forked from OSchip/llvm-project
912 lines
35 KiB
C++
912 lines
35 KiB
C++
//===-- SafepointIRVerifier.cpp - Verify gc.statepoint invariants ---------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Run a basic correctness check on the IR to ensure that Safepoints - if
|
|
// they've been inserted - were inserted correctly. In particular, look for use
|
|
// of non-relocated values after a safepoint. It's primary use is to check the
|
|
// correctness of safepoint insertion immediately after insertion, but it can
|
|
// also be used to verify that later transforms have not found a way to break
|
|
// safepoint semenatics.
|
|
//
|
|
// In its current form, this verify checks a property which is sufficient, but
|
|
// not neccessary for correctness. There are some cases where an unrelocated
|
|
// pointer can be used after the safepoint. Consider this example:
|
|
//
|
|
// a = ...
|
|
// b = ...
|
|
// (a',b') = safepoint(a,b)
|
|
// c = cmp eq a b
|
|
// br c, ..., ....
|
|
//
|
|
// Because it is valid to reorder 'c' above the safepoint, this is legal. In
|
|
// practice, this is a somewhat uncommon transform, but CodeGenPrep does create
|
|
// idioms like this. The verifier knows about these cases and avoids reporting
|
|
// false positives.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/IR/SafepointIRVerifier.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/SetOperations.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Statepoint.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
#define DEBUG_TYPE "safepoint-ir-verifier"
|
|
|
|
using namespace llvm;
|
|
|
|
/// This option is used for writing test cases. Instead of crashing the program
|
|
/// when verification fails, report a message to the console (for FileCheck
|
|
/// usage) and continue execution as if nothing happened.
|
|
static cl::opt<bool> PrintOnly("safepoint-ir-verifier-print-only",
|
|
cl::init(false));
|
|
|
|
namespace {
|
|
|
|
/// This CFG Deadness finds dead blocks and edges. Algorithm starts with a set
|
|
/// of blocks unreachable from entry then propagates deadness using foldable
|
|
/// conditional branches without modifying CFG. So GVN does but it changes CFG
|
|
/// by splitting critical edges. In most cases passes rely on SimplifyCFG to
|
|
/// clean up dead blocks, but in some cases, like verification or loop passes
|
|
/// it's not possible.
|
|
class CFGDeadness {
|
|
const DominatorTree *DT = nullptr;
|
|
SetVector<const BasicBlock *> DeadBlocks;
|
|
SetVector<const Use *> DeadEdges; // Contains all dead edges from live blocks.
|
|
|
|
public:
|
|
/// Return the edge that coresponds to the predecessor.
|
|
static const Use& getEdge(const_pred_iterator &PredIt) {
|
|
auto &PU = PredIt.getUse();
|
|
return PU.getUser()->getOperandUse(PU.getOperandNo());
|
|
}
|
|
|
|
/// Return true if there is at least one live edge that corresponds to the
|
|
/// basic block InBB listed in the phi node.
|
|
bool hasLiveIncomingEdge(const PHINode *PN, const BasicBlock *InBB) const {
|
|
assert(!isDeadBlock(InBB) && "block must be live");
|
|
const BasicBlock* BB = PN->getParent();
|
|
bool Listed = false;
|
|
for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
|
|
if (InBB == *PredIt) {
|
|
if (!isDeadEdge(&getEdge(PredIt)))
|
|
return true;
|
|
Listed = true;
|
|
}
|
|
}
|
|
(void)Listed;
|
|
assert(Listed && "basic block is not found among incoming blocks");
|
|
return false;
|
|
}
|
|
|
|
|
|
bool isDeadBlock(const BasicBlock *BB) const {
|
|
return DeadBlocks.count(BB);
|
|
}
|
|
|
|
bool isDeadEdge(const Use *U) const {
|
|
assert(cast<Instruction>(U->getUser())->isTerminator() &&
|
|
"edge must be operand of terminator");
|
|
assert(cast_or_null<BasicBlock>(U->get()) &&
|
|
"edge must refer to basic block");
|
|
assert(!isDeadBlock(cast<Instruction>(U->getUser())->getParent()) &&
|
|
"isDeadEdge() must be applied to edge from live block");
|
|
return DeadEdges.count(U);
|
|
}
|
|
|
|
bool hasLiveIncomingEdges(const BasicBlock *BB) const {
|
|
// Check if all incoming edges are dead.
|
|
for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
|
|
auto &PU = PredIt.getUse();
|
|
const Use &U = PU.getUser()->getOperandUse(PU.getOperandNo());
|
|
if (!isDeadBlock(*PredIt) && !isDeadEdge(&U))
|
|
return true; // Found a live edge.
