) {
IdentifierInfo *AttrName = Tok.getIdentifierInfo();
SourceLocation AttrNameLoc = ConsumeToken();
attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0, 0,
AttributeList::AS_Keyword);
}
}
void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
// Treat these like attributes
while (Tok.is(tok::kw___pascal)) {
IdentifierInfo *AttrName = Tok.getIdentifierInfo();
SourceLocation AttrNameLoc = ConsumeToken();
attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0, 0,
AttributeList::AS_Keyword);
}
}
void Parser::ParseOpenCLAttributes(ParsedAttributes &attrs) {
// Treat these like attributes
while (Tok.is(tok::kw___kernel)) {
IdentifierInfo *AttrName = Tok.getIdentifierInfo();
SourceLocation AttrNameLoc = ConsumeToken();
attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0, 0,
AttributeList::AS_Keyword);
}
}
void Parser::ParseOpenCLQualifiers(DeclSpec &DS) {
// FIXME: The mapping from attribute spelling to semantics should be
// performed in Sema, not here.
SourceLocation Loc = Tok.getLocation();
switch(Tok.getKind()) {
// OpenCL qualifiers:
case tok::kw___private:
case tok::kw_private:
DS.getAttributes().addNewInteger(
Actions.getASTContext(),
PP.getIdentifierInfo("address_space"), Loc, 0);
break;
case tok::kw___global:
DS.getAttributes().addNewInteger(
Actions.getASTContext(),
PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_global);
break;
case tok::kw___local:
DS.getAttributes().addNewInteger(
Actions.getASTContext(),
PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_local);
break;
case tok::kw___constant:
DS.getAttributes().addNewInteger(
Actions.getASTContext(),
PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_constant);
break;
case tok::kw___read_only:
DS.getAttributes().addNewInteger(
Actions.getASTContext(),
PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_read_only);
break;
case tok::kw___write_only:
DS.getAttributes().addNewInteger(
Actions.getASTContext(),
PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_write_only);
break;
case tok::kw___read_write:
DS.getAttributes().addNewInteger(
Actions.getASTContext(),
PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_read_write);
break;
default: break;
}
}
/// \brief Parse a version number.
///
/// version:
/// simple-integer
/// simple-integer ',' simple-integer
/// simple-integer ',' simple-integer ',' simple-integer
VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
Range = Tok.getLocation();
if (!Tok.is(tok::numeric_constant)) {
Diag(Tok, diag::err_expected_version);
SkipUntil(tok::comma, tok::r_paren, true, true, true);
return VersionTuple();
}
// Parse the major (and possibly minor and subminor) versions, which
// are stored in the numeric constant. We utilize a quirk of the
// lexer, which is that it handles something like 1.2.3 as a single
// numeric constant, rather than two separate tokens.
SmallString<512> Buffer;
Buffer.resize(Tok.getLength()+1);
const char *ThisTokBegin = &Buffer[0];
// Get the spelling of the token, which eliminates trigraphs, etc.
bool Invalid = false;
unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
if (Invalid)
return VersionTuple();
// Parse the major version.
unsigned AfterMajor = 0;
unsigned Major = 0;
while (AfterMajor < ActualLength && isDigit(ThisTokBegin[AfterMajor])) {
Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
++AfterMajor;
}
if (AfterMajor == 0) {
Diag(Tok, diag::err_expected_version);
SkipUntil(tok::comma, tok::r_paren, true, true, true);
return VersionTuple();
}
if (AfterMajor == ActualLength) {
ConsumeToken();
// We only had a single version component.
if (Major == 0) {
Diag(Tok, diag::err_zero_version);
return VersionTuple();
}
return VersionTuple(Major);
}
if (ThisTokBegin[AfterMajor] != '.' || (AfterMajor + 1 == ActualLength)) {
Diag(Tok, diag::err_expected_version);
SkipUntil(tok::comma, tok::r_paren, true, true, true);
return VersionTuple();
}
// Parse the minor version.
unsigned AfterMinor = AfterMajor + 1;
unsigned Minor = 0;
while (AfterMinor < ActualLength && isDigit(ThisTokBegin[AfterMinor])) {
Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
++AfterMinor;
}
if (AfterMinor == ActualLength) {
ConsumeToken();
// We had major.minor.
if (Major == 0 && Minor == 0) {
Diag(Tok, diag::err_zero_version);
return VersionTuple();
}
return VersionTuple(Major, Minor);
}
// If what follows is not a '.', we have a problem.
if (ThisTokBegin[AfterMinor] != '.') {
Diag(Tok, diag::err_expected_version);
SkipUntil(tok::comma, tok::r_paren, true, true, true);
return VersionTuple();
}
// Parse the subminor version.
unsigned AfterSubminor = AfterMinor + 1;
unsigned Subminor = 0;
while (AfterSubminor < ActualLength && isDigit(ThisTokBegin[AfterSubminor])) {
Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
++AfterSubminor;
}
if (AfterSubminor != ActualLength) {
Diag(Tok, diag::err_expected_version);
SkipUntil(tok::comma, tok::r_paren, true, true, true);
return VersionTuple();
}
ConsumeToken();
return VersionTuple(Major, Minor, Subminor);
}
/// \brief Parse the contents of the "availability" attribute.
///
/// availability-attribute:
/// 'availability' '(' platform ',' version-arg-list, opt-message')'
///
/// platform:
/// identifier
///
/// version-arg-list:
/// version-arg
/// version-arg ',' version-arg-list
///
/// version-arg:
/// 'introduced' '=' version
/// 'deprecated' '=' version
/// 'obsoleted' = version
/// 'unavailable'
/// opt-message:
/// 'message' '=' <string>
void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability,
SourceLocation AvailabilityLoc,
ParsedAttributes &attrs,
SourceLocation *endLoc) {
enum { Introduced, Deprecated, Obsoleted, Unknown };
AvailabilityChange Changes[Unknown];
ExprResult MessageExpr;
// Opening '('.
BalancedDelimiterTracker T(*this, tok::l_paren);
if (T.consumeOpen()) {
Diag(Tok, diag::err_expected_lparen);
return;
}
// Parse the platform name,
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_availability_expected_platform);
SkipUntil(tok::r_paren);
return;
}
IdentifierLoc *Platform = ParseIdentifierLoc();
// Parse the ',' following the platform name.
if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "", tok::r_paren))
return;
// If we haven't grabbed the pointers for the identifiers
// "introduced", "deprecated", and "obsoleted", do so now.
if (!Ident_introduced) {
Ident_introduced = PP.getIdentifierInfo("introduced");
Ident_deprecated = PP.getIdentifierInfo("deprecated");
Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
Ident_unavailable = PP.getIdentifierInfo("unavailable");
Ident_message = PP.getIdentifierInfo("message");
}
// Parse the set of introductions/deprecations/removals.
SourceLocation UnavailableLoc;
do {
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_availability_expected_change);
SkipUntil(tok::r_paren);
return;
}
IdentifierInfo *Keyword = Tok.getIdentifierInfo();
SourceLocation KeywordLoc = ConsumeToken();
if (Keyword == Ident_unavailable) {
if (UnavailableLoc.isValid()) {
Diag(KeywordLoc, diag::err_availability_redundant)
<< Keyword << SourceRange(UnavailableLoc);
}
UnavailableLoc = KeywordLoc;
if (Tok.isNot(tok::comma))
break;
ConsumeToken();
continue;
}
if (Tok.isNot(tok::equal)) {
Diag(Tok, diag::err_expected_equal_after)
<< Keyword;
SkipUntil(tok::r_paren);
return;
}
ConsumeToken();
if (Keyword == Ident_message) {
if (Tok.isNot(tok::string_literal)) { // Also reject wide string literals.
Diag(Tok, diag::err_expected_string_literal)
<< /*Source='availability attribute'*/2;
SkipUntil(tok::r_paren);
return;
}
MessageExpr = ParseStringLiteralExpression();
break;
}
SourceRange VersionRange;
VersionTuple Version = ParseVersionTuple(VersionRange);
if (Version.empty()) {
SkipUntil(tok::r_paren);
return;
}
unsigned Index;
if (Keyword == Ident_introduced)
Index = Introduced;
else if (Keyword == Ident_deprecated)
Index = Deprecated;
else if (Keyword == Ident_obsoleted)
Index = Obsoleted;
else
Index = Unknown;
if (Index < Unknown) {
if (!Changes[Index].KeywordLoc.isInvalid()) {
Diag(KeywordLoc, diag::err_availability_redundant)
<< Keyword
<< SourceRange(Changes[Index].KeywordLoc,
Changes[Index].VersionRange.getEnd());
}
Changes[Index].KeywordLoc = KeywordLoc;
Changes[Index].Version = Version;
Changes[Index].VersionRange = VersionRange;
} else {
Diag(KeywordLoc, diag::err_availability_unknown_change)
<< Keyword << VersionRange;
}
if (Tok.isNot(tok::comma))
break;
ConsumeToken();
} while (true);
// Closing ')'.
if (T.consumeClose())
return;
if (endLoc)
*endLoc = T.getCloseLocation();
// The 'unavailable' availability cannot be combined with any other
// availability changes. Make sure that hasn't happened.
if (UnavailableLoc.isValid()) {
bool Complained = false;
for (unsigned Index = Introduced; Index != Unknown; ++Index) {
if (Changes[Index].KeywordLoc.isValid()) {
if (!Complained) {
Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
<< SourceRange(Changes[Index].KeywordLoc,
Changes[Index].VersionRange.getEnd());
Complained = true;
}
// Clear out the availability.
Changes[Index] = AvailabilityChange();
}
}
}
// Record this attribute
attrs.addNew(&Availability,
SourceRange(AvailabilityLoc, T.getCloseLocation()),
0, AvailabilityLoc,
Platform,
Changes[Introduced],
Changes[Deprecated],
Changes[Obsoleted],
UnavailableLoc, MessageExpr.take(),
AttributeList::AS_GNU);
}
// Late Parsed Attributes:
// See other examples of late parsing in lib/Parse/ParseCXXInlineMethods
void Parser::LateParsedDeclaration::ParseLexedAttributes() {}
void Parser::LateParsedClass::ParseLexedAttributes() {
Self->ParseLexedAttributes(*Class);
}
void Parser::LateParsedAttribute::ParseLexedAttributes() {
Self->ParseLexedAttribute(*this, true, false);
}
/// Wrapper class which calls ParseLexedAttribute, after setting up the
/// scope appropriately.
void Parser::ParseLexedAttributes(ParsingClass &Class) {
// Deal with templates
// FIXME: Test cases to make sure this does the right thing for templates.
bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
ParseScope ClassTemplateScope(this, Scope::TemplateParamScope,
HasTemplateScope);
if (HasTemplateScope)
Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate);
// Set or update the scope flags.
bool AlreadyHasClassScope = Class.TopLevelClass;
unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope;
ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope);
ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope);
// Enter the scope of nested classes
if (!AlreadyHasClassScope)
Actions.ActOnStartDelayedMemberDeclarations(getCurScope(),
Class.TagOrTemplate);
if (!Class.LateParsedDeclarations.empty()) {
for (unsigned i = 0, ni = Class.LateParsedDeclarations.size(); i < ni; ++i){
Class.LateParsedDeclarations[i]->ParseLexedAttributes();
}
}
if (!AlreadyHasClassScope)
Actions.ActOnFinishDelayedMemberDeclarations(getCurScope(),
Class.TagOrTemplate);
}
/// \brief Parse all attributes in LAs, and attach them to Decl D.
void Parser::ParseLexedAttributeList(LateParsedAttrList &LAs, Decl *D,
bool EnterScope, bool OnDefinition) {
assert(LAs.parseSoon() &&
"Attribute list should be marked for immediate parsing.");
for (unsigned i = 0, ni = LAs.size(); i < ni; ++i) {
if (D)
LAs[i]->addDecl(D);
ParseLexedAttribute(*LAs[i], EnterScope, OnDefinition);
delete LAs[i];
}
LAs.clear();
}
/// \brief Finish parsing an attribute for which parsing was delayed.
/// This will be called at the end of parsing a class declaration
/// for each LateParsedAttribute. We consume the saved tokens and
/// create an attribute with the arguments filled in. We add this
/// to the Attribute list for the decl.
void Parser::ParseLexedAttribute(LateParsedAttribute &LA,
bool EnterScope, bool OnDefinition) {
// Save the current token position.
SourceLocation OrigLoc = Tok.getLocation();
// Append the current token at the end of the new token stream so that it
// doesn't get lost.
LA.Toks.push_back(Tok);
PP.EnterTokenStream(LA.Toks.data(), LA.Toks.size(), true, false);
// Consume the previously pushed token.
ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true);
if (OnDefinition && !IsThreadSafetyAttribute(LA.AttrName.getName())) {
// FIXME: Do not warn on C++11 attributes, once we start supporting
// them here.
Diag(Tok, diag::warn_attribute_on_function_definition)
<< LA.AttrName.getName();
}
ParsedAttributes Attrs(AttrFactory);
SourceLocation endLoc;
if (LA.Decls.size() > 0) {
Decl *D = LA.Decls[0];
NamedDecl *ND = dyn_cast<NamedDecl>(D);
RecordDecl *RD = dyn_cast_or_null<RecordDecl>(D->getDeclContext());
// Allow 'this' within late-parsed attributes.
Sema::CXXThisScopeRAII ThisScope(Actions, RD, /*TypeQuals=*/0,
ND && ND->isCXXInstanceMember());
if (LA.Decls.size() == 1) {
// If the Decl is templatized, add template parameters to scope.
bool HasTemplateScope = EnterScope && D->isTemplateDecl();
ParseScope TempScope(this, Scope::TemplateParamScope, HasTemplateScope);
if (HasTemplateScope)
Actions.ActOnReenterTemplateScope(Actions.CurScope, D);
// If the Decl is on a function, add function parameters to the scope.
bool HasFunScope = EnterScope && D->isFunctionOrFunctionTemplate();
ParseScope FnScope(this, Scope::FnScope|Scope::DeclScope, HasFunScope);
if (HasFunScope)
Actions.ActOnReenterFunctionContext(Actions.CurScope, D);
ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
0, SourceLocation(), AttributeList::AS_GNU);
if (HasFunScope) {
Actions.ActOnExitFunctionContext();
FnScope.Exit(); // Pop scope, and remove Decls from IdResolver
}
if (HasTemplateScope) {
TempScope.Exit();
}
} else {
// If there are multiple decls, then the decl cannot be within the
// function scope.
ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
0, SourceLocation(), AttributeList::AS_GNU);
}
} else {
Diag(Tok, diag::warn_attribute_no_decl) << LA.AttrName.getName();
}
for (unsigned i = 0, ni = LA.Decls.size(); i < ni; ++i) {
Actions.ActOnFinishDelayedAttribute(getCurScope(), LA.Decls[i], Attrs);
}
if (Tok.getLocation() != OrigLoc) {
// Due to a parsing error, we either went over the cached tokens or
// there are still cached tokens left, so we skip the leftover tokens.
// Since this is an uncommon situation that should be avoided, use the
// expensive isBeforeInTranslationUnit call.
if (PP.getSourceManager().isBeforeInTranslationUnit(Tok.getLocation(),
OrigLoc))
while (Tok.getLocation() != OrigLoc && Tok.isNot(tok::eof))
ConsumeAnyToken();
}
}
/// \brief Wrapper around a case statement checking if AttrName is
/// one of the thread safety attributes
bool Parser::IsThreadSafetyAttribute(StringRef AttrName) {
return llvm::StringSwitch<bool>(AttrName)
.Case("guarded_by", true)
.Case("guarded_var", true)
.Case("pt_guarded_by", true)
.Case("pt_guarded_var", true)
.Case("lockable", true)
.Case("scoped_lockable", true)
.Case("no_thread_safety_analysis", true)
.Case("acquired_after", true)
.Case("acquired_before", true)
.Case("exclusive_lock_function", true)
.Case("shared_lock_function", true)
.Case("exclusive_trylock_function", true)
.Case("shared_trylock_function", true)
.Case("unlock_function", true)
.Case("lock_returned", true)
.Case("locks_excluded", true)
.Case("exclusive_locks_required", true)
.Case("shared_locks_required", true)
.Default(false);
}
/// \brief Parse the contents of thread safety attributes. These
/// should always be parsed as an expression list.
///
/// We need to special case the parsing due to the fact that if the first token
/// of the first argument is an identifier, the main parse loop will store
/// that token as a "parameter" and the rest of
/// the arguments will be added to a list of "arguments". However,
/// subsequent tokens in the first argument are lost. We instead parse each
/// argument as an expression and add all arguments to the list of "arguments".
/// In future, we will take advantage of this special case to also
/// deal with some argument scoping issues here (for example, referring to a
/// function parameter in the attribute on that function).
void Parser::ParseThreadSafetyAttribute(IdentifierInfo &AttrName,
SourceLocation AttrNameLoc,
ParsedAttributes &Attrs,
SourceLocation *EndLoc) {
assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
BalancedDelimiterTracker T(*this, tok::l_paren);
T.consumeOpen();
ArgsVector ArgExprs;
bool ArgExprsOk = true;
// now parse the list of expressions
while (Tok.isNot(tok::r_paren)) {
EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
ExprResult ArgExpr(ParseAssignmentExpression());
if (ArgExpr.isInvalid()) {
ArgExprsOk = false;
T.consumeClose();
break;
} else {
ArgExprs.push_back(ArgExpr.release());
}
if (Tok.isNot(tok::comma))
break;
ConsumeToken(); // Eat the comma, move to the next argument
}
// Match the ')'.
if (ArgExprsOk && !T.consumeClose()) {
Attrs.addNew(&AttrName, AttrNameLoc, 0, AttrNameLoc, ArgExprs.data(),
ArgExprs.size(), AttributeList::AS_GNU);
}
if (EndLoc)
*EndLoc = T.getCloseLocation();
}
void Parser::ParseTypeTagForDatatypeAttribute(IdentifierInfo &AttrName,
SourceLocation AttrNameLoc,
ParsedAttributes &Attrs,
SourceLocation *EndLoc) {
assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
BalancedDelimiterTracker T(*this, tok::l_paren);
T.consumeOpen();
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_expected_ident);
T.skipToEnd();
return;
}
IdentifierLoc *ArgumentKind = ParseIdentifierLoc();
if (Tok.isNot(tok::comma)) {
Diag(Tok, diag::err_expected_comma);
T.skipToEnd();
return;
}
ConsumeToken();
SourceRange MatchingCTypeRange;
TypeResult MatchingCType = ParseTypeName(&MatchingCTypeRange);
if (MatchingCType.isInvalid()) {
T.skipToEnd();
return;
}
bool LayoutCompatible = false;
bool MustBeNull = false;
while (Tok.is(tok::comma)) {
ConsumeToken();
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_expected_ident);
T.skipToEnd();
return;
}
IdentifierInfo *Flag = Tok.getIdentifierInfo();
if (Flag->isStr("layout_compatible"))
LayoutCompatible = true;
else if (Flag->isStr("must_be_null"))
MustBeNull = true;
else {
Diag(Tok, diag::err_type_safety_unknown_flag) << Flag;
T.skipToEnd();
return;
}
ConsumeToken(); // consume flag
}
if (!T.consumeClose()) {
Attrs.addNewTypeTagForDatatype(&AttrName, AttrNameLoc, 0, AttrNameLoc,
ArgumentKind, MatchingCType.release(),
LayoutCompatible, MustBeNull,
AttributeList::AS_GNU);
}
if (EndLoc)
*EndLoc = T.getCloseLocation();
}
/// DiagnoseProhibitedCXX11Attribute - We have found the opening square brackets
/// of a C++11 attribute-specifier in a location where an attribute is not
/// permitted. By C++11 [dcl.attr.grammar]p6, this is ill-formed. Diagnose this
/// situation.
