forked from OSchip/llvm-project
3210 lines
126 KiB
C++
3210 lines
126 KiB
C++
//===- OpFormatGen.cpp - MLIR operation asm format generator --------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "OpFormatGen.h"
|
|
#include "FormatGen.h"
|
|
#include "OpClass.h"
|
|
#include "mlir/Support/LLVM.h"
|
|
#include "mlir/TableGen/Class.h"
|
|
#include "mlir/TableGen/Format.h"
|
|
#include "mlir/TableGen/Operator.h"
|
|
#include "mlir/TableGen/Trait.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/Sequence.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallBitVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
#include "llvm/Support/Signals.h"
|
|
#include "llvm/Support/SourceMgr.h"
|
|
#include "llvm/TableGen/Record.h"
|
|
|
|
#define DEBUG_TYPE "mlir-tblgen-opformatgen"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::tblgen;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// VariableElement
|
|
|
|
namespace {
|
|
/// This class represents an instance of an op variable element. A variable
|
|
/// refers to something registered on the operation itself, e.g. an operand,
|
|
/// result, attribute, region, or successor.
|
|
template <typename VarT, VariableElement::Kind VariableKind>
|
|
class OpVariableElement : public VariableElementBase<VariableKind> {
|
|
public:
|
|
using Base = OpVariableElement<VarT, VariableKind>;
|
|
|
|
/// Create an op variable element with the variable value.
|
|
OpVariableElement(const VarT *var) : var(var) {}
|
|
|
|
/// Get the variable.
|
|
const VarT *getVar() { return var; }
|
|
|
|
protected:
|
|
/// The op variable, e.g. a type or attribute constraint.
|
|
const VarT *var;
|
|
};
|
|
|
|
/// This class represents a variable that refers to an attribute argument.
|
|
struct AttributeVariable
|
|
: public OpVariableElement<NamedAttribute, VariableElement::Attribute> {
|
|
using Base::Base;
|
|
|
|
/// Return the constant builder call for the type of this attribute, or None
|
|
/// if it doesn't have one.
|
|
llvm::Optional<StringRef> getTypeBuilder() const {
|
|
llvm::Optional<Type> attrType = var->attr.getValueType();
|
|
return attrType ? attrType->getBuilderCall() : llvm::None;
|
|
}
|
|
|
|
/// Return if this attribute refers to a UnitAttr.
|
|
bool isUnitAttr() const {
|
|
return var->attr.getBaseAttr().getAttrDefName() == "UnitAttr";
|
|
}
|
|
|
|
/// Indicate if this attribute is printed "qualified" (that is it is
|
|
/// prefixed with the `#dialect.mnemonic`).
|
|
bool shouldBeQualified() { return shouldBeQualifiedFlag; }
|
|
void setShouldBeQualified(bool qualified = true) {
|
|
shouldBeQualifiedFlag = qualified;
|
|
}
|
|
|
|
private:
|
|
bool shouldBeQualifiedFlag = false;
|
|
};
|
|
|
|
/// This class represents a variable that refers to an operand argument.
|
|
using OperandVariable =
|
|
OpVariableElement<NamedTypeConstraint, VariableElement::Operand>;
|
|
|
|
/// This class represents a variable that refers to a result.
|
|
using ResultVariable =
|
|
OpVariableElement<NamedTypeConstraint, VariableElement::Result>;
|
|
|
|
/// This class represents a variable that refers to a region.
|
|
using RegionVariable = OpVariableElement<NamedRegion, VariableElement::Region>;
|
|
|
|
/// This class represents a variable that refers to a successor.
|
|
using SuccessorVariable =
|
|
OpVariableElement<NamedSuccessor, VariableElement::Successor>;
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DirectiveElement
|
|
|
|
namespace {
|
|
/// This class represents the `operands` directive. This directive represents
|
|
/// all of the operands of an operation.
|
|
using OperandsDirective = DirectiveElementBase<DirectiveElement::Operands>;
|
|
|
|
/// This class represents the `results` directive. This directive represents
|
|
/// all of the results of an operation.
|
|
using ResultsDirective = DirectiveElementBase<DirectiveElement::Results>;
|
|
|
|
/// This class represents the `regions` directive. This directive represents
|
|
/// all of the regions of an operation.
|
|
using RegionsDirective = DirectiveElementBase<DirectiveElement::Regions>;
|
|
|
|
/// This class represents the `successors` directive. This directive represents
|
|
/// all of the successors of an operation.
|
|
using SuccessorsDirective = DirectiveElementBase<DirectiveElement::Successors>;
|
|
|
|
/// This class represents the `attr-dict` directive. This directive represents
|
|
/// the attribute dictionary of the operation.
|
|
class AttrDictDirective
|
|
: public DirectiveElementBase<DirectiveElement::AttrDict> {
|
|
public:
|
|
explicit AttrDictDirective(bool withKeyword) : withKeyword(withKeyword) {}
|
|
|
|
/// Return whether the dictionary should be printed with the 'attributes'
|
|
/// keyword.
|
|
bool isWithKeyword() const { return withKeyword; }
|
|
|
|
private:
|
|
/// If the dictionary should be printed with the 'attributes' keyword.
|
|
bool withKeyword;
|
|
};
|
|
|
|
/// This class represents the `functional-type` directive. This directive takes
|
|
/// two arguments and formats them, respectively, as the inputs and results of a
|
|
/// FunctionType.
|
|
class FunctionalTypeDirective
|
|
: public DirectiveElementBase<DirectiveElement::FunctionalType> {
|
|
public:
|
|
FunctionalTypeDirective(FormatElement *inputs, FormatElement *results)
|
|
: inputs(inputs), results(results) {}
|
|
|
|
FormatElement *getInputs() const { return inputs; }
|
|
FormatElement *getResults() const { return results; }
|
|
|
|
private:
|
|
/// The input and result arguments.
|
|
FormatElement *inputs, *results;
|
|
};
|
|
|
|
/// This class represents the `type` directive.
|
|
class TypeDirective : public DirectiveElementBase<DirectiveElement::Type> {
|
|
public:
|
|
TypeDirective(FormatElement *arg) : arg(arg) {}
|
|
|
|
FormatElement *getArg() const { return arg; }
|
|
|
|
/// Indicate if this type is printed "qualified" (that is it is
|
|
/// prefixed with the `!dialect.mnemonic`).
|
|
bool shouldBeQualified() { return shouldBeQualifiedFlag; }
|
|
void setShouldBeQualified(bool qualified = true) {
|
|
shouldBeQualifiedFlag = qualified;
|
|
}
|
|
|
|
private:
|
|
/// The argument that is used to format the directive.
|
|
FormatElement *arg;
|
|
|
|
bool shouldBeQualifiedFlag = false;
|
|
};
|
|
|
|
/// This class represents a group of order-independent optional clauses. Each
|
|
/// clause starts with a literal element and has a coressponding parsing
|
|
/// element. A parsing element is a continous sequence of format elements.
|
|
/// Each clause can appear 0 or 1 time.
|
|
class OIListElement : public DirectiveElementBase<DirectiveElement::OIList> {
|
|
public:
|
|
OIListElement(std::vector<FormatElement *> &&literalElements,
|
|
std::vector<std::vector<FormatElement *>> &&parsingElements)
|
|
: literalElements(std::move(literalElements)),
|
|
parsingElements(std::move(parsingElements)) {}
|
|
|
|
/// Returns a range to iterate over the LiteralElements.
|
|
auto getLiteralElements() const {
|
|
function_ref<LiteralElement *(FormatElement * el)>
|
|
literalElementCastConverter =
|
|
[](FormatElement *el) { return cast<LiteralElement>(el); };
|
|
return llvm::map_range(literalElements, literalElementCastConverter);
|
|
}
|
|
|
|
/// Returns a range to iterate over the parsing elements corresponding to the
|
|
/// clauses.
|
|
ArrayRef<std::vector<FormatElement *>> getParsingElements() const {
|
|
return parsingElements;
|
|
}
|
|
|
|
/// Returns a range to iterate over tuples of parsing and literal elements.
|
|
auto getClauses() const {
|
|
return llvm::zip(getLiteralElements(), getParsingElements());
|
|
}
|
|
|
|
/// If the parsing element is a single UnitAttr element, then it returns the
|
|
/// attribute variable. Otherwise, returns nullptr.
|
|
AttributeVariable *
|
|
getUnitAttrParsingElement(ArrayRef<FormatElement *> pelement) {
|
|
if (pelement.size() == 1) {
|
|
auto *attrElem = dyn_cast<AttributeVariable>(pelement[0]);
|
|
if (attrElem && attrElem->isUnitAttr())
|
|
return attrElem;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
private:
|
|
/// A vector of `LiteralElement` objects. Each element stores the keyword
|
|
/// for one case of oilist element. For example, an oilist element along with
|
|
/// the `literalElements` vector:
|
|
/// ```
|
|
/// oilist [ `keyword` `=` `(` $arg0 `)` | `otherKeyword` `<` $arg1 `>`]
|
|
/// literalElements = { `keyword`, `otherKeyword` }
|
|
/// ```
|
|
std::vector<FormatElement *> literalElements;
|
|
|
|
/// A vector of valid declarative assembly format vectors. Each object in
|
|
/// parsing elements is a vector of elements in assembly format syntax.
|
|
/// For example, an oilist element along with the parsingElements vector:
|
|
/// ```
|
|
/// oilist [ `keyword` `=` `(` $arg0 `)` | `otherKeyword` `<` $arg1 `>`]
|
|
/// parsingElements = {
|
|
/// { `=`, `(`, $arg0, `)` },
|
|
/// { `<`, $arg1, `>` }
|
|
/// }
|
|
/// ```
|
|
std::vector<std::vector<FormatElement *>> parsingElements;
|
|
};
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OperationFormat
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
using ConstArgument =
|
|
llvm::PointerUnion<const NamedAttribute *, const NamedTypeConstraint *>;
|
|
|
|
struct OperationFormat {
|
|
/// This class represents a specific resolver for an operand or result type.
|
|
class TypeResolution {
|
|
public:
|
|
TypeResolution() = default;
|
|
|
|
/// Get the index into the buildable types for this type, or None.
|
|
Optional<int> getBuilderIdx() const { return builderIdx; }
|
|
void setBuilderIdx(int idx) { builderIdx = idx; }
|
|
|
|
/// Get the variable this type is resolved to, or nullptr.
|
|
const NamedTypeConstraint *getVariable() const {
|
|
return resolver.dyn_cast<const NamedTypeConstraint *>();
|
|
}
|
|
/// Get the attribute this type is resolved to, or nullptr.
|
|
const NamedAttribute *getAttribute() const {
|
|
return resolver.dyn_cast<const NamedAttribute *>();
|
|
}
|
|
/// Get the transformer for the type of the variable, or None.
|
|
Optional<StringRef> getVarTransformer() const {
|
|
return variableTransformer;
|
|
}
|
|
void setResolver(ConstArgument arg, Optional<StringRef> transformer) {
|
|
resolver = arg;
|
|
variableTransformer = transformer;
|
|
assert(getVariable() || getAttribute());
|
|
}
|
|
|
|
private:
|
|
/// If the type is resolved with a buildable type, this is the index into
|
|
/// 'buildableTypes' in the parent format.
|
|
Optional<int> builderIdx;
|
|
/// If the type is resolved based upon another operand or result, this is
|
|
/// the variable or the attribute that this type is resolved to.
|
|
ConstArgument resolver;
|
|
/// If the type is resolved based upon another operand or result, this is
|
|
/// a transformer to apply to the variable when resolving.
|
|
Optional<StringRef> variableTransformer;
|
|
};
|
|
|
|
/// The context in which an element is generated.
|
|
enum class GenContext {
|
|
/// The element is generated at the top-level or with the same behaviour.
|
|
Normal,
|
|
/// The element is generated inside an optional group.
|
|
Optional
|
|
};
|
|
|
|
OperationFormat(const Operator &op)
|
|
|
|
{
|
|
operandTypes.resize(op.getNumOperands(), TypeResolution());
|
|
resultTypes.resize(op.getNumResults(), TypeResolution());
|
|
|
|
hasImplicitTermTrait = llvm::any_of(op.getTraits(), [](const Trait &trait) {
|
|
return trait.getDef().isSubClassOf("SingleBlockImplicitTerminator");
|
|
});
|
|
|
|
hasSingleBlockTrait =
|
|
hasImplicitTermTrait || op.getTrait("::mlir::OpTrait::SingleBlock");
|
|
}
|
|
|
|
/// Generate the operation parser from this format.
|
|
void genParser(Operator &op, OpClass &opClass);
|
|
/// Generate the parser code for a specific format element.
|
|
void genElementParser(FormatElement *element, MethodBody &body,
|
|
FmtContext &attrTypeCtx,
|
|
GenContext genCtx = GenContext::Normal);
|
|
/// Generate the C++ to resolve the types of operands and results during
|
|
/// parsing.
|
|
void genParserTypeResolution(Operator &op, MethodBody &body);
|
|
/// Generate the C++ to resolve the types of the operands during parsing.
|
|
void genParserOperandTypeResolution(
|
|
Operator &op, MethodBody &body,
|
|
function_ref<void(TypeResolution &, StringRef)> emitTypeResolver);
|
|
/// Generate the C++ to resolve regions during parsing.
|
|
void genParserRegionResolution(Operator &op, MethodBody &body);
|
|
/// Generate the C++ to resolve successors during parsing.
|
|
void genParserSuccessorResolution(Operator &op, MethodBody &body);
|
|
/// Generate the C++ to handling variadic segment size traits.
|
|
void genParserVariadicSegmentResolution(Operator &op, MethodBody &body);
|
|
|
|
/// Generate the operation printer from this format.
|
|
void genPrinter(Operator &op, OpClass &opClass);
|
|
|
|
/// Generate the printer code for a specific format element.
|
|
void genElementPrinter(FormatElement *element, MethodBody &body, Operator &op,
|
|
bool &shouldEmitSpace, bool &lastWasPunctuation);
|
|
|
|
/// The various elements in this format.
|
|
std::vector<FormatElement *> elements;
|
|
|
|
/// A flag indicating if all operand/result types were seen. If the format
|
|
/// contains these, it can not contain individual type resolvers.
|
|
bool allOperands = false, allOperandTypes = false, allResultTypes = false;
|
|
|
|
/// A flag indicating if this operation infers its result types
|
|
bool infersResultTypes = false;
|
|
|
|
/// A flag indicating if this operation has the SingleBlockImplicitTerminator
|
|
/// trait.
|
|
bool hasImplicitTermTrait;
|
|
|
|
/// A flag indicating if this operation has the SingleBlock trait.
|
|
bool hasSingleBlockTrait;
|
|
|
|
/// A map of buildable types to indices.
|
|
llvm::MapVector<StringRef, int, llvm::StringMap<int>> buildableTypes;
|
|
|
|
/// The index of the buildable type, if valid, for every operand and result.
|
|
std::vector<TypeResolution> operandTypes, resultTypes;
|
|
|
|
/// The set of attributes explicitly used within the format.
|
|
SmallVector<const NamedAttribute *, 8> usedAttributes;
|
|
llvm::StringSet<> inferredAttributes;
|
|
};
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Parser Gen
|
|
|
|
/// Returns true if we can format the given attribute as an EnumAttr in the
|
|
/// parser format.
|
|
static bool canFormatEnumAttr(const NamedAttribute *attr) {
|
|
Attribute baseAttr = attr->attr.getBaseAttr();
|
|
const EnumAttr *enumAttr = dyn_cast<EnumAttr>(&baseAttr);
|
|
if (!enumAttr)
|
|
return false;
|
|
|
|
// The attribute must have a valid underlying type and a constant builder.
|
|
return !enumAttr->getUnderlyingType().empty() &&
|
|
!enumAttr->getConstBuilderTemplate().empty();
|
|
}
|
|
|
|
/// Returns if we should format the given attribute as an SymbolNameAttr.
|
|
static bool shouldFormatSymbolNameAttr(const NamedAttribute *attr) {
|
|
return attr->attr.getBaseAttr().getAttrDefName() == "SymbolNameAttr";
|
|
}
|
|
|
|
/// The code snippet used to generate a parser call for an attribute.
|
|
///
|
|
/// {0}: The name of the attribute.
|
|
/// {1}: The type for the attribute.
|
|
const char *const attrParserCode = R"(
|
|
if (parser.parseCustomAttributeWithFallback({0}Attr, {1}, "{0}",
|
|
result.attributes)) {{
|
|
return ::mlir::failure();
|
|
}
|
|
)";
|
|
|
|
/// The code snippet used to generate a parser call for an attribute.
|
|
///
|
|
/// {0}: The name of the attribute.
|
|
/// {1}: The type for the attribute.
|
|
const char *const genericAttrParserCode = R"(
|
|
if (parser.parseAttribute({0}Attr, {1}, "{0}", result.attributes))
|
|
return ::mlir::failure();
|
|
)";
|
|
|
|
const char *const optionalAttrParserCode = R"(
|
|
{
|
|
::mlir::OptionalParseResult parseResult =
|
|
parser.parseOptionalAttribute({0}Attr, {1}, "{0}", result.attributes);
|
|
if (parseResult.hasValue() && failed(*parseResult))
|
|
return ::mlir::failure();
|
|
}
|
|
)";
|
|
|
|
/// The code snippet used to generate a parser call for a symbol name attribute.
|
|
///
|
|
/// {0}: The name of the attribute.
|
|
const char *const symbolNameAttrParserCode = R"(
|
|
if (parser.parseSymbolName({0}Attr, "{0}", result.attributes))
|
|
return ::mlir::failure();
|
|
)";
|
|
const char *const optionalSymbolNameAttrParserCode = R"(
|
|
// Parsing an optional symbol name doesn't fail, so no need to check the
|
|
// result.
|
|
(void)parser.parseOptionalSymbolName({0}Attr, "{0}", result.attributes);
|
|
)";
|
|
|
|
/// The code snippet used to generate a parser call for an enum attribute.
|
|
///
|
|
/// {0}: The name of the attribute.
|
|
/// {1}: The c++ namespace for the enum symbolize functions.
|
|
/// {2}: The function to symbolize a string of the enum.
|
|
/// {3}: The constant builder call to create an attribute of the enum type.
|
|
/// {4}: The set of allowed enum keywords.
|
|
/// {5}: The error message on failure when the enum isn't present.