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void processFunction(const Function &F, const DominatorTree &DT) {
|
|
this->DT = &DT;
|
|
|
|
// Start with all blocks unreachable from entry.
|
|
for (const BasicBlock &BB : F)
|
|
if (!DT.isReachableFromEntry(&BB))
|
|
DeadBlocks.insert(&BB);
|
|
|
|
// Top-down walk of the dominator tree
|
|
ReversePostOrderTraversal<const Function *> RPOT(&F);
|
|
for (const BasicBlock *BB : RPOT) {
|
|
const Instruction *TI = BB->getTerminator();
|
|
assert(TI && "blocks must be well formed");
|
|
|
|
// For conditional branches, we can perform simple conditional propagation on
|
|
// the condition value itself.
|
|
const BranchInst *BI = dyn_cast<BranchInst>(TI);
|
|
if (!BI || !BI->isConditional() || !isa<Constant>(BI->getCondition()))
|
|
continue;
|
|
|
|
// If a branch has two identical successors, we cannot declare either dead.
|
|
if (BI->getSuccessor(0) == BI->getSuccessor(1))
|
|
continue;
|
|
|
|
ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
|
|
if (!Cond)
|
|
continue;
|
|
|
|
addDeadEdge(BI->getOperandUse(Cond->getZExtValue() ? 1 : 2));
|
|
}
|
|
}
|
|
|
|
protected:
|
|
void addDeadBlock(const BasicBlock *BB) {
|
|
SmallVector<const BasicBlock *, 4> NewDead;
|
|
SmallSetVector<const BasicBlock *, 4> DF;
|
|
|
|
NewDead.push_back(BB);
|
|
while (!NewDead.empty()) {
|
|
const BasicBlock *D = NewDead.pop_back_val();
|
|
if (isDeadBlock(D))
|
|
continue;
|
|
|
|
// All blocks dominated by D are dead.
|
|
SmallVector<BasicBlock *, 8> Dom;
|
|
DT->getDescendants(const_cast<BasicBlock*>(D), Dom);
|
|
// Do not need to mark all in and out edges dead
|
|
// because BB is marked dead and this is enough
|
|
// to run further.
|
|
DeadBlocks.insert(Dom.begin(), Dom.end());
|
|
|
|
// Figure out the dominance-frontier(D).
|
|
for (BasicBlock *B : Dom)
|
|
for (BasicBlock *S : successors(B))
|
|
if (!isDeadBlock(S) && !hasLiveIncomingEdges(S))
|
|
NewDead.push_back(S);
|
|
}
|
|
}
|
|
|
|
void addDeadEdge(const Use &DeadEdge) {
|
|
if (!DeadEdges.insert(&DeadEdge))
|
|
return;
|
|
|
|
BasicBlock *BB = cast_or_null<BasicBlock>(DeadEdge.get());
|
|
if (hasLiveIncomingEdges(BB))
|
|
return;
|
|
|
|
addDeadBlock(BB);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
static void Verify(const Function &F, const DominatorTree &DT,
|
|
const CFGDeadness &CD);
|
|
|
|
namespace llvm {
|
|
PreservedAnalyses SafepointIRVerifierPass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
const auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
|
|
CFGDeadness CD;
|
|
CD.processFunction(F, DT);
|
|
Verify(F, DT, CD);
|
|
return PreservedAnalyses::all();
|
|
}
|
|
} // namespace llvm
|
|
|
|
namespace {
|
|
|
|
struct SafepointIRVerifier : public FunctionPass {
|
|
static char ID; // Pass identification, replacement for typeid
|
|
SafepointIRVerifier() : FunctionPass(ID) {
|
|
initializeSafepointIRVerifierPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override {
|
|
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
CFGDeadness CD;
|
|
CD.processFunction(F, DT);
|
|
Verify(F, DT, CD);
|
|
return false; // no modifications
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequiredID(DominatorTreeWrapperPass::ID);
|
|
AU.setPreservesAll();
|
|
}
|
|
|
|
StringRef getPassName() const override { return "safepoint verifier"; }
|
|
};
|
|
} // namespace
|
|
|
|
void llvm::verifySafepointIR(Function &F) {
|
|
SafepointIRVerifier pass;
|
|
pass.runOnFunction(F);
|
|
}
|
|
|
|
char SafepointIRVerifier::ID = 0;
|
|
|
|
FunctionPass *llvm::createSafepointIRVerifierPass() {
|
|
return new SafepointIRVerifier();
|
|
}
|
|
|
|
INITIALIZE_PASS_BEGIN(SafepointIRVerifier, "verify-safepoint-ir",
|
|
"Safepoint IR Verifier", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_END(SafepointIRVerifier, "verify-safepoint-ir",
|
|
"Safepoint IR Verifier", false, false)
|
|
|
|
static bool isGCPointerType(Type *T) {
|
|
if (auto *PT = dyn_cast<PointerType>(T))
|
|
// For the sake of this example GC, we arbitrarily pick addrspace(1) as our
|
|
// GC managed heap. We know that a pointer into this heap needs to be
|
|
// updated and that no other pointer does.
