llvm-project/polly/test/ScopInfo/NonAffine/non-affine-loop-condition-d...

175 lines
7.2 KiB
LLVM

; RUN: opt %loadPolly -basicaa -polly-scops -polly-allow-nonaffine-branches \
; RUN: -polly-allow-nonaffine-loops=false \
; RUN: -analyze < %s | FileCheck %s --check-prefix=INNERMOST
; RUN: opt %loadPolly -basicaa -polly-scops -polly-allow-nonaffine-branches \
; RUN: -polly-allow-nonaffine-loops=true \
; RUN: -analyze < %s | FileCheck %s --check-prefix=INNERMOST
; RUN: opt %loadPolly -basicaa -polly-scops -polly-allow-nonaffine \
; RUN: -polly-allow-nonaffine-branches -polly-allow-nonaffine-loops=true \
; RUN: -analyze < %s | FileCheck %s --check-prefix=ALL
;
; Here we have a non-affine loop (in the context of the loop nest)
; and also a non-affine access (A[k]). While we can always model the
; innermost loop as a SCoP of depth 1, we can overapproximate the
; innermost loop in the whole loop nest and model A[k] as a non-affine
; access.
;
; INNERMOST: Function: f
; INNERMOST: Region: %bb15---%bb13
; INNERMOST: Max Loop Depth: 1
; INNERMOST: Context:
; INNERMOST: [p_0, p_1, p_2] -> { :
; INNERMOST-DAG: p_0 >= 0
; INNERMOST-DAG: and
; INNERMOST-DAG: p_0 <= 2147483647
; INNERMOST-DAG: and
; INNERMOST-DAG: p_1 >= 0
; INNERMOST-DAG: and
; INNERMOST-DAG: p_1 <= 4096
; INNERMOST-DAG: and
; INNERMOST-DAG: p_2 >= 0
; INNERMOST-DAG: and
; INNERMOST-DAG: p_2 <= 4096
; INNERMOST: }
; INNERMOST: Assumed Context:
; INNERMOST: [p_0, p_1, p_2] -> { : }
; INNERMOST: p0: {0,+,{0,+,1}<nuw><nsw><%bb11>}<nuw><nsw><%bb13>
; INNERMOST: p1: {0,+,4}<nuw><nsw><%bb11>
; INNERMOST: p2: {0,+,4}<nuw><nsw><%bb13>
; INNERMOST: Alias Groups (0):
; INNERMOST: n/a
; INNERMOST: Statements {
; INNERMOST: Stmt_bb16
; INNERMOST: Domain :=
; INNERMOST: [p_0, p_1, p_2] -> { Stmt_bb16[i0] :
; INNERMOST-DAG: i0 >= 0
; INNERMOST-DAG: and
; INNERMOST-DAG: i0 <= -1 + p_0
; INNERMOST-DAG: };
; INNERMOST: Schedule :=
; INNERMOST: [p_0, p_1, p_2] -> { Stmt_bb16[i0] -> [0, i0] };
; INNERMOST: ReadAccess := [Reduction Type: NONE] [Scalar: 0]
; INNERMOST: [p_0, p_1, p_2] -> { Stmt_bb16[i0] -> MemRef_A[o0] : 4o0 = p_1 };
; INNERMOST: ReadAccess := [Reduction Type: NONE] [Scalar: 0]
; INNERMOST: [p_0, p_1, p_2] -> { Stmt_bb16[i0] -> MemRef_A[o0] : 4o0 = p_2 };
; INNERMOST: ReadAccess := [Reduction Type: +] [Scalar: 0]
; INNERMOST: [p_0, p_1, p_2] -> { Stmt_bb16[i0] -> MemRef_A[i0] };
; INNERMOST: MustWriteAccess := [Reduction Type: +] [Scalar: 0]
; INNERMOST: [p_0, p_1, p_2] -> { Stmt_bb16[i0] -> MemRef_A[i0] };
; INNERMOST: Stmt_bb26
; INNERMOST: Domain :=
; INNERMOST: [p_0, p_1, p_2] -> { Stmt_bb26[] : p_0 >= 0 };
; INNERMOST: Schedule :=
; INNERMOST: [p_0, p_1, p_2] -> { Stmt_bb26[] -> [1, 0] };
; INNERMOST: MustWriteAccess := [Reduction Type: NONE] [Scalar: 1]
; INNERMOST: [p_0, p_1, p_2] -> { Stmt_bb26[] -> MemRef_indvars_iv_next6[] };
; INNERMOST: MustWriteAccess := [Reduction Type: NONE] [Scalar: 1]
; INNERMOST: [p_0, p_1, p_2] -> { Stmt_bb26[] -> MemRef_indvars_iv_next4[] };
; INNERMOST: }