|
|
const char *const enumAttrParserCode = R"(
|
|
{
|
|
::llvm::StringRef attrStr;
|
|
::mlir::NamedAttrList attrStorage;
|
|
auto loc = parser.getCurrentLocation();
|
|
if (parser.parseOptionalKeyword(&attrStr, {4})) {
|
|
::mlir::StringAttr attrVal;
|
|
::mlir::OptionalParseResult parseResult =
|
|
parser.parseOptionalAttribute(attrVal,
|
|
parser.getBuilder().getNoneType(),
|
|
"{0}", attrStorage);
|
|
if (parseResult.hasValue()) {{
|
|
if (failed(*parseResult))
|
|
return ::mlir::failure();
|
|
attrStr = attrVal.getValue();
|
|
} else {
|
|
{5}
|
|
}
|
|
}
|
|
if (!attrStr.empty()) {
|
|
auto attrOptional = {1}::{2}(attrStr);
|
|
if (!attrOptional)
|
|
return parser.emitError(loc, "invalid ")
|
|
<< "{0} attribute specification: \"" << attrStr << '"';;
|
|
|
|
{0}Attr = {3};
|
|
result.addAttribute("{0}", {0}Attr);
|
|
}
|
|
}
|
|
)";
|
|
|
|
/// The code snippet used to generate a parser call for an operand.
|
|
///
|
|
/// {0}: The name of the operand.
|
|
const char *const variadicOperandParserCode = R"(
|
|
{0}OperandsLoc = parser.getCurrentLocation();
|
|
if (parser.parseOperandList({0}Operands))
|
|
return ::mlir::failure();
|
|
)";
|
|
const char *const optionalOperandParserCode = R"(
|
|
{
|
|
{0}OperandsLoc = parser.getCurrentLocation();
|
|
::mlir::OpAsmParser::UnresolvedOperand operand;
|
|
::mlir::OptionalParseResult parseResult =
|
|
parser.parseOptionalOperand(operand);
|
|
if (parseResult.hasValue()) {
|
|
if (failed(*parseResult))
|
|
return ::mlir::failure();
|
|
{0}Operands.push_back(operand);
|
|
}
|
|
}
|
|
)";
|
|
const char *const operandParserCode = R"(
|
|
{0}OperandsLoc = parser.getCurrentLocation();
|
|
if (parser.parseOperand({0}RawOperands[0]))
|
|
return ::mlir::failure();
|
|
)";
|
|
/// The code snippet used to generate a parser call for a VariadicOfVariadic
|
|
/// operand.
|
|
///
|
|
/// {0}: The name of the operand.
|
|
/// {1}: The name of segment size attribute.
|
|
const char *const variadicOfVariadicOperandParserCode = R"(
|
|
{
|
|
{0}OperandsLoc = parser.getCurrentLocation();
|
|
int32_t curSize = 0;
|
|
do {
|
|
if (parser.parseOptionalLParen())
|
|
break;
|
|
if (parser.parseOperandList({0}Operands) || parser.parseRParen())
|
|
return ::mlir::failure();
|
|
{0}OperandGroupSizes.push_back({0}Operands.size() - curSize);
|
|
curSize = {0}Operands.size();
|
|
} while (succeeded(parser.parseOptionalComma()));
|
|
}
|
|
)";
|
|
|
|
/// The code snippet used to generate a parser call for a type list.
|
|
///
|
|
/// {0}: The name for the type list.
|
|
const char *const variadicOfVariadicTypeParserCode = R"(
|
|
do {
|
|
if (parser.parseOptionalLParen())
|
|
break;
|
|
if (parser.parseOptionalRParen() &&
|
|
(parser.parseTypeList({0}Types) || parser.parseRParen()))
|
|
return ::mlir::failure();
|
|
} while (succeeded(parser.parseOptionalComma()));
|
|
)";
|
|
const char *const variadicTypeParserCode = R"(
|
|
if (parser.parseTypeList({0}Types))
|
|
return ::mlir::failure();
|
|
)";
|
|
const char *const optionalTypeParserCode = R"(
|
|
{
|
|
::mlir::Type optionalType;
|
|
::mlir::OptionalParseResult parseResult =
|
|
parser.parseOptionalType(optionalType);
|
|
if (parseResult.hasValue()) {
|
|
if (failed(*parseResult))
|
|
return ::mlir::failure();
|
|
{0}Types.push_back(optionalType);
|
|
}
|
|
}
|
|
)";
|
|
const char *const typeParserCode = R"(
|
|
{
|
|
{0} type;
|
|
if (parser.parseCustomTypeWithFallback(type))
|
|
return ::mlir::failure();
|
|
{1}RawTypes[0] = type;
|
|
}
|
|
)";
|
|
const char *const qualifiedTypeParserCode = R"(
|
|
if (parser.parseType({1}RawTypes[0]))
|
|
return ::mlir::failure();
|
|
)";
|
|
|
|
/// The code snippet used to generate a parser call for a functional type.
|
|
///
|
|
/// {0}: The name for the input type list.
|
|
/// {1}: The name for the result type list.
|
|
const char *const functionalTypeParserCode = R"(
|
|
::mlir::FunctionType {0}__{1}_functionType;
|
|
if (parser.parseType({0}__{1}_functionType))
|
|
return ::mlir::failure();
|
|
{0}Types = {0}__{1}_functionType.getInputs();
|
|
{1}Types = {0}__{1}_functionType.getResults();
|
|
)";
|
|
|
|
/// The code snippet used to generate a parser call to infer return types.
|
|
///
|
|
/// {0}: The operation class name
|
|
const char *const inferReturnTypesParserCode = R"(
|
|
::llvm::SmallVector<::mlir::Type> inferredReturnTypes;
|
|
if (::mlir::failed({0}::inferReturnTypes(parser.getContext(),
|
|
result.location, result.operands,
|
|
result.attributes.getDictionary(parser.getContext()),
|
|
result.regions, inferredReturnTypes)))
|
|
return ::mlir::failure();
|
|
result.addTypes(inferredReturnTypes);
|
|
)";
|
|
|
|
/// The code snippet used to generate a parser call for a region list.
|
|
///
|
|
/// {0}: The name for the region list.
|
|
const char *regionListParserCode = R"(
|
|
{
|
|
std::unique_ptr<::mlir::Region> region;
|
|
auto firstRegionResult = parser.parseOptionalRegion(region);
|
|
if (firstRegionResult.hasValue()) {
|
|
if (failed(*firstRegionResult))
|
|
return ::mlir::failure();
|
|
{0}Regions.emplace_back(std::move(region));
|
|
|
|
// Parse any trailing regions.
|
|
while (succeeded(parser.parseOptionalComma())) {
|
|
region = std::make_unique<::mlir::Region>();
|
|
if (parser.parseRegion(*region))
|
|
return ::mlir::failure();
|
|
{0}Regions.emplace_back(std::move(region));
|
|
}
|
|
}
|
|
}
|
|
)";
|
|
|
|
/// The code snippet used to ensure a list of regions have terminators.
|
|
///
|
|
/// {0}: The name of the region list.
|
|
const char *regionListEnsureTerminatorParserCode = R"(
|
|
for (auto ®ion : {0}Regions)
|
|
ensureTerminator(*region, parser.getBuilder(), result.location);
|
|
)";
|
|
|
|
/// The code snippet used to ensure a list of regions have a block.
|
|
///
|
|
/// {0}: The name of the region list.
|
|
const char *regionListEnsureSingleBlockParserCode = R"(
|
|
for (auto ®ion : {0}Regions)
|
|
if (region->empty()) region->emplaceBlock();
|
|
)";
|
|
|
|
/// The code snippet used to generate a parser call for an optional region.
|
|
///
|
|
/// {0}: The name of the region.
|
|
const char *optionalRegionParserCode = R"(
|
|
{
|
|
auto parseResult = parser.parseOptionalRegion(*{0}Region);
|
|
if (parseResult.hasValue() && failed(*parseResult))
|
|
return ::mlir::failure();
|
|
}
|
|
)";
|
|
|
|
/// The code snippet used to generate a parser call for a region.
|
|
///
|
|
/// {0}: The name of the region.
|
|
const char *regionParserCode = R"(
|
|
if (parser.parseRegion(*{0}Region))
|
|
return ::mlir::failure();
|
|
)";
|
|
|
|
/// The code snippet used to ensure a region has a terminator.
|
|
///
|
|
/// {0}: The name of the region.
|
|
const char *regionEnsureTerminatorParserCode = R"(
|
|
ensureTerminator(*{0}Region, parser.getBuilder(), result.location);
|
|
)";
|
|
|
|
/// The code snippet used to ensure a region has a block.
|
|
///
|
|
/// {0}: The name of the region.
|
|
const char *regionEnsureSingleBlockParserCode = R"(
|
|
if ({0}Region->empty()) {0}Region->emplaceBlock();
|
|
)";
|
|
|
|
/// The code snippet used to generate a parser call for a successor list.
|
|
///
|
|
/// {0}: The name for the successor list.
|
|
const char *successorListParserCode = R"(
|
|
{
|
|
::mlir::Block *succ;
|
|
auto firstSucc = parser.parseOptionalSuccessor(succ);
|
|
if (firstSucc.hasValue()) {
|
|
if (failed(*firstSucc))
|
|
return ::mlir::failure();
|
|
{0}Successors.emplace_back(succ);
|
|
|
|
// Parse any trailing successors.
|
|
while (succeeded(parser.parseOptionalComma())) {
|
|
if (parser.parseSuccessor(succ))
|
|
return ::mlir::failure();
|
|
{0}Successors.emplace_back(succ);
|
|
}
|
|
}
|
|
}
|
|
)";
|
|
|
|
/// The code snippet used to generate a parser call for a successor.
|
|
///
|
|
/// {0}: The name of the successor.
|
|
const char *successorParserCode = R"(
|
|
if (parser.parseSuccessor({0}Successor))
|
|
return ::mlir::failure();
|
|
)";
|
|
|
|
/// The code snippet used to generate a parser for OIList
|
|
///
|
|
/// {0}: literal keyword corresponding to a case for oilist
|
|
const char *oilistParserCode = R"(
|
|
if ({0}Clause) {
|
|
return parser.emitError(parser.getNameLoc())
|
|
<< "`{0}` clause can appear at most once in the expansion of the "
|
|
"oilist directive";
|
|
}
|
|
{0}Clause = true;
|
|
)";
|
|
|
|
namespace {
|
|
/// The type of length for a given parse argument.
|
|
enum class ArgumentLengthKind {
|
|
/// The argument is a variadic of a variadic, and may contain 0->N range
|
|
/// elements.
|
|
VariadicOfVariadic,
|
|
/// The argument is variadic, and may contain 0->N elements.
|
|
Variadic,
|
|
/// The argument is optional, and may contain 0 or 1 elements.
|
|
Optional,
|
|
/// The argument is a single element, i.e. always represents 1 element.
|
|
Single
|
|
};
|
|
} // namespace
|
|
|
|
/// Get the length kind for the given constraint.
|
|
static ArgumentLengthKind
|
|
getArgumentLengthKind(const NamedTypeConstraint *var) {
|
|
if (var->isOptional())
|
|
return ArgumentLengthKind::Optional;
|
|
if (var->isVariadicOfVariadic())
|
|
return ArgumentLengthKind::VariadicOfVariadic;
|
|
if (var->isVariadic())
|
|
return ArgumentLengthKind::Variadic;
|
|
return ArgumentLengthKind::Single;
|
|
}
|
|
|
|
/// Get the name used for the type list for the given type directive operand.
|
|
/// 'lengthKind' to the corresponding kind for the given argument.
|
|
static StringRef getTypeListName(FormatElement *arg,
|
|
ArgumentLengthKind &lengthKind) {
|
|
if (auto *operand = dyn_cast<OperandVariable>(arg)) {
|
|
lengthKind = getArgumentLengthKind(operand->getVar());
|
|
return operand->getVar()->name;
|
|
}
|
|
if (auto *result = dyn_cast<ResultVariable>(arg)) {
|
|
lengthKind = getArgumentLengthKind(result->getVar());
|
|
return result->getVar()->name;
|
|
}
|
|
lengthKind = ArgumentLengthKind::Variadic;
|
|
if (isa<OperandsDirective>(arg))
|
|
return "allOperand";
|
|
if (isa<ResultsDirective>(arg))
|
|
return "allResult";
|
|
llvm_unreachable("unknown 'type' directive argument");
|
|
}
|
|
|
|
/// Generate the parser for a literal value.
|
|
static void genLiteralParser(StringRef value, MethodBody &body) {
|
|
// Handle the case of a keyword/identifier.
|
|
if (value.front() == '_' || isalpha(value.front())) {
|
|
body << "Keyword(\"" << value << "\")";
|
|
return;
|
|
}
|
|
body << (StringRef)StringSwitch<StringRef>(value)
|
|
.Case("->", "Arrow()")
|
|
.Case(":", "Colon()")
|
|
.Case(",", "Comma()")
|
|
.Case("=", "Equal()")
|
|
.Case("<", "Less()")
|
|
.Case(">", "Greater()")
|
|
.Case("{", "LBrace()")
|
|
.Case("}", "RBrace()")
|
|
.Case("(", "LParen()")
|
|
.Case(")", "RParen()")
|
|
.Case("[", "LSquare()")
|
|
.Case("]", "RSquare()")
|
|
.Case("?", "Question()")
|
|
.Case("+", "Plus()")
|
|
.Case("*", "Star()");
|
|
}
|
|
|
|
/// Generate the storage code required for parsing the given element.
|
|
static void genElementParserStorage(FormatElement *element, const Operator &op,
|
|
MethodBody &body) {
|
|
if (auto *optional = dyn_cast<OptionalElement>(element)) {
|
|
ArrayRef<FormatElement *> elements = optional->getThenElements();
|
|
|
|
// If the anchor is a unit attribute, it won't be parsed directly so elide
|
|
// it.
|
|
auto *anchor = dyn_cast<AttributeVariable>(optional->getAnchor());
|
|
FormatElement *elidedAnchorElement = nullptr;
|
|
if (anchor && anchor != elements.front() && anchor->isUnitAttr())
|
|
elidedAnchorElement = anchor;
|
|
for (FormatElement *childElement : elements)
|
|
if (childElement != elidedAnchorElement)
|
|
genElementParserStorage(childElement, op, body);
|
|
for (FormatElement *childElement : optional->getElseElements())
|
|
genElementParserStorage(childElement, op, body);
|
|
|
|
} else if (auto *oilist = dyn_cast<OIListElement>(element)) {
|
|
for (ArrayRef<FormatElement *> pelement : oilist->getParsingElements()) {
|
|
if (!oilist->getUnitAttrParsingElement(pelement))
|
|
for (FormatElement *element : pelement)
|
|
genElementParserStorage(element, op, body);
|
|
}
|
|
|
|
} else if (auto *custom = dyn_cast<CustomDirective>(element)) {
|
|
for (FormatElement *paramElement : custom->getArguments())
|
|
genElementParserStorage(paramElement, op, body);
|
|
|
|
} else if (isa<OperandsDirective>(element)) {
|
|
body << " ::llvm::SmallVector<::mlir::OpAsmParser::UnresolvedOperand, 4> "
|
|
"allOperands;\n";
|
|
|
|
} else if (isa<RegionsDirective>(element)) {
|
|
body << " ::llvm::SmallVector<std::unique_ptr<::mlir::Region>, 2> "
|
|
"fullRegions;\n";
|
|
|
|
} else if (isa<SuccessorsDirective>(element)) {
|
|
body << " ::llvm::SmallVector<::mlir::Block *, 2> fullSuccessors;\n";
|
|
|
|
} else if (auto *attr = dyn_cast<AttributeVariable>(element)) {
|
|
const NamedAttribute *var = attr->getVar();
|
|
body << llvm::formatv(" {0} {1}Attr;\n", var->attr.getStorageType(),
|
|
var->name);
|
|
|
|
} else if (auto *operand = dyn_cast<OperandVariable>(element)) {
|
|
StringRef name = operand->getVar()->name;
|
|
if (operand->getVar()->isVariableLength()) {
|
|
body
|
|
<< " ::llvm::SmallVector<::mlir::OpAsmParser::UnresolvedOperand, 4> "
|
|
<< name << "Operands;\n";
|
|
if (operand->getVar()->isVariadicOfVariadic()) {
|
|
body << " llvm::SmallVector<int32_t> " << name
|
|
<< "OperandGroupSizes;\n";
|
|
}
|
|
} else {
|
|
body << " ::mlir::OpAsmParser::UnresolvedOperand " << name
|
|
<< "RawOperands[1];\n"
|
|
<< " ::llvm::ArrayRef<::mlir::OpAsmParser::UnresolvedOperand> "
|
|
<< name << "Operands(" << name << "RawOperands);";
|
|
}
|
|
body << llvm::formatv(" ::llvm::SMLoc {0}OperandsLoc;\n"
|
|
" (void){0}OperandsLoc;\n",
|
|
name);
|
|
|
|
} else if (auto *region = dyn_cast<RegionVariable>(element)) {
|
|
StringRef name = region->getVar()->name;
|
|
if (region->getVar()->isVariadic()) {
|
|
body << llvm::formatv(
|
|
" ::llvm::SmallVector<std::unique_ptr<::mlir::Region>, 2> "
|
|
"{0}Regions;\n",
|
|
name);
|
|
} else {
|
|
body << llvm::formatv(" std::unique_ptr<::mlir::Region> {0}Region = "
|
|
"std::make_unique<::mlir::Region>();\n",
|
|
name);
|
|
}
|
|
|
|
} else if (auto *successor = dyn_cast<SuccessorVariable>(element)) {
|
|
StringRef name = successor->getVar()->name;
|
|
if (successor->getVar()->isVariadic()) {
|
|
body << llvm::formatv(" ::llvm::SmallVector<::mlir::Block *, 2> "
|
|
"{0}Successors;\n",
|
|
name);
|
|
} else {
|
|
body << llvm::formatv(" ::mlir::Block *{0}Successor = nullptr;\n", name);
|
|
}
|
|
|
|
} else if (auto *dir = dyn_cast<TypeDirective>(element)) {
|
|
ArgumentLengthKind lengthKind;
|
|
StringRef name = getTypeListName(dir->getArg(), lengthKind);
|
|
if (lengthKind != ArgumentLengthKind::Single)
|
|
body << " ::llvm::SmallVector<::mlir::Type, 1> " << name << "Types;\n";
|
|
else
|
|
body << llvm::formatv(" ::mlir::Type {0}RawTypes[1];\n", name)
|
|
<< llvm::formatv(
|
|
" ::llvm::ArrayRef<::mlir::Type> {0}Types({0}RawTypes);\n",
|
|
name);
|
|
} else if (auto *dir = dyn_cast<FunctionalTypeDirective>(element)) {
|
|
ArgumentLengthKind ignored;
|
|
body << " ::llvm::ArrayRef<::mlir::Type> "
|
|
<< getTypeListName(dir->getInputs(), ignored) << "Types;\n";
|
|
body << " ::llvm::ArrayRef<::mlir::Type> "
|
|
<< getTypeListName(dir->getResults(), ignored) << "Types;\n";
|
|
}
|
|
}
|
|
|
|
/// Generate the parser for a parameter to a custom directive.