///
/// \return \c true if we skipped an attribute-like chunk of tokens, \c false if
/// this doesn't appear to actually be an attribute-specifier, and the caller
/// should try to parse it.
bool Parser::DiagnoseProhibitedCXX11Attribute() {
assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square));
switch (isCXX11AttributeSpecifier(/*Disambiguate*/true)) {
case CAK_NotAttributeSpecifier:
// No diagnostic: we're in Obj-C++11 and this is not actually an attribute.
return false;
case CAK_InvalidAttributeSpecifier:
Diag(Tok.getLocation(), diag::err_l_square_l_square_not_attribute);
return false;
case CAK_AttributeSpecifier:
// Parse and discard the attributes.
SourceLocation BeginLoc = ConsumeBracket();
ConsumeBracket();
SkipUntil(tok::r_square, /*StopAtSemi*/ false);
assert(Tok.is(tok::r_square) && "isCXX11AttributeSpecifier lied");
SourceLocation EndLoc = ConsumeBracket();
Diag(BeginLoc, diag::err_attributes_not_allowed)
<< SourceRange(BeginLoc, EndLoc);
return true;
}
llvm_unreachable("All cases handled above.");
}
/// \brief We have found the opening square brackets of a C++11
/// attribute-specifier in a location where an attribute is not permitted, but
/// we know where the attributes ought to be written. Parse them anyway, and
/// provide a fixit moving them to the right place.
void Parser::DiagnoseMisplacedCXX11Attribute(ParsedAttributesWithRange &Attrs,
SourceLocation CorrectLocation) {
assert((Tok.is(tok::l_square) && NextToken().is(tok::l_square)) ||
Tok.is(tok::kw_alignas));
// Consume the attributes.
SourceLocation Loc = Tok.getLocation();
ParseCXX11Attributes(Attrs);
CharSourceRange AttrRange(SourceRange(Loc, Attrs.Range.getEnd()), true);
Diag(Loc, diag::err_attributes_not_allowed)
<< FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
<< FixItHint::CreateRemoval(AttrRange);
}
void Parser::DiagnoseProhibitedAttributes(ParsedAttributesWithRange &attrs) {
Diag(attrs.Range.getBegin(), diag::err_attributes_not_allowed)
<< attrs.Range;
}
void Parser::ProhibitCXX11Attributes(ParsedAttributesWithRange &attrs) {
AttributeList *AttrList = attrs.getList();
while (AttrList) {
if (AttrList->isCXX11Attribute()) {
Diag(AttrList->getLoc(), diag::err_attribute_not_type_attr)
<< AttrList->getName();
AttrList->setInvalid();
}
AttrList = AttrList->getNext();
}
}
/// ParseDeclaration - Parse a full 'declaration', which consists of
/// declaration-specifiers, some number of declarators, and a semicolon.
/// 'Context' should be a Declarator::TheContext value. This returns the
/// location of the semicolon in DeclEnd.
///
/// declaration: [C99 6.7]
/// block-declaration ->
/// simple-declaration
/// others [FIXME]
/// [C++] template-declaration
/// [C++] namespace-definition
/// [C++] using-directive
/// [C++] using-declaration
/// [C++11/C11] static_assert-declaration
/// others... [FIXME]
///
Parser::DeclGroupPtrTy Parser::ParseDeclaration(StmtVector &Stmts,
unsigned Context,
SourceLocation &DeclEnd,
ParsedAttributesWithRange &attrs) {
ParenBraceBracketBalancer BalancerRAIIObj(*this);
// Must temporarily exit the objective-c container scope for
// parsing c none objective-c decls.
ObjCDeclContextSwitch ObjCDC(*this);
Decl *SingleDecl = 0;
Decl *OwnedType = 0;
switch (Tok.getKind()) {
case tok::kw_template:
case tok::kw_export:
ProhibitAttributes(attrs);
SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
break;
case tok::kw_inline:
// Could be the start of an inline namespace. Allowed as an ext in C++03.
if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_namespace)) {
ProhibitAttributes(attrs);
SourceLocation InlineLoc = ConsumeToken();
SingleDecl = ParseNamespace(Context, DeclEnd, InlineLoc);
break;
}
return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs,
true);
case tok::kw_namespace:
ProhibitAttributes(attrs);
SingleDecl = ParseNamespace(Context, DeclEnd);
break;
case tok::kw_using:
SingleDecl = ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
DeclEnd, attrs, &OwnedType);
break;
case tok::kw_static_assert:
case tok::kw__Static_assert:
ProhibitAttributes(attrs);
SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
break;
default:
return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs, true);
}
// This routine returns a DeclGroup, if the thing we parsed only contains a
// single decl, convert it now. Alias declarations can also declare a type;
// include that too if it is present.
return Actions.ConvertDeclToDeclGroup(SingleDecl, OwnedType);
}
/// simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
/// declaration-specifiers init-declarator-list[opt] ';'
/// [C++11] attribute-specifier-seq decl-specifier-seq[opt]
/// init-declarator-list ';'
///[C90/C++]init-declarator-list ';' [TODO]
/// [OMP] threadprivate-directive [TODO]
///
/// for-range-declaration: [C++11 6.5p1: stmt.ranged]
/// attribute-specifier-seq[opt] type-specifier-seq declarator
///
/// If RequireSemi is false, this does not check for a ';' at the end of the
/// declaration. If it is true, it checks for and eats it.
///
/// If FRI is non-null, we might be parsing a for-range-declaration instead
/// of a simple-declaration. If we find that we are, we also parse the
/// for-range-initializer, and place it here.
Parser::DeclGroupPtrTy
Parser::ParseSimpleDeclaration(StmtVector &Stmts, unsigned Context,
SourceLocation &DeclEnd,
ParsedAttributesWithRange &Attrs,
bool RequireSemi, ForRangeInit *FRI) {
// Parse the common declaration-specifiers piece.
ParsingDeclSpec DS(*this);
ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none,
getDeclSpecContextFromDeclaratorContext(Context));
// C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
// declaration-specifiers init-declarator-list[opt] ';'
if (Tok.is(tok::semi)) {
ProhibitAttributes(Attrs);
DeclEnd = Tok.getLocation();
if (RequireSemi) ConsumeToken();
Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
DS);
DS.complete(TheDecl);
return Actions.ConvertDeclToDeclGroup(TheDecl);
}
DS.takeAttributesFrom(Attrs);
return ParseDeclGroup(DS, Context, /*FunctionDefs=*/ false, &DeclEnd, FRI);
}
/// Returns true if this might be the start of a declarator, or a common typo
/// for a declarator.
bool Parser::MightBeDeclarator(unsigned Context) {
switch (Tok.getKind()) {
case tok::annot_cxxscope:
case tok::annot_template_id:
case tok::caret:
case tok::code_completion:
case tok::coloncolon:
case tok::ellipsis:
case tok::kw___attribute:
case tok::kw_operator:
case tok::l_paren:
case tok::star:
return true;
case tok::amp:
case tok::ampamp:
return getLangOpts().CPlusPlus;
case tok::l_square: // Might be an attribute on an unnamed bit-field.
return Context == Declarator::MemberContext && getLangOpts().CPlusPlus11 &&
NextToken().is(tok::l_square);
case tok::colon: // Might be a typo for '::' or an unnamed bit-field.
return Context == Declarator::MemberContext || getLangOpts().CPlusPlus;
case tok::identifier:
switch (NextToken().getKind()) {
case tok::code_completion:
case tok::coloncolon:
case tok::comma:
case tok::equal:
case tok::equalequal: // Might be a typo for '='.
case tok::kw_alignas:
case tok::kw_asm:
case tok::kw___attribute:
case tok::l_brace:
case tok::l_paren:
case tok::l_square:
case tok::less:
case tok::r_brace:
case tok::r_paren:
case tok::r_square:
case tok::semi:
return true;
case tok::colon:
// At namespace scope, 'identifier:' is probably a typo for 'identifier::'
// and in block scope it's probably a label. Inside a class definition,
// this is a bit-field.
return Context == Declarator::MemberContext ||
(getLangOpts().CPlusPlus && Context == Declarator::FileContext);
case tok::identifier: // Possible virt-specifier.
return getLangOpts().CPlusPlus11 && isCXX11VirtSpecifier(NextToken());
default:
return false;
}
default:
return false;
}
}
/// Skip until we reach something which seems like a sensible place to pick
/// up parsing after a malformed declaration. This will sometimes stop sooner
/// than SkipUntil(tok::r_brace) would, but will never stop later.
void Parser::SkipMalformedDecl() {
while (true) {
switch (Tok.getKind()) {
case tok::l_brace:
// Skip until matching }, then stop. We've probably skipped over
// a malformed class or function definition or similar.
ConsumeBrace();
SkipUntil(tok::r_brace, /*StopAtSemi*/false);
if (Tok.is(tok::comma) || Tok.is(tok::l_brace) || Tok.is(tok::kw_try)) {
// This declaration isn't over yet. Keep skipping.
continue;
}
if (Tok.is(tok::semi))
ConsumeToken();
return;
case tok::l_square:
ConsumeBracket();
SkipUntil(tok::r_square, /*StopAtSemi*/false);
continue;
case tok::l_paren:
ConsumeParen();
SkipUntil(tok::r_paren, /*StopAtSemi*/false);
continue;
case tok::r_brace:
return;
case tok::semi:
ConsumeToken();
return;
case tok::kw_inline:
// 'inline namespace' at the start of a line is almost certainly
// a good place to pick back up parsing, except in an Objective-C
// @interface context.
if (Tok.isAtStartOfLine() && NextToken().is(tok::kw_namespace) &&
(!ParsingInObjCContainer || CurParsedObjCImpl))
return;
break;
case tok::kw_namespace:
// 'namespace' at the start of a line is almost certainly a good
// place to pick back up parsing, except in an Objective-C
// @interface context.
if (Tok.isAtStartOfLine() &&
(!ParsingInObjCContainer || CurParsedObjCImpl))
return;
break;
case tok::at:
// @end is very much like } in Objective-C contexts.
if (NextToken().isObjCAtKeyword(tok::objc_end) &&
ParsingInObjCContainer)
return;
break;
case tok::minus:
case tok::plus:
// - and + probably start new method declarations in Objective-C contexts.
if (Tok.isAtStartOfLine() && ParsingInObjCContainer)
return;
break;
case tok::eof:
return;
default:
break;
}
ConsumeAnyToken();
}
}
/// ParseDeclGroup - Having concluded that this is either a function
/// definition or a group of object declarations, actually parse the
/// result.
Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
unsigned Context,
bool AllowFunctionDefinitions,
SourceLocation *DeclEnd,
ForRangeInit *FRI) {
// Parse the first declarator.
ParsingDeclarator D(*this, DS, static_cast<Declarator::TheContext>(Context));
ParseDeclarator(D);
// Bail out if the first declarator didn't seem well-formed.
if (!D.hasName() && !D.mayOmitIdentifier()) {
SkipMalformedDecl();
return DeclGroupPtrTy();
}
// Save late-parsed attributes for now; they need to be parsed in the
// appropriate function scope after the function Decl has been constructed.
// These will be parsed in ParseFunctionDefinition or ParseLexedAttrList.
LateParsedAttrList LateParsedAttrs(true);
if (D.isFunctionDeclarator())
MaybeParseGNUAttributes(D, &LateParsedAttrs);
// Check to see if we have a function *definition* which must have a body.
if (D.isFunctionDeclarator() &&
// Look at the next token to make sure that this isn't a function
// declaration. We have to check this because __attribute__ might be the
// start of a function definition in GCC-extended K&R C.
!isDeclarationAfterDeclarator()) {
if (AllowFunctionDefinitions) {
if (isStartOfFunctionDefinition(D)) {
if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
Diag(Tok, diag::err_function_declared_typedef);
// Recover by treating the 'typedef' as spurious.
DS.ClearStorageClassSpecs();
}
Decl *TheDecl =
ParseFunctionDefinition(D, ParsedTemplateInfo(), &LateParsedAttrs);
return Actions.ConvertDeclToDeclGroup(TheDecl);
}
if (isDeclarationSpecifier()) {
// If there is an invalid declaration specifier right after the function
// prototype, then we must be in a missing semicolon case where this isn't
// actually a body. Just fall through into the code that handles it as a
// prototype, and let the top-level code handle the erroneous declspec
// where it would otherwise expect a comma or semicolon.
} else {
Diag(Tok, diag::err_expected_fn_body);
SkipUntil(tok::semi);
return DeclGroupPtrTy();
}
} else {
if (Tok.is(tok::l_brace)) {
Diag(Tok, diag::err_function_definition_not_allowed);
SkipUntil(tok::r_brace, true, true);
}
}
}
if (ParseAsmAttributesAfterDeclarator(D))
return DeclGroupPtrTy();
// C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
// must parse and analyze the for-range-initializer before the declaration is
// analyzed.
//
// Handle the Objective-C for-in loop variable similarly, although we
// don't need to parse the container in advance.
if (FRI && (Tok.is(tok::colon) || isTokIdentifier_in())) {
bool IsForRangeLoop = false;
if (Tok.is(tok::colon)) {
IsForRangeLoop = true;
FRI->ColonLoc = ConsumeToken();
if (Tok.is(tok::l_brace))
FRI->RangeExpr = ParseBraceInitializer();
else
FRI->RangeExpr = ParseExpression();
}
Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
if (IsForRangeLoop)
Actions.ActOnCXXForRangeDecl(ThisDecl);
Actions.FinalizeDeclaration(ThisDecl);
D.complete(ThisDecl);
return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, ThisDecl);
}
SmallVector<Decl *, 8> DeclsInGroup;
Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(D);
if (LateParsedAttrs.size() > 0)
ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false);
D.complete(FirstDecl);
if (FirstDecl)
DeclsInGroup.push_back(FirstDecl);
bool ExpectSemi = Context != Declarator::ForContext;
// If we don't have a comma, it is either the end of the list (a ';') or an
// error, bail out.
while (Tok.is(tok::comma)) {
SourceLocation CommaLoc = ConsumeToken();
if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) {
// This comma was followed by a line-break and something which can't be
// the start of a declarator. The comma was probably a typo for a
// semicolon.
Diag(CommaLoc, diag::err_expected_semi_declaration)
<< FixItHint::CreateReplacement(CommaLoc, ";");
ExpectSemi = false;
break;
}
// Parse the next declarator.
D.clear();
D.setCommaLoc(CommaLoc);
// Accept attributes in an init-declarator. In the first declarator in a
// declaration, these would be part of the declspec. In subsequent
// declarators, they become part of the declarator itself, so that they
// don't apply to declarators after *this* one. Examples:
// short __attribute__((common)) var; -> declspec
// short var __attribute__((common)); -> declarator
// short x, __attribute__((common)) var; -> declarator
MaybeParseGNUAttributes(D);
ParseDeclarator(D);
if (!D.isInvalidType()) {
Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
D.complete(ThisDecl);
if (ThisDecl)
DeclsInGroup.push_back(ThisDecl);
}
}
if (DeclEnd)
*DeclEnd = Tok.getLocation();
if (ExpectSemi &&
ExpectAndConsumeSemi(Context == Declarator::FileContext
? diag::err_invalid_token_after_toplevel_declarator
: diag::err_expected_semi_declaration)) {
// Okay, there was no semicolon and one was expected. If we see a
// declaration specifier, just assume it was missing and continue parsing.
// Otherwise things are very confused and we skip to recover.
if (!isDeclarationSpecifier()) {
SkipUntil(tok::r_brace, true, true);
if (Tok.is(tok::semi))
ConsumeToken();
}
}
return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup);
}
/// Parse an optional simple-asm-expr and attributes, and attach them to a
/// declarator. Returns true on an error.
bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) {
// If a simple-asm-expr is present, parse it.
if (Tok.is(tok::kw_asm)) {
SourceLocation Loc;
ExprResult AsmLabel(ParseSimpleAsm(&Loc));
if (AsmLabel.isInvalid()) {
SkipUntil(tok::semi, true, true);
return true;
}
D.setAsmLabel(AsmLabel.release());
D.SetRangeEnd(Loc);
}
MaybeParseGNUAttributes(D);
return false;
}
/// \brief Parse 'declaration' after parsing 'declaration-specifiers
/// declarator'. This method parses the remainder of the declaration
/// (including any attributes or initializer, among other things) and
/// finalizes the declaration.
///
/// init-declarator: [C99 6.7]
/// declarator
/// declarator '=' initializer
/// [GNU] declarator simple-asm-expr[opt] attributes[opt]
/// [GNU] declarator simple-asm-expr[opt] attributes[opt] '=' initializer
/// [C++] declarator initializer[opt]
///
/// [C++] initializer:
/// [C++] '=' initializer-clause
/// [C++] '(' expression-list ')'
/// [C++0x] '=' 'default' [TODO]
/// [C++0x] '=' 'delete'
/// [C++0x] braced-init-list
///
/// According to the standard grammar, =default and =delete are function
/// definitions, but that definitely doesn't fit with the parser here.
///
Decl *Parser::ParseDeclarationAfterDeclarator(Declarator &D,
const ParsedTemplateInfo &TemplateInfo) {
if (ParseAsmAttributesAfterDeclarator(D))
return 0;
return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
}
Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(Declarator &D,
const ParsedTemplateInfo &TemplateInfo) {
// Inform the current actions module that we just parsed this declarator.
Decl *ThisDecl = 0;
switch (TemplateInfo.Kind) {
case ParsedTemplateInfo::NonTemplate:
ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
break;
case ParsedTemplateInfo::Template:
case ParsedTemplateInfo::ExplicitSpecialization: {
ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
*TemplateInfo.TemplateParams,
D);
if (VarTemplateDecl *VT = dyn_cast_or_null<VarTemplateDecl>(ThisDecl))
// Re-direct this decl to refer to the templated decl so that we can
// initialize it.
ThisDecl = VT->getTemplatedDecl();
break;
}
case ParsedTemplateInfo::ExplicitInstantiation: {
if (Tok.is(tok::semi)) {
DeclResult ThisRes = Actions.ActOnExplicitInstantiation(
getCurScope(), TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc, D);
if (ThisRes.isInvalid()) {
SkipUntil(tok::semi, true, true);
return 0;
}
ThisDecl = ThisRes.get();
} else {
// FIXME: This check should be for a variable template instantiation only.
// Check that this is a valid instantiation
if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
// If the declarator-id is not a template-id, issue a diagnostic and
// recover by ignoring the 'template' keyword.
Diag(Tok, diag::err_template_defn_explicit_instantiation)
<< 2 << FixItHint::CreateRemoval(TemplateInfo.TemplateLoc);
ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
} else {
SourceLocation LAngleLoc =
PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
Diag(D.getIdentifierLoc(),
diag::err_explicit_instantiation_with_definition)
<< SourceRange(TemplateInfo.TemplateLoc)
<< FixItHint::CreateInsertion(LAngleLoc, "<>");
// Recover as if it were an explicit specialization.
TemplateParameterLists FakedParamLists;
FakedParamLists.push_back(Actions.ActOnTemplateParameterList(
0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc, 0, 0,
LAngleLoc));
ThisDecl =
Actions.ActOnTemplateDeclarator(getCurScope(), FakedParamLists, D);
}
}
break;
}
}
bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType();
// Parse declarator '=' initializer.