|
|
return (1 == PT->getAddressSpace());
|
|
return false;
|
|
}
|
|
|
|
static bool containsGCPtrType(Type *Ty) {
|
|
if (isGCPointerType(Ty))
|
|
return true;
|
|
if (VectorType *VT = dyn_cast<VectorType>(Ty))
|
|
return isGCPointerType(VT->getScalarType());
|
|
if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
|
|
return containsGCPtrType(AT->getElementType());
|
|
if (StructType *ST = dyn_cast<StructType>(Ty))
|
|
return llvm::any_of(ST->elements(), containsGCPtrType);
|
|
return false;
|
|
}
|
|
|
|
// Debugging aid -- prints a [Begin, End) range of values.
|
|
template<typename IteratorTy>
|
|
static void PrintValueSet(raw_ostream &OS, IteratorTy Begin, IteratorTy End) {
|
|
OS << "[ ";
|
|
while (Begin != End) {
|
|
OS << **Begin << " ";
|
|
++Begin;
|
|
}
|
|
OS << "]";
|
|
}
|
|
|
|
/// The verifier algorithm is phrased in terms of availability. The set of
|
|
/// values "available" at a given point in the control flow graph is the set of
|
|
/// correctly relocated value at that point, and is a subset of the set of
|
|
/// definitions dominating that point.
|
|
|
|
using AvailableValueSet = DenseSet<const Value *>;
|
|
|
|
/// State we compute and track per basic block.
|
|
struct BasicBlockState {
|
|
// Set of values available coming in, before the phi nodes
|
|
AvailableValueSet AvailableIn;
|
|
|
|
// Set of values available going out
|
|
AvailableValueSet AvailableOut;
|
|
|
|
// AvailableOut minus AvailableIn.
|
|
// All elements are Instructions
|
|
AvailableValueSet Contribution;
|
|
|
|
// True if this block contains a safepoint and thus AvailableIn does not
|
|
// contribute to AvailableOut.
|
|
bool Cleared = false;
|
|
};
|
|
|
|
/// A given derived pointer can have multiple base pointers through phi/selects.
|
|
/// This type indicates when the base pointer is exclusively constant
|
|
/// (ExclusivelySomeConstant), and if that constant is proven to be exclusively
|
|
/// null, we record that as ExclusivelyNull. In all other cases, the BaseType is
|
|
/// NonConstant.
|
|
enum BaseType {
|
|
NonConstant = 1, // Base pointers is not exclusively constant.
|
|
ExclusivelyNull,
|
|
ExclusivelySomeConstant // Base pointers for a given derived pointer is from a
|
|
// set of constants, but they are not exclusively
|
|
// null.
|
|
};
|
|
|
|
/// Return the baseType for Val which states whether Val is exclusively
|
|
/// derived from constant/null, or not exclusively derived from constant.
|
|
/// Val is exclusively derived off a constant base when all operands of phi and
|
|
/// selects are derived off a constant base.
|
|
static enum BaseType getBaseType(const Value *Val) {
|
|
|
|
SmallVector<const Value *, 32> Worklist;
|
|
DenseSet<const Value *> Visited;
|
|
bool isExclusivelyDerivedFromNull = true;
|
|
Worklist.push_back(Val);
|
|
// Strip through all the bitcasts and geps to get base pointer. Also check for
|
|
// the exclusive value when there can be multiple base pointers (through phis
|
|
// or selects).
|
|
while(!Worklist.empty()) {
|
|
const Value *V = Worklist.pop_back_val();
|
|
if (!Visited.insert(V).second)
|
|
continue;
|
|
|
|
if (const auto *CI = dyn_cast<CastInst>(V)) {
|
|
Worklist.push_back(CI->stripPointerCasts());
|
|
continue;
|
|
}
|
|
if (const auto *GEP = dyn_cast<GetElementPtrInst>(V)) {
|
|
Worklist.push_back(GEP->getPointerOperand());
|
|
continue;
|
|
}
|
|
// Push all the incoming values of phi node into the worklist for
|
|
// processing.