|
|
static void genCustomParameterParser(FormatElement *param, MethodBody &body) {
|
|
if (auto *attr = dyn_cast<AttributeVariable>(param)) {
|
|
body << attr->getVar()->name << "Attr";
|
|
} else if (isa<AttrDictDirective>(param)) {
|
|
body << "result.attributes";
|
|
} else if (auto *operand = dyn_cast<OperandVariable>(param)) {
|
|
StringRef name = operand->getVar()->name;
|
|
ArgumentLengthKind lengthKind = getArgumentLengthKind(operand->getVar());
|
|
if (lengthKind == ArgumentLengthKind::VariadicOfVariadic)
|
|
body << llvm::formatv("{0}OperandGroups", name);
|
|
else if (lengthKind == ArgumentLengthKind::Variadic)
|
|
body << llvm::formatv("{0}Operands", name);
|
|
else if (lengthKind == ArgumentLengthKind::Optional)
|
|
body << llvm::formatv("{0}Operand", name);
|
|
else
|
|
body << formatv("{0}RawOperands[0]", name);
|
|
|
|
} else if (auto *region = dyn_cast<RegionVariable>(param)) {
|
|
StringRef name = region->getVar()->name;
|
|
if (region->getVar()->isVariadic())
|
|
body << llvm::formatv("{0}Regions", name);
|
|
else
|
|
body << llvm::formatv("*{0}Region", name);
|
|
|
|
} else if (auto *successor = dyn_cast<SuccessorVariable>(param)) {
|
|
StringRef name = successor->getVar()->name;
|
|
if (successor->getVar()->isVariadic())
|
|
body << llvm::formatv("{0}Successors", name);
|
|
else
|
|
body << llvm::formatv("{0}Successor", name);
|
|
|
|
} else if (auto *dir = dyn_cast<RefDirective>(param)) {
|
|
genCustomParameterParser(dir->getArg(), body);
|
|
|
|
} else if (auto *dir = dyn_cast<TypeDirective>(param)) {
|
|
ArgumentLengthKind lengthKind;
|
|
StringRef listName = getTypeListName(dir->getArg(), lengthKind);
|
|
if (lengthKind == ArgumentLengthKind::VariadicOfVariadic)
|
|
body << llvm::formatv("{0}TypeGroups", listName);
|
|
else if (lengthKind == ArgumentLengthKind::Variadic)
|
|
body << llvm::formatv("{0}Types", listName);
|
|
else if (lengthKind == ArgumentLengthKind::Optional)
|
|
body << llvm::formatv("{0}Type", listName);
|
|
else
|
|
body << formatv("{0}RawTypes[0]", listName);
|
|
} else {
|
|
llvm_unreachable("unknown custom directive parameter");
|
|
}
|
|
}
|
|
|
|
/// Generate the parser for a custom directive.
|
|
static void genCustomDirectiveParser(CustomDirective *dir, MethodBody &body) {
|
|
body << " {\n";
|
|
|
|
// Preprocess the directive variables.
|
|
// * Add a local variable for optional operands and types. This provides a
|
|
// better API to the user defined parser methods.
|
|
// * Set the location of operand variables.
|
|
for (FormatElement *param : dir->getArguments()) {
|
|
if (auto *operand = dyn_cast<OperandVariable>(param)) {
|
|
auto *var = operand->getVar();
|
|
body << " " << var->name
|
|
<< "OperandsLoc = parser.getCurrentLocation();\n";
|
|
if (var->isOptional()) {
|
|
body << llvm::formatv(
|
|
" ::llvm::Optional<::mlir::OpAsmParser::UnresolvedOperand> "
|
|
"{0}Operand;\n",
|
|
var->name);
|
|
} else if (var->isVariadicOfVariadic()) {
|
|
body << llvm::formatv(" "
|
|
"::llvm::SmallVector<::llvm::SmallVector<::mlir::"
|
|
"OpAsmParser::UnresolvedOperand>> "
|
|
"{0}OperandGroups;\n",
|
|
var->name);
|
|
}
|
|
} else if (auto *dir = dyn_cast<TypeDirective>(param)) {
|
|
ArgumentLengthKind lengthKind;
|
|
StringRef listName = getTypeListName(dir->getArg(), lengthKind);
|
|
if (lengthKind == ArgumentLengthKind::Optional) {
|
|
body << llvm::formatv(" ::mlir::Type {0}Type;\n", listName);
|
|
} else if (lengthKind == ArgumentLengthKind::VariadicOfVariadic) {
|
|
body << llvm::formatv(
|
|
" ::llvm::SmallVector<llvm::SmallVector<::mlir::Type>> "
|
|
"{0}TypeGroups;\n",
|
|
listName);
|
|
}
|
|
} else if (auto *dir = dyn_cast<RefDirective>(param)) {
|
|
FormatElement *input = dir->getArg();
|
|
if (auto *operand = dyn_cast<OperandVariable>(input)) {
|
|
if (!operand->getVar()->isOptional())
|
|
continue;
|
|
body << llvm::formatv(
|
|
" {0} {1}Operand = {1}Operands.empty() ? {0}() : "
|
|
"{1}Operands[0];\n",
|
|
"::llvm::Optional<::mlir::OpAsmParser::UnresolvedOperand>",
|
|
operand->getVar()->name);
|
|
|
|
} else if (auto *type = dyn_cast<TypeDirective>(input)) {
|
|
ArgumentLengthKind lengthKind;
|
|
StringRef listName = getTypeListName(type->getArg(), lengthKind);
|
|
if (lengthKind == ArgumentLengthKind::Optional) {
|
|
body << llvm::formatv(" ::mlir::Type {0}Type = {0}Types.empty() ? "
|
|
"::mlir::Type() : {0}Types[0];\n",
|
|
listName);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
body << " if (parse" << dir->getName() << "(parser";
|
|
for (FormatElement *param : dir->getArguments()) {
|
|
body << ", ";
|
|
genCustomParameterParser(param, body);
|
|
}
|
|
|
|
body << "))\n"
|
|
<< " return ::mlir::failure();\n";
|
|
|
|
// After parsing, add handling for any of the optional constructs.
|
|
for (FormatElement *param : dir->getArguments()) {
|
|
if (auto *attr = dyn_cast<AttributeVariable>(param)) {
|
|
const NamedAttribute *var = attr->getVar();
|
|
if (var->attr.isOptional())
|
|
body << llvm::formatv(" if ({0}Attr)\n ", var->name);
|
|
|
|
body << llvm::formatv(" result.addAttribute(\"{0}\", {0}Attr);\n",
|
|
var->name);
|
|
} else if (auto *operand = dyn_cast<OperandVariable>(param)) {
|
|
const NamedTypeConstraint *var = operand->getVar();
|
|
if (var->isOptional()) {
|
|
body << llvm::formatv(" if ({0}Operand.hasValue())\n"
|
|
" {0}Operands.push_back(*{0}Operand);\n",
|
|
var->name);
|
|
} else if (var->isVariadicOfVariadic()) {
|
|
body << llvm::formatv(
|
|
" for (const auto &subRange : {0}OperandGroups) {{\n"
|
|
" {0}Operands.append(subRange.begin(), subRange.end());\n"
|
|
" {0}OperandGroupSizes.push_back(subRange.size());\n"
|
|
" }\n",
|
|
var->name, var->constraint.getVariadicOfVariadicSegmentSizeAttr());
|
|
}
|
|
} else if (auto *dir = dyn_cast<TypeDirective>(param)) {
|
|
ArgumentLengthKind lengthKind;
|
|
StringRef listName = getTypeListName(dir->getArg(), lengthKind);
|
|
if (lengthKind == ArgumentLengthKind::Optional) {
|
|
body << llvm::formatv(" if ({0}Type)\n"
|
|
" {0}Types.push_back({0}Type);\n",
|
|
listName);
|
|
} else if (lengthKind == ArgumentLengthKind::VariadicOfVariadic) {
|
|
body << llvm::formatv(
|
|
" for (const auto &subRange : {0}TypeGroups)\n"
|
|
" {0}Types.append(subRange.begin(), subRange.end());\n",
|
|
listName);
|
|
}
|
|
}
|
|
}
|
|
|
|
body << " }\n";
|
|
}
|
|
|
|
/// Generate the parser for a enum attribute.
|
|
static void genEnumAttrParser(const NamedAttribute *var, MethodBody &body,
|
|
FmtContext &attrTypeCtx) {
|
|
Attribute baseAttr = var->attr.getBaseAttr();
|
|
const EnumAttr &enumAttr = cast<EnumAttr>(baseAttr);
|
|
std::vector<EnumAttrCase> cases = enumAttr.getAllCases();
|
|
|
|
// Generate the code for building an attribute for this enum.
|
|
std::string attrBuilderStr;
|
|
{
|
|
llvm::raw_string_ostream os(attrBuilderStr);
|
|
os << tgfmt(enumAttr.getConstBuilderTemplate(), &attrTypeCtx,
|
|
"attrOptional.getValue()");
|
|
}
|
|
|
|
// Build a string containing the cases that can be formatted as a keyword.
|
|
std::string validCaseKeywordsStr = "{";
|
|
llvm::raw_string_ostream validCaseKeywordsOS(validCaseKeywordsStr);
|
|
for (const EnumAttrCase &attrCase : cases)
|
|
if (canFormatStringAsKeyword(attrCase.getStr()))
|
|
validCaseKeywordsOS << '"' << attrCase.getStr() << "\",";
|
|
validCaseKeywordsOS.str().back() = '}';
|
|
|
|
// If the attribute is not optional, build an error message for the missing
|
|
// attribute.
|
|
std::string errorMessage;
|
|
if (!var->attr.isOptional()) {
|
|
llvm::raw_string_ostream errorMessageOS(errorMessage);
|
|
errorMessageOS
|
|
<< "return parser.emitError(loc, \"expected string or "
|
|
"keyword containing one of the following enum values for attribute '"
|
|
<< var->name << "' [";
|
|
llvm::interleaveComma(cases, errorMessageOS, [&](const auto &attrCase) {
|
|
errorMessageOS << attrCase.getStr();
|
|
});
|
|
errorMessageOS << "]\");";
|
|
}
|
|
|
|
body << formatv(enumAttrParserCode, var->name, enumAttr.getCppNamespace(),
|
|
enumAttr.getStringToSymbolFnName(), attrBuilderStr,
|
|
validCaseKeywordsStr, errorMessage);
|
|
}
|
|
|
|
void OperationFormat::genParser(Operator &op, OpClass &opClass) {
|
|
SmallVector<MethodParameter> paramList;
|
|
paramList.emplace_back("::mlir::OpAsmParser &", "parser");
|
|
paramList.emplace_back("::mlir::OperationState &", "result");
|
|
|
|
auto *method = opClass.addStaticMethod("::mlir::ParseResult", "parse",
|
|
std::move(paramList));
|
|
auto &body = method->body();
|
|
|
|
// Generate variables to store the operands and type within the format. This
|
|
// allows for referencing these variables in the presence of optional
|
|
// groupings.
|
|
for (FormatElement *element : elements)
|
|
genElementParserStorage(element, op, body);
|
|
|
|
// A format context used when parsing attributes with buildable types.
|
|
FmtContext attrTypeCtx;
|
|
attrTypeCtx.withBuilder("parser.getBuilder()");
|
|
|
|
// Generate parsers for each of the elements.
|
|
for (FormatElement *element : elements)
|
|
genElementParser(element, body, attrTypeCtx);
|
|
|
|
// Generate the code to resolve the operand/result types and successors now
|
|
// that they have been parsed.
|
|
genParserRegionResolution(op, body);
|
|
genParserSuccessorResolution(op, body);
|
|
genParserVariadicSegmentResolution(op, body);
|
|
genParserTypeResolution(op, body);
|
|
|
|
body << " return ::mlir::success();\n";
|
|
}
|
|
|
|
void OperationFormat::genElementParser(FormatElement *element, MethodBody &body,
|
|
FmtContext &attrTypeCtx,
|
|
GenContext genCtx) {
|
|
/// Optional Group.
|
|
if (auto *optional = dyn_cast<OptionalElement>(element)) {
|
|
ArrayRef<FormatElement *> elements =
|
|
optional->getThenElements().drop_front(optional->getParseStart());
|
|
|
|
// Generate a special optional parser for the first element to gate the
|
|
// parsing of the rest of the elements.
|
|
FormatElement *firstElement = elements.front();
|
|
if (auto *attrVar = dyn_cast<AttributeVariable>(firstElement)) {
|
|
genElementParser(attrVar, body, attrTypeCtx);
|
|
body << " if (" << attrVar->getVar()->name << "Attr) {\n";
|
|
} else if (auto *literal = dyn_cast<LiteralElement>(firstElement)) {
|
|
body << " if (succeeded(parser.parseOptional";
|
|
genLiteralParser(literal->getSpelling(), body);
|
|
body << ")) {\n";
|
|
} else if (auto *opVar = dyn_cast<OperandVariable>(firstElement)) {
|
|
genElementParser(opVar, body, attrTypeCtx);
|
|
body << " if (!" << opVar->getVar()->name << "Operands.empty()) {\n";
|
|
} else if (auto *regionVar = dyn_cast<RegionVariable>(firstElement)) {
|
|
const NamedRegion *region = regionVar->getVar();
|
|
if (region->isVariadic()) {
|
|
genElementParser(regionVar, body, attrTypeCtx);
|
|
body << " if (!" << region->name << "Regions.empty()) {\n";
|
|
} else {
|
|
body << llvm::formatv(optionalRegionParserCode, region->name);
|
|
body << " if (!" << region->name << "Region->empty()) {\n ";
|
|
if (hasImplicitTermTrait)
|
|
body << llvm::formatv(regionEnsureTerminatorParserCode, region->name);
|
|
else if (hasSingleBlockTrait)
|
|
body << llvm::formatv(regionEnsureSingleBlockParserCode,
|
|
region->name);
|
|
}
|
|
}
|
|
|
|
// If the anchor is a unit attribute, we don't need to print it. When
|
|
// parsing, we will add this attribute if this group is present.
|
|
FormatElement *elidedAnchorElement = nullptr;
|
|
auto *anchorAttr = dyn_cast<AttributeVariable>(optional->getAnchor());
|
|
if (anchorAttr && anchorAttr != firstElement && anchorAttr->isUnitAttr()) {
|
|
elidedAnchorElement = anchorAttr;
|
|
|
|
// Add the anchor unit attribute to the operation state.
|
|
body << " result.addAttribute(\"" << anchorAttr->getVar()->name
|
|
<< "\", parser.getBuilder().getUnitAttr());\n";
|
|
}
|
|
|
|
// Generate the rest of the elements inside an optional group. Elements in
|
|
// an optional group after the guard are parsed as required.
|
|
for (FormatElement *childElement : llvm::drop_begin(elements, 1))
|
|
if (childElement != elidedAnchorElement)
|
|
genElementParser(childElement, body, attrTypeCtx, GenContext::Optional);
|
|
body << " }";
|
|
|
|
// Generate the else elements.
|
|
auto elseElements = optional->getElseElements();
|
|
if (!elseElements.empty()) {
|
|
body << " else {\n";
|
|
for (FormatElement *childElement : elseElements)
|
|
genElementParser(childElement, body, attrTypeCtx);
|
|
body << " }";
|
|
}
|
|
body << "\n";
|
|
|
|
/// OIList Directive
|
|
} else if (OIListElement *oilist = dyn_cast<OIListElement>(element)) {
|
|
for (LiteralElement *le : oilist->getLiteralElements())
|
|
body << " bool " << le->getSpelling() << "Clause = false;\n";
|
|
|
|
// Generate the parsing loop
|
|
body << " while(true) {\n";
|
|
for (auto clause : oilist->getClauses()) {
|
|
LiteralElement *lelement = std::get<0>(clause);
|
|
ArrayRef<FormatElement *> pelement = std::get<1>(clause);
|
|
body << "if (succeeded(parser.parseOptional";
|
|
genLiteralParser(lelement->getSpelling(), body);
|
|
body << ")) {\n";
|
|
StringRef lelementName = lelement->getSpelling();
|
|
body << formatv(oilistParserCode, lelementName);
|
|
if (AttributeVariable *unitAttrElem =
|
|
oilist->getUnitAttrParsingElement(pelement)) {
|
|
body << " result.addAttribute(\"" << unitAttrElem->getVar()->name
|
|
<< "\", UnitAttr::get(parser.getContext()));\n";
|
|
} else {
|
|
for (FormatElement *el : pelement)
|
|
genElementParser(el, body, attrTypeCtx);
|
|
}
|
|
body << " } else ";
|
|
}
|
|
body << " {\n";
|
|
body << " break;\n";
|
|
body << " }\n";
|
|
body << "}\n";
|
|
|
|
/// Literals.
|
|
} else if (LiteralElement *literal = dyn_cast<LiteralElement>(element)) {
|
|
body << " if (parser.parse";
|
|
genLiteralParser(literal->getSpelling(), body);
|
|
body << ")\n return ::mlir::failure();\n";
|
|
|
|
/// Whitespaces.
|
|
} else if (isa<WhitespaceElement>(element)) {
|
|
// Nothing to parse.
|
|
|
|
/// Arguments.
|
|
} else if (auto *attr = dyn_cast<AttributeVariable>(element)) {
|
|
const NamedAttribute *var = attr->getVar();
|
|
|
|
// Check to see if we can parse this as an enum attribute.
|
|
if (canFormatEnumAttr(var))
|
|
return genEnumAttrParser(var, body, attrTypeCtx);
|
|
|
|
// Check to see if we should parse this as a symbol name attribute.
|
|
if (shouldFormatSymbolNameAttr(var)) {
|
|
body << formatv(var->attr.isOptional() ? optionalSymbolNameAttrParserCode
|
|
: symbolNameAttrParserCode,
|
|
var->name);
|
|
return;
|
|
}
|
|
|
|
// If this attribute has a buildable type, use that when parsing the
|
|
// attribute.