// If a '==' or '+=' is found, suggest a fixit to '='.
if (isTokenEqualOrEqualTypo()) {
ConsumeToken();
if (Tok.is(tok::kw_delete)) {
if (D.isFunctionDeclarator())
Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
<< 1 /* delete */;
else
Diag(ConsumeToken(), diag::err_deleted_non_function);
} else if (Tok.is(tok::kw_default)) {
if (D.isFunctionDeclarator())
Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
<< 0 /* default */;
else
Diag(ConsumeToken(), diag::err_default_special_members);
} else {
if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
EnterScope(0);
Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
}
if (Tok.is(tok::code_completion)) {
Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
Actions.FinalizeDeclaration(ThisDecl);
cutOffParsing();
return 0;
}
ExprResult Init(ParseInitializer());
if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
ExitScope();
}
if (Init.isInvalid()) {
SkipUntil(tok::comma, true, true);
Actions.ActOnInitializerError(ThisDecl);
} else
Actions.AddInitializerToDecl(ThisDecl, Init.take(),
/*DirectInit=*/false, TypeContainsAuto);
}
} else if (Tok.is(tok::l_paren)) {
// Parse C++ direct initializer: '(' expression-list ')'
BalancedDelimiterTracker T(*this, tok::l_paren);
T.consumeOpen();
ExprVector Exprs;
CommaLocsTy CommaLocs;
if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
EnterScope(0);
Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
}
if (ParseExpressionList(Exprs, CommaLocs)) {
Actions.ActOnInitializerError(ThisDecl);
SkipUntil(tok::r_paren);
if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
ExitScope();
}
} else {
// Match the ')'.
T.consumeClose();
assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
"Unexpected number of commas!");
if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
ExitScope();
}
ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(),
T.getCloseLocation(),
Exprs);
Actions.AddInitializerToDecl(ThisDecl, Initializer.take(),
/*DirectInit=*/true, TypeContainsAuto);
}
} else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace) &&
(!CurParsedObjCImpl || !D.isFunctionDeclarator())) {
// Parse C++0x braced-init-list.
Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
if (D.getCXXScopeSpec().isSet()) {
EnterScope(0);
Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
}
ExprResult Init(ParseBraceInitializer());
if (D.getCXXScopeSpec().isSet()) {
Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
ExitScope();
}
if (Init.isInvalid()) {
Actions.ActOnInitializerError(ThisDecl);
} else
Actions.AddInitializerToDecl(ThisDecl, Init.take(),
/*DirectInit=*/true, TypeContainsAuto);
} else {
Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsAuto);
}
Actions.FinalizeDeclaration(ThisDecl);
return ThisDecl;
}
/// ParseSpecifierQualifierList
/// specifier-qualifier-list:
/// type-specifier specifier-qualifier-list[opt]
/// type-qualifier specifier-qualifier-list[opt]
/// [GNU] attributes specifier-qualifier-list[opt]
///
void Parser::ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS,
DeclSpecContext DSC) {
/// specifier-qualifier-list is a subset of declaration-specifiers. Just
/// parse declaration-specifiers and complain about extra stuff.
/// TODO: diagnose attribute-specifiers and alignment-specifiers.
ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC);
// Validate declspec for type-name.
unsigned Specs = DS.getParsedSpecifiers();
if ((DSC == DSC_type_specifier || DSC == DSC_trailing) &&
!DS.hasTypeSpecifier()) {
Diag(Tok, diag::err_expected_type);
DS.SetTypeSpecError();
} else if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() &&
!DS.hasAttributes()) {
Diag(Tok, diag::err_typename_requires_specqual);
if (!DS.hasTypeSpecifier())
DS.SetTypeSpecError();
}
// Issue diagnostic and remove storage class if present.
if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
if (DS.getStorageClassSpecLoc().isValid())
Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
else
Diag(DS.getThreadStorageClassSpecLoc(),
diag::err_typename_invalid_storageclass);
DS.ClearStorageClassSpecs();
}
// Issue diagnostic and remove function specfier if present.
if (Specs & DeclSpec::PQ_FunctionSpecifier) {
if (DS.isInlineSpecified())
Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
if (DS.isVirtualSpecified())
Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
if (DS.isExplicitSpecified())
Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
DS.ClearFunctionSpecs();
}
// Issue diagnostic and remove constexpr specfier if present.
if (DS.isConstexprSpecified()) {
Diag(DS.getConstexprSpecLoc(), diag::err_typename_invalid_constexpr);
DS.ClearConstexprSpec();
}
}
/// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
/// specified token is valid after the identifier in a declarator which
/// immediately follows the declspec. For example, these things are valid:
///
/// int x [ 4]; // direct-declarator
/// int x ( int y); // direct-declarator
/// int(int x ) // direct-declarator
/// int x ; // simple-declaration
/// int x = 17; // init-declarator-list
/// int x , y; // init-declarator-list
/// int x __asm__ ("foo"); // init-declarator-list
/// int x : 4; // struct-declarator
/// int x { 5}; // C++'0x unified initializers
///
/// This is not, because 'x' does not immediately follow the declspec (though
/// ')' happens to be valid anyway).
/// int (x)
///
static bool isValidAfterIdentifierInDeclarator(const Token &T) {
return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon);
}
/// ParseImplicitInt - This method is called when we have an non-typename
/// identifier in a declspec (which normally terminates the decl spec) when
/// the declspec has no type specifier. In this case, the declspec is either
/// malformed or is "implicit int" (in K&R and C89).
///
/// This method handles diagnosing this prettily and returns false if the
/// declspec is done being processed. If it recovers and thinks there may be
/// other pieces of declspec after it, it returns true.
///
bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
const ParsedTemplateInfo &TemplateInfo,
AccessSpecifier AS, DeclSpecContext DSC,
ParsedAttributesWithRange &Attrs) {
assert(Tok.is(tok::identifier) && "should have identifier");
SourceLocation Loc = Tok.getLocation();
// If we see an identifier that is not a type name, we normally would
// parse it as the identifer being declared. However, when a typename
// is typo'd or the definition is not included, this will incorrectly
// parse the typename as the identifier name and fall over misparsing
// later parts of the diagnostic.
//
// As such, we try to do some look-ahead in cases where this would
// otherwise be an "implicit-int" case to see if this is invalid. For
// example: "static foo_t x = 4;" In this case, if we parsed foo_t as
// an identifier with implicit int, we'd get a parse error because the
// next token is obviously invalid for a type. Parse these as a case
// with an invalid type specifier.
assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
// Since we know that this either implicit int (which is rare) or an
// error, do lookahead to try to do better recovery. This never applies
// within a type specifier. Outside of C++, we allow this even if the
// language doesn't "officially" support implicit int -- we support
// implicit int as an extension in C99 and C11.
if (DSC != DSC_type_specifier && DSC != DSC_trailing &&
!getLangOpts().CPlusPlus &&
isValidAfterIdentifierInDeclarator(NextToken())) {
// If this token is valid for implicit int, e.g. "static x = 4", then
// we just avoid eating the identifier, so it will be parsed as the
// identifier in the declarator.
return false;
}
if (getLangOpts().CPlusPlus &&
DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
// Don't require a type specifier if we have the 'auto' storage class
// specifier in C++98 -- we'll promote it to a type specifier.
return false;
}
// Otherwise, if we don't consume this token, we are going to emit an
// error anyway. Try to recover from various common problems. Check
// to see if this was a reference to a tag name without a tag specified.
// This is a common problem in C (saying 'foo' instead of 'struct foo').
//
// C++ doesn't need this, and isTagName doesn't take SS.
if (SS == 0) {
const char *TagName = 0, *FixitTagName = 0;
tok::TokenKind TagKind = tok::unknown;
switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
default: break;
case DeclSpec::TST_enum:
TagName="enum" ; FixitTagName = "enum " ; TagKind=tok::kw_enum ;break;
case DeclSpec::TST_union:
TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
case DeclSpec::TST_struct:
TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
case DeclSpec::TST_interface:
TagName="__interface"; FixitTagName = "__interface ";
TagKind=tok::kw___interface;break;
case DeclSpec::TST_class:
TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
}
if (TagName) {
IdentifierInfo *TokenName = Tok.getIdentifierInfo();
LookupResult R(Actions, TokenName, SourceLocation(),
Sema::LookupOrdinaryName);
Diag(Loc, diag::err_use_of_tag_name_without_tag)
<< TokenName << TagName << getLangOpts().CPlusPlus
<< FixItHint::CreateInsertion(Tok.getLocation(), FixitTagName);
if (Actions.LookupParsedName(R, getCurScope(), SS)) {
for (LookupResult::iterator I = R.begin(), IEnd = R.end();
I != IEnd; ++I)
Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
<< TokenName << TagName;
}
// Parse this as a tag as if the missing tag were present.
if (TagKind == tok::kw_enum)
ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSC_normal);
else
ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS,
/*EnteringContext*/ false, DSC_normal, Attrs);
return true;
}
}
// Determine whether this identifier could plausibly be the name of something
// being declared (with a missing type).
if (DSC != DSC_type_specifier && DSC != DSC_trailing &&
(!SS || DSC == DSC_top_level || DSC == DSC_class)) {
// Look ahead to the next token to try to figure out what this declaration
// was supposed to be.
switch (NextToken().getKind()) {
case tok::comma:
case tok::equal:
case tok::kw_asm:
case tok::l_brace:
case tok::l_square:
case tok::semi:
// This looks like a variable declaration. The type is probably missing.
// We're done parsing decl-specifiers.
return false;
case tok::l_paren: {
// static x(4); // 'x' is not a type
// x(int n); // 'x' is not a type
// x (*p)[]; // 'x' is a type
//
// Since we're in an error case (or the rare 'implicit int in C++' MS
// extension), we can afford to perform a tentative parse to determine
// which case we're in.
TentativeParsingAction PA(*this);
ConsumeToken();
TPResult TPR = TryParseDeclarator(/*mayBeAbstract*/false);
PA.Revert();
if (TPR == TPResult::False())
return false;
// The identifier is followed by a parenthesized declarator.
// It's supposed to be a type.
break;
}
default:
// This is probably supposed to be a type. This includes cases like:
// int f(itn);
// struct S { unsinged : 4; };
break;
}
}
// This is almost certainly an invalid type name. Let the action emit a
// diagnostic and attempt to recover.
ParsedType T;
IdentifierInfo *II = Tok.getIdentifierInfo();
if (Actions.DiagnoseUnknownTypeName(II, Loc, getCurScope(), SS, T)) {
// The action emitted a diagnostic, so we don't have to.
if (T) {
// The action has suggested that the type T could be used. Set that as
// the type in the declaration specifiers, consume the would-be type
// name token, and we're done.
const char *PrevSpec;
unsigned DiagID;
DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T);
DS.SetRangeEnd(Tok.getLocation());
ConsumeToken();
// There may be other declaration specifiers after this.
return true;
} else if (II != Tok.getIdentifierInfo()) {
// If no type was suggested, the correction is to a keyword
Tok.setKind(II->getTokenID());
// There may be other declaration specifiers after this.
return true;
}
// Fall through; the action had no suggestion for us.
} else {
// The action did not emit a diagnostic, so emit one now.
SourceRange R;
if (SS) R = SS->getRange();
Diag(Loc, diag::err_unknown_typename) << Tok.getIdentifierInfo() << R;
}
// Mark this as an error.
DS.SetTypeSpecError();
DS.SetRangeEnd(Tok.getLocation());
ConsumeToken();
// TODO: Could inject an invalid typedef decl in an enclosing scope to
// avoid rippling error messages on subsequent uses of the same type,
// could be useful if #include was forgotten.
return false;
}
/// \brief Determine the declaration specifier context from the declarator
/// context.
///
/// \param Context the declarator context, which is one of the
/// Declarator::TheContext enumerator values.
Parser::DeclSpecContext
Parser::getDeclSpecContextFromDeclaratorContext(unsigned Context) {
if (Context == Declarator::MemberContext)
return DSC_class;
if (Context == Declarator::FileContext)
return DSC_top_level;
if (Context == Declarator::TrailingReturnContext)
return DSC_trailing;
return DSC_normal;
}
/// ParseAlignArgument - Parse the argument to an alignment-specifier.
///
/// FIXME: Simply returns an alignof() expression if the argument is a
/// type. Ideally, the type should be propagated directly into Sema.
///
/// [C11] type-id
/// [C11] constant-expression
/// [C++0x] type-id ...[opt]
/// [C++0x] assignment-expression ...[opt]
ExprResult Parser::ParseAlignArgument(SourceLocation Start,
SourceLocation &EllipsisLoc) {
ExprResult ER;
if (isTypeIdInParens()) {
SourceLocation TypeLoc = Tok.getLocation();
ParsedType Ty = ParseTypeName().get();
SourceRange TypeRange(Start, Tok.getLocation());
ER = Actions.ActOnUnaryExprOrTypeTraitExpr(TypeLoc, UETT_AlignOf, true,
Ty.getAsOpaquePtr(), TypeRange);
} else
ER = ParseConstantExpression();
if (getLangOpts().CPlusPlus11 && Tok.is(tok::ellipsis))
EllipsisLoc = ConsumeToken();
return ER;
}
/// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the
/// attribute to Attrs.
///
/// alignment-specifier:
/// [C11] '_Alignas' '(' type-id ')'
/// [C11] '_Alignas' '(' constant-expression ')'
/// [C++11] 'alignas' '(' type-id ...[opt] ')'
/// [C++11] 'alignas' '(' assignment-expression ...[opt] ')'
void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs,
SourceLocation *EndLoc) {
assert((Tok.is(tok::kw_alignas) || Tok.is(tok::kw__Alignas)) &&
"Not an alignment-specifier!");
IdentifierInfo *KWName = Tok.getIdentifierInfo();
SourceLocation KWLoc = ConsumeToken();
BalancedDelimiterTracker T(*this, tok::l_paren);
if (T.expectAndConsume(diag::err_expected_lparen))
return;
SourceLocation EllipsisLoc;
ExprResult ArgExpr = ParseAlignArgument(T.getOpenLocation(), EllipsisLoc);
if (ArgExpr.isInvalid()) {
SkipUntil(tok::r_paren);
return;
}
T.consumeClose();
if (EndLoc)
*EndLoc = T.getCloseLocation();
ArgsVector ArgExprs;
ArgExprs.push_back(ArgExpr.release());
Attrs.addNew(KWName, KWLoc, 0, KWLoc, ArgExprs.data(), 1,
AttributeList::AS_Keyword, EllipsisLoc);
}
/// ParseDeclarationSpecifiers
/// declaration-specifiers: [C99 6.7]
/// storage-class-specifier declaration-specifiers[opt]
/// type-specifier declaration-specifiers[opt]
/// [C99] function-specifier declaration-specifiers[opt]
/// [C11] alignment-specifier declaration-specifiers[opt]
/// [GNU] attributes declaration-specifiers[opt]
/// [Clang] '__module_private__' declaration-specifiers[opt]
///
/// storage-class-specifier: [C99 6.7.1]
/// 'typedef'
/// 'extern'
/// 'static'
/// 'auto'
/// 'register'
/// [C++] 'mutable'
/// [C++11] 'thread_local'
/// [C11] '_Thread_local'
/// [GNU] '__thread'
/// function-specifier: [C99 6.7.4]
/// [C99] 'inline'
/// [C++] 'virtual'
/// [C++] 'explicit'
/// [OpenCL] '__kernel'
/// 'friend': [C++ dcl.friend]
/// 'constexpr': [C++0x dcl.constexpr]
///
void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
const ParsedTemplateInfo &TemplateInfo,
AccessSpecifier AS,
DeclSpecContext DSContext,
LateParsedAttrList *LateAttrs) {
if (DS.getSourceRange().isInvalid()) {
DS.SetRangeStart(Tok.getLocation());
DS.SetRangeEnd(Tok.getLocation());
}
bool EnteringContext = (DSContext == DSC_class || DSContext == DSC_top_level);
bool AttrsLastTime = false;
ParsedAttributesWithRange attrs(AttrFactory);
while (1) {
bool isInvalid = false;
const char *PrevSpec = 0;
unsigned DiagID = 0;
SourceLocation Loc = Tok.getLocation();
switch (Tok.getKind()) {
default:
DoneWithDeclSpec:
if (!AttrsLastTime)
ProhibitAttributes(attrs);
else {
// Reject C++11 attributes that appertain to decl specifiers as
// we don't support any C++11 attributes that appertain to decl
// specifiers. This also conforms to what g++ 4.8 is doing.
ProhibitCXX11Attributes(attrs);
DS.takeAttributesFrom(attrs);
}
// If this is not a declaration specifier token, we're done reading decl
// specifiers. First verify that DeclSpec's are consistent.
DS.Finish(Diags, PP);
return;
case tok::l_square:
case tok::kw_alignas:
if (!getLangOpts().CPlusPlus11 || !isCXX11AttributeSpecifier())
goto DoneWithDeclSpec;
ProhibitAttributes(attrs);
// FIXME: It would be good to recover by accepting the attributes,
// but attempting to do that now would cause serious
// madness in terms of diagnostics.
attrs.clear();
attrs.Range = SourceRange();
ParseCXX11Attributes(attrs);
AttrsLastTime = true;
continue;
case tok::code_completion: {
Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
if (DS.hasTypeSpecifier()) {
bool AllowNonIdentifiers
= (getCurScope()->getFlags() & (Scope::ControlScope |
Scope::BlockScope |
Scope::TemplateParamScope |
Scope::FunctionPrototypeScope |
Scope::AtCatchScope)) == 0;
bool AllowNestedNameSpecifiers
= DSContext == DSC_top_level ||
(DSContext == DSC_class && DS.isFriendSpecified());
Actions.CodeCompleteDeclSpec(getCurScope(), DS,
AllowNonIdentifiers,
AllowNestedNameSpecifiers);
return cutOffParsing();
}
if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
CCC = Sema::PCC_LocalDeclarationSpecifiers;
else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
CCC = DSContext == DSC_class? Sema::PCC_MemberTemplate
: Sema::PCC_Template;
else if (DSContext == DSC_class)
CCC = Sema::PCC_Class;
else if (CurParsedObjCImpl)
CCC = Sema::PCC_ObjCImplementation;
Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
return cutOffParsing();
}
case tok::coloncolon: // ::foo::bar
// C++ scope specifier. Annotate and loop, or bail out on error.
if (TryAnnotateCXXScopeToken(EnteringContext)) {
if (!DS.hasTypeSpecifier())
DS.SetTypeSpecError();
goto DoneWithDeclSpec;
}
if (Tok.is(tok::coloncolon)) // ::new or ::delete
goto DoneWithDeclSpec;
continue;
case tok::annot_cxxscope: {
if (DS.hasTypeSpecifier() || DS.isTypeAltiVecVector())
goto DoneWithDeclSpec;
CXXScopeSpec SS;
Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
Tok.getAnnotationRange(),
SS);
// We are looking for a qualified typename.
Token Next = NextToken();
if (Next.is(tok::annot_template_id) &&
static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
->Kind == TNK_Type_template) {
// We have a qualified template-id, e.g., N::A<int>
// C++ [class.qual]p2:
// In a lookup in which the constructor is an acceptable lookup
// result and the nested-name-specifier nominates a class C:
//
// - if the name specified after the
// nested-name-specifier, when looked up in C, is the
// injected-class-name of C (Clause 9), or
//
// - if the name specified after the nested-name-specifier
// is the same as the identifier or the
// simple-template-id's template-name in the last
// component of the nested-name-specifier,
//
// the name is instead considered to name the constructor of
// class C.
//
// Thus, if the template-name is actually the constructor
// name, then the code is ill-formed; this interpretation is
// reinforced by the NAD status of core issue 635.
TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
if ((DSContext == DSC_top_level || DSContext == DSC_class) &&
TemplateId->Name &&
Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
if (isConstructorDeclarator()) {
// The user meant this to be an out-of-line constructor
// definition, but template arguments are not allowed
// there. Just allow this as a constructor; we'll
// complain about it later.
goto DoneWithDeclSpec;
}
// The user meant this to name a type, but it actually names
// a constructor with some extraneous template
// arguments. Complain, then parse it as a type as the user
// intended.
Diag(TemplateId->TemplateNameLoc,
diag::err_out_of_line_template_id_names_constructor)
<< TemplateId->Name;
}
DS.getTypeSpecScope() = SS;
ConsumeToken(); // The C++ scope.
assert(Tok.is(tok::annot_template_id) &&
"ParseOptionalCXXScopeSpecifier not working");
AnnotateTemplateIdTokenAsType();
continue;
}
if (Next.is(tok::annot_typename)) {
DS.getTypeSpecScope() = SS;
ConsumeToken(); // The C++ scope.
if (Tok.getAnnotationValue()) {
ParsedType T = getTypeAnnotation(Tok);
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
Tok.getAnnotationEndLoc(),
PrevSpec, DiagID, T);
if (isInvalid)
break;
}
else
DS.SetTypeSpecError();
DS.SetRangeEnd(Tok.getAnnotationEndLoc());
ConsumeToken(); // The typename
}
if (Next.isNot(tok::identifier))
goto DoneWithDeclSpec;
// If we're in a context where the identifier could be a class name,
// check whether this is a constructor declaration.
if ((DSContext == DSC_top_level || DSContext == DSC_class) &&
Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
&SS)) {
if (isConstructorDeclarator())
goto DoneWithDeclSpec;
// As noted in C++ [class.qual]p2 (cited above), when the name
// of the class is qualified in a context where it could name
// a constructor, its a constructor name. However, we've
// looked at the declarator, and the user probably meant this
// to be a type. Complain that it isn't supposed to be treated
// as a type, then proceed to parse it as a type.
Diag(Next.getLocation(), diag::err_out_of_line_type_names_constructor)
<< Next.getIdentifierInfo();
}
ParsedType TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
Next.getLocation(),
getCurScope(), &SS,
false, false, ParsedType(),
/*IsCtorOrDtorName=*/false,
/*NonTrivialSourceInfo=*/true);
// If the referenced identifier is not a type, then this declspec is
// erroneous: We already checked about that it has no type specifier, and
// C++ doesn't have implicit int. Diagnose it as a typo w.r.t. to the
// typename.
if (!TypeRep) {
ConsumeToken(); // Eat the scope spec so the identifier is current.
ParsedAttributesWithRange Attrs(AttrFactory);
if (ParseImplicitInt(DS, &SS, TemplateInfo, AS, DSContext, Attrs)) {
if (!Attrs.empty()) {
AttrsLastTime = true;
attrs.takeAllFrom(Attrs);
}
continue;
}
goto DoneWithDeclSpec;
}
DS.getTypeSpecScope() = SS;
ConsumeToken(); // The C++ scope.
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
DiagID, TypeRep);
if (isInvalid)
break;
DS.SetRangeEnd(Tok.getLocation());
ConsumeToken(); // The typename.
continue;
}
case tok::annot_typename: {
if (Tok.getAnnotationValue()) {
ParsedType T = getTypeAnnotation(Tok);
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
DiagID, T);
} else
DS.SetTypeSpecError();
if (isInvalid)
break;
DS.SetRangeEnd(Tok.getAnnotationEndLoc());
ConsumeToken(); // The typename
// Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
// is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
// Objective-C interface.
if (Tok.is(tok::less) && getLangOpts().ObjC1)
ParseObjCProtocolQualifiers(DS);
continue;
}
case tok::kw___is_signed:
// GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang
// typically treats it as a trait. If we see __is_signed as it appears
// in libstdc++, e.g.,
//
// static const bool __is_signed;
//
// then treat __is_signed as an identifier rather than as a keyword.
if (DS.getTypeSpecType() == TST_bool &&
DS.getTypeQualifiers() == DeclSpec::TQ_const &&
DS.getStorageClassSpec() == DeclSpec::SCS_static) {
Tok.getIdentifierInfo()->RevertTokenIDToIdentifier();
Tok.setKind(tok::identifier);
}
// We're done with the declaration-specifiers.
goto DoneWithDeclSpec;
// typedef-name
case tok::kw_decltype:
case tok::identifier: {
// In C++, check to see if this is a scope specifier like foo::bar::, if
// so handle it as such. This is important for ctor parsing.
if (getLangOpts().CPlusPlus) {
if (TryAnnotateCXXScopeToken(EnteringContext)) {
if (!DS.hasTypeSpecifier())
DS.SetTypeSpecError();
goto DoneWithDeclSpec;
}
if (!Tok.is(tok::identifier))
continue;
}
// This identifier can only be a typedef name if we haven't already seen
// a type-specifier. Without this check we misparse:
// typedef int X; struct Y { short X; }; as 'short int'.
if (DS.hasTypeSpecifier())
goto DoneWithDeclSpec;
// Check for need to substitute AltiVec keyword tokens.
if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
break;
// [AltiVec] 2.2: [If the 'vector' specifier is used] The syntax does not
// allow the use of a typedef name as a type specifier.
if (DS.isTypeAltiVecVector())
goto DoneWithDeclSpec;
ParsedType TypeRep =
Actions.getTypeName(*Tok.getIdentifierInfo(),
Tok.getLocation(), getCurScope());
// If this is not a typedef name, don't parse it as part of the declspec,
// it must be an implicit int or an error.
if (!TypeRep) {
ParsedAttributesWithRange Attrs(AttrFactory);
if (ParseImplicitInt(DS, 0, TemplateInfo, AS, DSContext, Attrs)) {
if (!Attrs.empty()) {
AttrsLastTime = true;
attrs.takeAllFrom(Attrs);
}
continue;
}
goto DoneWithDeclSpec;
}
// If we're in a context where the identifier could be a class name,
// check whether this is a constructor declaration.
if (getLangOpts().CPlusPlus && DSContext == DSC_class &&
Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
isConstructorDeclarator())
goto DoneWithDeclSpec;
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
DiagID, TypeRep);
if (isInvalid)
break;
DS.SetRangeEnd(Tok.getLocation());
ConsumeToken(); // The identifier
// Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
// is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
// Objective-C interface.
if (Tok.is(tok::less) && getLangOpts().ObjC1)
ParseObjCProtocolQualifiers(DS);
// Need to support trailing type qualifiers (e.g. "id<p> const").
// If a type specifier follows, it will be diagnosed elsewhere.
continue;
}
// type-name
case tok::annot_template_id: {
TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
if (TemplateId->Kind != TNK_Type_template) {
// This template-id does not refer to a type name, so we're
// done with the type-specifiers.
goto DoneWithDeclSpec;
}
// If we're in a context where the template-id could be a
// constructor name or specialization, check whether this is a
// constructor declaration.
if (getLangOpts().CPlusPlus && DSContext == DSC_class &&
Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
isConstructorDeclarator())
goto DoneWithDeclSpec;
// Turn the template-id annotation token into a type annotation
// token, then try again to parse it as a type-specifier.
AnnotateTemplateIdTokenAsType();
continue;
}
// GNU attributes support.
case tok::kw___attribute:
ParseGNUAttributes(DS.getAttributes(), 0, LateAttrs);
continue;
// Microsoft declspec support.
case tok::kw___declspec:
ParseMicrosoftDeclSpec(DS.getAttributes());
continue;
// Microsoft single token adornments.
case tok::kw___forceinline: {
isInvalid = DS.setFunctionSpecInline(Loc);
IdentifierInfo *AttrName = Tok.getIdentifierInfo();
SourceLocation AttrNameLoc = Tok.getLocation();
// FIXME: This does not work correctly if it is set to be a declspec
// attribute, and a GNU attribute is simply incorrect.
DS.getAttributes().addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0, 0,
AttributeList::AS_GNU);
break;
}
case tok::kw___sptr:
case tok::kw___uptr:
case tok::kw___ptr64:
case tok::kw___ptr32:
case tok::kw___w64:
case tok::kw___cdecl:
case tok::kw___stdcall:
case tok::kw___fastcall:
case tok::kw___thiscall:
case tok::kw___unaligned:
ParseMicrosoftTypeAttributes(DS.getAttributes());
continue;
// Borland single token adornments.
case tok::kw___pascal:
ParseBorlandTypeAttributes(DS.getAttributes());
continue;
// OpenCL single token adornments.
case tok::kw___kernel:
ParseOpenCLAttributes(DS.getAttributes());
continue;
// storage-class-specifier
case tok::kw_typedef:
isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc,
PrevSpec, DiagID);
break;
case tok::kw_extern:
if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
Diag(Tok, diag::ext_thread_before) << "extern";
isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc,
PrevSpec, DiagID);
break;
case tok::kw___private_extern__:
isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern,
Loc, PrevSpec, DiagID);
break;
case tok::kw_static:
if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
Diag(Tok, diag::ext_thread_before) << "static";
isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc,
PrevSpec, DiagID);
break;
case tok::kw_auto:
if (getLangOpts().CPlusPlus11) {
if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
PrevSpec, DiagID);
if (!isInvalid)
Diag(Tok, diag::ext_auto_storage_class)
<< FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
} else
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
DiagID);
} else
isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
PrevSpec, DiagID);
break;
case tok::kw_register:
isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc,
PrevSpec, DiagID);
break;
case tok::kw_mutable:
isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc,
PrevSpec, DiagID);
break;
case tok::kw___thread:
isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS___thread, Loc,
PrevSpec, DiagID);
break;
case tok::kw_thread_local:
isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS_thread_local, Loc,
PrevSpec, DiagID);
break;
case tok::kw__Thread_local:
isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS__Thread_local,
Loc, PrevSpec, DiagID);
break;
// function-specifier
case tok::kw_inline:
isInvalid = DS.setFunctionSpecInline(Loc);
break;
case tok::kw_virtual:
isInvalid = DS.setFunctionSpecVirtual(Loc);
break;
case tok::kw_explicit:
isInvalid = DS.setFunctionSpecExplicit(Loc);
break;
case tok::kw__Noreturn:
if (!getLangOpts().C11)
Diag(Loc, diag::ext_c11_noreturn);
isInvalid = DS.setFunctionSpecNoreturn(Loc);
break;
// alignment-specifier
case tok::kw__Alignas:
if (!getLangOpts().C11)
Diag(Tok, diag::ext_c11_alignment) << Tok.getName();
ParseAlignmentSpecifier(DS.getAttributes());
continue;
// friend
case tok::kw_friend:
if (DSContext == DSC_class)
isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
else {
PrevSpec = ""; // not actually used by the diagnostic
DiagID = diag::err_friend_invalid_in_context;
isInvalid = true;
}
break;
// Modules
case tok::kw___module_private__:
isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID);
break;
// constexpr
case tok::kw_constexpr:
isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID);
break;
// type-specifier
case tok::kw_short:
isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
DiagID);
break;
case tok::kw_long:
if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
DiagID);
else
isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
DiagID);
break;
case tok::kw___int64:
isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
DiagID);
break;
case tok::kw_signed:
isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
DiagID);
break;
case tok::kw_unsigned:
isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
DiagID);
break;
case tok::kw__Complex:
isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
DiagID);
break;
case tok::kw__Imaginary:
isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
DiagID);
break;
case tok::kw_void:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
DiagID);
break;
case tok::kw_char:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
DiagID);
break;
case tok::kw_int:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
DiagID);
break;
case tok::kw___int128:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec,
DiagID);
break;
case tok::kw_half:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec,
DiagID);
break;
case tok::kw_float:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
DiagID);
break;
case tok::kw_double:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
DiagID);
break;
case tok::kw_wchar_t:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
DiagID);
break;
case tok::kw_char16_t:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
DiagID);
break;
case tok::kw_char32_t:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
DiagID);
break;
case tok::kw_bool:
case tok::kw__Bool:
if (Tok.is(tok::kw_bool) &&
DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
PrevSpec = ""; // Not used by the diagnostic.
DiagID = diag::err_bool_redeclaration;
// For better error recovery.
Tok.setKind(tok::identifier);
isInvalid = true;
} else {
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
DiagID);
}
break;
case tok::kw__Decimal32:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
DiagID);
break;
case tok::kw__Decimal64:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
DiagID);
break;
case tok::kw__Decimal128:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
DiagID);
break;
case tok::kw___vector:
isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
break;
case tok::kw___pixel:
isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
break;
case tok::kw_image1d_t:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_image1d_t, Loc,
PrevSpec, DiagID);
break;
case tok::kw_image1d_array_t:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_image1d_array_t, Loc,
PrevSpec, DiagID);
break;
case tok::kw_image1d_buffer_t:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_image1d_buffer_t, Loc,
PrevSpec, DiagID);
break;
case tok::kw_image2d_t:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_image2d_t, Loc,
PrevSpec, DiagID);
break;
case tok::kw_image2d_array_t:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_image2d_array_t, Loc,
PrevSpec, DiagID);
break;
case tok::kw_image3d_t:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_image3d_t, Loc,
PrevSpec, DiagID);
break;
case tok::kw_sampler_t:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_sampler_t, Loc,
PrevSpec, DiagID);
break;
case tok::kw_event_t:
isInvalid = DS.SetTypeSpecType(DeclSpec::TST_event_t, Loc,
PrevSpec, DiagID);
break;
case tok::kw___unknown_anytype:
isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc,
PrevSpec, DiagID);
break;
// class-specifier:
case tok::kw_class:
case tok::kw_struct:
case tok::kw___interface:
case tok::kw_union: {
tok::TokenKind Kind = Tok.getKind();
ConsumeToken();
// These are attributes following class specifiers.
// To produce better diagnostic, we parse them when
// parsing class specifier.
ParsedAttributesWithRange Attributes(AttrFactory);
ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS,
EnteringContext, DSContext, Attributes);
// If there are attributes following class specifier,
// take them over and handle them here.
if (!Attributes.empty()) {
AttrsLastTime = true;
attrs.takeAllFrom(Attributes);
}
continue;
}
// enum-specifier:
case tok::kw_enum:
ConsumeToken();
ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSContext);
continue;
// cv-qualifier:
case tok::kw_const:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
getLangOpts());
break;
case tok::kw_volatile:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
getLangOpts());
break;
case tok::kw_restrict:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
getLangOpts());
break;
// C++ typename-specifier:
case tok::kw_typename:
if (TryAnnotateTypeOrScopeToken()) {
DS.SetTypeSpecError();
goto DoneWithDeclSpec;
}
if (!Tok.is(tok::kw_typename))
continue;
break;
// GNU typeof support.
case tok::kw_typeof:
ParseTypeofSpecifier(DS);
continue;
case tok::annot_decltype:
ParseDecltypeSpecifier(DS);
continue;
case tok::kw___underlying_type:
ParseUnderlyingTypeSpecifier(DS);
continue;
case tok::kw__Atomic:
// C11 6.7.2.4/4:
// If the _Atomic keyword is immediately followed by a left parenthesis,
// it is interpreted as a type specifier (with a type name), not as a
// type qualifier.
if (NextToken().is(tok::l_paren)) {
ParseAtomicSpecifier(DS);
continue;
}
isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
getLangOpts());
break;
// OpenCL qualifiers:
case tok::kw_private:
if (!getLangOpts().OpenCL)
goto DoneWithDeclSpec;
case tok::kw___private:
case tok::kw___global:
case tok::kw___local:
case tok::kw___constant:
case tok::kw___read_only:
case tok::kw___write_only:
case tok::kw___read_write:
ParseOpenCLQualifiers(DS);
break;
case tok::less:
// GCC ObjC supports types like "<SomeProtocol>" as a synonym for
// "id<SomeProtocol>". This is hopelessly old fashioned and dangerous,
// but we support it.
if (DS.hasTypeSpecifier() || !getLangOpts().ObjC1)
goto DoneWithDeclSpec;
if (!ParseObjCProtocolQualifiers(DS))
Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
<< FixItHint::CreateInsertion(Loc, "id")
<< SourceRange(Loc, DS.getSourceRange().getEnd());
// Need to support trailing type qualifiers (e.g. "id<p> const").
// If a type specifier follows, it will be diagnosed elsewhere.
continue;
}
// If the specifier wasn't legal, issue a diagnostic.
if (isInvalid) {
assert(PrevSpec && "Method did not return previous specifier!");
assert(DiagID);
if (DiagID == diag::ext_duplicate_declspec)
Diag(Tok, DiagID)
<< PrevSpec << FixItHint::CreateRemoval(Tok.getLocation());
else
Diag(Tok, DiagID) << PrevSpec;
}
DS.SetRangeEnd(Tok.getLocation());
if (DiagID != diag::err_bool_redeclaration)
ConsumeToken();
AttrsLastTime = false;
}
}
/// ParseStructDeclaration - Parse a struct declaration without the terminating
/// semicolon.
///
/// struct-declaration:
/// specifier-qualifier-list struct-declarator-list
/// [GNU] __extension__ struct-declaration
/// [GNU] specifier-qualifier-list
/// struct-declarator-list:
/// struct-declarator
/// struct-declarator-list ',' struct-declarator
/// [GNU] struct-declarator-list ',' attributes[opt] struct-declarator
/// struct-declarator:
/// declarator
/// [GNU] declarator attributes[opt]
/// declarator[opt] ':' constant-expression
/// [GNU] declarator[opt] ':' constant-expression attributes[opt]
///
void Parser::
ParseStructDeclaration(ParsingDeclSpec &DS, FieldCallback &Fields) {
if (Tok.is(tok::kw___extension__)) {
// __extension__ silences extension warnings in the subexpression.
ExtensionRAIIObject O(Diags); // Use RAII to do this.
ConsumeToken();
return ParseStructDeclaration(DS, Fields);
}
// Parse the common specifier-qualifiers-list piece.
ParseSpecifierQualifierList(DS);
// If there are no declarators, this is a free-standing declaration
// specifier. Let the actions module cope with it.
if (Tok.is(tok::semi)) {
Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
DS);
DS.complete(TheDecl);
return;
}
// Read struct-declarators until we find the semicolon.
bool FirstDeclarator = true;
SourceLocation CommaLoc;
while (1) {
ParsingFieldDeclarator DeclaratorInfo(*this, DS);
DeclaratorInfo.D.setCommaLoc(CommaLoc);
// Attributes are only allowed here on successive declarators.
if (!FirstDeclarator)
MaybeParseGNUAttributes(DeclaratorInfo.D);
/// struct-declarator: declarator
/// struct-declarator: declarator[opt] ':' constant-expression
if (Tok.isNot(tok::colon)) {
// Don't parse FOO:BAR as if it were a typo for FOO::BAR.
ColonProtectionRAIIObject X(*this);
ParseDeclarator(DeclaratorInfo.D);
}
if (Tok.is(tok::colon)) {
ConsumeToken();
ExprResult Res(ParseConstantExpression());
if (Res.isInvalid())
SkipUntil(tok::semi, true, true);
else
DeclaratorInfo.BitfieldSize = Res.release();
}
// If attributes exist after the declarator, parse them.
MaybeParseGNUAttributes(DeclaratorInfo.D);
// We're done with this declarator; invoke the callback.
Fields.invoke(DeclaratorInfo);
// If we don't have a comma, it is either the end of the list (a ';')
// or an error, bail out.
if (Tok.isNot(tok::comma))
return;
// Consume the comma.