|
|
if (const auto *PN = dyn_cast<PHINode>(V)) {
|
|
append_range(Worklist, PN->incoming_values());
|
|
continue;
|
|
}
|
|
if (const auto *SI = dyn_cast<SelectInst>(V)) {
|
|
// Push in the true and false values
|
|
Worklist.push_back(SI->getTrueValue());
|
|
Worklist.push_back(SI->getFalseValue());
|
|
continue;
|
|
}
|
|
if (const auto *GCRelocate = dyn_cast<GCRelocateInst>(V)) {
|
|
// GCRelocates do not change null-ness or constant-ness of the value.
|
|
// So we can continue with derived pointer this instruction relocates.
|
|
Worklist.push_back(GCRelocate->getDerivedPtr());
|
|
continue;
|
|
}
|
|
if (const auto *FI = dyn_cast<FreezeInst>(V)) {
|
|
// Freeze does not change null-ness or constant-ness of the value.
|
|
Worklist.push_back(FI->getOperand(0));
|
|
continue;
|
|
}
|
|
if (isa<Constant>(V)) {
|
|
// We found at least one base pointer which is non-null, so this derived
|
|
// pointer is not exclusively derived from null.
|
|
if (V != Constant::getNullValue(V->getType()))
|
|
isExclusivelyDerivedFromNull = false;
|
|
// Continue processing the remaining values to make sure it's exclusively
|
|
// constant.
|
|
continue;
|
|
}
|
|
// At this point, we know that the base pointer is not exclusively
|
|
// constant.
|
|
return BaseType::NonConstant;
|
|
}
|
|
// Now, we know that the base pointer is exclusively constant, but we need to
|
|
// differentiate between exclusive null constant and non-null constant.
|
|
return isExclusivelyDerivedFromNull ? BaseType::ExclusivelyNull
|
|
: BaseType::ExclusivelySomeConstant;
|
|
}
|
|
|
|
static bool isNotExclusivelyConstantDerived(const Value *V) {
|
|
return getBaseType(V) == BaseType::NonConstant;
|
|
}
|
|
|
|
namespace {
|
|
class InstructionVerifier;
|
|
|
|
/// Builds BasicBlockState for each BB of the function.
|
|
/// It can traverse function for verification and provides all required
|
|
/// information.
|
|
///
|
|
/// GC pointer may be in one of three states: relocated, unrelocated and
|
|
/// poisoned.
|
|
/// Relocated pointer may be used without any restrictions.
|
|
/// Unrelocated pointer cannot be dereferenced, passed as argument to any call
|
|
/// or returned. Unrelocated pointer may be safely compared against another
|
|
/// unrelocated pointer or against a pointer exclusively derived from null.
|
|
/// Poisoned pointers are produced when we somehow derive pointer from relocated
|
|
/// and unrelocated pointers (e.g. phi, select). This pointers may be safely
|
|
/// used in a very limited number of situations. Currently the only way to use
|
|
/// it is comparison against constant exclusively derived from null. All
|
|
/// limitations arise due to their undefined state: this pointers should be
|
|
/// treated as relocated and unrelocated simultaneously.
|
|
/// Rules of deriving:
|
|
/// R + U = P - that's where the poisoned pointers come from
|
|
/// P + X = P
|
|
/// U + U = U
|
|
/// R + R = R
|
|
/// X + C = X
|
|
/// Where "+" - any operation that somehow derive pointer, U - unrelocated,
|
|
/// R - relocated and P - poisoned, C - constant, X - U or R or P or C or
|
|
/// nothing (in case when "+" is unary operation).
|
|
/// Deriving of pointers by itself is always safe.
|
|
/// NOTE: when we are making decision on the status of instruction's result:
|
|
/// a) for phi we need to check status of each input *at the end of
|
|
/// corresponding predecessor BB*.
|
|
/// b) for other instructions we need to check status of each input *at the
|
|
/// current point*.