|
|
std::string attrTypeStr;
|
|
if (Optional<StringRef> typeBuilder = attr->getTypeBuilder()) {
|
|
llvm::raw_string_ostream os(attrTypeStr);
|
|
os << tgfmt(*typeBuilder, &attrTypeCtx);
|
|
} else {
|
|
attrTypeStr = "::mlir::Type{}";
|
|
}
|
|
if (genCtx == GenContext::Normal && var->attr.isOptional()) {
|
|
body << formatv(optionalAttrParserCode, var->name, attrTypeStr);
|
|
} else {
|
|
if (attr->shouldBeQualified() ||
|
|
var->attr.getStorageType() == "::mlir::Attribute")
|
|
body << formatv(genericAttrParserCode, var->name, attrTypeStr);
|
|
else
|
|
body << formatv(attrParserCode, var->name, attrTypeStr);
|
|
}
|
|
|
|
} else if (auto *operand = dyn_cast<OperandVariable>(element)) {
|
|
ArgumentLengthKind lengthKind = getArgumentLengthKind(operand->getVar());
|
|
StringRef name = operand->getVar()->name;
|
|
if (lengthKind == ArgumentLengthKind::VariadicOfVariadic)
|
|
body << llvm::formatv(
|
|
variadicOfVariadicOperandParserCode, name,
|
|
operand->getVar()->constraint.getVariadicOfVariadicSegmentSizeAttr());
|
|
else if (lengthKind == ArgumentLengthKind::Variadic)
|
|
body << llvm::formatv(variadicOperandParserCode, name);
|
|
else if (lengthKind == ArgumentLengthKind::Optional)
|
|
body << llvm::formatv(optionalOperandParserCode, name);
|
|
else
|
|
body << formatv(operandParserCode, name);
|
|
|
|
} else if (auto *region = dyn_cast<RegionVariable>(element)) {
|
|
bool isVariadic = region->getVar()->isVariadic();
|
|
body << llvm::formatv(isVariadic ? regionListParserCode : regionParserCode,
|
|
region->getVar()->name);
|
|
if (hasImplicitTermTrait)
|
|
body << llvm::formatv(isVariadic ? regionListEnsureTerminatorParserCode
|
|
: regionEnsureTerminatorParserCode,
|
|
region->getVar()->name);
|
|
else if (hasSingleBlockTrait)
|
|
body << llvm::formatv(isVariadic ? regionListEnsureSingleBlockParserCode
|
|
: regionEnsureSingleBlockParserCode,
|
|
region->getVar()->name);
|
|
|
|
} else if (auto *successor = dyn_cast<SuccessorVariable>(element)) {
|
|
bool isVariadic = successor->getVar()->isVariadic();
|
|
body << formatv(isVariadic ? successorListParserCode : successorParserCode,
|
|
successor->getVar()->name);
|
|
|
|
/// Directives.
|
|
} else if (auto *attrDict = dyn_cast<AttrDictDirective>(element)) {
|
|
body << " if (parser.parseOptionalAttrDict"
|
|
<< (attrDict->isWithKeyword() ? "WithKeyword" : "")
|
|
<< "(result.attributes))\n"
|
|
<< " return ::mlir::failure();\n";
|
|
} else if (auto *customDir = dyn_cast<CustomDirective>(element)) {
|
|
genCustomDirectiveParser(customDir, body);
|
|
|
|
} else if (isa<OperandsDirective>(element)) {
|
|
body << " ::llvm::SMLoc allOperandLoc = parser.getCurrentLocation();\n"
|
|
<< " if (parser.parseOperandList(allOperands))\n"
|
|
<< " return ::mlir::failure();\n";
|
|
|
|
} else if (isa<RegionsDirective>(element)) {
|
|
body << llvm::formatv(regionListParserCode, "full");
|
|
if (hasImplicitTermTrait)
|
|
body << llvm::formatv(regionListEnsureTerminatorParserCode, "full");
|
|
else if (hasSingleBlockTrait)
|
|
body << llvm::formatv(regionListEnsureSingleBlockParserCode, "full");
|
|
|
|
} else if (isa<SuccessorsDirective>(element)) {
|
|
body << llvm::formatv(successorListParserCode, "full");
|
|
|
|
} else if (auto *dir = dyn_cast<TypeDirective>(element)) {
|
|
ArgumentLengthKind lengthKind;
|
|
StringRef listName = getTypeListName(dir->getArg(), lengthKind);
|
|
if (lengthKind == ArgumentLengthKind::VariadicOfVariadic) {
|
|
body << llvm::formatv(variadicOfVariadicTypeParserCode, listName);
|
|
} else if (lengthKind == ArgumentLengthKind::Variadic) {
|
|
body << llvm::formatv(variadicTypeParserCode, listName);
|
|
} else if (lengthKind == ArgumentLengthKind::Optional) {
|
|
body << llvm::formatv(optionalTypeParserCode, listName);
|
|
} else {
|
|
const char *parserCode =
|
|
dir->shouldBeQualified() ? qualifiedTypeParserCode : typeParserCode;
|
|
TypeSwitch<FormatElement *>(dir->getArg())
|
|
.Case<OperandVariable, ResultVariable>([&](auto operand) {
|
|
body << formatv(parserCode,
|
|
operand->getVar()->constraint.getCPPClassName(),
|
|
listName);
|
|
})
|
|
.Default([&](auto operand) {
|
|
body << formatv(parserCode, "::mlir::Type", listName);
|
|
});
|
|
}
|
|
} else if (auto *dir = dyn_cast<FunctionalTypeDirective>(element)) {
|
|
ArgumentLengthKind ignored;
|
|
body << formatv(functionalTypeParserCode,
|
|
getTypeListName(dir->getInputs(), ignored),
|
|
getTypeListName(dir->getResults(), ignored));
|
|
} else {
|
|
llvm_unreachable("unknown format element");
|
|
}
|
|
}
|
|
|
|
void OperationFormat::genParserTypeResolution(Operator &op, MethodBody &body) {
|
|
// If any of type resolutions use transformed variables, make sure that the
|
|
// types of those variables are resolved.
|
|
SmallPtrSet<const NamedTypeConstraint *, 8> verifiedVariables;
|
|
FmtContext verifierFCtx;
|
|
for (TypeResolution &resolver :
|
|
llvm::concat<TypeResolution>(resultTypes, operandTypes)) {
|
|
Optional<StringRef> transformer = resolver.getVarTransformer();
|
|
if (!transformer)
|
|
continue;
|
|
// Ensure that we don't verify the same variables twice.
|
|
const NamedTypeConstraint *variable = resolver.getVariable();
|
|
if (!variable || !verifiedVariables.insert(variable).second)
|
|
continue;
|
|
|
|
auto constraint = variable->constraint;
|
|
body << " for (::mlir::Type type : " << variable->name << "Types) {\n"
|
|
<< " (void)type;\n"
|
|
<< " if (!("
|
|
<< tgfmt(constraint.getConditionTemplate(),
|
|
&verifierFCtx.withSelf("type"))
|
|
<< ")) {\n"
|
|
<< formatv(" return parser.emitError(parser.getNameLoc()) << "
|
|
"\"'{0}' must be {1}, but got \" << type;\n",
|
|
variable->name, constraint.getSummary())
|
|
<< " }\n"
|
|
<< " }\n";
|
|
}
|
|
|
|
// Initialize the set of buildable types.
|
|
if (!buildableTypes.empty()) {
|
|
FmtContext typeBuilderCtx;
|
|
typeBuilderCtx.withBuilder("parser.getBuilder()");
|
|
for (auto &it : buildableTypes)
|
|
body << " ::mlir::Type odsBuildableType" << it.second << " = "
|
|
<< tgfmt(it.first, &typeBuilderCtx) << ";\n";
|
|
}
|
|
|
|
// Emit the code necessary for a type resolver.
|
|
auto emitTypeResolver = [&](TypeResolution &resolver, StringRef curVar) {
|
|
if (Optional<int> val = resolver.getBuilderIdx()) {
|
|
body << "odsBuildableType" << *val;
|
|
} else if (const NamedTypeConstraint *var = resolver.getVariable()) {
|
|
if (Optional<StringRef> tform = resolver.getVarTransformer()) {
|
|
FmtContext fmtContext;
|
|
fmtContext.addSubst("_ctxt", "parser.getContext()");
|
|
if (var->isVariadic())
|
|
fmtContext.withSelf(var->name + "Types");
|
|
else
|
|
fmtContext.withSelf(var->name + "Types[0]");
|
|
body << tgfmt(*tform, &fmtContext);
|
|
} else {
|
|
body << var->name << "Types";
|
|
}
|
|
} else if (const NamedAttribute *attr = resolver.getAttribute()) {
|
|
if (Optional<StringRef> tform = resolver.getVarTransformer())
|
|
body << tgfmt(*tform,
|
|
&FmtContext().withSelf(attr->name + "Attr.getType()"));
|
|
else
|
|
body << attr->name << "Attr.getType()";
|
|
} else {
|
|
body << curVar << "Types";
|
|
}
|
|
};
|
|
|
|
// Resolve each of the result types.
|
|
if (!infersResultTypes) {
|
|
if (allResultTypes) {
|
|
body << " result.addTypes(allResultTypes);\n";
|
|
} else {
|
|
for (unsigned i = 0, e = op.getNumResults(); i != e; ++i) {
|
|
body << " result.addTypes(";
|
|
emitTypeResolver(resultTypes[i], op.getResultName(i));
|
|
body << ");\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
// Emit the operand type resolutions.
|
|
genParserOperandTypeResolution(op, body, emitTypeResolver);
|
|
|
|
// Handle return type inference once all operands have been resolved
|
|
if (infersResultTypes)
|
|
body << formatv(inferReturnTypesParserCode, op.getCppClassName());
|
|
}
|
|
|
|
void OperationFormat::genParserOperandTypeResolution(
|
|
Operator &op, MethodBody &body,
|
|
function_ref<void(TypeResolution &, StringRef)> emitTypeResolver) {
|
|
// Early exit if there are no operands.
|
|
if (op.getNumOperands() == 0)
|
|
return;
|
|
|
|
// Handle the case where all operand types are grouped together with
|
|
// "types(operands)".
|
|
if (allOperandTypes) {
|
|
// If `operands` was specified, use the full operand list directly.
|
|
if (allOperands) {
|
|
body << " if (parser.resolveOperands(allOperands, allOperandTypes, "
|
|
"allOperandLoc, result.operands))\n"
|
|
" return ::mlir::failure();\n";
|
|
return;
|
|
}
|
|
|
|
// Otherwise, use llvm::concat to merge the disjoint operand lists together.
|
|
// llvm::concat does not allow the case of a single range, so guard it here.
|
|
body << " if (parser.resolveOperands(";
|
|
if (op.getNumOperands() > 1) {
|
|
body << "::llvm::concat<const ::mlir::OpAsmParser::UnresolvedOperand>(";
|
|
llvm::interleaveComma(op.getOperands(), body, [&](auto &operand) {
|
|
body << operand.name << "Operands";
|
|
});
|
|
body << ")";
|
|
} else {
|
|
body << op.operand_begin()->name << "Operands";
|
|
}
|
|
body << ", allOperandTypes, parser.getNameLoc(), result.operands))\n"
|
|
<< " return ::mlir::failure();\n";
|
|
return;
|
|
}
|
|
|
|
// Handle the case where all operands are grouped together with "operands".
|
|
if (allOperands) {
|
|
body << " if (parser.resolveOperands(allOperands, ";
|
|
|
|
// Group all of the operand types together to perform the resolution all at
|
|
// once. Use llvm::concat to perform the merge. llvm::concat does not allow
|
|
// the case of a single range, so guard it here.
|
|
if (op.getNumOperands() > 1) {
|
|
body << "::llvm::concat<const ::mlir::Type>(";
|
|
llvm::interleaveComma(
|
|
llvm::seq<int>(0, op.getNumOperands()), body, [&](int i) {
|
|
body << "::llvm::ArrayRef<::mlir::Type>(";
|
|
emitTypeResolver(operandTypes[i], op.getOperand(i).name);
|
|
body << ")";
|
|
});
|
|
body << ")";
|
|
} else {
|
|
emitTypeResolver(operandTypes.front(), op.getOperand(0).name);
|
|
}
|
|
|
|
body << ", allOperandLoc, result.operands))\n"
|
|
<< " return ::mlir::failure();\n";
|
|
return;
|
|
}
|
|
|
|
// The final case is the one where each of the operands types are resolved
|
|
// separately.
|
|
for (unsigned i = 0, e = op.getNumOperands(); i != e; ++i) {
|
|
NamedTypeConstraint &operand = op.getOperand(i);
|
|
body << " if (parser.resolveOperands(" << operand.name << "Operands, ";
|
|
|
|
// Resolve the type of this operand.
|
|
TypeResolution &operandType = operandTypes[i];
|
|
emitTypeResolver(operandType, operand.name);
|
|
|
|
// If the type is resolved by a non-variadic variable, index into the
|
|
// resolved type list. This allows for resolving the types of a variadic
|
|
// operand list from a non-variadic variable.
|
|
bool verifyOperandAndTypeSize = true;
|
|
if (auto *resolverVar = operandType.getVariable()) {
|
|
if (!resolverVar->isVariadic() && !operandType.getVarTransformer()) {
|
|
body << "[0]";
|
|
verifyOperandAndTypeSize = false;
|
|
}
|
|
} else {
|
|
verifyOperandAndTypeSize = !operandType.getBuilderIdx();
|
|
}
|
|
|
|
// Check to see if the sizes between the types and operands must match. If
|
|
// they do, provide the operand location to select the proper resolution
|
|
// overload.
|
|
if (verifyOperandAndTypeSize)
|
|
body << ", " << operand.name << "OperandsLoc";
|
|
body << ", result.operands))\n return ::mlir::failure();\n";
|
|
}
|
|
}
|
|
|
|
void OperationFormat::genParserRegionResolution(Operator &op,
|
|
MethodBody &body) {
|
|
// Check for the case where all regions were parsed.
|
|
bool hasAllRegions = llvm::any_of(
|
|
elements, [](FormatElement *elt) { return isa<RegionsDirective>(elt); });
|
|
if (hasAllRegions) {
|
|
body << " result.addRegions(fullRegions);\n";
|
|
return;
|
|
}
|
|
|
|
// Otherwise, handle each region individually.
|
|
for (const NamedRegion ®ion : op.getRegions()) {
|
|
if (region.isVariadic())
|
|
body << " result.addRegions(" << region.name << "Regions);\n";
|
|
else
|
|
body << " result.addRegion(std::move(" << region.name << "Region));\n";
|
|
}
|
|
}
|
|
|
|
void OperationFormat::genParserSuccessorResolution(Operator &op,
|
|
MethodBody &body) {
|
|
// Check for the case where all successors were parsed.
|
|
bool hasAllSuccessors = llvm::any_of(elements, [](FormatElement *elt) {
|
|
return isa<SuccessorsDirective>(elt);
|
|
});
|
|
if (hasAllSuccessors) {
|
|
body << " result.addSuccessors(fullSuccessors);\n";
|
|
return;
|
|
}
|
|
|
|
// Otherwise, handle each successor individually.
|
|
for (const NamedSuccessor &successor : op.getSuccessors()) {
|
|
if (successor.isVariadic())
|
|
body << " result.addSuccessors(" << successor.name << "Successors);\n";
|
|
else
|
|
body << " result.addSuccessors(" << successor.name << "Successor);\n";
|
|
}
|
|
}
|
|
|
|
void OperationFormat::genParserVariadicSegmentResolution(Operator &op,
|
|
MethodBody &body) {
|
|
if (!allOperands) {
|
|
if (op.getTrait("::mlir::OpTrait::AttrSizedOperandSegments")) {
|
|
body << " result.addAttribute(\"operand_segment_sizes\", "
|
|
<< "parser.getBuilder().getI32VectorAttr({";
|
|
auto interleaveFn = [&](const NamedTypeConstraint &operand) {
|
|
// If the operand is variadic emit the parsed size.
|
|
if (operand.isVariableLength())
|
|
body << "static_cast<int32_t>(" << operand.name << "Operands.size())";
|
|
else
|
|
body << "1";
|
|
};
|
|
llvm::interleaveComma(op.getOperands(), body, interleaveFn);
|
|
body << "}));\n";
|
|
}
|
|
for (const NamedTypeConstraint &operand : op.getOperands()) {
|
|
if (!operand.isVariadicOfVariadic())
|
|
continue;
|
|
body << llvm::formatv(
|
|
" result.addAttribute(\"{0}\", "
|
|
"parser.getBuilder().getI32TensorAttr({1}OperandGroupSizes));\n",
|
|
operand.constraint.getVariadicOfVariadicSegmentSizeAttr(),
|
|
operand.name);
|
|
}
|
|
}
|
|
|
|
if (!allResultTypes &&
|
|
op.getTrait("::mlir::OpTrait::AttrSizedResultSegments")) {
|
|
body << " result.addAttribute(\"result_segment_sizes\", "
|
|
<< "parser.getBuilder().getI32VectorAttr({";
|
|
auto interleaveFn = [&](const NamedTypeConstraint &result) {
|
|
// If the result is variadic emit the parsed size.
|
|
if (result.isVariableLength())
|
|
body << "static_cast<int32_t>(" << result.name << "Types.size())";
|
|
else
|
|
body << "1";
|
|
};
|
|
llvm::interleaveComma(op.getResults(), body, interleaveFn);
|
|
body << "}));\n";
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PrinterGen
|
|
|
|
/// The code snippet used to generate a printer call for a region of an
|
|
// operation that has the SingleBlockImplicitTerminator trait.
|
|
///
|
|
/// {0}: The name of the region.
|
|
const char *regionSingleBlockImplicitTerminatorPrinterCode = R"(
|
|
{
|
|
bool printTerminator = true;
|
|
if (auto *term = {0}.empty() ? nullptr : {0}.begin()->getTerminator()) {{
|
|
printTerminator = !term->getAttrDictionary().empty() ||
|
|
term->getNumOperands() != 0 ||
|
|
term->getNumResults() != 0;
|
|
}
|
|
_odsPrinter.printRegion({0}, /*printEntryBlockArgs=*/true,
|
|
/*printBlockTerminators=*/printTerminator);
|
|
}
|
|
)";
|
|
|
|
/// The code snippet used to generate a printer call for an enum that has cases
|
|
/// that can't be represented with a keyword.