CommaLoc = ConsumeToken();
FirstDeclarator = false;
}
}
/// ParseStructUnionBody
/// struct-contents:
/// struct-declaration-list
/// [EXT] empty
/// [GNU] "struct-declaration-list" without terminatoring ';'
/// struct-declaration-list:
/// struct-declaration
/// struct-declaration-list struct-declaration
/// [OBC] '@' 'defs' '(' class-name ')'
///
void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
unsigned TagType, Decl *TagDecl) {
PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
"parsing struct/union body");
assert(!getLangOpts().CPlusPlus && "C++ declarations not supported");
BalancedDelimiterTracker T(*this, tok::l_brace);
if (T.consumeOpen())
return;
ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
SmallVector<Decl *, 32> FieldDecls;
// While we still have something to read, read the declarations in the struct.
while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
// Each iteration of this loop reads one struct-declaration.
// Check for extraneous top-level semicolon.
if (Tok.is(tok::semi)) {
ConsumeExtraSemi(InsideStruct, TagType);
continue;
}
// Parse _Static_assert declaration.
if (Tok.is(tok::kw__Static_assert)) {
SourceLocation DeclEnd;
ParseStaticAssertDeclaration(DeclEnd);
continue;
}
if (Tok.is(tok::annot_pragma_pack)) {
HandlePragmaPack();
continue;
}
if (Tok.is(tok::annot_pragma_align)) {
HandlePragmaAlign();
continue;
}
if (!Tok.is(tok::at)) {
struct CFieldCallback : FieldCallback {
Parser &P;
Decl *TagDecl;
SmallVectorImpl<Decl *> &FieldDecls;
CFieldCallback(Parser &P, Decl *TagDecl,
SmallVectorImpl<Decl *> &FieldDecls) :
P(P), TagDecl(TagDecl), FieldDecls(FieldDecls) {}
void invoke(ParsingFieldDeclarator &FD) {
// Install the declarator into the current TagDecl.
Decl *Field = P.Actions.ActOnField(P.getCurScope(), TagDecl,
FD.D.getDeclSpec().getSourceRange().getBegin(),
FD.D, FD.BitfieldSize);
FieldDecls.push_back(Field);
FD.complete(Field);
}
} Callback(*this, TagDecl, FieldDecls);
// Parse all the comma separated declarators.
ParsingDeclSpec DS(*this);
ParseStructDeclaration(DS, Callback);
} else { // Handle @defs
ConsumeToken();
if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
Diag(Tok, diag::err_unexpected_at);
SkipUntil(tok::semi, true);
continue;
}
ConsumeToken();
ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
if (!Tok.is(tok::identifier)) {
Diag(Tok, diag::err_expected_ident);
SkipUntil(tok::semi, true);
continue;
}
SmallVector<Decl *, 16> Fields;
Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
Tok.getIdentifierInfo(), Fields);
FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
ConsumeToken();
ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
}
if (Tok.is(tok::semi)) {
ConsumeToken();
} else if (Tok.is(tok::r_brace)) {
ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
break;
} else {
ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
// Skip to end of block or statement to avoid ext-warning on extra ';'.
SkipUntil(tok::r_brace, true, true);
// If we stopped at a ';', eat it.
if (Tok.is(tok::semi)) ConsumeToken();
}
}
T.consumeClose();
ParsedAttributes attrs(AttrFactory);
// If attributes exist after struct contents, parse them.
MaybeParseGNUAttributes(attrs);
Actions.ActOnFields(getCurScope(),
RecordLoc, TagDecl, FieldDecls,
T.getOpenLocation(), T.getCloseLocation(),
attrs.getList());
StructScope.Exit();
Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl,
T.getCloseLocation());
}
/// ParseEnumSpecifier
/// enum-specifier: [C99 6.7.2.2]
/// 'enum' identifier[opt] '{' enumerator-list '}'
///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
/// [GNU] 'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
/// '}' attributes[opt]
/// [MS] 'enum' __declspec[opt] identifier[opt] '{' enumerator-list ',' [opt]
/// '}'
/// 'enum' identifier
/// [GNU] 'enum' attributes[opt] identifier
///
/// [C++11] enum-head '{' enumerator-list[opt] '}'
/// [C++11] enum-head '{' enumerator-list ',' '}'
///
/// enum-head: [C++11]
/// enum-key attribute-specifier-seq[opt] identifier[opt] enum-base[opt]
/// enum-key attribute-specifier-seq[opt] nested-name-specifier
/// identifier enum-base[opt]
///
/// enum-key: [C++11]
/// 'enum'
/// 'enum' 'class'
/// 'enum' 'struct'
///
/// enum-base: [C++11]
/// ':' type-specifier-seq
///
/// [C++] elaborated-type-specifier:
/// [C++] 'enum' '::'[opt] nested-name-specifier[opt] identifier
///
void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
const ParsedTemplateInfo &TemplateInfo,
AccessSpecifier AS, DeclSpecContext DSC) {
// Parse the tag portion of this.
if (Tok.is(tok::code_completion)) {
// Code completion for an enum name.
Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
return cutOffParsing();
}
// If attributes exist after tag, parse them.
ParsedAttributesWithRange attrs(AttrFactory);
MaybeParseGNUAttributes(attrs);
MaybeParseCXX11Attributes(attrs);
// If declspecs exist after tag, parse them.
while (Tok.is(tok::kw___declspec))
ParseMicrosoftDeclSpec(attrs);
SourceLocation ScopedEnumKWLoc;
bool IsScopedUsingClassTag = false;
// In C++11, recognize 'enum class' and 'enum struct'.
if (Tok.is(tok::kw_class) || Tok.is(tok::kw_struct)) {
Diag(Tok, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_scoped_enum
: diag::ext_scoped_enum);
IsScopedUsingClassTag = Tok.is(tok::kw_class);
ScopedEnumKWLoc = ConsumeToken();
// Attributes are not allowed between these keywords. Diagnose,
// but then just treat them like they appeared in the right place.
ProhibitAttributes(attrs);
// They are allowed afterwards, though.
MaybeParseGNUAttributes(attrs);
MaybeParseCXX11Attributes(attrs);
while (Tok.is(tok::kw___declspec))
ParseMicrosoftDeclSpec(attrs);
}
// C++11 [temp.explicit]p12:
// The usual access controls do not apply to names used to specify
// explicit instantiations.
// We extend this to also cover explicit specializations. Note that
// we don't suppress if this turns out to be an elaborated type
// specifier.
bool shouldDelayDiagsInTag =
(TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
SuppressAccessChecks diagsFromTag(*this, shouldDelayDiagsInTag);
// Enum definitions should not be parsed in a trailing-return-type.
bool AllowDeclaration = DSC != DSC_trailing;
bool AllowFixedUnderlyingType = AllowDeclaration &&
(getLangOpts().CPlusPlus11 || getLangOpts().MicrosoftExt ||
getLangOpts().ObjC2);
CXXScopeSpec &SS = DS.getTypeSpecScope();
if (getLangOpts().CPlusPlus) {
// "enum foo : bar;" is not a potential typo for "enum foo::bar;"
// if a fixed underlying type is allowed.
ColonProtectionRAIIObject X(*this, AllowFixedUnderlyingType);
if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
/*EnteringContext=*/true))
return;
if (SS.isSet() && Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_expected_ident);
if (Tok.isNot(tok::l_brace)) {
// Has no name and is not a definition.
// Skip the rest of this declarator, up until the comma or semicolon.
SkipUntil(tok::comma, true);
return;
}
}
}
// Must have either 'enum name' or 'enum {...}'.
if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
!(AllowFixedUnderlyingType && Tok.is(tok::colon))) {
Diag(Tok, diag::err_expected_ident_lbrace);
// Skip the rest of this declarator, up until the comma or semicolon.
SkipUntil(tok::comma, true);
return;
}
// If an identifier is present, consume and remember it.
IdentifierInfo *Name = 0;
SourceLocation NameLoc;
if (Tok.is(tok::identifier)) {
Name = Tok.getIdentifierInfo();
NameLoc = ConsumeToken();
}
if (!Name && ScopedEnumKWLoc.isValid()) {
// C++0x 7.2p2: The optional identifier shall not be omitted in the
// declaration of a scoped enumeration.
Diag(Tok, diag::err_scoped_enum_missing_identifier);
ScopedEnumKWLoc = SourceLocation();
IsScopedUsingClassTag = false;
}
// Okay, end the suppression area. We'll decide whether to emit the
// diagnostics in a second.
if (shouldDelayDiagsInTag)
diagsFromTag.done();
TypeResult BaseType;
// Parse the fixed underlying type.
bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
if (AllowFixedUnderlyingType && Tok.is(tok::colon)) {
bool PossibleBitfield = false;
if (CanBeBitfield) {
// If we're in class scope, this can either be an enum declaration with
// an underlying type, or a declaration of a bitfield member. We try to
// use a simple disambiguation scheme first to catch the common cases
// (integer literal, sizeof); if it's still ambiguous, we then consider
// anything that's a simple-type-specifier followed by '(' as an
// expression. This suffices because function types are not valid
// underlying types anyway.
EnterExpressionEvaluationContext Unevaluated(Actions,
Sema::ConstantEvaluated);
TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind());
// If the next token starts an expression, we know we're parsing a
// bit-field. This is the common case.
if (TPR == TPResult::True())
PossibleBitfield = true;
// If the next token starts a type-specifier-seq, it may be either a
// a fixed underlying type or the start of a function-style cast in C++;
// lookahead one more token to see if it's obvious that we have a
// fixed underlying type.
else if (TPR == TPResult::False() &&
GetLookAheadToken(2).getKind() == tok::semi) {
// Consume the ':'.
ConsumeToken();
} else {
// We have the start of a type-specifier-seq, so we have to perform
// tentative parsing to determine whether we have an expression or a
// type.
TentativeParsingAction TPA(*this);
// Consume the ':'.
ConsumeToken();
// If we see a type specifier followed by an open-brace, we have an
// ambiguity between an underlying type and a C++11 braced
// function-style cast. Resolve this by always treating it as an
// underlying type.
// FIXME: The standard is not entirely clear on how to disambiguate in
// this case.
if ((getLangOpts().CPlusPlus &&
isCXXDeclarationSpecifier(TPResult::True()) != TPResult::True()) ||
(!getLangOpts().CPlusPlus && !isDeclarationSpecifier(true))) {
// We'll parse this as a bitfield later.
PossibleBitfield = true;
TPA.Revert();
} else {
// We have a type-specifier-seq.
TPA.Commit();
}
}
} else {
// Consume the ':'.
ConsumeToken();
}
if (!PossibleBitfield) {
SourceRange Range;
BaseType = ParseTypeName(&Range);
if (getLangOpts().CPlusPlus11) {
Diag(StartLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type);
} else if (!getLangOpts().ObjC2) {
if (getLangOpts().CPlusPlus)
Diag(StartLoc, diag::ext_cxx11_enum_fixed_underlying_type) << Range;
else
Diag(StartLoc, diag::ext_c_enum_fixed_underlying_type) << Range;
}
}
}
// There are four options here. If we have 'friend enum foo;' then this is a
// friend declaration, and cannot have an accompanying definition. If we have
// 'enum foo;', then this is a forward declaration. If we have
// 'enum foo {...' then this is a definition. Otherwise we have something
// like 'enum foo xyz', a reference.
//
// This is needed to handle stuff like this right (C99 6.7.2.3p11):
// enum foo {..}; void bar() { enum foo; } <- new foo in bar.
// enum foo {..}; void bar() { enum foo x; } <- use of old foo.
//
Sema::TagUseKind TUK;
if (!AllowDeclaration) {
TUK = Sema::TUK_Reference;
} else if (Tok.is(tok::l_brace)) {
if (DS.isFriendSpecified()) {
Diag(Tok.getLocation(), diag::err_friend_decl_defines_type)
<< SourceRange(DS.getFriendSpecLoc());
ConsumeBrace();
SkipUntil(tok::r_brace);
TUK = Sema::TUK_Friend;
} else {
TUK = Sema::TUK_Definition;
}
} else if (DSC != DSC_type_specifier &&
(Tok.is(tok::semi) ||
(Tok.isAtStartOfLine() &&
!isValidAfterTypeSpecifier(CanBeBitfield)))) {
TUK = DS.isFriendSpecified() ? Sema::TUK_Friend : Sema::TUK_Declaration;
if (Tok.isNot(tok::semi)) {
// A semicolon was missing after this declaration. Diagnose and recover.
ExpectAndConsume(tok::semi, diag::err_expected_semi_after_tagdecl,
"enum");
PP.EnterToken(Tok);
Tok.setKind(tok::semi);
}
} else {
TUK = Sema::TUK_Reference;
}
// If this is an elaborated type specifier, and we delayed
// diagnostics before, just merge them into the current pool.
if (TUK == Sema::TUK_Reference && shouldDelayDiagsInTag) {
diagsFromTag.redelay();
}
MultiTemplateParamsArg TParams;
if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
TUK != Sema::TUK_Reference) {
if (!getLangOpts().CPlusPlus11 || !SS.isSet()) {
// Skip the rest of this declarator, up until the comma or semicolon.
Diag(Tok, diag::err_enum_template);
SkipUntil(tok::comma, true);
return;
}
if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
// Enumerations can't be explicitly instantiated.
DS.SetTypeSpecError();
Diag(StartLoc, diag::err_explicit_instantiation_enum);
return;
}
assert(TemplateInfo.TemplateParams && "no template parameters");
TParams = MultiTemplateParamsArg(TemplateInfo.TemplateParams->data(),
TemplateInfo.TemplateParams->size());
}
if (TUK == Sema::TUK_Reference)
ProhibitAttributes(attrs);
if (!Name && TUK != Sema::TUK_Definition) {
Diag(Tok, diag::err_enumerator_unnamed_no_def);
// Skip the rest of this declarator, up until the comma or semicolon.
SkipUntil(tok::comma, true);
return;
}
bool Owned = false;
bool IsDependent = false;
const char *PrevSpec = 0;
unsigned DiagID;
Decl *TagDecl = Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK,
StartLoc, SS, Name, NameLoc, attrs.getList(),
AS, DS.getModulePrivateSpecLoc(), TParams,
Owned, IsDependent, ScopedEnumKWLoc,
IsScopedUsingClassTag, BaseType);
if (IsDependent) {
// This enum has a dependent nested-name-specifier. Handle it as a
// dependent tag.
if (!Name) {
DS.SetTypeSpecError();
Diag(Tok, diag::err_expected_type_name_after_typename);
return;
}
TypeResult Type = Actions.ActOnDependentTag(getCurScope(), DeclSpec::TST_enum,
TUK, SS, Name, StartLoc,
NameLoc);
if (Type.isInvalid()) {
DS.SetTypeSpecError();
return;
}
if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
NameLoc.isValid() ? NameLoc : StartLoc,
PrevSpec, DiagID, Type.get()))
Diag(StartLoc, DiagID) << PrevSpec;
return;
}
if (!TagDecl) {
// The action failed to produce an enumeration tag. If this is a
// definition, consume the entire definition.
if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) {
ConsumeBrace();
SkipUntil(tok::r_brace);
}
DS.SetTypeSpecError();
return;
}
if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference)
ParseEnumBody(StartLoc, TagDecl);
if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
NameLoc.isValid() ? NameLoc : StartLoc,
PrevSpec, DiagID, TagDecl, Owned))
Diag(StartLoc, DiagID) << PrevSpec;
}
/// ParseEnumBody - Parse a {} enclosed enumerator-list.
/// enumerator-list:
/// enumerator
/// enumerator-list ',' enumerator
/// enumerator:
/// enumeration-constant
/// enumeration-constant '=' constant-expression
/// enumeration-constant:
/// identifier
///
void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
// Enter the scope of the enum body and start the definition.
ParseScope EnumScope(this, Scope::DeclScope);
Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
BalancedDelimiterTracker T(*this, tok::l_brace);
T.consumeOpen();
// C does not allow an empty enumerator-list, C++ does [dcl.enum].
if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus)
Diag(Tok, diag::error_empty_enum);
SmallVector<Decl *, 32> EnumConstantDecls;
Decl *LastEnumConstDecl = 0;
// Parse the enumerator-list.
while (Tok.is(tok::identifier)) {
IdentifierInfo *Ident = Tok.getIdentifierInfo();
SourceLocation IdentLoc = ConsumeToken();
// If attributes exist after the enumerator, parse them.
ParsedAttributesWithRange attrs(AttrFactory);
MaybeParseGNUAttributes(attrs);
MaybeParseCXX11Attributes(attrs);
ProhibitAttributes(attrs);
SourceLocation EqualLoc;
ExprResult AssignedVal;
ParsingDeclRAIIObject PD(*this, ParsingDeclRAIIObject::NoParent);
if (Tok.is(tok::equal)) {
EqualLoc = ConsumeToken();
AssignedVal = ParseConstantExpression();
if (AssignedVal.isInvalid())
SkipUntil(tok::comma, tok::r_brace, true, true);
}
// Install the enumerator constant into EnumDecl.
Decl *EnumConstDecl = Actions.ActOnEnumConstant(getCurScope(), EnumDecl,
LastEnumConstDecl,
IdentLoc, Ident,
attrs.getList(), EqualLoc,
AssignedVal.release());
PD.complete(EnumConstDecl);
EnumConstantDecls.push_back(EnumConstDecl);
LastEnumConstDecl = EnumConstDecl;
if (Tok.is(tok::identifier)) {
// We're missing a comma between enumerators.
SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
Diag(Loc, diag::err_enumerator_list_missing_comma)
<< FixItHint::CreateInsertion(Loc, ", ");
continue;
}
if (Tok.isNot(tok::comma))
break;
SourceLocation CommaLoc = ConsumeToken();
if (Tok.isNot(tok::identifier)) {
if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11)
Diag(CommaLoc, getLangOpts().CPlusPlus ?
diag::ext_enumerator_list_comma_cxx :
diag::ext_enumerator_list_comma_c)
<< FixItHint::CreateRemoval(CommaLoc);
else if (getLangOpts().CPlusPlus11)
Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma)
<< FixItHint::CreateRemoval(CommaLoc);
}
}
// Eat the }.
T.consumeClose();
// If attributes exist after the identifier list, parse them.
ParsedAttributes attrs(AttrFactory);
MaybeParseGNUAttributes(attrs);
Actions.ActOnEnumBody(StartLoc, T.getOpenLocation(), T.getCloseLocation(),
EnumDecl, EnumConstantDecls,
getCurScope(),
attrs.getList());
EnumScope.Exit();
Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl,
T.getCloseLocation());
// The next token must be valid after an enum definition. If not, a ';'
// was probably forgotten.
bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
if (!isValidAfterTypeSpecifier(CanBeBitfield)) {
ExpectAndConsume(tok::semi, diag::err_expected_semi_after_tagdecl, "enum");
// Push this token back into the preprocessor and change our current token
// to ';' so that the rest of the code recovers as though there were an
// ';' after the definition.