|
|
///
|
|
/// FIXME: This works fairly well except one case
|
|
/// bb1:
|
|
/// p = *some GC-ptr def*
|
|
/// p1 = gep p, offset
|
|
/// / |
|
|
/// / |
|
|
/// bb2: |
|
|
/// safepoint |
|
|
/// \ |
|
|
/// \ |
|
|
/// bb3:
|
|
/// p2 = phi [p, bb2] [p1, bb1]
|
|
/// p3 = phi [p, bb2] [p, bb1]
|
|
/// here p and p1 is unrelocated
|
|
/// p2 and p3 is poisoned (though they shouldn't be)
|
|
///
|
|
/// This leads to some weird results:
|
|
/// cmp eq p, p2 - illegal instruction (false-positive)
|
|
/// cmp eq p1, p2 - illegal instruction (false-positive)
|
|
/// cmp eq p, p3 - illegal instruction (false-positive)
|
|
/// cmp eq p, p1 - ok
|
|
/// To fix this we need to introduce conception of generations and be able to
|
|
/// check if two values belong to one generation or not. This way p2 will be
|
|
/// considered to be unrelocated and no false alarm will happen.
|
|
class GCPtrTracker {
|
|
const Function &F;
|
|
const CFGDeadness &CD;
|
|
SpecificBumpPtrAllocator<BasicBlockState> BSAllocator;
|
|
DenseMap<const BasicBlock *, BasicBlockState *> BlockMap;
|
|
// This set contains defs of unrelocated pointers that are proved to be legal
|
|
// and don't need verification.
|
|
DenseSet<const Instruction *> ValidUnrelocatedDefs;
|
|
// This set contains poisoned defs. They can be safely ignored during
|
|
// verification too.
|
|
DenseSet<const Value *> PoisonedDefs;
|
|
|
|
public:
|
|
GCPtrTracker(const Function &F, const DominatorTree &DT,
|
|
const CFGDeadness &CD);
|
|
|
|
bool hasLiveIncomingEdge(const PHINode *PN, const BasicBlock *InBB) const {
|
|
return CD.hasLiveIncomingEdge(PN, InBB);
|
|
}
|
|
|
|
BasicBlockState *getBasicBlockState(const BasicBlock *BB);
|
|
const BasicBlockState *getBasicBlockState(const BasicBlock *BB) const;
|
|
|
|
bool isValuePoisoned(const Value *V) const { return PoisonedDefs.count(V); }
|
|
|
|
/// Traverse each BB of the function and call
|
|
/// InstructionVerifier::verifyInstruction for each possibly invalid
|
|
/// instruction.
|
|
/// It destructively modifies GCPtrTracker so it's passed via rvalue reference
|
|
/// in order to prohibit further usages of GCPtrTracker as it'll be in
|
|
/// inconsistent state.
|
|
static void verifyFunction(GCPtrTracker &&Tracker,
|
|
InstructionVerifier &Verifier);
|
|
|
|
/// Returns true for reachable and live blocks.
|
|
bool isMapped(const BasicBlock *BB) const {
|
|
return BlockMap.find(BB) != BlockMap.end();
|
|
}
|
|
|
|
private:
|
|
/// Returns true if the instruction may be safely skipped during verification.
|
|
bool instructionMayBeSkipped(const Instruction *I) const;
|
|
|
|
/// Iterates over all BBs from BlockMap and recalculates AvailableIn/Out for
|
|
/// each of them until it converges.
|
|
void recalculateBBsStates();
|
|
|
|
/// Remove from Contribution all defs that legally produce unrelocated
|
|
/// pointers and saves them to ValidUnrelocatedDefs.
|
|
/// Though Contribution should belong to BBS it is passed separately with
|
|
/// different const-modifier in order to emphasize (and guarantee) that only
|
|
/// Contribution will be changed.
|
|
/// Returns true if Contribution was changed otherwise false.
|
|
bool removeValidUnrelocatedDefs(const BasicBlock *BB,
|
|
const BasicBlockState *BBS,
|
|
AvailableValueSet &Contribution);
|
|
|
|
/// Gather all the definitions dominating the start of BB into Result. This is
|
|
/// simply the defs introduced by every dominating basic block and the
|
|
/// function arguments.
|
|
void gatherDominatingDefs(const BasicBlock *BB, AvailableValueSet &Result,
|
|
const DominatorTree &DT);
|
|
|
|
/// Compute the AvailableOut set for BB, based on the BasicBlockState BBS,
|
|
/// which is the BasicBlockState for BB.
|
|
/// ContributionChanged is set when the verifier runs for the first time
|
|
/// (in this case Contribution was changed from 'empty' to its initial state)
|
|
/// or when Contribution of this BB was changed since last computation.
|
|
static void transferBlock(const BasicBlock *BB, BasicBlockState &BBS,
|
|
bool ContributionChanged);
|
|
|
|
/// Model the effect of an instruction on the set of available values.