|
|
///
|
|
/// {0}: The name of the enum attribute.
|
|
/// {1}: The name of the enum attributes symbolToString function.
|
|
const char *enumAttrBeginPrinterCode = R"(
|
|
{
|
|
auto caseValue = {0}();
|
|
auto caseValueStr = {1}(caseValue);
|
|
)";
|
|
|
|
/// Generate the printer for the 'attr-dict' directive.
|
|
static void genAttrDictPrinter(OperationFormat &fmt, Operator &op,
|
|
MethodBody &body, bool withKeyword) {
|
|
body << " _odsPrinter.printOptionalAttrDict"
|
|
<< (withKeyword ? "WithKeyword" : "")
|
|
<< "((*this)->getAttrs(), /*elidedAttrs=*/{";
|
|
// Elide the variadic segment size attributes if necessary.
|
|
if (!fmt.allOperands &&
|
|
op.getTrait("::mlir::OpTrait::AttrSizedOperandSegments"))
|
|
body << "\"operand_segment_sizes\", ";
|
|
if (!fmt.allResultTypes &&
|
|
op.getTrait("::mlir::OpTrait::AttrSizedResultSegments"))
|
|
body << "\"result_segment_sizes\", ";
|
|
if (!fmt.inferredAttributes.empty()) {
|
|
for (const auto &attr : fmt.inferredAttributes)
|
|
body << "\"" << attr.getKey() << "\", ";
|
|
}
|
|
llvm::interleaveComma(
|
|
fmt.usedAttributes, body,
|
|
[&](const NamedAttribute *attr) { body << "\"" << attr->name << "\""; });
|
|
body << "});\n";
|
|
}
|
|
|
|
/// Generate the printer for a literal value. `shouldEmitSpace` is true if a
|
|
/// space should be emitted before this element. `lastWasPunctuation` is true if
|
|
/// the previous element was a punctuation literal.
|
|
static void genLiteralPrinter(StringRef value, MethodBody &body,
|
|
bool &shouldEmitSpace, bool &lastWasPunctuation) {
|
|
body << " _odsPrinter";
|
|
|
|
// Don't insert a space for certain punctuation.
|
|
if (shouldEmitSpace && shouldEmitSpaceBefore(value, lastWasPunctuation))
|
|
body << " << ' '";
|
|
body << " << \"" << value << "\";\n";
|
|
|
|
// Insert a space after certain literals.
|
|
shouldEmitSpace =
|
|
value.size() != 1 || !StringRef("<({[").contains(value.front());
|
|
lastWasPunctuation = !(value.front() == '_' || isalpha(value.front()));
|
|
}
|
|
|
|
/// Generate the printer for a space. `shouldEmitSpace` and `lastWasPunctuation`
|
|
/// are set to false.
|
|
static void genSpacePrinter(bool value, MethodBody &body, bool &shouldEmitSpace,
|
|
bool &lastWasPunctuation) {
|
|
if (value) {
|
|
body << " _odsPrinter << ' ';\n";
|
|
lastWasPunctuation = false;
|
|
} else {
|
|
lastWasPunctuation = true;
|
|
}
|
|
shouldEmitSpace = false;
|
|
}
|
|
|
|
/// Generate the printer for a custom directive parameter.
|
|
static void genCustomDirectiveParameterPrinter(FormatElement *element,
|
|
const Operator &op,
|
|
MethodBody &body) {
|
|
if (auto *attr = dyn_cast<AttributeVariable>(element)) {
|
|
body << op.getGetterName(attr->getVar()->name) << "Attr()";
|
|
|
|
} else if (isa<AttrDictDirective>(element)) {
|
|
body << "getOperation()->getAttrDictionary()";
|
|
|
|
} else if (auto *operand = dyn_cast<OperandVariable>(element)) {
|
|
body << op.getGetterName(operand->getVar()->name) << "()";
|
|
|
|
} else if (auto *region = dyn_cast<RegionVariable>(element)) {
|
|
body << op.getGetterName(region->getVar()->name) << "()";
|
|
|
|
} else if (auto *successor = dyn_cast<SuccessorVariable>(element)) {
|
|
body << op.getGetterName(successor->getVar()->name) << "()";
|
|
|
|
} else if (auto *dir = dyn_cast<RefDirective>(element)) {
|
|
genCustomDirectiveParameterPrinter(dir->getArg(), op, body);
|
|
|
|
} else if (auto *dir = dyn_cast<TypeDirective>(element)) {
|
|
auto *typeOperand = dir->getArg();
|
|
auto *operand = dyn_cast<OperandVariable>(typeOperand);
|
|
auto *var = operand ? operand->getVar()
|
|
: cast<ResultVariable>(typeOperand)->getVar();
|
|
std::string name = op.getGetterName(var->name);
|
|
if (var->isVariadic())
|
|
body << name << "().getTypes()";
|
|
else if (var->isOptional())
|
|
body << llvm::formatv("({0}() ? {0}().getType() : Type())", name);
|
|
else
|
|
body << name << "().getType()";
|
|
} else {
|
|
llvm_unreachable("unknown custom directive parameter");
|
|
}
|
|
}
|
|
|
|
/// Generate the printer for a custom directive.
|
|
static void genCustomDirectivePrinter(CustomDirective *customDir,
|
|
const Operator &op, MethodBody &body) {
|
|
body << " print" << customDir->getName() << "(_odsPrinter, *this";
|
|
for (FormatElement *param : customDir->getArguments()) {
|
|
body << ", ";
|
|
genCustomDirectiveParameterPrinter(param, op, body);
|
|
}
|
|
body << ");\n";
|
|
}
|
|
|
|
/// Generate the printer for a region with the given variable name.
|
|
static void genRegionPrinter(const Twine ®ionName, MethodBody &body,
|
|
bool hasImplicitTermTrait) {
|
|
if (hasImplicitTermTrait)
|
|
body << llvm::formatv(regionSingleBlockImplicitTerminatorPrinterCode,
|
|
regionName);
|
|
else
|
|
body << " _odsPrinter.printRegion(" << regionName << ");\n";
|
|
}
|
|
static void genVariadicRegionPrinter(const Twine ®ionListName,
|
|
MethodBody &body,
|
|
bool hasImplicitTermTrait) {
|
|
body << " llvm::interleaveComma(" << regionListName
|
|
<< ", _odsPrinter, [&](::mlir::Region ®ion) {\n ";
|
|
genRegionPrinter("region", body, hasImplicitTermTrait);
|
|
body << " });\n";
|
|
}
|
|
|
|
/// Generate the C++ for an operand to a (*-)type directive.
|
|
static MethodBody &genTypeOperandPrinter(FormatElement *arg, const Operator &op,
|
|
MethodBody &body,
|
|
bool useArrayRef = true) {
|
|
if (isa<OperandsDirective>(arg))
|
|
return body << "getOperation()->getOperandTypes()";
|
|
if (isa<ResultsDirective>(arg))
|
|
return body << "getOperation()->getResultTypes()";
|
|
auto *operand = dyn_cast<OperandVariable>(arg);
|
|
auto *var = operand ? operand->getVar() : cast<ResultVariable>(arg)->getVar();
|
|
if (var->isVariadicOfVariadic())
|
|
return body << llvm::formatv("{0}().join().getTypes()",
|
|
op.getGetterName(var->name));
|
|
if (var->isVariadic())
|
|
return body << op.getGetterName(var->name) << "().getTypes()";
|
|
if (var->isOptional())
|
|
return body << llvm::formatv(
|
|
"({0}() ? ::llvm::ArrayRef<::mlir::Type>({0}().getType()) : "
|
|
"::llvm::ArrayRef<::mlir::Type>())",
|
|
op.getGetterName(var->name));
|
|
if (useArrayRef)
|
|
return body << "::llvm::ArrayRef<::mlir::Type>("
|
|
<< op.getGetterName(var->name) << "().getType())";
|
|
return body << op.getGetterName(var->name) << "().getType()";
|
|
}
|
|
|
|
/// Generate the printer for an enum attribute.
|
|
static void genEnumAttrPrinter(const NamedAttribute *var, const Operator &op,
|
|
MethodBody &body) {
|
|
Attribute baseAttr = var->attr.getBaseAttr();
|
|
const EnumAttr &enumAttr = cast<EnumAttr>(baseAttr);
|
|
std::vector<EnumAttrCase> cases = enumAttr.getAllCases();
|
|
|
|
body << llvm::formatv(enumAttrBeginPrinterCode,
|
|
(var->attr.isOptional() ? "*" : "") +
|
|
op.getGetterName(var->name),
|
|
enumAttr.getSymbolToStringFnName());
|
|
|
|
// Get a string containing all of the cases that can't be represented with a
|
|
// keyword.
|
|
BitVector nonKeywordCases(cases.size());
|
|
for (auto &it : llvm::enumerate(cases)) {
|
|
if (!canFormatStringAsKeyword(it.value().getStr()))
|
|
nonKeywordCases.set(it.index());
|
|
}
|
|
|
|
// Otherwise if this is a bit enum attribute, don't allow cases that may
|
|
// overlap with other cases. For simplicity sake, only allow cases with a
|
|
// single bit value.
|
|
if (enumAttr.isBitEnum()) {
|
|
for (auto &it : llvm::enumerate(cases)) {
|
|
int64_t value = it.value().getValue();
|
|
if (value < 0 || !llvm::isPowerOf2_64(value))
|
|
nonKeywordCases.set(it.index());
|
|
}
|
|
}
|
|
|
|
// If there are any cases that can't be used with a keyword, switch on the
|
|
// case value to determine when to print in the string form.
|
|
if (nonKeywordCases.any()) {
|
|
body << " switch (caseValue) {\n";
|
|
StringRef cppNamespace = enumAttr.getCppNamespace();
|
|
StringRef enumName = enumAttr.getEnumClassName();
|
|
for (auto &it : llvm::enumerate(cases)) {
|
|
if (nonKeywordCases.test(it.index()))
|
|
continue;
|
|
StringRef symbol = it.value().getSymbol();
|
|
body << llvm::formatv(" case {0}::{1}::{2}:\n", cppNamespace, enumName,
|
|
llvm::isDigit(symbol.front()) ? ("_" + symbol)
|
|
: symbol);
|
|
}
|
|
body << " _odsPrinter << caseValueStr;\n"
|
|
" break;\n"
|
|
" default:\n"
|
|
" _odsPrinter << '\"' << caseValueStr << '\"';\n"
|
|
" break;\n"
|
|
" }\n"
|
|
" }\n";
|
|
return;
|
|
}
|
|
|
|
body << " _odsPrinter << caseValueStr;\n"
|
|
" }\n";
|
|
}
|
|
|
|
/// Generate the check for the anchor of an optional group.
|
|
static void genOptionalGroupPrinterAnchor(FormatElement *anchor,
|
|
const Operator &op,
|
|
MethodBody &body) {
|
|
TypeSwitch<FormatElement *>(anchor)
|
|
.Case<OperandVariable, ResultVariable>([&](auto *element) {
|
|
const NamedTypeConstraint *var = element->getVar();
|
|
std::string name = op.getGetterName(var->name);
|
|
if (var->isOptional())
|
|
body << " if (" << name << "()) {\n";
|
|
else if (var->isVariadic())
|
|
body << " if (!" << name << "().empty()) {\n";
|
|
})
|
|
.Case<RegionVariable>([&](RegionVariable *element) {
|
|
const NamedRegion *var = element->getVar();
|
|
std::string name = op.getGetterName(var->name);
|
|
// TODO: Add a check for optional regions here when ODS supports it.
|
|
body << " if (!" << name << "().empty()) {\n";
|
|
})
|
|
.Case<TypeDirective>([&](TypeDirective *element) {
|
|
genOptionalGroupPrinterAnchor(element->getArg(), op, body);
|
|
})
|
|
.Case<FunctionalTypeDirective>([&](FunctionalTypeDirective *element) {
|
|
genOptionalGroupPrinterAnchor(element->getInputs(), op, body);
|
|
})
|
|
.Case<AttributeVariable>([&](AttributeVariable *attr) {
|
|
body << " if ((*this)->getAttr(\"" << attr->getVar()->name
|
|
<< "\")) {\n";
|
|
});
|
|
}
|
|
|
|
void collect(FormatElement *element,
|
|
SmallVectorImpl<VariableElement *> &variables) {
|
|
TypeSwitch<FormatElement *>(element)
|
|
.Case([&](VariableElement *var) { variables.emplace_back(var); })
|
|
.Case([&](CustomDirective *ele) {
|
|
for (FormatElement *arg : ele->getArguments())
|
|
collect(arg, variables);
|
|
})
|
|
.Case([&](OptionalElement *ele) {
|
|
for (FormatElement *arg : ele->getThenElements())
|
|
collect(arg, variables);
|
|
for (FormatElement *arg : ele->getElseElements())
|
|
collect(arg, variables);
|
|
})
|
|
.Case([&](FunctionalTypeDirective *funcType) {
|
|
collect(funcType->getInputs(), variables);
|
|
collect(funcType->getResults(), variables);
|
|
})
|
|
.Case([&](OIListElement *oilist) {
|
|
for (ArrayRef<FormatElement *> arg : oilist->getParsingElements())
|
|
for (FormatElement *arg : arg)
|
|
collect(arg, variables);
|
|
});
|
|
}
|
|
|
|
void OperationFormat::genElementPrinter(FormatElement *element,
|
|
MethodBody &body, Operator &op,
|
|
bool &shouldEmitSpace,
|
|
bool &lastWasPunctuation) {
|
|
if (LiteralElement *literal = dyn_cast<LiteralElement>(element))
|
|
return genLiteralPrinter(literal->getSpelling(), body, shouldEmitSpace,
|
|
lastWasPunctuation);
|
|
|
|
// Emit a whitespace element.
|
|
if (auto *space = dyn_cast<WhitespaceElement>(element)) {
|
|
if (space->getValue() == "\\n") {
|
|
body << " _odsPrinter.printNewline();\n";
|
|
} else {
|
|
genSpacePrinter(!space->getValue().empty(), body, shouldEmitSpace,
|
|
lastWasPunctuation);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Emit an optional group.
|
|
if (OptionalElement *optional = dyn_cast<OptionalElement>(element)) {
|
|
// Emit the check for the presence of the anchor element.
|
|
FormatElement *anchor = optional->getAnchor();
|
|
genOptionalGroupPrinterAnchor(anchor, op, body);
|
|
|
|
// If the anchor is a unit attribute, we don't need to print it. When
|
|
// parsing, we will add this attribute if this group is present.
|
|
auto elements = optional->getThenElements();
|
|
FormatElement *elidedAnchorElement = nullptr;
|
|
auto *anchorAttr = dyn_cast<AttributeVariable>(anchor);
|
|
if (anchorAttr && anchorAttr != elements.front() &&
|
|
anchorAttr->isUnitAttr()) {
|
|
elidedAnchorElement = anchorAttr;
|
|
}
|
|
|
|
// Emit each of the elements.
|
|
for (FormatElement *childElement : elements) {
|
|
if (childElement != elidedAnchorElement) {
|
|
genElementPrinter(childElement, body, op, shouldEmitSpace,
|
|
lastWasPunctuation);
|
|
}
|
|
}
|
|
body << " }";
|
|
|
|
// Emit each of the else elements.
|
|
auto elseElements = optional->getElseElements();
|
|
if (!elseElements.empty()) {
|
|
body << " else {\n";
|
|
for (FormatElement *childElement : elseElements) {
|
|
genElementPrinter(childElement, body, op, shouldEmitSpace,
|
|
lastWasPunctuation);
|
|
}
|
|
body << " }";
|
|
}
|
|
|
|
body << "\n";
|
|
return;
|
|
}
|
|
|
|
// Emit the OIList
|
|
if (auto *oilist = dyn_cast<OIListElement>(element)) {
|
|
genLiteralPrinter(" ", body, shouldEmitSpace, lastWasPunctuation);
|
|
for (auto clause : oilist->getClauses()) {
|
|
LiteralElement *lelement = std::get<0>(clause);
|
|
ArrayRef<FormatElement *> pelement = std::get<1>(clause);
|
|
|
|
SmallVector<VariableElement *> vars;
|
|
for (FormatElement *el : pelement)
|
|
collect(el, vars);
|
|
body << " if (false";
|
|
for (VariableElement *var : vars) {
|
|
TypeSwitch<FormatElement *>(var)
|
|
.Case([&](AttributeVariable *attrEle) {
|
|
body << " || " << op.getGetterName(attrEle->getVar()->name)
|
|
<< "Attr()";
|
|
})
|
|
.Case([&](OperandVariable *ele) {
|
|
if (ele->getVar()->isVariadic()) {
|
|
body << " || " << op.getGetterName(ele->getVar()->name)
|
|
<< "().size()";
|
|
} else {
|
|
body << " || " << op.getGetterName(ele->getVar()->name) << "()";
|
|
}
|
|
})
|
|
.Case([&](ResultVariable *ele) {
|
|
if (ele->getVar()->isVariadic()) {
|
|
body << " || " << op.getGetterName(ele->getVar()->name)
|
|
<< "().size()";
|
|
} else {
|
|
body << " || " << op.getGetterName(ele->getVar()->name) << "()";
|
|
}
|
|
})
|
|
.Case([&](RegionVariable *reg) {
|
|
body << " || " << op.getGetterName(reg->getVar()->name) << "()";
|
|
});
|
|
}
|
|
|
|
body << ") {\n";
|
|
genLiteralPrinter(lelement->getSpelling(), body, shouldEmitSpace,
|
|
lastWasPunctuation);
|
|
if (oilist->getUnitAttrParsingElement(pelement) == nullptr) {
|
|
for (FormatElement *element : pelement)
|
|
genElementPrinter(element, body, op, shouldEmitSpace,
|
|
lastWasPunctuation);
|
|
}
|
|
body << " }\n";
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Emit the attribute dictionary.
|
|
if (auto *attrDict = dyn_cast<AttrDictDirective>(element)) {
|
|
genAttrDictPrinter(*this, op, body, attrDict->isWithKeyword());
|
|
lastWasPunctuation = false;
|
|
return;
|
|
}
|
|
|
|
// Optionally insert a space before the next element. The AttrDict printer
|
|
// already adds a space as necessary.
|
|
if (shouldEmitSpace || !lastWasPunctuation)
|
|
body << " _odsPrinter << ' ';\n";
|
|
lastWasPunctuation = false;
|
|
shouldEmitSpace = true;
|
|
|
|
if (auto *attr = dyn_cast<AttributeVariable>(element)) {
|
|
const NamedAttribute *var = attr->getVar();
|
|
|
|
// If we are formatting as an enum, symbolize the attribute as a string.