PP.EnterToken(Tok);
Tok.setKind(tok::semi);
}
}
/// isTypeSpecifierQualifier - Return true if the current token could be the
/// start of a type-qualifier-list.
bool Parser::isTypeQualifier() const {
switch (Tok.getKind()) {
default: return false;
// type-qualifier only in OpenCL
case tok::kw_private:
return getLangOpts().OpenCL;
// type-qualifier
case tok::kw_const:
case tok::kw_volatile:
case tok::kw_restrict:
case tok::kw___private:
case tok::kw___local:
case tok::kw___global:
case tok::kw___constant:
case tok::kw___read_only:
case tok::kw___read_write:
case tok::kw___write_only:
return true;
}
}
/// isKnownToBeTypeSpecifier - Return true if we know that the specified token
/// is definitely a type-specifier. Return false if it isn't part of a type
/// specifier or if we're not sure.
bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
switch (Tok.getKind()) {
default: return false;
// type-specifiers
case tok::kw_short:
case tok::kw_long:
case tok::kw___int64:
case tok::kw___int128:
case tok::kw_signed:
case tok::kw_unsigned:
case tok::kw__Complex:
case tok::kw__Imaginary:
case tok::kw_void:
case tok::kw_char:
case tok::kw_wchar_t:
case tok::kw_char16_t:
case tok::kw_char32_t:
case tok::kw_int:
case tok::kw_half:
case tok::kw_float:
case tok::kw_double:
case tok::kw_bool:
case tok::kw__Bool:
case tok::kw__Decimal32:
case tok::kw__Decimal64:
case tok::kw__Decimal128:
case tok::kw___vector:
// OpenCL specific types:
case tok::kw_image1d_t:
case tok::kw_image1d_array_t:
case tok::kw_image1d_buffer_t:
case tok::kw_image2d_t:
case tok::kw_image2d_array_t:
case tok::kw_image3d_t:
case tok::kw_sampler_t:
case tok::kw_event_t:
// struct-or-union-specifier (C99) or class-specifier (C++)
case tok::kw_class:
case tok::kw_struct:
case tok::kw___interface:
case tok::kw_union:
// enum-specifier
case tok::kw_enum:
// typedef-name
case tok::annot_typename:
return true;
}
}
/// isTypeSpecifierQualifier - Return true if the current token could be the
/// start of a specifier-qualifier-list.
bool Parser::isTypeSpecifierQualifier() {
switch (Tok.getKind()) {
default: return false;
case tok::identifier: // foo::bar
if (TryAltiVecVectorToken())
return true;
// Fall through.
case tok::kw_typename: // typename T::type
// Annotate typenames and C++ scope specifiers. If we get one, just
// recurse to handle whatever we get.
if (TryAnnotateTypeOrScopeToken())
return true;
if (Tok.is(tok::identifier))
return false;
return isTypeSpecifierQualifier();
case tok::coloncolon: // ::foo::bar
if (NextToken().is(tok::kw_new) || // ::new
NextToken().is(tok::kw_delete)) // ::delete
return false;
if (TryAnnotateTypeOrScopeToken())
return true;
return isTypeSpecifierQualifier();
// GNU attributes support.
case tok::kw___attribute:
// GNU typeof support.
case tok::kw_typeof:
// type-specifiers
case tok::kw_short:
case tok::kw_long:
case tok::kw___int64:
case tok::kw___int128:
case tok::kw_signed:
case tok::kw_unsigned:
case tok::kw__Complex:
case tok::kw__Imaginary:
case tok::kw_void:
case tok::kw_char:
case tok::kw_wchar_t:
case tok::kw_char16_t:
case tok::kw_char32_t:
case tok::kw_int:
case tok::kw_half:
case tok::kw_float:
case tok::kw_double:
case tok::kw_bool:
case tok::kw__Bool:
case tok::kw__Decimal32:
case tok::kw__Decimal64:
case tok::kw__Decimal128:
case tok::kw___vector:
// OpenCL specific types:
case tok::kw_image1d_t:
case tok::kw_image1d_array_t:
case tok::kw_image1d_buffer_t:
case tok::kw_image2d_t:
case tok::kw_image2d_array_t:
case tok::kw_image3d_t:
case tok::kw_sampler_t:
case tok::kw_event_t:
// struct-or-union-specifier (C99) or class-specifier (C++)
case tok::kw_class:
case tok::kw_struct:
case tok::kw___interface:
case tok::kw_union:
// enum-specifier
case tok::kw_enum:
// type-qualifier
case tok::kw_const:
case tok::kw_volatile:
case tok::kw_restrict:
// Debugger support.
case tok::kw___unknown_anytype:
// typedef-name
case tok::annot_typename:
return true;
// GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
case tok::less:
return getLangOpts().ObjC1;
case tok::kw___cdecl:
case tok::kw___stdcall:
case tok::kw___fastcall:
case tok::kw___thiscall:
case tok::kw___w64:
case tok::kw___ptr64:
case tok::kw___ptr32:
case tok::kw___pascal:
case tok::kw___unaligned:
case tok::kw___private:
case tok::kw___local:
case tok::kw___global:
case tok::kw___constant:
case tok::kw___read_only:
case tok::kw___read_write:
case tok::kw___write_only:
return true;
case tok::kw_private:
return getLangOpts().OpenCL;
// C11 _Atomic
case tok::kw__Atomic:
return true;
}
}
/// isDeclarationSpecifier() - Return true if the current token is part of a
/// declaration specifier.
///
/// \param DisambiguatingWithExpression True to indicate that the purpose of
/// this check is to disambiguate between an expression and a declaration.
bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) {
switch (Tok.getKind()) {
default: return false;
case tok::kw_private:
return getLangOpts().OpenCL;
case tok::identifier: // foo::bar
// Unfortunate hack to support "Class.factoryMethod" notation.
if (getLangOpts().ObjC1 && NextToken().is(tok::period))
return false;
if (TryAltiVecVectorToken())
return true;
// Fall through.
case tok::kw_decltype: // decltype(T())::type
case tok::kw_typename: // typename T::type
// Annotate typenames and C++ scope specifiers. If we get one, just
// recurse to handle whatever we get.
if (TryAnnotateTypeOrScopeToken())
return true;
if (Tok.is(tok::identifier))
return false;
// If we're in Objective-C and we have an Objective-C class type followed
// by an identifier and then either ':' or ']', in a place where an
// expression is permitted, then this is probably a class message send
// missing the initial '['. In this case, we won't consider this to be
// the start of a declaration.
if (DisambiguatingWithExpression &&
isStartOfObjCClassMessageMissingOpenBracket())
return false;
return isDeclarationSpecifier();
case tok::coloncolon: // ::foo::bar
if (NextToken().is(tok::kw_new) || // ::new
NextToken().is(tok::kw_delete)) // ::delete
return false;
// Annotate typenames and C++ scope specifiers. If we get one, just
// recurse to handle whatever we get.
if (TryAnnotateTypeOrScopeToken())
return true;
return isDeclarationSpecifier();
// storage-class-specifier
case tok::kw_typedef:
case tok::kw_extern:
case tok::kw___private_extern__:
case tok::kw_static:
case tok::kw_auto:
case tok::kw_register:
case tok::kw___thread:
case tok::kw_thread_local:
case tok::kw__Thread_local:
// Modules
case tok::kw___module_private__:
// Debugger support
case tok::kw___unknown_anytype:
// type-specifiers
case tok::kw_short:
case tok::kw_long:
case tok::kw___int64:
case tok::kw___int128:
case tok::kw_signed:
case tok::kw_unsigned:
case tok::kw__Complex:
case tok::kw__Imaginary:
case tok::kw_void:
case tok::kw_char:
case tok::kw_wchar_t:
case tok::kw_char16_t:
case tok::kw_char32_t:
case tok::kw_int:
case tok::kw_half:
case tok::kw_float:
case tok::kw_double:
case tok::kw_bool:
case tok::kw__Bool:
case tok::kw__Decimal32:
case tok::kw__Decimal64:
case tok::kw__Decimal128:
case tok::kw___vector:
// OpenCL specific types:
case tok::kw_image1d_t:
case tok::kw_image1d_array_t:
case tok::kw_image1d_buffer_t:
case tok::kw_image2d_t:
case tok::kw_image2d_array_t:
case tok::kw_image3d_t:
case tok::kw_sampler_t:
case tok::kw_event_t:
// struct-or-union-specifier (C99) or class-specifier (C++)
case tok::kw_class:
case tok::kw_struct:
case tok::kw_union:
case tok::kw___interface:
// enum-specifier
case tok::kw_enum:
// type-qualifier
case tok::kw_const:
case tok::kw_volatile:
case tok::kw_restrict:
// function-specifier
case tok::kw_inline:
case tok::kw_virtual:
case tok::kw_explicit:
case tok::kw__Noreturn:
// alignment-specifier
case tok::kw__Alignas:
// friend keyword.
case tok::kw_friend:
// static_assert-declaration
case tok::kw__Static_assert:
// GNU typeof support.
case tok::kw_typeof:
// GNU attributes.
case tok::kw___attribute:
// C++11 decltype and constexpr.
case tok::annot_decltype:
case tok::kw_constexpr:
// C11 _Atomic
case tok::kw__Atomic:
return true;
// GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
case tok::less:
return getLangOpts().ObjC1;
// typedef-name
case tok::annot_typename:
return !DisambiguatingWithExpression ||
!isStartOfObjCClassMessageMissingOpenBracket();
case tok::kw___declspec:
case tok::kw___cdecl:
case tok::kw___stdcall:
case tok::kw___fastcall:
case tok::kw___thiscall:
case tok::kw___w64:
case tok::kw___sptr:
case tok::kw___uptr:
case tok::kw___ptr64:
case tok::kw___ptr32:
case tok::kw___forceinline:
case tok::kw___pascal:
case tok::kw___unaligned:
case tok::kw___private:
case tok::kw___local:
case tok::kw___global:
case tok::kw___constant:
case tok::kw___read_only:
case tok::kw___read_write:
case tok::kw___write_only:
return true;
}
}
bool Parser::isConstructorDeclarator() {
TentativeParsingAction TPA(*this);
// Parse the C++ scope specifier.
CXXScopeSpec SS;
if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
/*EnteringContext=*/true)) {
TPA.Revert();
return false;
}
// Parse the constructor name.
if (Tok.is(tok::identifier) || Tok.is(tok::annot_template_id)) {
// We already know that we have a constructor name; just consume
// the token.
ConsumeToken();
} else {
TPA.Revert();
return false;
}
// Current class name must be followed by a left parenthesis.
if (Tok.isNot(tok::l_paren)) {
TPA.Revert();
return false;
}
ConsumeParen();
// A right parenthesis, or ellipsis followed by a right parenthesis signals
// that we have a constructor.
if (Tok.is(tok::r_paren) ||
(Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren))) {
TPA.Revert();
return true;
}
// A C++11 attribute here signals that we have a constructor, and is an
// attribute on the first constructor parameter.
if (getLangOpts().CPlusPlus11 &&
isCXX11AttributeSpecifier(/*Disambiguate*/ false,
/*OuterMightBeMessageSend*/ true)) {
TPA.Revert();
return true;
}
// If we need to, enter the specified scope.
DeclaratorScopeObj DeclScopeObj(*this, SS);
if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
DeclScopeObj.EnterDeclaratorScope();
// Optionally skip Microsoft attributes.
ParsedAttributes Attrs(AttrFactory);
MaybeParseMicrosoftAttributes(Attrs);
// Check whether the next token(s) are part of a declaration
// specifier, in which case we have the start of a parameter and,
// therefore, we know that this is a constructor.
bool IsConstructor = false;
if (isDeclarationSpecifier())
IsConstructor = true;
else if (Tok.is(tok::identifier) ||
(Tok.is(tok::annot_cxxscope) && NextToken().is(tok::identifier))) {
// We've seen "C ( X" or "C ( X::Y", but "X" / "X::Y" is not a type.
// This might be a parenthesized member name, but is more likely to
// be a constructor declaration with an invalid argument type. Keep
// looking.
if (Tok.is(tok::annot_cxxscope))
ConsumeToken();
ConsumeToken();
// If this is not a constructor, we must be parsing a declarator,
// which must have one of the following syntactic forms (see the
// grammar extract at the start of ParseDirectDeclarator):
switch (Tok.getKind()) {
case tok::l_paren:
// C(X ( int));
case tok::l_square:
// C(X [ 5]);
// C(X [ [attribute]]);
case tok::coloncolon:
// C(X :: Y);
// C(X :: *p);
case tok::r_paren:
// C(X )
// Assume this isn't a constructor, rather than assuming it's a
// constructor with an unnamed parameter of an ill-formed type.
break;
default:
IsConstructor = true;
break;
}
}
TPA.Revert();
return IsConstructor;
}
/// ParseTypeQualifierListOpt
/// type-qualifier-list: [C99 6.7.5]
/// type-qualifier
/// [vendor] attributes
/// [ only if VendorAttributesAllowed=true ]
/// type-qualifier-list type-qualifier
/// [vendor] type-qualifier-list attributes
/// [ only if VendorAttributesAllowed=true ]
/// [C++0x] attribute-specifier[opt] is allowed before cv-qualifier-seq
/// [ only if CXX11AttributesAllowed=true ]
/// Note: vendor can be GNU, MS, etc.
///
void Parser::ParseTypeQualifierListOpt(DeclSpec &DS,
bool VendorAttributesAllowed,
bool CXX11AttributesAllowed,
bool AtomicAllowed) {
if (getLangOpts().CPlusPlus11 && CXX11AttributesAllowed &&
isCXX11AttributeSpecifier()) {
ParsedAttributesWithRange attrs(AttrFactory);
ParseCXX11Attributes(attrs);
DS.takeAttributesFrom(attrs);
}
SourceLocation EndLoc;
while (1) {
bool isInvalid = false;
const char *PrevSpec = 0;
unsigned DiagID = 0;
SourceLocation Loc = Tok.getLocation();
switch (Tok.getKind()) {
case tok::code_completion:
Actions.CodeCompleteTypeQualifiers(DS);
return cutOffParsing();
case tok::kw_const:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_const , Loc, PrevSpec, DiagID,
getLangOpts());
break;
case tok::kw_volatile:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
getLangOpts());
break;
case tok::kw_restrict:
isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
getLangOpts());
break;
case tok::kw__Atomic:
if (!AtomicAllowed)
goto DoneWithTypeQuals;
isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
getLangOpts());
break;
// OpenCL qualifiers:
case tok::kw_private:
if (!getLangOpts().OpenCL)
goto DoneWithTypeQuals;
case tok::kw___private:
case tok::kw___global:
case tok::kw___local:
case tok::kw___constant:
case tok::kw___read_only:
case tok::kw___write_only:
case tok::kw___read_write:
ParseOpenCLQualifiers(DS);
break;
case tok::kw___sptr:
case tok::kw___uptr:
case tok::kw___w64:
case tok::kw___ptr64:
case tok::kw___ptr32:
case tok::kw___cdecl:
case tok::kw___stdcall:
case tok::kw___fastcall:
case tok::kw___thiscall:
case tok::kw___unaligned:
if (VendorAttributesAllowed) {
ParseMicrosoftTypeAttributes(DS.getAttributes());
continue;
}
goto DoneWithTypeQuals;
case tok::kw___pascal:
if (VendorAttributesAllowed) {
ParseBorlandTypeAttributes(DS.getAttributes());
continue;
}
goto DoneWithTypeQuals;
case tok::kw___attribute:
if (VendorAttributesAllowed) {
ParseGNUAttributes(DS.getAttributes());
continue; // do *not* consume the next token!
}
// otherwise, FALL THROUGH!
default:
DoneWithTypeQuals:
// If this is not a type-qualifier token, we're done reading type
// qualifiers. First verify that DeclSpec's are consistent.
DS.Finish(Diags, PP);
if (EndLoc.isValid())
DS.SetRangeEnd(EndLoc);
return;
}
// If the specifier combination wasn't legal, issue a diagnostic.
if (isInvalid) {
assert(PrevSpec && "Method did not return previous specifier!");
Diag(Tok, DiagID) << PrevSpec;
}
EndLoc = ConsumeToken();
}
}
/// ParseDeclarator - Parse and verify a newly-initialized declarator.
///
void Parser::ParseDeclarator(Declarator &D) {
/// This implements the 'declarator' production in the C grammar, then checks
/// for well-formedness and issues diagnostics.
ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
}
static bool isPtrOperatorToken(tok::TokenKind Kind, const LangOptions &Lang) {
if (Kind == tok::star || Kind == tok::caret)
return true;
// We parse rvalue refs in C++03, because otherwise the errors are scary.
if (!Lang.CPlusPlus)
return false;
return Kind == tok::amp || Kind == tok::ampamp;
}
/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
/// is parsed by the function passed to it. Pass null, and the direct-declarator
/// isn't parsed at all, making this function effectively parse the C++
/// ptr-operator production.
///
/// If the grammar of this construct is extended, matching changes must also be
/// made to TryParseDeclarator and MightBeDeclarator, and possibly to
/// isConstructorDeclarator.
///
/// declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
/// [C] pointer[opt] direct-declarator
/// [C++] direct-declarator
/// [C++] ptr-operator declarator
///
/// pointer: [C99 6.7.5]
/// '*' type-qualifier-list[opt]
/// '*' type-qualifier-list[opt] pointer
///
/// ptr-operator:
/// '*' cv-qualifier-seq[opt]
/// '&'
/// [C++0x] '&&'
/// [GNU] '&' restrict[opt] attributes[opt]
/// [GNU?] '&&' restrict[opt] attributes[opt]
/// '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
void Parser::ParseDeclaratorInternal(Declarator &D,
DirectDeclParseFunction DirectDeclParser) {
if (Diags.hasAllExtensionsSilenced())
D.setExtension();
// C++ member pointers start with a '::' or a nested-name.
// Member pointers get special handling, since there's no place for the
// scope spec in the generic path below.
if (getLangOpts().CPlusPlus &&
(Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
Tok.is(tok::annot_cxxscope))) {
bool EnteringContext = D.getContext() == Declarator::FileContext ||
D.getContext() == Declarator::MemberContext;
CXXScopeSpec SS;
ParseOptionalCXXScopeSpecifier(SS, ParsedType(), EnteringContext);
if (SS.isNotEmpty()) {
if (Tok.isNot(tok::star)) {
// The scope spec really belongs to the direct-declarator.
if (D.mayHaveIdentifier())
D.getCXXScopeSpec() = SS;
else
AnnotateScopeToken(SS, true);
if (DirectDeclParser)
(this->*DirectDeclParser)(D);
return;
}
SourceLocation Loc = ConsumeToken();
D.SetRangeEnd(Loc);
DeclSpec DS(AttrFactory);
ParseTypeQualifierListOpt(DS);
D.ExtendWithDeclSpec(DS);
// Recurse to parse whatever is left.
ParseDeclaratorInternal(D, DirectDeclParser);
// Sema will have to catch (syntactically invalid) pointers into global
// scope. It has to catch pointers into namespace scope anyway.
D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
Loc),
DS.getAttributes(),
/* Don't replace range end. */SourceLocation());
return;
}
}
tok::TokenKind Kind = Tok.getKind();
// Not a pointer, C++ reference, or block.
if (!isPtrOperatorToken(Kind, getLangOpts())) {
if (DirectDeclParser)
(this->*DirectDeclParser)(D);
return;
}
// Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
// '&&' -> rvalue reference
SourceLocation Loc = ConsumeToken(); // Eat the *, ^, & or &&.
D.SetRangeEnd(Loc);
if (Kind == tok::star || Kind == tok::caret) {
// Is a pointer.
DeclSpec DS(AttrFactory);
// FIXME: GNU attributes are not allowed here in a new-type-id.
ParseTypeQualifierListOpt(DS);
D.ExtendWithDeclSpec(DS);
// Recursively parse the declarator.
ParseDeclaratorInternal(D, DirectDeclParser);
if (Kind == tok::star)
// Remember that we parsed a pointer type, and remember the type-quals.
D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
DS.getConstSpecLoc(),
DS.getVolatileSpecLoc(),
DS.getRestrictSpecLoc()),
DS.getAttributes(),
SourceLocation());
else
// Remember that we parsed a Block type, and remember the type-quals.
D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
Loc),
DS.getAttributes(),
SourceLocation());
} else {
// Is a reference
DeclSpec DS(AttrFactory);
// Complain about rvalue references in C++03, but then go on and build
// the declarator.
if (Kind == tok::ampamp)
Diag(Loc, getLangOpts().CPlusPlus11 ?
diag::warn_cxx98_compat_rvalue_reference :
diag::ext_rvalue_reference);
// GNU-style and C++11 attributes are allowed here, as is restrict.