|
|
static void transferInstruction(const Instruction &I, bool &Cleared,
|
|
AvailableValueSet &Available);
|
|
};
|
|
|
|
/// It is a visitor for GCPtrTracker::verifyFunction. It decides if the
|
|
/// instruction (which uses heap reference) is legal or not, given our safepoint
|
|
/// semantics.
|
|
class InstructionVerifier {
|
|
bool AnyInvalidUses = false;
|
|
|
|
public:
|
|
void verifyInstruction(const GCPtrTracker *Tracker, const Instruction &I,
|
|
const AvailableValueSet &AvailableSet);
|
|
|
|
bool hasAnyInvalidUses() const { return AnyInvalidUses; }
|
|
|
|
private:
|
|
void reportInvalidUse(const Value &V, const Instruction &I);
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
GCPtrTracker::GCPtrTracker(const Function &F, const DominatorTree &DT,
|
|
const CFGDeadness &CD) : F(F), CD(CD) {
|
|
// Calculate Contribution of each live BB.
|
|
// Allocate BB states for live blocks.
|
|
for (const BasicBlock &BB : F)
|
|
if (!CD.isDeadBlock(&BB)) {
|
|
BasicBlockState *BBS = new (BSAllocator.Allocate()) BasicBlockState;
|
|
for (const auto &I : BB)
|
|
transferInstruction(I, BBS->Cleared, BBS->Contribution);
|
|
BlockMap[&BB] = BBS;
|
|
}
|
|
|
|
// Initialize AvailableIn/Out sets of each BB using only information about
|
|
// dominating BBs.
|
|
for (auto &BBI : BlockMap) {
|
|
gatherDominatingDefs(BBI.first, BBI.second->AvailableIn, DT);
|
|
transferBlock(BBI.first, *BBI.second, true);
|
|
}
|
|
|
|
// Simulate the flow of defs through the CFG and recalculate AvailableIn/Out
|
|
// sets of each BB until it converges. If any def is proved to be an
|
|
// unrelocated pointer, it will be removed from all BBSs.
|
|
recalculateBBsStates();
|
|
}
|
|
|
|
BasicBlockState *GCPtrTracker::getBasicBlockState(const BasicBlock *BB) {
|
|
return BlockMap.lookup(BB);
|
|
}
|
|
|
|
const BasicBlockState *GCPtrTracker::getBasicBlockState(
|
|
const BasicBlock *BB) const {
|
|
return const_cast<GCPtrTracker *>(this)->getBasicBlockState(BB);
|
|
}
|
|
|
|
bool GCPtrTracker::instructionMayBeSkipped(const Instruction *I) const {
|
|
// Poisoned defs are skipped since they are always safe by itself by
|
|
// definition (for details see comment to this class).
|
|
return ValidUnrelocatedDefs.count(I) || PoisonedDefs.count(I);
|
|
}
|
|
|
|
void GCPtrTracker::verifyFunction(GCPtrTracker &&Tracker,
|
|
InstructionVerifier &Verifier) {
|
|
// We need RPO here to a) report always the first error b) report errors in
|
|
// same order from run to run.
|
|
ReversePostOrderTraversal<const Function *> RPOT(&Tracker.F);
|
|
for (const BasicBlock *BB : RPOT) {
|
|
BasicBlockState *BBS = Tracker.getBasicBlockState(BB);
|
|
if (!BBS)
|
|
continue;
|
|
|
|
// We destructively modify AvailableIn as we traverse the block instruction
|
|
// by instruction.
|
|
AvailableValueSet &AvailableSet = BBS->AvailableIn;
|
|
for (const Instruction &I : *BB) {
|
|
if (Tracker.instructionMayBeSkipped(&I))
|
|
continue; // This instruction shouldn't be added to AvailableSet.
|
|
|
|
Verifier.verifyInstruction(&Tracker, I, AvailableSet);
|
|
|
|
// Model the effect of current instruction on AvailableSet to keep the set
|
|
// relevant at each point of BB.
|
|
bool Cleared = false;
|
|
transferInstruction(I, Cleared, AvailableSet);
|
|
(void)Cleared;
|
|
}
|
|
}
|
|
}
|
|
|
|
void GCPtrTracker::recalculateBBsStates() {
|
|
SetVector<const BasicBlock *> Worklist;
|
|
// TODO: This order is suboptimal, it's better to replace it with priority
|
|
// queue where priority is RPO number of BB.
|
|
for (auto &BBI : BlockMap)
|
|
Worklist.insert(BBI.first);
|
|
|
|
// This loop iterates the AvailableIn/Out sets until it converges.
|
|
// The AvailableIn and AvailableOut sets decrease as we iterate.