|
|
if (canFormatEnumAttr(var))
|
|
return genEnumAttrPrinter(var, op, body);
|
|
|
|
// If we are formatting as a symbol name, handle it as a symbol name.
|
|
if (shouldFormatSymbolNameAttr(var)) {
|
|
body << " _odsPrinter.printSymbolName(" << op.getGetterName(var->name)
|
|
<< "Attr().getValue());\n";
|
|
return;
|
|
}
|
|
|
|
// Elide the attribute type if it is buildable.
|
|
if (attr->getTypeBuilder())
|
|
body << " _odsPrinter.printAttributeWithoutType("
|
|
<< op.getGetterName(var->name) << "Attr());\n";
|
|
else if (attr->shouldBeQualified() ||
|
|
var->attr.getStorageType() == "::mlir::Attribute")
|
|
body << " _odsPrinter.printAttribute(" << op.getGetterName(var->name)
|
|
<< "Attr());\n";
|
|
else
|
|
body << "_odsPrinter.printStrippedAttrOrType("
|
|
<< op.getGetterName(var->name) << "Attr());\n";
|
|
} else if (auto *operand = dyn_cast<OperandVariable>(element)) {
|
|
if (operand->getVar()->isVariadicOfVariadic()) {
|
|
body << " ::llvm::interleaveComma("
|
|
<< op.getGetterName(operand->getVar()->name)
|
|
<< "(), _odsPrinter, [&](const auto &operands) { _odsPrinter << "
|
|
"\"(\" << operands << "
|
|
"\")\"; });\n";
|
|
|
|
} else if (operand->getVar()->isOptional()) {
|
|
body << " if (::mlir::Value value = "
|
|
<< op.getGetterName(operand->getVar()->name) << "())\n"
|
|
<< " _odsPrinter << value;\n";
|
|
} else {
|
|
body << " _odsPrinter << " << op.getGetterName(operand->getVar()->name)
|
|
<< "();\n";
|
|
}
|
|
} else if (auto *region = dyn_cast<RegionVariable>(element)) {
|
|
const NamedRegion *var = region->getVar();
|
|
std::string name = op.getGetterName(var->name);
|
|
if (var->isVariadic()) {
|
|
genVariadicRegionPrinter(name + "()", body, hasImplicitTermTrait);
|
|
} else {
|
|
genRegionPrinter(name + "()", body, hasImplicitTermTrait);
|
|
}
|
|
} else if (auto *successor = dyn_cast<SuccessorVariable>(element)) {
|
|
const NamedSuccessor *var = successor->getVar();
|
|
std::string name = op.getGetterName(var->name);
|
|
if (var->isVariadic())
|
|
body << " ::llvm::interleaveComma(" << name << "(), _odsPrinter);\n";
|
|
else
|
|
body << " _odsPrinter << " << name << "();\n";
|
|
} else if (auto *dir = dyn_cast<CustomDirective>(element)) {
|
|
genCustomDirectivePrinter(dir, op, body);
|
|
} else if (isa<OperandsDirective>(element)) {
|
|
body << " _odsPrinter << getOperation()->getOperands();\n";
|
|
} else if (isa<RegionsDirective>(element)) {
|
|
genVariadicRegionPrinter("getOperation()->getRegions()", body,
|
|
hasImplicitTermTrait);
|
|
} else if (isa<SuccessorsDirective>(element)) {
|
|
body << " ::llvm::interleaveComma(getOperation()->getSuccessors(), "
|
|
"_odsPrinter);\n";
|
|
} else if (auto *dir = dyn_cast<TypeDirective>(element)) {
|
|
if (auto *operand = dyn_cast<OperandVariable>(dir->getArg())) {
|
|
if (operand->getVar()->isVariadicOfVariadic()) {
|
|
body << llvm::formatv(
|
|
" ::llvm::interleaveComma({0}().getTypes(), _odsPrinter, "
|
|
"[&](::mlir::TypeRange types) {{ _odsPrinter << \"(\" << "
|
|
"types << \")\"; });\n",
|
|
op.getGetterName(operand->getVar()->name));
|
|
return;
|
|
}
|
|
}
|
|
const NamedTypeConstraint *var = nullptr;
|
|
{
|
|
if (auto *operand = dyn_cast<OperandVariable>(dir->getArg()))
|
|
var = operand->getVar();
|
|
else if (auto *operand = dyn_cast<ResultVariable>(dir->getArg()))
|
|
var = operand->getVar();
|
|
}
|
|
if (var && !var->isVariadicOfVariadic() && !var->isVariadic() &&
|
|
!var->isOptional()) {
|
|
std::string cppClass = var->constraint.getCPPClassName();
|
|
if (dir->shouldBeQualified()) {
|
|
body << " _odsPrinter << " << op.getGetterName(var->name)
|
|
<< "().getType();\n";
|
|
return;
|
|
}
|
|
body << " {\n"
|
|
<< " auto type = " << op.getGetterName(var->name)
|
|
<< "().getType();\n"
|
|
<< " if (auto validType = type.dyn_cast<" << cppClass << ">())\n"
|
|
<< " _odsPrinter.printStrippedAttrOrType(validType);\n"
|
|
<< " else\n"
|
|
<< " _odsPrinter << type;\n"
|
|
<< " }\n";
|
|
return;
|
|
}
|
|
body << " _odsPrinter << ";
|
|
genTypeOperandPrinter(dir->getArg(), op, body, /*useArrayRef=*/false)
|
|
<< ";\n";
|
|
} else if (auto *dir = dyn_cast<FunctionalTypeDirective>(element)) {
|
|
body << " _odsPrinter.printFunctionalType(";
|
|
genTypeOperandPrinter(dir->getInputs(), op, body) << ", ";
|
|
genTypeOperandPrinter(dir->getResults(), op, body) << ");\n";
|
|
} else {
|
|
llvm_unreachable("unknown format element");
|
|
}
|
|
}
|
|
|
|
void OperationFormat::genPrinter(Operator &op, OpClass &opClass) {
|
|
auto *method = opClass.addMethod(
|
|
"void", "print",
|
|
MethodParameter("::mlir::OpAsmPrinter &", "_odsPrinter"));
|
|
auto &body = method->body();
|
|
|
|
// Flags for if we should emit a space, and if the last element was
|
|
// punctuation.
|
|
bool shouldEmitSpace = true, lastWasPunctuation = false;
|
|
for (FormatElement *element : elements)
|
|
genElementPrinter(element, body, op, shouldEmitSpace, lastWasPunctuation);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OpFormatParser
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Function to find an element within the given range that has the same name as
|
|
/// 'name'.
|
|
template <typename RangeT> static auto findArg(RangeT &&range, StringRef name) {
|
|
auto it = llvm::find_if(range, [=](auto &arg) { return arg.name == name; });
|
|
return it != range.end() ? &*it : nullptr;
|
|
}
|
|
|
|
namespace {
|
|
/// This class implements a parser for an instance of an operation assembly
|
|
/// format.
|
|
class OpFormatParser : public FormatParser {
|
|
public:
|
|
OpFormatParser(llvm::SourceMgr &mgr, OperationFormat &format, Operator &op)
|
|
: FormatParser(mgr, op.getLoc()[0]), fmt(format), op(op),
|
|
seenOperandTypes(op.getNumOperands()),
|
|
seenResultTypes(op.getNumResults()) {}
|
|
|
|
protected:
|
|
/// Verify the format elements.
|
|
LogicalResult verify(SMLoc loc, ArrayRef<FormatElement *> elements) override;
|
|
/// Verify the arguments to a custom directive.
|
|
LogicalResult
|
|
verifyCustomDirectiveArguments(SMLoc loc,
|
|
ArrayRef<FormatElement *> arguments) override;
|
|
/// Verify the elements of an optional group.
|
|
LogicalResult
|
|
verifyOptionalGroupElements(SMLoc loc, ArrayRef<FormatElement *> elements,
|
|
Optional<unsigned> anchorIndex) override;
|
|
LogicalResult verifyOptionalGroupElement(SMLoc loc, FormatElement *element,
|
|
bool isAnchor);
|
|
|
|
/// Parse an operation variable.
|
|
FailureOr<FormatElement *> parseVariableImpl(SMLoc loc, StringRef name,
|
|
Context ctx) override;
|
|
/// Parse an operation format directive.
|
|
FailureOr<FormatElement *>
|
|
parseDirectiveImpl(SMLoc loc, FormatToken::Kind kind, Context ctx) override;
|
|
|
|
private:
|
|
/// This struct represents a type resolution instance. It includes a specific
|
|
/// type as well as an optional transformer to apply to that type in order to
|
|
/// properly resolve the type of a variable.
|
|
struct TypeResolutionInstance {
|
|
ConstArgument resolver;
|
|
Optional<StringRef> transformer;
|
|
};
|
|
|
|
/// Verify the state of operation attributes within the format.
|
|
LogicalResult verifyAttributes(SMLoc loc, ArrayRef<FormatElement *> elements);
|
|
|
|
/// Verify that attributes elements aren't followed by colon literals.
|
|
LogicalResult verifyAttributeColonType(SMLoc loc,
|
|
ArrayRef<FormatElement *> elements);
|
|
|
|
/// Verify the state of operation operands within the format.
|
|
LogicalResult
|
|
verifyOperands(SMLoc loc,
|
|
llvm::StringMap<TypeResolutionInstance> &variableTyResolver);
|
|
|
|
/// Verify the state of operation regions within the format.
|
|
LogicalResult verifyRegions(SMLoc loc);
|
|
|
|
/// Verify the state of operation results within the format.
|
|
LogicalResult
|
|
verifyResults(SMLoc loc,
|
|
llvm::StringMap<TypeResolutionInstance> &variableTyResolver);
|
|
|
|
/// Verify the state of operation successors within the format.
|
|
LogicalResult verifySuccessors(SMLoc loc);
|
|
|
|
LogicalResult verifyOIListElements(SMLoc loc,
|
|
ArrayRef<FormatElement *> elements);
|
|
|
|
/// Given the values of an `AllTypesMatch` trait, check for inferable type
|
|
/// resolution.
|
|
void handleAllTypesMatchConstraint(
|
|
ArrayRef<StringRef> values,
|
|
llvm::StringMap<TypeResolutionInstance> &variableTyResolver);
|
|
/// Check for inferable type resolution given all operands, and or results,
|
|
/// have the same type. If 'includeResults' is true, the results also have the
|
|
/// same type as all of the operands.
|
|
void handleSameTypesConstraint(
|
|
llvm::StringMap<TypeResolutionInstance> &variableTyResolver,
|
|
bool includeResults);
|
|
/// Check for inferable type resolution based on another operand, result, or
|
|
/// attribute.
|
|
void handleTypesMatchConstraint(
|
|
llvm::StringMap<TypeResolutionInstance> &variableTyResolver,
|
|
const llvm::Record &def);
|
|
|
|
/// Returns an argument or attribute with the given name that has been seen
|
|
/// within the format.
|
|
ConstArgument findSeenArg(StringRef name);
|
|
|
|
/// Parse the various different directives.
|
|
FailureOr<FormatElement *> parseAttrDictDirective(SMLoc loc, Context context,
|
|
bool withKeyword);
|
|
FailureOr<FormatElement *> parseFunctionalTypeDirective(SMLoc loc,
|
|
Context context);
|
|
FailureOr<FormatElement *> parseOIListDirective(SMLoc loc, Context context);
|
|
LogicalResult verifyOIListParsingElement(FormatElement *element, SMLoc loc);
|
|
FailureOr<FormatElement *> parseOperandsDirective(SMLoc loc, Context context);
|
|
FailureOr<FormatElement *> parseQualifiedDirective(SMLoc loc,
|
|
Context context);
|
|
FailureOr<FormatElement *> parseReferenceDirective(SMLoc loc,
|
|
Context context);
|
|
FailureOr<FormatElement *> parseRegionsDirective(SMLoc loc, Context context);
|
|
FailureOr<FormatElement *> parseResultsDirective(SMLoc loc, Context context);
|
|
FailureOr<FormatElement *> parseSuccessorsDirective(SMLoc loc,
|
|
Context context);
|
|
FailureOr<FormatElement *> parseTypeDirective(SMLoc loc, Context context);
|
|
FailureOr<FormatElement *> parseTypeDirectiveOperand(SMLoc loc,
|
|
bool isRefChild = false);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Fields
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
OperationFormat &fmt;
|
|
Operator &op;
|
|
|
|
// The following are various bits of format state used for verification
|
|
// during parsing.
|
|
bool hasAttrDict = false;
|
|
bool hasAllRegions = false, hasAllSuccessors = false;
|
|
bool canInferResultTypes = false;
|
|
llvm::SmallBitVector seenOperandTypes, seenResultTypes;
|
|
llvm::SmallSetVector<const NamedAttribute *, 8> seenAttrs;
|
|
llvm::DenseSet<const NamedTypeConstraint *> seenOperands;
|
|
llvm::DenseSet<const NamedRegion *> seenRegions;
|
|
llvm::DenseSet<const NamedSuccessor *> seenSuccessors;
|
|
};
|
|
} // namespace
|
|
|
|
LogicalResult OpFormatParser::verify(SMLoc loc,
|
|
ArrayRef<FormatElement *> elements) {
|
|
// Check that the attribute dictionary is in the format.
|
|
if (!hasAttrDict)
|
|
return emitError(loc, "'attr-dict' directive not found in "
|
|
"custom assembly format");
|
|
|
|
// Check for any type traits that we can use for inferring types.
|
|
llvm::StringMap<TypeResolutionInstance> variableTyResolver;
|
|
for (const Trait &trait : op.getTraits()) {
|
|
const llvm::Record &def = trait.getDef();
|
|
if (def.isSubClassOf("AllTypesMatch")) {
|
|
handleAllTypesMatchConstraint(def.getValueAsListOfStrings("values"),
|
|
variableTyResolver);
|
|
} else if (def.getName() == "SameTypeOperands") {
|
|
handleSameTypesConstraint(variableTyResolver, /*includeResults=*/false);
|
|
} else if (def.getName() == "SameOperandsAndResultType") {
|
|
handleSameTypesConstraint(variableTyResolver, /*includeResults=*/true);
|
|
} else if (def.isSubClassOf("TypesMatchWith")) {
|
|
handleTypesMatchConstraint(variableTyResolver, def);
|
|
} else if (!op.allResultTypesKnown()) {
|
|
// This doesn't check the name directly to handle
|
|
// DeclareOpInterfaceMethods<InferTypeOpInterface>
|
|
// and the like.
|
|
// TODO: Add hasCppInterface check.
|
|
if (auto name = def.getValueAsOptionalString("cppClassName")) {
|
|
if (*name == "InferTypeOpInterface" &&
|
|
def.getValueAsString("cppNamespace") == "::mlir")
|
|
canInferResultTypes = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Verify the state of the various operation components.
|
|
if (failed(verifyAttributes(loc, elements)) ||
|
|
failed(verifyResults(loc, variableTyResolver)) ||
|
|
failed(verifyOperands(loc, variableTyResolver)) ||
|
|
failed(verifyRegions(loc)) || failed(verifySuccessors(loc)) ||
|
|
failed(verifyOIListElements(loc, elements)))
|
|
return failure();
|
|
|
|
// Collect the set of used attributes in the format.
|
|
fmt.usedAttributes = seenAttrs.takeVector();
|
|
return success();
|
|
}
|
|
|
|
LogicalResult
|
|
OpFormatParser::verifyAttributes(SMLoc loc,
|
|
ArrayRef<FormatElement *> elements) {
|
|
// Check that there are no `:` literals after an attribute without a constant
|
|
// type. The attribute grammar contains an optional trailing colon type, which
|
|
// can lead to unexpected and generally unintended behavior. Given that, it is
|
|
// better to just error out here instead.
|
|
if (failed(verifyAttributeColonType(loc, elements)))
|
|
return failure();
|
|
|
|
// Check for VariadicOfVariadic variables. The segment attribute of those
|
|
// variables will be infered.
|
|
for (const NamedTypeConstraint *var : seenOperands) {
|
|
if (var->constraint.isVariadicOfVariadic()) {
|
|
fmt.inferredAttributes.insert(
|
|
var->constraint.getVariadicOfVariadicSegmentSizeAttr());
|
|
}
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Returns whether the single format element is optionally parsed.
|
|
static bool isOptionallyParsed(FormatElement *el) {
|
|
if (auto *attrVar = dyn_cast<AttributeVariable>(el)) {
|
|
Attribute attr = attrVar->getVar()->attr;
|
|
return attr.isOptional() || attr.hasDefaultValue();
|
|
}
|
|
if (auto *operandVar = dyn_cast<OperandVariable>(el)) {
|
|
const NamedTypeConstraint *operand = operandVar->getVar();
|
|
return operand->isOptional() || operand->isVariadic() ||
|
|
operand->isVariadicOfVariadic();
|
|
}
|
|
if (auto *successorVar = dyn_cast<SuccessorVariable>(el))
|
|
return successorVar->getVar()->isVariadic();
|
|
if (auto *regionVar = dyn_cast<RegionVariable>(el))
|
|
return regionVar->getVar()->isVariadic();
|
|
return isa<WhitespaceElement, AttrDictDirective>(el);
|
|
}
|
|
|
|
/// Scan the given range of elements from the start for a colon literal,
|
|
/// skipping any optionally-parsed elements. If an optional group is
|
|
/// encountered, this function recurses into the 'then' and 'else' elements to
|
|
/// check if they are invalid. Returns `success` if the range is known to be
|
|
/// valid or `None` if scanning reached the end.
|
|
///
|
|
/// Since the guard element of an optional group is required, this function
|
|
/// accepts an optional element pointer to mark it as required.
|
|
static Optional<LogicalResult> checkElementRangeForColon(
|
|
function_ref<LogicalResult(const Twine &)> emitError, StringRef attrName,
|
|
iterator_range<ArrayRef<FormatElement *>::iterator> elementRange,
|
|
FormatElement *optionalGuard = nullptr) {
|
|
for (FormatElement *element : elementRange) {
|
|
// Skip optionally parsed elements.
|
|
if (element != optionalGuard && isOptionallyParsed(element))
|
|
continue;
|
|
|
|
// Recurse on optional groups.
|
|
if (auto *optional = dyn_cast<OptionalElement>(element)) {
|
|
if (Optional<LogicalResult> result = checkElementRangeForColon(
|
|
emitError, attrName, optional->getThenElements(),
|
|
// The optional group guard is required for the group.