ParseTypeQualifierListOpt(DS);
D.ExtendWithDeclSpec(DS);
// C++ 8.3.2p1: cv-qualified references are ill-formed except when the
// cv-qualifiers are introduced through the use of a typedef or of a
// template type argument, in which case the cv-qualifiers are ignored.
if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
Diag(DS.getConstSpecLoc(),
diag::err_invalid_reference_qualifier_application) << "const";
if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
Diag(DS.getVolatileSpecLoc(),
diag::err_invalid_reference_qualifier_application) << "volatile";
// 'restrict' is permitted as an extension.
if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
Diag(DS.getAtomicSpecLoc(),
diag::err_invalid_reference_qualifier_application) << "_Atomic";
}
// Recursively parse the declarator.
ParseDeclaratorInternal(D, DirectDeclParser);
if (D.getNumTypeObjects() > 0) {
// C++ [dcl.ref]p4: There shall be no references to references.
DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
if (InnerChunk.Kind == DeclaratorChunk::Reference) {
if (const IdentifierInfo *II = D.getIdentifier())
Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
<< II;
else
Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
<< "type name";
// Once we've complained about the reference-to-reference, we
// can go ahead and build the (technically ill-formed)
// declarator: reference collapsing will take care of it.
}
}
// Remember that we parsed a reference type.
D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
Kind == tok::amp),
DS.getAttributes(),
SourceLocation());
}
}
static void diagnoseMisplacedEllipsis(Parser &P, Declarator &D,
SourceLocation EllipsisLoc) {
if (EllipsisLoc.isValid()) {
FixItHint Insertion;
if (!D.getEllipsisLoc().isValid()) {
Insertion = FixItHint::CreateInsertion(D.getIdentifierLoc(), "...");
D.setEllipsisLoc(EllipsisLoc);
}
P.Diag(EllipsisLoc, diag::err_misplaced_ellipsis_in_declaration)
<< FixItHint::CreateRemoval(EllipsisLoc) << Insertion << !D.hasName();
}
}
/// ParseDirectDeclarator
/// direct-declarator: [C99 6.7.5]
/// [C99] identifier
/// '(' declarator ')'
/// [GNU] '(' attributes declarator ')'
/// [C90] direct-declarator '[' constant-expression[opt] ']'
/// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
/// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
/// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']'
/// [C99] direct-declarator '[' type-qual-list[opt] '*' ']'
/// [C++11] direct-declarator '[' constant-expression[opt] ']'
/// attribute-specifier-seq[opt]
/// direct-declarator '(' parameter-type-list ')'
/// direct-declarator '(' identifier-list[opt] ')'
/// [GNU] direct-declarator '(' parameter-forward-declarations
/// parameter-type-list[opt] ')'
/// [C++] direct-declarator '(' parameter-declaration-clause ')'
/// cv-qualifier-seq[opt] exception-specification[opt]
/// [C++11] direct-declarator '(' parameter-declaration-clause ')'
/// attribute-specifier-seq[opt] cv-qualifier-seq[opt]
/// ref-qualifier[opt] exception-specification[opt]
/// [C++] declarator-id
/// [C++11] declarator-id attribute-specifier-seq[opt]
///
/// declarator-id: [C++ 8]
/// '...'[opt] id-expression
/// '::'[opt] nested-name-specifier[opt] type-name
///
/// id-expression: [C++ 5.1]
/// unqualified-id
/// qualified-id
///
/// unqualified-id: [C++ 5.1]
/// identifier
/// operator-function-id
/// conversion-function-id
/// '~' class-name
/// template-id
///
/// Note, any additional constructs added here may need corresponding changes
/// in isConstructorDeclarator.
void Parser::ParseDirectDeclarator(Declarator &D) {
DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
if (getLangOpts().CPlusPlus && D.mayHaveIdentifier()) {
// ParseDeclaratorInternal might already have parsed the scope.
if (D.getCXXScopeSpec().isEmpty()) {
bool EnteringContext = D.getContext() == Declarator::FileContext ||
D.getContext() == Declarator::MemberContext;
ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), ParsedType(),
EnteringContext);
}
if (D.getCXXScopeSpec().isValid()) {
if (Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
// Change the declaration context for name lookup, until this function
// is exited (and the declarator has been parsed).
DeclScopeObj.EnterDeclaratorScope();
}
// C++0x [dcl.fct]p14:
// There is a syntactic ambiguity when an ellipsis occurs at the end
// of a parameter-declaration-clause without a preceding comma. In
// this case, the ellipsis is parsed as part of the
// abstract-declarator if the type of the parameter names a template
// parameter pack that has not been expanded; otherwise, it is parsed
// as part of the parameter-declaration-clause.
if (Tok.is(tok::ellipsis) && D.getCXXScopeSpec().isEmpty() &&
!((D.getContext() == Declarator::PrototypeContext ||
D.getContext() == Declarator::BlockLiteralContext) &&
NextToken().is(tok::r_paren) &&
!D.hasGroupingParens() &&
!Actions.containsUnexpandedParameterPacks(D))) {
SourceLocation EllipsisLoc = ConsumeToken();
if (isPtrOperatorToken(Tok.getKind(), getLangOpts())) {
// The ellipsis was put in the wrong place. Recover, and explain to
// the user what they should have done.
ParseDeclarator(D);
diagnoseMisplacedEllipsis(*this, D, EllipsisLoc);
return;
} else
D.setEllipsisLoc(EllipsisLoc);
// The ellipsis can't be followed by a parenthesized declarator. We
// check for that in ParseParenDeclarator, after we have disambiguated
// the l_paren token.
}
if (Tok.is(tok::identifier) || Tok.is(tok::kw_operator) ||
Tok.is(tok::annot_template_id) || Tok.is(tok::tilde)) {
// We found something that indicates the start of an unqualified-id.
// Parse that unqualified-id.
bool AllowConstructorName;
if (D.getDeclSpec().hasTypeSpecifier())
AllowConstructorName = false;
else if (D.getCXXScopeSpec().isSet())
AllowConstructorName =
(D.getContext() == Declarator::FileContext ||
D.getContext() == Declarator::MemberContext);
else
AllowConstructorName = (D.getContext() == Declarator::MemberContext);
SourceLocation TemplateKWLoc;
if (ParseUnqualifiedId(D.getCXXScopeSpec(),
/*EnteringContext=*/true,
/*AllowDestructorName=*/true,
AllowConstructorName,
ParsedType(),
TemplateKWLoc,
D.getName()) ||
// Once we're past the identifier, if the scope was bad, mark the
// whole declarator bad.
D.getCXXScopeSpec().isInvalid()) {
D.SetIdentifier(0, Tok.getLocation());
D.setInvalidType(true);
} else {
// Parsed the unqualified-id; update range information and move along.
if (D.getSourceRange().getBegin().isInvalid())
D.SetRangeBegin(D.getName().getSourceRange().getBegin());
D.SetRangeEnd(D.getName().getSourceRange().getEnd());
}
goto PastIdentifier;
}
} else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
assert(!getLangOpts().CPlusPlus &&
"There's a C++-specific check for tok::identifier above");
assert(Tok.getIdentifierInfo() && "Not an identifier?");
D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
ConsumeToken();
goto PastIdentifier;
} else if (Tok.is(tok::identifier) && D.diagnoseIdentifier()) {
Diag(Tok.getLocation(), diag::err_unexpected_unqualified_id)
<< FixItHint::CreateRemoval(Tok.getLocation());
D.SetIdentifier(0, Tok.getLocation());
ConsumeToken();
goto PastIdentifier;
}
if (Tok.is(tok::l_paren)) {
// direct-declarator: '(' declarator ')'
// direct-declarator: '(' attributes declarator ')'
// Example: 'char (*X)' or 'int (*XX)(void)'
ParseParenDeclarator(D);
// If the declarator was parenthesized, we entered the declarator
// scope when parsing the parenthesized declarator, then exited
// the scope already. Re-enter the scope, if we need to.
if (D.getCXXScopeSpec().isSet()) {
// If there was an error parsing parenthesized declarator, declarator
// scope may have been entered before. Don't do it again.
if (!D.isInvalidType() &&
Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
// Change the declaration context for name lookup, until this function
// is exited (and the declarator has been parsed).
DeclScopeObj.EnterDeclaratorScope();
}
} else if (D.mayOmitIdentifier()) {
// This could be something simple like "int" (in which case the declarator
// portion is empty), if an abstract-declarator is allowed.
D.SetIdentifier(0, Tok.getLocation());
// The grammar for abstract-pack-declarator does not allow grouping parens.
// FIXME: Revisit this once core issue 1488 is resolved.
if (D.hasEllipsis() && D.hasGroupingParens())
Diag(PP.getLocForEndOfToken(D.getEllipsisLoc()),
diag::ext_abstract_pack_declarator_parens);
} else {
if (Tok.getKind() == tok::annot_pragma_parser_crash)
LLVM_BUILTIN_TRAP;
if (D.getContext() == Declarator::MemberContext)
Diag(Tok, diag::err_expected_member_name_or_semi)
<< D.getDeclSpec().getSourceRange();
else if (getLangOpts().CPlusPlus) {
if (Tok.is(tok::period) || Tok.is(tok::arrow))
Diag(Tok, diag::err_invalid_operator_on_type) << Tok.is(tok::arrow);
else {
SourceLocation Loc = D.getCXXScopeSpec().getEndLoc();
if (Tok.isAtStartOfLine() && Loc.isValid())
Diag(PP.getLocForEndOfToken(Loc), diag::err_expected_unqualified_id)
<< getLangOpts().CPlusPlus;
else
Diag(Tok, diag::err_expected_unqualified_id)
<< getLangOpts().CPlusPlus;
}
} else
Diag(Tok, diag::err_expected_ident_lparen);
D.SetIdentifier(0, Tok.getLocation());
D.setInvalidType(true);
}
PastIdentifier:
assert(D.isPastIdentifier() &&
"Haven't past the location of the identifier yet?");
// Don't parse attributes unless we have parsed an unparenthesized name.
if (D.hasName() && !D.getNumTypeObjects())
MaybeParseCXX11Attributes(D);
while (1) {
if (Tok.is(tok::l_paren)) {
// Enter function-declaration scope, limiting any declarators to the
// function prototype scope, including parameter declarators.
ParseScope PrototypeScope(this,
Scope::FunctionPrototypeScope|Scope::DeclScope|
(D.isFunctionDeclaratorAFunctionDeclaration()
? Scope::FunctionDeclarationScope : 0));
// The paren may be part of a C++ direct initializer, eg. "int x(1);".
// In such a case, check if we actually have a function declarator; if it
// is not, the declarator has been fully parsed.
bool IsAmbiguous = false;
if (getLangOpts().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
// The name of the declarator, if any, is tentatively declared within
// a possible direct initializer.
TentativelyDeclaredIdentifiers.push_back(D.getIdentifier());
bool IsFunctionDecl = isCXXFunctionDeclarator(&IsAmbiguous);
TentativelyDeclaredIdentifiers.pop_back();
if (!IsFunctionDecl)
break;
}
ParsedAttributes attrs(AttrFactory);
BalancedDelimiterTracker T(*this, tok::l_paren);
T.consumeOpen();
ParseFunctionDeclarator(D, attrs, T, IsAmbiguous);
PrototypeScope.Exit();
} else if (Tok.is(tok::l_square)) {
ParseBracketDeclarator(D);
} else {
break;
}
}
}
/// ParseParenDeclarator - We parsed the declarator D up to a paren. This is
/// only called before the identifier, so these are most likely just grouping
/// parens for precedence. If we find that these are actually function
/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
///
/// direct-declarator:
/// '(' declarator ')'
/// [GNU] '(' attributes declarator ')'
/// direct-declarator '(' parameter-type-list ')'
/// direct-declarator '(' identifier-list[opt] ')'
/// [GNU] direct-declarator '(' parameter-forward-declarations
/// parameter-type-list[opt] ')'
///
void Parser::ParseParenDeclarator(Declarator &D) {
BalancedDelimiterTracker T(*this, tok::l_paren);
T.consumeOpen();
assert(!D.isPastIdentifier() && "Should be called before passing identifier");
// Eat any attributes before we look at whether this is a grouping or function
// declarator paren. If this is a grouping paren, the attribute applies to
// the type being built up, for example:
// int (__attribute__(()) *x)(long y)
// If this ends up not being a grouping paren, the attribute applies to the
// first argument, for example:
// int (__attribute__(()) int x)
// In either case, we need to eat any attributes to be able to determine what
// sort of paren this is.
//
ParsedAttributes attrs(AttrFactory);
bool RequiresArg = false;
if (Tok.is(tok::kw___attribute)) {
ParseGNUAttributes(attrs);
// We require that the argument list (if this is a non-grouping paren) be
// present even if the attribute list was empty.
RequiresArg = true;
}
// Eat any Microsoft extensions.
ParseMicrosoftTypeAttributes(attrs);
// Eat any Borland extensions.
if (Tok.is(tok::kw___pascal))
ParseBorlandTypeAttributes(attrs);
// If we haven't past the identifier yet (or where the identifier would be
// stored, if this is an abstract declarator), then this is probably just
// grouping parens. However, if this could be an abstract-declarator, then
// this could also be the start of function arguments (consider 'void()').
bool isGrouping;
if (!D.mayOmitIdentifier()) {
// If this can't be an abstract-declarator, this *must* be a grouping
// paren, because we haven't seen the identifier yet.
isGrouping = true;
} else if (Tok.is(tok::r_paren) || // 'int()' is a function.
(getLangOpts().CPlusPlus && Tok.is(tok::ellipsis) &&
NextToken().is(tok::r_paren)) || // C++ int(...)
isDeclarationSpecifier() || // 'int(int)' is a function.
isCXX11AttributeSpecifier()) { // 'int([[]]int)' is a function.
// This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
// considered to be a type, not a K&R identifier-list.
isGrouping = false;
} else {
// Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
isGrouping = true;
}
// If this is a grouping paren, handle:
// direct-declarator: '(' declarator ')'
// direct-declarator: '(' attributes declarator ')'
if (isGrouping) {
SourceLocation EllipsisLoc = D.getEllipsisLoc();
D.setEllipsisLoc(SourceLocation());
bool hadGroupingParens = D.hasGroupingParens();
D.setGroupingParens(true);
ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
// Match the ')'.
T.consumeClose();
D.AddTypeInfo(DeclaratorChunk::getParen(T.getOpenLocation(),
T.getCloseLocation()),
attrs, T.getCloseLocation());
D.setGroupingParens(hadGroupingParens);
// An ellipsis cannot be placed outside parentheses.
if (EllipsisLoc.isValid())
diagnoseMisplacedEllipsis(*this, D, EllipsisLoc);
return;
}
// Okay, if this wasn't a grouping paren, it must be the start of a function
// argument list. Recognize that this declarator will never have an
// identifier (and remember where it would have been), then call into
// ParseFunctionDeclarator to handle of argument list.
D.SetIdentifier(0, Tok.getLocation());
// Enter function-declaration scope, limiting any declarators to the
// function prototype scope, including parameter declarators.
ParseScope PrototypeScope(this,
Scope::FunctionPrototypeScope | Scope::DeclScope |
(D.isFunctionDeclaratorAFunctionDeclaration()
? Scope::FunctionDeclarationScope : 0));
ParseFunctionDeclarator(D, attrs, T, false, RequiresArg);
PrototypeScope.Exit();
}
/// ParseFunctionDeclarator - We are after the identifier and have parsed the
/// declarator D up to a paren, which indicates that we are parsing function
/// arguments.
///
/// If FirstArgAttrs is non-null, then the caller parsed those arguments
/// immediately after the open paren - they should be considered to be the
/// first argument of a parameter.
///
/// If RequiresArg is true, then the first argument of the function is required
/// to be present and required to not be an identifier list.
///
/// For C++, after the parameter-list, it also parses the cv-qualifier-seq[opt],
/// (C++11) ref-qualifier[opt], exception-specification[opt],
/// (C++11) attribute-specifier-seq[opt], and (C++11) trailing-return-type[opt].
///
/// [C++11] exception-specification:
/// dynamic-exception-specification
/// noexcept-specification
///
void Parser::ParseFunctionDeclarator(Declarator &D,
ParsedAttributes &FirstArgAttrs,
BalancedDelimiterTracker &Tracker,
bool IsAmbiguous,
bool RequiresArg) {
assert(getCurScope()->isFunctionPrototypeScope() &&
"Should call from a Function scope");
// lparen is already consumed!
assert(D.isPastIdentifier() && "Should not call before identifier!");
// This should be true when the function has typed arguments.
// Otherwise, it is treated as a K&R-style function.
bool HasProto = false;
// Build up an array of information about the parsed arguments.
SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
// Remember where we see an ellipsis, if any.
SourceLocation EllipsisLoc;
DeclSpec DS(AttrFactory);
bool RefQualifierIsLValueRef = true;
SourceLocation RefQualifierLoc;
SourceLocation ConstQualifierLoc;
SourceLocation VolatileQualifierLoc;
ExceptionSpecificationType ESpecType = EST_None;
SourceRange ESpecRange;
SmallVector<ParsedType, 2> DynamicExceptions;
SmallVector<SourceRange, 2> DynamicExceptionRanges;
ExprResult NoexceptExpr;
ParsedAttributes FnAttrs(AttrFactory);
TypeResult TrailingReturnType;
Actions.ActOnStartFunctionDeclarator();
/* LocalEndLoc is the end location for the local FunctionTypeLoc.
EndLoc is the end location for the function declarator.
They differ for trailing return types. */
SourceLocation StartLoc, LocalEndLoc, EndLoc;
SourceLocation LParenLoc, RParenLoc;
LParenLoc = Tracker.getOpenLocation();
StartLoc = LParenLoc;
if (isFunctionDeclaratorIdentifierList()) {
if (RequiresArg)
Diag(Tok, diag::err_argument_required_after_attribute);
ParseFunctionDeclaratorIdentifierList(D, ParamInfo);
Tracker.consumeClose();
RParenLoc = Tracker.getCloseLocation();
LocalEndLoc = RParenLoc;
EndLoc = RParenLoc;
} else {
if (Tok.isNot(tok::r_paren))
ParseParameterDeclarationClause(D, FirstArgAttrs, ParamInfo, EllipsisLoc);
else if (RequiresArg)
Diag(Tok, diag::err_argument_required_after_attribute);
HasProto = ParamInfo.size() || getLangOpts().CPlusPlus;
// If we have the closing ')', eat it.
Tracker.consumeClose();
RParenLoc = Tracker.getCloseLocation();
LocalEndLoc = RParenLoc;
EndLoc = RParenLoc;
if (getLangOpts().CPlusPlus) {
// FIXME: Accept these components in any order, and produce fixits to
// correct the order if the user gets it wrong. Ideally we should deal
// with the virt-specifier-seq and pure-specifier in the same way.
// Parse cv-qualifier-seq[opt].
ParseTypeQualifierListOpt(DS, /*VendorAttributesAllowed*/ false,
/*CXX11AttributesAllowed*/ false,
/*AtomicAllowed*/ false);
if (!DS.getSourceRange().getEnd().isInvalid()) {
EndLoc = DS.getSourceRange().getEnd();
ConstQualifierLoc = DS.getConstSpecLoc();
VolatileQualifierLoc = DS.getVolatileSpecLoc();
}
// Parse ref-qualifier[opt].
if (Tok.is(tok::amp) || Tok.is(tok::ampamp)) {
Diag(Tok, getLangOpts().CPlusPlus11 ?
diag::warn_cxx98_compat_ref_qualifier :
diag::ext_ref_qualifier);
RefQualifierIsLValueRef = Tok.is(tok::amp);
RefQualifierLoc = ConsumeToken();
EndLoc = RefQualifierLoc;
}
// C++11 [expr.prim.general]p3:
// If a declaration declares a member function or member function
// template of a class X, the expression this is a prvalue of type
// "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
// and the end of the function-definition, member-declarator, or
// declarator.