|
|
while (!Worklist.empty()) {
|
|
const BasicBlock *BB = Worklist.pop_back_val();
|
|
BasicBlockState *BBS = getBasicBlockState(BB);
|
|
if (!BBS)
|
|
continue; // Ignore dead successors.
|
|
|
|
size_t OldInCount = BBS->AvailableIn.size();
|
|
for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
|
|
const BasicBlock *PBB = *PredIt;
|
|
BasicBlockState *PBBS = getBasicBlockState(PBB);
|
|
if (PBBS && !CD.isDeadEdge(&CFGDeadness::getEdge(PredIt)))
|
|
set_intersect(BBS->AvailableIn, PBBS->AvailableOut);
|
|
}
|
|
|
|
assert(OldInCount >= BBS->AvailableIn.size() && "invariant!");
|
|
|
|
bool InputsChanged = OldInCount != BBS->AvailableIn.size();
|
|
bool ContributionChanged =
|
|
removeValidUnrelocatedDefs(BB, BBS, BBS->Contribution);
|
|
if (!InputsChanged && !ContributionChanged)
|
|
continue;
|
|
|
|
size_t OldOutCount = BBS->AvailableOut.size();
|
|
transferBlock(BB, *BBS, ContributionChanged);
|
|
if (OldOutCount != BBS->AvailableOut.size()) {
|
|
assert(OldOutCount > BBS->AvailableOut.size() && "invariant!");
|
|
Worklist.insert(succ_begin(BB), succ_end(BB));
|
|
}
|
|
}
|
|
}
|
|
|
|
bool GCPtrTracker::removeValidUnrelocatedDefs(const BasicBlock *BB,
|
|
const BasicBlockState *BBS,
|
|
AvailableValueSet &Contribution) {
|
|
assert(&BBS->Contribution == &Contribution &&
|
|
"Passed Contribution should be from the passed BasicBlockState!");
|
|
AvailableValueSet AvailableSet = BBS->AvailableIn;
|
|
bool ContributionChanged = false;
|
|
// For explanation why instructions are processed this way see
|
|
// "Rules of deriving" in the comment to this class.
|
|
for (const Instruction &I : *BB) {
|
|
bool ValidUnrelocatedPointerDef = false;
|
|
bool PoisonedPointerDef = false;
|
|
// TODO: `select` instructions should be handled here too.
|
|
if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
|
|
if (containsGCPtrType(PN->getType())) {
|
|
// If both is true, output is poisoned.
|
|
bool HasRelocatedInputs = false;
|
|
bool HasUnrelocatedInputs = false;
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
const BasicBlock *InBB = PN->getIncomingBlock(i);
|
|
if (!isMapped(InBB) ||
|
|
!CD.hasLiveIncomingEdge(PN, InBB))
|
|
continue; // Skip dead block or dead edge.
|
|
|
|
const Value *InValue = PN->getIncomingValue(i);
|
|
|
|
if (isNotExclusivelyConstantDerived(InValue)) {
|
|
if (isValuePoisoned(InValue)) {
|
|
// If any of inputs is poisoned, output is always poisoned too.
|
|
HasRelocatedInputs = true;
|
|
HasUnrelocatedInputs = true;
|
|
break;
|
|
}
|
|
if (BlockMap[InBB]->AvailableOut.count(InValue))
|
|
HasRelocatedInputs = true;
|
|
else
|
|
HasUnrelocatedInputs = true;
|
|
}
|
|
}
|
|
if (HasUnrelocatedInputs) {
|
|
if (HasRelocatedInputs)
|
|
PoisonedPointerDef = true;
|
|
else
|
|
ValidUnrelocatedPointerDef = true;
|
|
}
|
|
}
|
|
} else if ((isa<GetElementPtrInst>(I) || isa<BitCastInst>(I)) &&
|
|
containsGCPtrType(I.getType())) {
|
|
// GEP/bitcast of unrelocated pointer is legal by itself but this def
|
|
// shouldn't appear in any AvailableSet.
|
|
for (const Value *V : I.operands())
|
|
if (containsGCPtrType(V->getType()) &&
|
|
isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V)) {
|
|
if (isValuePoisoned(V))
|
|
PoisonedPointerDef = true;
|
|
else
|
|
ValidUnrelocatedPointerDef = true;
|
|
break;
|
|
}
|
|
}
|
|
assert(!(ValidUnrelocatedPointerDef && PoisonedPointerDef) &&
|
|
"Value cannot be both unrelocated and poisoned!");
|
|
if (ValidUnrelocatedPointerDef) {
|
|
// Remove def of unrelocated pointer from Contribution of this BB and
|
|
// trigger update of all its successors.