|
|
optional->getThenElements().front()))
|
|
if (failed(*result))
|
|
return failure();
|
|
if (Optional<LogicalResult> result = checkElementRangeForColon(
|
|
emitError, attrName, optional->getElseElements()))
|
|
if (failed(*result))
|
|
return failure();
|
|
// Skip the optional group.
|
|
continue;
|
|
}
|
|
|
|
// If we encounter anything other than `:`, this range is range.
|
|
auto *literal = dyn_cast<LiteralElement>(element);
|
|
if (!literal || literal->getSpelling() != ":")
|
|
return success();
|
|
// If we encounter `:`, the range is known to be invalid.
|
|
return emitError(
|
|
llvm::formatv("format ambiguity caused by `:` literal found after "
|
|
"attribute `{0}` which does not have a buildable type",
|
|
attrName));
|
|
}
|
|
// Return None to indicate that we reached the end.
|
|
return llvm::None;
|
|
}
|
|
|
|
/// For the given elements, check whether any attributes are followed by a colon
|
|
/// literal, resulting in an ambiguous assembly format. Returns a non-null
|
|
/// attribute if verification of said attribute reached the end of the range.
|
|
/// Returns null if all attribute elements are verified.
|
|
static FailureOr<AttributeVariable *>
|
|
verifyAttributeColon(function_ref<LogicalResult(const Twine &)> emitError,
|
|
ArrayRef<FormatElement *> elements) {
|
|
for (auto *it = elements.begin(), *e = elements.end(); it != e; ++it) {
|
|
// The current attribute being verified.
|
|
AttributeVariable *attr = nullptr;
|
|
|
|
if ((attr = dyn_cast<AttributeVariable>(*it))) {
|
|
// Check only attributes without type builders or that are known to call
|
|
// the generic attribute parser.
|
|
if (attr->getTypeBuilder() ||
|
|
!(attr->shouldBeQualified() ||
|
|
attr->getVar()->attr.getStorageType() == "::mlir::Attribute"))
|
|
continue;
|
|
} else if (auto *optional = dyn_cast<OptionalElement>(*it)) {
|
|
// Recurse on optional groups.
|
|
FailureOr<AttributeVariable *> thenResult =
|
|
verifyAttributeColon(emitError, optional->getThenElements());
|
|
if (failed(thenResult))
|
|
return failure();
|
|
FailureOr<AttributeVariable *> elseResult =
|
|
verifyAttributeColon(emitError, optional->getElseElements());
|
|
if (failed(elseResult))
|
|
return failure();
|
|
// If either optional group has an unverified attribute, save it.
|
|
// Otherwise, move on to the next element.
|
|
if (!(attr = *thenResult) && !(attr = *elseResult))
|
|
continue;
|
|
} else {
|
|
continue;
|
|
}
|
|
|
|
// Verify subsequent elements for potential ambiguities.
|
|
if (Optional<LogicalResult> result = checkElementRangeForColon(
|
|
emitError, attr->getVar()->name, {std::next(it), e})) {
|
|
if (failed(*result))
|
|
return failure();
|
|
} else {
|
|
// Since we reached the end, return the attribute as unverified.
|
|
return attr;
|
|
}
|
|
}
|
|
// All attribute elements are known to be verified.
|
|
return nullptr;
|
|
}
|
|
|
|
LogicalResult
|
|
OpFormatParser::verifyAttributeColonType(SMLoc loc,
|
|
ArrayRef<FormatElement *> elements) {
|
|
return verifyAttributeColon(
|
|
[&](const Twine &msg) { return emitError(loc, msg); }, elements);
|
|
}
|
|
|
|
LogicalResult OpFormatParser::verifyOperands(
|
|
SMLoc loc, llvm::StringMap<TypeResolutionInstance> &variableTyResolver) {
|
|
// Check that all of the operands are within the format, and their types can
|
|
// be inferred.
|
|
auto &buildableTypes = fmt.buildableTypes;
|
|
for (unsigned i = 0, e = op.getNumOperands(); i != e; ++i) {
|
|
NamedTypeConstraint &operand = op.getOperand(i);
|
|
|
|
// Check that the operand itself is in the format.
|
|
if (!fmt.allOperands && !seenOperands.count(&operand)) {
|
|
return emitErrorAndNote(loc,
|
|
"operand #" + Twine(i) + ", named '" +
|
|
operand.name + "', not found",
|
|
"suggest adding a '$" + operand.name +
|
|
"' directive to the custom assembly format");
|
|
}
|
|
|
|
// Check that the operand type is in the format, or that it can be inferred.
|
|
if (fmt.allOperandTypes || seenOperandTypes.test(i))
|
|
continue;
|
|
|
|
// Check to see if we can infer this type from another variable.
|
|
auto varResolverIt = variableTyResolver.find(op.getOperand(i).name);
|
|
if (varResolverIt != variableTyResolver.end()) {
|
|
TypeResolutionInstance &resolver = varResolverIt->second;
|
|
fmt.operandTypes[i].setResolver(resolver.resolver, resolver.transformer);
|
|
continue;
|
|
}
|
|
|
|
// Similarly to results, allow a custom builder for resolving the type if
|
|
// we aren't using the 'operands' directive.
|
|
Optional<StringRef> builder = operand.constraint.getBuilderCall();
|
|
if (!builder || (fmt.allOperands && operand.isVariableLength())) {
|
|
return emitErrorAndNote(
|
|
loc,
|
|
"type of operand #" + Twine(i) + ", named '" + operand.name +
|
|
"', is not buildable and a buildable type cannot be inferred",
|
|
"suggest adding a type constraint to the operation or adding a "
|
|
"'type($" +
|
|
operand.name + ")' directive to the " + "custom assembly format");
|
|
}
|
|
auto it = buildableTypes.insert({*builder, buildableTypes.size()});
|
|
fmt.operandTypes[i].setBuilderIdx(it.first->second);
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OpFormatParser::verifyRegions(SMLoc loc) {
|
|
// Check that all of the regions are within the format.
|
|
if (hasAllRegions)
|
|
return success();
|
|
|
|
for (unsigned i = 0, e = op.getNumRegions(); i != e; ++i) {
|
|
const NamedRegion ®ion = op.getRegion(i);
|
|
if (!seenRegions.count(®ion)) {
|
|
return emitErrorAndNote(loc,
|
|
"region #" + Twine(i) + ", named '" +
|
|
region.name + "', not found",
|
|
"suggest adding a '$" + region.name +
|
|
"' directive to the custom assembly format");
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OpFormatParser::verifyResults(
|
|
SMLoc loc, llvm::StringMap<TypeResolutionInstance> &variableTyResolver) {
|
|
// If we format all of the types together, there is nothing to check.
|
|
if (fmt.allResultTypes)
|
|
return success();
|
|
|
|
// If no result types are specified and we can infer them, infer all result
|
|
// types
|
|
if (op.getNumResults() > 0 && seenResultTypes.count() == 0 &&
|
|
canInferResultTypes) {
|
|
fmt.infersResultTypes = true;
|
|
return success();
|
|
}
|
|
|
|
// Check that all of the result types can be inferred.
|
|
auto &buildableTypes = fmt.buildableTypes;
|
|
for (unsigned i = 0, e = op.getNumResults(); i != e; ++i) {
|
|
if (seenResultTypes.test(i))
|
|
continue;
|
|
|
|
// Check to see if we can infer this type from another variable.
|
|
auto varResolverIt = variableTyResolver.find(op.getResultName(i));
|
|
if (varResolverIt != variableTyResolver.end()) {
|
|
TypeResolutionInstance resolver = varResolverIt->second;
|
|
fmt.resultTypes[i].setResolver(resolver.resolver, resolver.transformer);
|
|
continue;
|
|
}
|
|
|
|
// If the result is not variable length, allow for the case where the type
|
|
// has a builder that we can use.
|
|
NamedTypeConstraint &result = op.getResult(i);
|
|
Optional<StringRef> builder = result.constraint.getBuilderCall();
|
|
if (!builder || result.isVariableLength()) {
|
|
return emitErrorAndNote(
|
|
loc,
|
|
"type of result #" + Twine(i) + ", named '" + result.name +
|
|
"', is not buildable and a buildable type cannot be inferred",
|
|
"suggest adding a type constraint to the operation or adding a "
|
|
"'type($" +
|
|
result.name + ")' directive to the " + "custom assembly format");
|
|
}
|
|
// Note in the format that this result uses the custom builder.
|
|
auto it = buildableTypes.insert({*builder, buildableTypes.size()});
|
|
fmt.resultTypes[i].setBuilderIdx(it.first->second);
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OpFormatParser::verifySuccessors(SMLoc loc) {
|
|
// Check that all of the successors are within the format.
|
|
if (hasAllSuccessors)
|
|
return success();
|
|
|
|
for (unsigned i = 0, e = op.getNumSuccessors(); i != e; ++i) {
|
|
const NamedSuccessor &successor = op.getSuccessor(i);
|
|
if (!seenSuccessors.count(&successor)) {
|
|
return emitErrorAndNote(loc,
|
|
"successor #" + Twine(i) + ", named '" +
|
|
successor.name + "', not found",
|
|
"suggest adding a '$" + successor.name +
|
|
"' directive to the custom assembly format");
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult
|
|
OpFormatParser::verifyOIListElements(SMLoc loc,
|
|
ArrayRef<FormatElement *> elements) {
|
|
// Check that all of the successors are within the format.
|
|
SmallVector<StringRef> prohibitedLiterals;
|
|
for (FormatElement *it : elements) {
|
|
if (auto *oilist = dyn_cast<OIListElement>(it)) {
|
|
if (!prohibitedLiterals.empty()) {
|
|
// We just saw an oilist element in last iteration. Literals should not
|
|
// match.
|
|
for (LiteralElement *literal : oilist->getLiteralElements()) {
|
|
if (find(prohibitedLiterals, literal->getSpelling()) !=
|
|
prohibitedLiterals.end()) {
|
|
return emitError(
|
|
loc, "format ambiguity because " + literal->getSpelling() +
|
|
" is used in two adjacent oilist elements.");
|
|
}
|
|
}
|
|
}
|
|
for (LiteralElement *literal : oilist->getLiteralElements())
|
|
prohibitedLiterals.push_back(literal->getSpelling());
|
|
} else if (auto *literal = dyn_cast<LiteralElement>(it)) {
|
|
if (find(prohibitedLiterals, literal->getSpelling()) !=
|
|
prohibitedLiterals.end()) {
|
|
return emitError(
|
|
loc,
|
|
"format ambiguity because " + literal->getSpelling() +
|
|
" is used both in oilist element and the adjacent literal.");
|
|
}
|
|
prohibitedLiterals.clear();
|
|
} else {
|
|
prohibitedLiterals.clear();
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
void OpFormatParser::handleAllTypesMatchConstraint(
|
|
ArrayRef<StringRef> values,
|
|
llvm::StringMap<TypeResolutionInstance> &variableTyResolver) {
|
|
for (unsigned i = 0, e = values.size(); i != e; ++i) {
|
|
// Check to see if this value matches a resolved operand or result type.
|
|
ConstArgument arg = findSeenArg(values[i]);
|
|
if (!arg)
|
|
continue;
|
|
|
|
// Mark this value as the type resolver for the other variables.
|
|
for (unsigned j = 0; j != i; ++j)
|
|
variableTyResolver[values[j]] = {arg, llvm::None};
|
|
for (unsigned j = i + 1; j != e; ++j)
|
|
variableTyResolver[values[j]] = {arg, llvm::None};
|
|
}
|
|
}
|
|
|
|
void OpFormatParser::handleSameTypesConstraint(
|
|
llvm::StringMap<TypeResolutionInstance> &variableTyResolver,
|
|
bool includeResults) {
|
|
const NamedTypeConstraint *resolver = nullptr;
|
|
int resolvedIt = -1;
|
|
|
|
// Check to see if there is an operand or result to use for the resolution.
|
|
if ((resolvedIt = seenOperandTypes.find_first()) != -1)
|
|
resolver = &op.getOperand(resolvedIt);
|
|
else if (includeResults && (resolvedIt = seenResultTypes.find_first()) != -1)
|
|
resolver = &op.getResult(resolvedIt);
|
|
else
|
|
return;
|
|
|
|
// Set the resolvers for each operand and result.
|
|
for (unsigned i = 0, e = op.getNumOperands(); i != e; ++i)
|
|
if (!seenOperandTypes.test(i) && !op.getOperand(i).name.empty())
|
|
variableTyResolver[op.getOperand(i).name] = {resolver, llvm::None};
|
|
if (includeResults) {
|
|
for (unsigned i = 0, e = op.getNumResults(); i != e; ++i)
|
|
if (!seenResultTypes.test(i) && !op.getResultName(i).empty())
|
|
variableTyResolver[op.getResultName(i)] = {resolver, llvm::None};
|
|
}
|
|
}
|
|
|
|
void OpFormatParser::handleTypesMatchConstraint(
|
|
llvm::StringMap<TypeResolutionInstance> &variableTyResolver,
|
|
const llvm::Record &def) {
|
|
StringRef lhsName = def.getValueAsString("lhs");
|
|
StringRef rhsName = def.getValueAsString("rhs");
|
|
StringRef transformer = def.getValueAsString("transformer");
|
|
if (ConstArgument arg = findSeenArg(lhsName))
|
|
variableTyResolver[rhsName] = {arg, transformer};
|
|
}
|
|
|
|
ConstArgument OpFormatParser::findSeenArg(StringRef name) {
|
|
if (const NamedTypeConstraint *arg = findArg(op.getOperands(), name))
|
|
return seenOperandTypes.test(arg - op.operand_begin()) ? arg : nullptr;
|
|
if (const NamedTypeConstraint *arg = findArg(op.getResults(), name))
|
|
return seenResultTypes.test(arg - op.result_begin()) ? arg : nullptr;
|
|
if (const NamedAttribute *attr = findArg(op.getAttributes(), name))
|
|
return seenAttrs.count(attr) ? attr : nullptr;
|
|
return nullptr;
|
|
}
|
|
|
|
FailureOr<FormatElement *>
|
|
OpFormatParser::parseVariableImpl(SMLoc loc, StringRef name, Context ctx) {
|
|
// Check that the parsed argument is something actually registered on the op.
|
|
// Attributes
|
|
if (const NamedAttribute *attr = findArg(op.getAttributes(), name)) {
|
|
if (ctx == TypeDirectiveContext)
|
|
return emitError(
|
|
loc, "attributes cannot be used as children to a `type` directive");
|
|
if (ctx == RefDirectiveContext) {
|
|
if (!seenAttrs.count(attr))
|
|
return emitError(loc, "attribute '" + name +
|
|
"' must be bound before it is referenced");
|
|
} else if (!seenAttrs.insert(attr)) {
|
|
return emitError(loc, "attribute '" + name + "' is already bound");
|
|
}
|
|
|
|
return create<AttributeVariable>(attr);
|
|
}
|
|
// Operands
|
|
if (const NamedTypeConstraint *operand = findArg(op.getOperands(), name)) {
|
|
if (ctx == TopLevelContext || ctx == CustomDirectiveContext) {
|
|
if (fmt.allOperands || !seenOperands.insert(operand).second)
|
|
return emitError(loc, "operand '" + name + "' is already bound");
|
|
} else if (ctx == RefDirectiveContext && !seenOperands.count(operand)) {
|
|
return emitError(loc, "operand '" + name +
|
|
"' must be bound before it is referenced");
|
|
}
|
|
return create<OperandVariable>(operand);
|
|
}
|
|
// Regions
|
|
if (const NamedRegion *region = findArg(op.getRegions(), name)) {
|
|
if (ctx == TopLevelContext || ctx == CustomDirectiveContext) {
|
|
if (hasAllRegions || !seenRegions.insert(region).second)
|
|
return emitError(loc, "region '" + name + "' is already bound");
|
|
} else if (ctx == RefDirectiveContext && !seenRegions.count(region)) {
|
|
return emitError(loc, "region '" + name +
|
|
"' must be bound before it is referenced");
|
|
} else {
|
|
return emitError(loc, "regions can only be used at the top level");
|
|
}
|
|
return create<RegionVariable>(region);
|
|
}
|
|
// Results.
|
|
if (const auto *result = findArg(op.getResults(), name)) {
|
|
if (ctx != TypeDirectiveContext)
|
|
return emitError(loc, "result variables can can only be used as a child "
|
|
"to a 'type' directive");
|
|
return create<ResultVariable>(result);
|
|
}
|
|
// Successors.
|
|
if (const auto *successor = findArg(op.getSuccessors(), name)) {
|
|
if (ctx == TopLevelContext || ctx == CustomDirectiveContext) {
|
|
if (hasAllSuccessors || !seenSuccessors.insert(successor).second)
|
|
return emitError(loc, "successor '" + name + "' is already bound");
|
|
} else if (ctx == RefDirectiveContext && !seenSuccessors.count(successor)) {
|
|
return emitError(loc, "successor '" + name +
|
|
"' must be bound before it is referenced");
|
|
} else {
|
|
return emitError(loc, "successors can only be used at the top level");
|
|
}
|
|
|
|
return create<SuccessorVariable>(successor);
|
|
}
|
|
return emitError(loc, "expected variable to refer to an argument, region, "
|
|
"result, or successor");
|
|
}
|
|
|
|
FailureOr<FormatElement *>
|
|
OpFormatParser::parseDirectiveImpl(SMLoc loc, FormatToken::Kind kind,
|
|
Context ctx) {
|
|
switch (kind) {
|
|
case FormatToken::kw_attr_dict:
|
|
return parseAttrDictDirective(loc, ctx,
|
|
/*withKeyword=*/false);
|
|
case FormatToken::kw_attr_dict_w_keyword:
|
|
return parseAttrDictDirective(loc, ctx,
|
|
/*withKeyword=*/true);
|
|
case FormatToken::kw_functional_type:
|
|
return parseFunctionalTypeDirective(loc, ctx);
|
|
case FormatToken::kw_operands:
|
|
return parseOperandsDirective(loc, ctx);
|
|
case FormatToken::kw_qualified:
|
|
return parseQualifiedDirective(loc, ctx);
|
|
case FormatToken::kw_regions:
|
|
return parseRegionsDirective(loc, ctx);
|
|
case FormatToken::kw_results:
|
|
return parseResultsDirective(loc, ctx);
|
|
case FormatToken::kw_successors:
|
|
return parseSuccessorsDirective(loc, ctx);
|
|
case FormatToken::kw_ref:
|
|
return parseReferenceDirective(loc, ctx);
|
|
case FormatToken::kw_type:
|
|
return parseTypeDirective(loc, ctx);
|
|
case FormatToken::kw_oilist:
|
|
return parseOIListDirective(loc, ctx);
|
|
|
|
default:
|
|
return emitError(loc, "unsupported directive kind");
|
|
}
|
|
}
|
|
|
|
FailureOr<FormatElement *>
|
|
OpFormatParser::parseAttrDictDirective(SMLoc loc, Context context,
|
|
bool withKeyword) {
|
|
if (context == TypeDirectiveContext)
|
|
return emitError(loc, "'attr-dict' directive can only be used as a "
|
|
"top-level directive");
|
|
|
|
if (context == RefDirectiveContext) {
|
|
if (!hasAttrDict)
|
|
return emitError(loc, "'ref' of 'attr-dict' is not bound by a prior "
|
|
"'attr-dict' directive");
|
|
|
|
// Otherwise, this is a top-level context.