// FIXME: currently, "static" case isn't handled correctly.
bool IsCXX11MemberFunction =
getLangOpts().CPlusPlus11 &&
(D.getContext() == Declarator::MemberContext
? !D.getDeclSpec().isFriendSpecified()
: D.getContext() == Declarator::FileContext &&
D.getCXXScopeSpec().isValid() &&
Actions.CurContext->isRecord());
Sema::CXXThisScopeRAII ThisScope(Actions,
dyn_cast<CXXRecordDecl>(Actions.CurContext),
DS.getTypeQualifiers() |
(D.getDeclSpec().isConstexprSpecified() &&
!getLangOpts().CPlusPlus1y
? Qualifiers::Const : 0),
IsCXX11MemberFunction);
// Parse exception-specification[opt].
ESpecType = tryParseExceptionSpecification(ESpecRange,
DynamicExceptions,
DynamicExceptionRanges,
NoexceptExpr);
if (ESpecType != EST_None)
EndLoc = ESpecRange.getEnd();
// Parse attribute-specifier-seq[opt]. Per DR 979 and DR 1297, this goes
// after the exception-specification.
MaybeParseCXX11Attributes(FnAttrs);
// Parse trailing-return-type[opt].
LocalEndLoc = EndLoc;
if (getLangOpts().CPlusPlus11 && Tok.is(tok::arrow)) {
Diag(Tok, diag::warn_cxx98_compat_trailing_return_type);
if (D.getDeclSpec().getTypeSpecType() == TST_auto)
StartLoc = D.getDeclSpec().getTypeSpecTypeLoc();
LocalEndLoc = Tok.getLocation();
SourceRange Range;
TrailingReturnType = ParseTrailingReturnType(Range);
EndLoc = Range.getEnd();
}
}
}
// Remember that we parsed a function type, and remember the attributes.
D.AddTypeInfo(DeclaratorChunk::getFunction(HasProto,
IsAmbiguous,
LParenLoc,
ParamInfo.data(), ParamInfo.size(),
EllipsisLoc, RParenLoc,
DS.getTypeQualifiers(),
RefQualifierIsLValueRef,
RefQualifierLoc, ConstQualifierLoc,
VolatileQualifierLoc,
/*MutableLoc=*/SourceLocation(),
ESpecType, ESpecRange.getBegin(),
DynamicExceptions.data(),
DynamicExceptionRanges.data(),
DynamicExceptions.size(),
NoexceptExpr.isUsable() ?
NoexceptExpr.get() : 0,
StartLoc, LocalEndLoc, D,
TrailingReturnType),
FnAttrs, EndLoc);
Actions.ActOnEndFunctionDeclarator();
}
/// isFunctionDeclaratorIdentifierList - This parameter list may have an
/// identifier list form for a K&R-style function: void foo(a,b,c)
///
/// Note that identifier-lists are only allowed for normal declarators, not for
/// abstract-declarators.
bool Parser::isFunctionDeclaratorIdentifierList() {
return !getLangOpts().CPlusPlus
&& Tok.is(tok::identifier)
&& !TryAltiVecVectorToken()
// K&R identifier lists can't have typedefs as identifiers, per C99
// 6.7.5.3p11.
&& (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename))
// Identifier lists follow a really simple grammar: the identifiers can
// be followed *only* by a ", identifier" or ")". However, K&R
// identifier lists are really rare in the brave new modern world, and
// it is very common for someone to typo a type in a non-K&R style
// list. If we are presented with something like: "void foo(intptr x,
// float y)", we don't want to start parsing the function declarator as
// though it is a K&R style declarator just because intptr is an
// invalid type.
//
// To handle this, we check to see if the token after the first
// identifier is a "," or ")". Only then do we parse it as an
// identifier list.
&& (NextToken().is(tok::comma) || NextToken().is(tok::r_paren));
}
/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
/// we found a K&R-style identifier list instead of a typed parameter list.
///
/// After returning, ParamInfo will hold the parsed parameters.
///
/// identifier-list: [C99 6.7.5]
/// identifier
/// identifier-list ',' identifier
///
void Parser::ParseFunctionDeclaratorIdentifierList(
Declarator &D,
SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo) {
// If there was no identifier specified for the declarator, either we are in
// an abstract-declarator, or we are in a parameter declarator which was found
// to be abstract. In abstract-declarators, identifier lists are not valid:
// diagnose this.
if (!D.getIdentifier())
Diag(Tok, diag::ext_ident_list_in_param);
// Maintain an efficient lookup of params we have seen so far.
llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
while (1) {
// If this isn't an identifier, report the error and skip until ')'.
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_expected_ident);
SkipUntil(tok::r_paren, /*StopAtSemi=*/true, /*DontConsume=*/true);
// Forget we parsed anything.
ParamInfo.clear();
return;
}
IdentifierInfo *ParmII = Tok.getIdentifierInfo();
// Reject 'typedef int y; int test(x, y)', but continue parsing.
if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
// Verify that the argument identifier has not already been mentioned.
if (!ParamsSoFar.insert(ParmII)) {
Diag(Tok, diag::err_param_redefinition) << ParmII;
} else {
// Remember this identifier in ParamInfo.
ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
Tok.getLocation(),
0));
}
// Eat the identifier.
ConsumeToken();
// The list continues if we see a comma.
if (Tok.isNot(tok::comma))
break;
ConsumeToken();
}
}
/// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list
/// after the opening parenthesis. This function will not parse a K&R-style
/// identifier list.
///
/// D is the declarator being parsed. If FirstArgAttrs is non-null, then the
/// caller parsed those arguments immediately after the open paren - they should
/// be considered to be part of the first parameter.
///
/// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will
/// be the location of the ellipsis, if any was parsed.
///
/// parameter-type-list: [C99 6.7.5]
/// parameter-list
/// parameter-list ',' '...'
/// [C++] parameter-list '...'
///
/// parameter-list: [C99 6.7.5]
/// parameter-declaration
/// parameter-list ',' parameter-declaration
///
/// parameter-declaration: [C99 6.7.5]
/// declaration-specifiers declarator
/// [C++] declaration-specifiers declarator '=' assignment-expression
/// [C++11] initializer-clause
/// [GNU] declaration-specifiers declarator attributes
/// declaration-specifiers abstract-declarator[opt]
/// [C++] declaration-specifiers abstract-declarator[opt]
/// '=' assignment-expression
/// [GNU] declaration-specifiers abstract-declarator[opt] attributes
/// [C++11] attribute-specifier-seq parameter-declaration
///
void Parser::ParseParameterDeclarationClause(
Declarator &D,
ParsedAttributes &FirstArgAttrs,
SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo,
SourceLocation &EllipsisLoc) {
while (1) {
if (Tok.is(tok::ellipsis)) {
// FIXME: Issue a diagnostic if we parsed an attribute-specifier-seq
// before deciding this was a parameter-declaration-clause.
EllipsisLoc = ConsumeToken(); // Consume the ellipsis.
break;
}
// Parse the declaration-specifiers.
// Just use the ParsingDeclaration "scope" of the declarator.
DeclSpec DS(AttrFactory);
// Parse any C++11 attributes.
MaybeParseCXX11Attributes(DS.getAttributes());
// Skip any Microsoft attributes before a param.
MaybeParseMicrosoftAttributes(DS.getAttributes());
SourceLocation DSStart = Tok.getLocation();
// If the caller parsed attributes for the first argument, add them now.
// Take them so that we only apply the attributes to the first parameter.
// FIXME: If we can leave the attributes in the token stream somehow, we can
// get rid of a parameter (FirstArgAttrs) and this statement. It might be
// too much hassle.
DS.takeAttributesFrom(FirstArgAttrs);
ParseDeclarationSpecifiers(DS);
// Parse the declarator. This is "PrototypeContext", because we must
// accept either 'declarator' or 'abstract-declarator' here.
Declarator ParmDecl(DS, Declarator::PrototypeContext);
ParseDeclarator(ParmDecl);
// Parse GNU attributes, if present.
MaybeParseGNUAttributes(ParmDecl);
// Remember this parsed parameter in ParamInfo.
IdentifierInfo *ParmII = ParmDecl.getIdentifier();
// DefArgToks is used when the parsing of default arguments needs
// to be delayed.
CachedTokens *DefArgToks = 0;
// If no parameter was specified, verify that *something* was specified,
// otherwise we have a missing type and identifier.
if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 &&
ParmDecl.getNumTypeObjects() == 0) {
// Completely missing, emit error.
Diag(DSStart, diag::err_missing_param);
} else {
// Otherwise, we have something. Add it and let semantic analysis try
// to grok it and add the result to the ParamInfo we are building.
// Inform the actions module about the parameter declarator, so it gets
// added to the current scope.
Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDecl);
// Parse the default argument, if any. We parse the default
// arguments in all dialects; the semantic analysis in
// ActOnParamDefaultArgument will reject the default argument in
// C.
if (Tok.is(tok::equal)) {
SourceLocation EqualLoc = Tok.getLocation();
// Parse the default argument
if (D.getContext() == Declarator::MemberContext) {
// If we're inside a class definition, cache the tokens
// corresponding to the default argument. We'll actually parse
// them when we see the end of the class definition.
// FIXME: Can we use a smart pointer for Toks?
DefArgToks = new CachedTokens;
if (!ConsumeAndStoreInitializer(*DefArgToks, CIK_DefaultArgument)) {
delete DefArgToks;
DefArgToks = 0;
Actions.ActOnParamDefaultArgumentError(Param);
} else {
// Mark the end of the default argument so that we know when to
// stop when we parse it later on.
Token DefArgEnd;
DefArgEnd.startToken();
DefArgEnd.setKind(tok::cxx_defaultarg_end);
DefArgEnd.setLocation(Tok.getLocation());
DefArgToks->push_back(DefArgEnd);
Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
(*DefArgToks)[1].getLocation());
}
} else {
// Consume the '='.
ConsumeToken();
// The argument isn't actually potentially evaluated unless it is
// used.
EnterExpressionEvaluationContext Eval(Actions,
Sema::PotentiallyEvaluatedIfUsed,
Param);
ExprResult DefArgResult;
if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
DefArgResult = ParseBraceInitializer();
} else
DefArgResult = ParseAssignmentExpression();
if (DefArgResult.isInvalid()) {
Actions.ActOnParamDefaultArgumentError(Param);
SkipUntil(tok::comma, tok::r_paren, true, true);
} else {
// Inform the actions module about the default argument
Actions.ActOnParamDefaultArgument(Param, EqualLoc,
DefArgResult.take());
}
}
}
ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
ParmDecl.getIdentifierLoc(), Param,
DefArgToks));
}
// If the next token is a comma, consume it and keep reading arguments.
if (Tok.isNot(tok::comma)) {
if (Tok.is(tok::ellipsis)) {
EllipsisLoc = ConsumeToken(); // Consume the ellipsis.
if (!getLangOpts().CPlusPlus) {
// We have ellipsis without a preceding ',', which is ill-formed
// in C. Complain and provide the fix.
Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
<< FixItHint::CreateInsertion(EllipsisLoc, ", ");
}
}
break;
}
// Consume the comma.
ConsumeToken();
}
}
/// [C90] direct-declarator '[' constant-expression[opt] ']'
/// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
/// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
/// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']'
/// [C99] direct-declarator '[' type-qual-list[opt] '*' ']'
/// [C++11] direct-declarator '[' constant-expression[opt] ']'
/// attribute-specifier-seq[opt]
void Parser::ParseBracketDeclarator(Declarator &D) {
if (CheckProhibitedCXX11Attribute())
return;
BalancedDelimiterTracker T(*this, tok::l_square);
T.consumeOpen();
// C array syntax has many features, but by-far the most common is [] and [4].
// This code does a fast path to handle some of the most obvious cases.
if (Tok.getKind() == tok::r_square) {
T.consumeClose();
ParsedAttributes attrs(AttrFactory);
MaybeParseCXX11Attributes(attrs);
// Remember that we parsed the empty array type.
ExprResult NumElements;
D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0,
T.getOpenLocation(),
T.getCloseLocation()),
attrs, T.getCloseLocation());
return;
} else if (Tok.getKind() == tok::numeric_constant &&
GetLookAheadToken(1).is(tok::r_square)) {
// [4] is very common. Parse the numeric constant expression.
ExprResult ExprRes(Actions.ActOnNumericConstant(Tok, getCurScope()));
ConsumeToken();
T.consumeClose();
ParsedAttributes attrs(AttrFactory);
MaybeParseCXX11Attributes(attrs);
// Remember that we parsed a array type, and remember its features.
D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false,
ExprRes.release(),
T.getOpenLocation(),
T.getCloseLocation()),
attrs, T.getCloseLocation());
return;
}
// If valid, this location is the position where we read the 'static' keyword.
SourceLocation StaticLoc;
if (Tok.is(tok::kw_static))
StaticLoc = ConsumeToken();
// If there is a type-qualifier-list, read it now.
// Type qualifiers in an array subscript are a C99 feature.
DeclSpec DS(AttrFactory);
ParseTypeQualifierListOpt(DS, false /*no attributes*/);
// If we haven't already read 'static', check to see if there is one after the
// type-qualifier-list.
if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
StaticLoc = ConsumeToken();
// Handle "direct-declarator [ type-qual-list[opt] * ]".
bool isStar = false;
ExprResult NumElements;
// Handle the case where we have '[*]' as the array size. However, a leading
// star could be the start of an expression, for example 'X[*p + 4]'. Verify
// the token after the star is a ']'. Since stars in arrays are
// infrequent, use of lookahead is not costly here.
if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
ConsumeToken(); // Eat the '*'.
if (StaticLoc.isValid()) {
Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
StaticLoc = SourceLocation(); // Drop the static.
}
isStar = true;
} else if (Tok.isNot(tok::r_square)) {
// Note, in C89, this production uses the constant-expr production instead
// of assignment-expr. The only difference is that assignment-expr allows
// things like '=' and '*='. Sema rejects these in C89 mode because they
// are not i-c-e's, so we don't need to distinguish between the two here.
// Parse the constant-expression or assignment-expression now (depending
// on dialect).
if (getLangOpts().CPlusPlus) {
NumElements = ParseConstantExpression();
} else {
EnterExpressionEvaluationContext Unevaluated(Actions,
Sema::ConstantEvaluated);
NumElements = ParseAssignmentExpression();
}
}
// If there was an error parsing the assignment-expression, recover.
if (NumElements.isInvalid()) {
D.setInvalidType(true);
// If the expression was invalid, skip it.
SkipUntil(tok::r_square);
return;
}
T.consumeClose();
ParsedAttributes attrs(AttrFactory);
MaybeParseCXX11Attributes(attrs);
// Remember that we parsed a array type, and remember its features.
D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
StaticLoc.isValid(), isStar,
NumElements.release(),
T.getOpenLocation(),
T.getCloseLocation()),
attrs, T.getCloseLocation());
}
/// [GNU] typeof-specifier:
/// typeof ( expressions )
/// typeof ( type-name )
/// [GNU/C++] typeof unary-expression
///
void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
Token OpTok = Tok;
SourceLocation StartLoc = ConsumeToken();
const bool hasParens = Tok.is(tok::l_paren);
EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
Sema::ReuseLambdaContextDecl);
bool isCastExpr;
ParsedType CastTy;
SourceRange CastRange;
ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr,
CastTy, CastRange);
if (hasParens)
DS.setTypeofParensRange(CastRange);
if (CastRange.getEnd().isInvalid())
// FIXME: Not accurate, the range gets one token more than it should.
DS.SetRangeEnd(Tok.getLocation());
else
DS.SetRangeEnd(CastRange.getEnd());
if (isCastExpr) {
if (!CastTy) {
DS.SetTypeSpecError();
return;
}
const char *PrevSpec = 0;
unsigned DiagID;
// Check for duplicate type specifiers (e.g. "int typeof(int)").
if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
DiagID, CastTy))
Diag(StartLoc, DiagID) << PrevSpec;
return;
}
// If we get here, the operand to the typeof was an expresion.
if (Operand.isInvalid()) {
DS.SetTypeSpecError();
return;
}
// We might need to transform the operand if it is potentially evaluated.
Operand = Actions.HandleExprEvaluationContextForTypeof(Operand.get());
if (Operand.isInvalid()) {
DS.SetTypeSpecError();
return;
}
const char *PrevSpec = 0;
unsigned DiagID;
// Check for duplicate type specifiers (e.g. "int typeof(int)").
if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
DiagID, Operand.get()))
Diag(StartLoc, DiagID) << PrevSpec;
}
/// [C11] atomic-specifier:
/// _Atomic ( type-name )
///
void Parser::ParseAtomicSpecifier(DeclSpec &DS) {
assert(Tok.is(tok::kw__Atomic) && NextToken().is(tok::l_paren) &&
"Not an atomic specifier");
SourceLocation StartLoc = ConsumeToken();
BalancedDelimiterTracker T(*this, tok::l_paren);
if (T.consumeOpen())
return;
TypeResult Result = ParseTypeName();
if (Result.isInvalid()) {
SkipUntil(tok::r_paren);
return;
}
// Match the ')'
T.consumeClose();
if (T.getCloseLocation().isInvalid())
return;
DS.setTypeofParensRange(T.getRange());
DS.SetRangeEnd(T.getCloseLocation());
const char *PrevSpec = 0;
unsigned DiagID;
if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec,
DiagID, Result.release()))
Diag(StartLoc, DiagID) << PrevSpec;
}
/// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
/// from TryAltiVecVectorToken.
bool Parser::TryAltiVecVectorTokenOutOfLine() {
Token Next = NextToken();
switch (Next.getKind()) {
default: return false;
case tok::kw_short:
case tok::kw_long:
case tok::kw_signed:
case tok::kw_unsigned:
case tok::kw_void:
case tok::kw_char:
case tok::kw_int:
case tok::kw_float:
case tok::kw_double:
case tok::kw_bool:
case tok::kw___pixel:
Tok.setKind(tok::kw___vector);
return true;
case tok::identifier:
if (Next.getIdentifierInfo() == Ident_pixel) {
Tok.setKind(tok::kw___vector);
return true;
}
if (Next.getIdentifierInfo() == Ident_bool) {
Tok.setKind(tok::kw___vector);
return true;
}
return false;
}
}
bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
const char *&PrevSpec, unsigned &DiagID,
bool &isInvalid) {
if (Tok.getIdentifierInfo() == Ident_vector) {
Token Next = NextToken();
switch (Next.getKind()) {
case tok::kw_short:
case tok::kw_long:
case tok::kw_signed:
case tok::kw_unsigned:
case tok::kw_void:
case tok::kw_char:
case tok::kw_int:
case tok::kw_float:
case tok::kw_double:
case tok::kw_bool:
case tok::kw___pixel:
isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
return true;
case tok::identifier:
if (Next.getIdentifierInfo() == Ident_pixel) {
isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
return true;
}
if (Next.getIdentifierInfo() == Ident_bool) {
isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
return true;
}
break;
default:
break;
}
} else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
DS.isTypeAltiVecVector()) {
isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
return true;
} else if ((Tok.getIdentifierInfo() == Ident_bool) &&
DS.isTypeAltiVecVector()) {
isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID);
return true;
}
return false;
}