;
; ALL: Function: f
; ALL: Region: %bb11---%bb29
; ALL: Max Loop Depth: 2
; ALL: Context:
; ALL: { : }
; ALL: Assumed Context:
; ALL: { : }
; ALL: Alias Groups (0):
; ALL: n/a
; ALL: Statements {
; ALL: Stmt_bb15__TO__bb25
; ALL: Domain :=
; ALL: { Stmt_bb15__TO__bb25[i0, i1] :
; ALL-DAG: i0 >= 0
; ALL-DAG: and
; ALL-DAG: i0 <= 1023
; ALL-DAG: and
; ALL-DAG: i1 >= 0
; ALL-DAG: and
; ALL-DAG: i1 <= 1023
; ALL: }
; ALL: Schedule :=
; ALL: { Stmt_bb15__TO__bb25[i0, i1] -> [i0, i1] };
; ALL: ReadAccess := [Reduction Type: NONE] [Scalar: 0]
; ALL: { Stmt_bb15__TO__bb25[i0, i1] -> MemRef_A[i0] };
; ALL: ReadAccess := [Reduction Type: NONE] [Scalar: 0]
; ALL: { Stmt_bb15__TO__bb25[i0, i1] -> MemRef_A[i1] };
; ALL: ReadAccess := [Reduction Type: NONE] [Scalar: 0]
; ALL: { Stmt_bb15__TO__bb25[i0, i1] -> MemRef_A[o0] : o0 <= 4294967293 and o0 >= 0 };
; ALL: MayWriteAccess := [Reduction Type: NONE] [Scalar: 0]
; ALL: { Stmt_bb15__TO__bb25[i0, i1] -> MemRef_A[o0] : o0 <= 4294967293 and o0 >= 0 };
; ALL: }
;
; void f(int *A) {
; for (int i = 0; i < 1024; i++)
; for (int j = 0; j < 1024; j++)
; for (int k = 0; k < i * j; k++)
; A[k] += A[i] + A[j];
; }
;
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
define void @f(i32* %A) {
bb:
br label %bb11
bb11: ; preds = %bb28, %bb
%indvars.iv8 = phi i64 [ %indvars.iv.next9, %bb28 ], [ 0, %bb ]
%indvars.iv1 = phi i32 [ %indvars.iv.next2, %bb28 ], [ 0, %bb ]
%exitcond10 = icmp ne i64 %indvars.iv8, 1024
br i1 %exitcond10, label %bb12, label %bb29
bb12: ; preds = %bb11
br label %bb13
bb13: ; preds = %bb26, %bb12
%indvars.iv5 = phi i64 [ %indvars.iv.next6, %bb26 ], [ 0, %bb12 ]
%indvars.iv3 = phi i32 [ %indvars.iv.next4, %bb26 ], [ 0, %bb12 ]
%exitcond7 = icmp ne i64 %indvars.iv5, 1024
br i1 %exitcond7, label %bb14, label %bb27
bb14: ; preds = %bb13
br label %bb15
bb15: ; preds = %bb24, %bb14
%indvars.iv = phi i64 [ %indvars.iv.next, %bb24 ], [ 0, %bb14 ]
%lftr.wideiv = trunc i64 %indvars.iv to i32
%exitcond = icmp ne i32 %lftr.wideiv, %indvars.iv3
br i1 %exitcond, label %bb16, label %bb25
bb16: ; preds = %bb15
%tmp = getelementptr inbounds i32, i32* %A, i64 %indvars.iv8
%tmp17 = load i32, i32* %tmp, align 4
%tmp18 = getelementptr inbounds i32, i32* %A, i64 %indvars.iv5
%tmp19 = load i32, i32* %tmp18, align 4
%tmp20 = add nsw i32 %tmp17, %tmp19
%tmp21 = getelementptr inbounds i32, i32* %A, i64 %indvars.iv
%tmp22 = load i32, i32* %tmp21, align 4
%tmp23 = add nsw i32 %tmp22, %tmp20
store i32 %tmp23, i32* %tmp21, align 4
br label %bb24
bb24: ; preds = %bb16
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
br label %bb15
bb25: ; preds = %bb15
br label %bb26
bb26: ; preds = %bb25
%indvars.iv.next6 = add nuw nsw i64 %indvars.iv5, 1
%indvars.iv.next4 = add nuw nsw i32 %indvars.iv3, %indvars.iv1
br label %bb13
bb27: ; preds = %bb13
br label %bb28
bb28: ; preds = %bb27
%indvars.iv.next9 = add nuw nsw i64 %indvars.iv8, 1
%indvars.iv.next2 = add nuw nsw i32 %indvars.iv1, 1
br label %bb11
bb29: ; preds = %bb11
ret void
}