|
|
} else {
|
|
if (hasAttrDict)
|
|
return emitError(loc, "'attr-dict' directive has already been seen");
|
|
hasAttrDict = true;
|
|
}
|
|
|
|
return create<AttrDictDirective>(withKeyword);
|
|
}
|
|
|
|
LogicalResult OpFormatParser::verifyCustomDirectiveArguments(
|
|
SMLoc loc, ArrayRef<FormatElement *> arguments) {
|
|
for (FormatElement *argument : arguments) {
|
|
if (!isa<RefDirective, TypeDirective, AttrDictDirective, AttributeVariable,
|
|
OperandVariable, RegionVariable, SuccessorVariable>(argument)) {
|
|
// TODO: FormatElement should have location info attached.
|
|
return emitError(loc, "only variables and types may be used as "
|
|
"parameters to a custom directive");
|
|
}
|
|
if (auto *type = dyn_cast<TypeDirective>(argument)) {
|
|
if (!isa<OperandVariable, ResultVariable>(type->getArg())) {
|
|
return emitError(loc, "type directives within a custom directive may "
|
|
"only refer to variables");
|
|
}
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
FailureOr<FormatElement *>
|
|
OpFormatParser::parseFunctionalTypeDirective(SMLoc loc, Context context) {
|
|
if (context != TopLevelContext)
|
|
return emitError(
|
|
loc, "'functional-type' is only valid as a top-level directive");
|
|
|
|
// Parse the main operand.
|
|
FailureOr<FormatElement *> inputs, results;
|
|
if (failed(parseToken(FormatToken::l_paren,
|
|
"expected '(' before argument list")) ||
|
|
failed(inputs = parseTypeDirectiveOperand(loc)) ||
|
|
failed(parseToken(FormatToken::comma,
|
|
"expected ',' after inputs argument")) ||
|
|
failed(results = parseTypeDirectiveOperand(loc)) ||
|
|
failed(
|
|
parseToken(FormatToken::r_paren, "expected ')' after argument list")))
|
|
return failure();
|
|
return create<FunctionalTypeDirective>(*inputs, *results);
|
|
}
|
|
|
|
FailureOr<FormatElement *>
|
|
OpFormatParser::parseOperandsDirective(SMLoc loc, Context context) {
|
|
if (context == RefDirectiveContext) {
|
|
if (!fmt.allOperands)
|
|
return emitError(loc, "'ref' of 'operands' is not bound by a prior "
|
|
"'operands' directive");
|
|
|
|
} else if (context == TopLevelContext || context == CustomDirectiveContext) {
|
|
if (fmt.allOperands || !seenOperands.empty())
|
|
return emitError(loc, "'operands' directive creates overlap in format");
|
|
fmt.allOperands = true;
|
|
}
|
|
return create<OperandsDirective>();
|
|
}
|
|
|
|
FailureOr<FormatElement *>
|
|
OpFormatParser::parseReferenceDirective(SMLoc loc, Context context) {
|
|
if (context != CustomDirectiveContext)
|
|
return emitError(loc, "'ref' is only valid within a `custom` directive");
|
|
|
|
FailureOr<FormatElement *> arg;
|
|
if (failed(parseToken(FormatToken::l_paren,
|
|
"expected '(' before argument list")) ||
|
|
failed(arg = parseElement(RefDirectiveContext)) ||
|
|
failed(
|
|
parseToken(FormatToken::r_paren, "expected ')' after argument list")))
|
|
return failure();
|
|
|
|
return create<RefDirective>(*arg);
|
|
}
|
|
|
|
FailureOr<FormatElement *>
|
|
OpFormatParser::parseRegionsDirective(SMLoc loc, Context context) {
|
|
if (context == TypeDirectiveContext)
|
|
return emitError(loc, "'regions' is only valid as a top-level directive");
|
|
if (context == RefDirectiveContext) {
|
|
if (!hasAllRegions)
|
|
return emitError(loc, "'ref' of 'regions' is not bound by a prior "
|
|
"'regions' directive");
|
|
|
|
// Otherwise, this is a TopLevel directive.
|
|
} else {
|
|
if (hasAllRegions || !seenRegions.empty())
|
|
return emitError(loc, "'regions' directive creates overlap in format");
|
|
hasAllRegions = true;
|
|
}
|
|
return create<RegionsDirective>();
|
|
}
|
|
|
|
FailureOr<FormatElement *>
|
|
OpFormatParser::parseResultsDirective(SMLoc loc, Context context) {
|
|
if (context != TypeDirectiveContext)
|
|
return emitError(loc, "'results' directive can can only be used as a child "
|
|
"to a 'type' directive");
|
|
return create<ResultsDirective>();
|
|
}
|
|
|
|
FailureOr<FormatElement *>
|
|
OpFormatParser::parseSuccessorsDirective(SMLoc loc, Context context) {
|
|
if (context == TypeDirectiveContext)
|
|
return emitError(loc,
|
|
"'successors' is only valid as a top-level directive");
|
|
if (context == RefDirectiveContext) {
|
|
if (!hasAllSuccessors)
|
|
return emitError(loc, "'ref' of 'successors' is not bound by a prior "
|
|
"'successors' directive");
|
|
|
|
// Otherwise, this is a TopLevel directive.
|
|
} else {
|
|
if (hasAllSuccessors || !seenSuccessors.empty())
|
|
return emitError(loc, "'successors' directive creates overlap in format");
|
|
hasAllSuccessors = true;
|
|
}
|
|
return create<SuccessorsDirective>();
|
|
}
|
|
|
|
FailureOr<FormatElement *>
|
|
OpFormatParser::parseOIListDirective(SMLoc loc, Context context) {
|
|
if (failed(parseToken(FormatToken::l_paren,
|
|
"expected '(' before oilist argument list")))
|
|
return failure();
|
|
std::vector<FormatElement *> literalElements;
|
|
std::vector<std::vector<FormatElement *>> parsingElements;
|
|
do {
|
|
FailureOr<FormatElement *> lelement = parseLiteral(context);
|
|
if (failed(lelement))
|
|
return failure();
|
|
literalElements.push_back(*lelement);
|
|
parsingElements.emplace_back();
|
|
std::vector<FormatElement *> &currParsingElements = parsingElements.back();
|
|
while (peekToken().getKind() != FormatToken::pipe &&
|
|
peekToken().getKind() != FormatToken::r_paren) {
|
|
FailureOr<FormatElement *> pelement = parseElement(context);
|
|
if (failed(pelement) ||
|
|
failed(verifyOIListParsingElement(*pelement, loc)))
|
|
return failure();
|
|
currParsingElements.push_back(*pelement);
|
|
}
|
|
if (peekToken().getKind() == FormatToken::pipe) {
|
|
consumeToken();
|
|
continue;
|
|
}
|
|
if (peekToken().getKind() == FormatToken::r_paren) {
|
|
consumeToken();
|
|
break;
|
|
}
|
|
} while (true);
|
|
|
|
return create<OIListElement>(std::move(literalElements),
|
|
std::move(parsingElements));
|
|
}
|
|
|
|
LogicalResult OpFormatParser::verifyOIListParsingElement(FormatElement *element,
|
|
SMLoc loc) {
|
|
SmallVector<VariableElement *> vars;
|
|
collect(element, vars);
|
|
for (VariableElement *elem : vars) {
|
|
LogicalResult res =
|
|
TypeSwitch<FormatElement *, LogicalResult>(elem)
|
|
// Only optional attributes can be within an oilist parsing group.
|
|
.Case([&](AttributeVariable *attrEle) {
|
|
if (!attrEle->getVar()->attr.isOptional() &&
|
|
!attrEle->getVar()->attr.hasDefaultValue())
|
|
return emitError(loc, "only optional attributes can be used in "
|
|
"an oilist parsing group");
|
|
return success();
|
|
})
|
|
// Only optional-like(i.e. variadic) operands can be within an
|
|
// oilist parsing group.
|
|
.Case([&](OperandVariable *ele) {
|
|
if (!ele->getVar()->isVariableLength())
|
|
return emitError(loc, "only variable length operands can be "
|
|
"used within an oilist parsing group");
|
|
return success();
|
|
})
|
|
// Only optional-like(i.e. variadic) results can be within an oilist
|
|
// parsing group.
|
|
.Case([&](ResultVariable *ele) {
|
|
if (!ele->getVar()->isVariableLength())
|
|
return emitError(loc, "only variable length results can be "
|
|
"used within an oilist parsing group");
|
|
return success();
|
|
})
|
|
.Case([&](RegionVariable *) { return success(); })
|
|
.Default([&](FormatElement *) {
|
|
return emitError(loc,
|
|
"only literals, types, and variables can be "
|
|
"used within an oilist group");
|
|
});
|
|
if (failed(res))
|
|
return failure();
|
|
}
|
|
return success();
|
|
}
|
|
|
|
FailureOr<FormatElement *> OpFormatParser::parseTypeDirective(SMLoc loc,
|
|
Context context) {
|
|
if (context == TypeDirectiveContext)
|
|
return emitError(loc, "'type' cannot be used as a child of another `type`");
|
|
|
|
bool isRefChild = context == RefDirectiveContext;
|
|
FailureOr<FormatElement *> operand;
|
|
if (failed(parseToken(FormatToken::l_paren,
|
|
"expected '(' before argument list")) ||
|
|
failed(operand = parseTypeDirectiveOperand(loc, isRefChild)) ||
|
|
failed(
|
|
parseToken(FormatToken::r_paren, "expected ')' after argument list")))
|
|
return failure();
|
|
|
|
return create<TypeDirective>(*operand);
|
|
}
|
|
|
|
FailureOr<FormatElement *>
|
|
OpFormatParser::parseQualifiedDirective(SMLoc loc, Context context) {
|
|
FailureOr<FormatElement *> element;
|
|
if (failed(parseToken(FormatToken::l_paren,
|
|
"expected '(' before argument list")) ||
|
|
failed(element = parseElement(context)) ||
|
|
failed(
|
|
parseToken(FormatToken::r_paren, "expected ')' after argument list")))
|
|
return failure();
|
|
return TypeSwitch<FormatElement *, FailureOr<FormatElement *>>(*element)
|
|
.Case<AttributeVariable, TypeDirective>([](auto *element) {
|
|
element->setShouldBeQualified();
|
|
return element;
|
|
})
|
|
.Default([&](auto *element) {
|
|
return this->emitError(
|
|
loc,
|
|
"'qualified' directive expects an attribute or a `type` directive");
|
|
});
|
|
}
|
|
|
|
FailureOr<FormatElement *>
|
|
OpFormatParser::parseTypeDirectiveOperand(SMLoc loc, bool isRefChild) {
|
|
FailureOr<FormatElement *> result = parseElement(TypeDirectiveContext);
|
|
if (failed(result))
|
|
return failure();
|
|
|
|
FormatElement *element = *result;
|
|
if (isa<LiteralElement>(element))
|
|
return emitError(
|
|
loc, "'type' directive operand expects variable or directive operand");
|
|
|
|
if (auto *var = dyn_cast<OperandVariable>(element)) {
|
|
unsigned opIdx = var->getVar() - op.operand_begin();
|
|
if (!isRefChild && (fmt.allOperandTypes || seenOperandTypes.test(opIdx)))
|
|
return emitError(loc, "'type' of '" + var->getVar()->name +
|
|
"' is already bound");
|
|
if (isRefChild && !(fmt.allOperandTypes || seenOperandTypes.test(opIdx)))
|
|
return emitError(loc, "'ref' of 'type($" + var->getVar()->name +
|
|
")' is not bound by a prior 'type' directive");
|
|
seenOperandTypes.set(opIdx);
|
|
} else if (auto *var = dyn_cast<ResultVariable>(element)) {
|
|
unsigned resIdx = var->getVar() - op.result_begin();
|
|
if (!isRefChild && (fmt.allResultTypes || seenResultTypes.test(resIdx)))
|
|
return emitError(loc, "'type' of '" + var->getVar()->name +
|
|
"' is already bound");
|
|
if (isRefChild && !(fmt.allResultTypes || seenResultTypes.test(resIdx)))
|
|
return emitError(loc, "'ref' of 'type($" + var->getVar()->name +
|
|
")' is not bound by a prior 'type' directive");
|
|
seenResultTypes.set(resIdx);
|
|
} else if (isa<OperandsDirective>(&*element)) {
|
|
if (!isRefChild && (fmt.allOperandTypes || seenOperandTypes.any()))
|
|
return emitError(loc, "'operands' 'type' is already bound");
|
|
if (isRefChild && !fmt.allOperandTypes)
|
|
return emitError(loc, "'ref' of 'type(operands)' is not bound by a prior "
|
|
"'type' directive");
|
|
fmt.allOperandTypes = true;
|
|
} else if (isa<ResultsDirective>(&*element)) {
|
|
if (!isRefChild && (fmt.allResultTypes || seenResultTypes.any()))
|
|
return emitError(loc, "'results' 'type' is already bound");
|
|
if (isRefChild && !fmt.allResultTypes)
|
|
return emitError(loc, "'ref' of 'type(results)' is not bound by a prior "
|
|
"'type' directive");
|
|
fmt.allResultTypes = true;
|
|
} else {
|
|
return emitError(loc, "invalid argument to 'type' directive");
|
|
}
|
|
return element;
|
|
}
|
|
|
|
LogicalResult
|
|
OpFormatParser::verifyOptionalGroupElements(SMLoc loc,
|
|
ArrayRef<FormatElement *> elements,
|
|
Optional<unsigned> anchorIndex) {
|
|
for (auto &it : llvm::enumerate(elements)) {
|
|
if (failed(verifyOptionalGroupElement(
|
|
loc, it.value(), anchorIndex && *anchorIndex == it.index())))
|
|
return failure();
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult OpFormatParser::verifyOptionalGroupElement(SMLoc loc,
|
|
FormatElement *element,
|
|
bool isAnchor) {
|
|
return TypeSwitch<FormatElement *, LogicalResult>(element)
|
|
// All attributes can be within the optional group, but only optional
|
|
// attributes can be the anchor.
|
|
.Case([&](AttributeVariable *attrEle) {
|
|
if (isAnchor && !attrEle->getVar()->attr.isOptional())
|
|
return emitError(loc, "only optional attributes can be used to "
|
|
"anchor an optional group");
|
|
return success();
|
|
})
|
|
// Only optional-like(i.e. variadic) operands can be within an optional
|
|
// group.
|
|
.Case([&](OperandVariable *ele) {
|
|
if (!ele->getVar()->isVariableLength())
|
|
return emitError(loc, "only variable length operands can be used "
|
|
"within an optional group");
|
|
return success();
|
|
})
|
|
// Only optional-like(i.e. variadic) results can be within an optional
|
|
// group.
|
|
.Case([&](ResultVariable *ele) {
|
|
if (!ele->getVar()->isVariableLength())
|
|
return emitError(loc, "only variable length results can be used "
|
|
"within an optional group");
|
|
return success();
|
|
})
|
|
.Case([&](RegionVariable *) {
|
|
// TODO: When ODS has proper support for marking "optional" regions, add
|
|
// a check here.
|
|
return success();
|
|
})
|
|
.Case([&](TypeDirective *ele) {
|
|
return verifyOptionalGroupElement(loc, ele->getArg(),
|
|
/*isAnchor=*/false);
|
|
})
|
|
.Case([&](FunctionalTypeDirective *ele) {
|
|
if (failed(verifyOptionalGroupElement(loc, ele->getInputs(),
|
|
/*isAnchor=*/false)))
|
|
return failure();
|
|
return verifyOptionalGroupElement(loc, ele->getResults(),
|
|
/*isAnchor=*/false);
|
|
})
|
|
// Literals, whitespace, and custom directives may be used, but they can't
|
|
// anchor the group.
|
|
.Case<LiteralElement, WhitespaceElement, CustomDirective,
|
|
FunctionalTypeDirective, OptionalElement>([&](FormatElement *) {
|
|
if (isAnchor)
|
|
return emitError(loc, "only variables and types can be used "
|
|
"to anchor an optional group");
|
|
return success();
|
|
})
|
|
.Default([&](FormatElement *) {
|
|
return emitError(loc, "only literals, types, and variables can be "
|
|
"used within an optional group");
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Interface
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void mlir::tblgen::generateOpFormat(const Operator &constOp, OpClass &opClass) {
|
|
// TODO: Operator doesn't expose all necessary functionality via
|
|
// the const interface.
|
|
Operator &op = const_cast<Operator &>(constOp);
|
|
if (!op.hasAssemblyFormat())
|
|
return;
|
|
|
|
// Parse the format description.
|
|
llvm::SourceMgr mgr;
|
|
mgr.AddNewSourceBuffer(
|
|
llvm::MemoryBuffer::getMemBuffer(op.getAssemblyFormat()), SMLoc());
|
|
OperationFormat format(op);
|
|
OpFormatParser parser(mgr, format, op);
|
|
FailureOr<std::vector<FormatElement *>> elements = parser.parse();
|
|
if (failed(elements)) {
|
|
// Exit the process if format errors are treated as fatal.
|
|
if (formatErrorIsFatal) {
|
|
// Invoke the interrupt handlers to run the file cleanup handlers.
|
|
llvm::sys::RunInterruptHandlers();
|
|
std::exit(1);
|
|
}
|
|
return;
|
|
}
|
|
format.elements = std::move(*elements);
|
|
|
|
// Generate the printer and parser based on the parsed format.
|
|
format.genParser(op, opClass);
|
|
format.genPrinter(op, opClass);
|
|
}
|