|
|
Contribution.erase(&I);
|
|
PoisonedDefs.erase(&I);
|
|
ValidUnrelocatedDefs.insert(&I);
|
|
LLVM_DEBUG(dbgs() << "Removing urelocated " << I
|
|
<< " from Contribution of " << BB->getName() << "\n");
|
|
ContributionChanged = true;
|
|
} else if (PoisonedPointerDef) {
|
|
// Mark pointer as poisoned, remove its def from Contribution and trigger
|
|
// update of all successors.
|
|
Contribution.erase(&I);
|
|
PoisonedDefs.insert(&I);
|
|
LLVM_DEBUG(dbgs() << "Removing poisoned " << I << " from Contribution of "
|
|
<< BB->getName() << "\n");
|
|
ContributionChanged = true;
|
|
} else {
|
|
bool Cleared = false;
|
|
transferInstruction(I, Cleared, AvailableSet);
|
|
(void)Cleared;
|
|
}
|
|
}
|
|
return ContributionChanged;
|
|
}
|
|
|
|
void GCPtrTracker::gatherDominatingDefs(const BasicBlock *BB,
|
|
AvailableValueSet &Result,
|
|
const DominatorTree &DT) {
|
|
DomTreeNode *DTN = DT[const_cast<BasicBlock *>(BB)];
|
|
|
|
assert(DTN && "Unreachable blocks are ignored");
|
|
while (DTN->getIDom()) {
|
|
DTN = DTN->getIDom();
|
|
auto BBS = getBasicBlockState(DTN->getBlock());
|
|
assert(BBS && "immediate dominator cannot be dead for a live block");
|
|
const auto &Defs = BBS->Contribution;
|
|
Result.insert(Defs.begin(), Defs.end());
|
|
// If this block is 'Cleared', then nothing LiveIn to this block can be
|
|
// available after this block completes. Note: This turns out to be
|
|
// really important for reducing memory consuption of the initial available
|
|
// sets and thus peak memory usage by this verifier.
|
|
if (BBS->Cleared)
|
|
return;
|
|
}
|
|
|
|
for (const Argument &A : BB->getParent()->args())
|
|
if (containsGCPtrType(A.getType()))
|
|
Result.insert(&A);
|
|
}
|
|
|
|
void GCPtrTracker::transferBlock(const BasicBlock *BB, BasicBlockState &BBS,
|
|
bool ContributionChanged) {
|
|
const AvailableValueSet &AvailableIn = BBS.AvailableIn;
|
|
AvailableValueSet &AvailableOut = BBS.AvailableOut;
|
|
|
|
if (BBS.Cleared) {
|
|
// AvailableOut will change only when Contribution changed.
|
|
if (ContributionChanged)
|
|
AvailableOut = BBS.Contribution;
|
|
} else {
|
|
// Otherwise, we need to reduce the AvailableOut set by things which are no
|
|
// longer in our AvailableIn
|
|
AvailableValueSet Temp = BBS.Contribution;
|
|
set_union(Temp, AvailableIn);
|
|
AvailableOut = std::move(Temp);
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Transfered block " << BB->getName() << " from ";
|
|
PrintValueSet(dbgs(), AvailableIn.begin(), AvailableIn.end());
|
|
dbgs() << " to ";
|
|
PrintValueSet(dbgs(), AvailableOut.begin(), AvailableOut.end());
|
|
dbgs() << "\n";);
|
|
}
|
|
|
|
void GCPtrTracker::transferInstruction(const Instruction &I, bool &Cleared,
|
|
AvailableValueSet &Available) {
|
|
if (isa<GCStatepointInst>(I)) {
|
|
Cleared = true;
|
|
Available.clear();
|
|
} else if (containsGCPtrType(I.getType()))
|
|
Available.insert(&I);
|
|
}
|
|
|
|
void InstructionVerifier::verifyInstruction(
|
|
const GCPtrTracker *Tracker, const Instruction &I,
|
|
const AvailableValueSet &AvailableSet) {
|
|
if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
|
|
if (containsGCPtrType(PN->getType()))
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
const BasicBlock *InBB = PN->getIncomingBlock(i);
|
|
const BasicBlockState *InBBS = Tracker->getBasicBlockState(InBB);
|
|
if (!InBBS ||
|
|
!Tracker->hasLiveIncomingEdge(PN, InBB))
|
|
continue; // Skip dead block or dead edge.
|
|
|
|
const Value *InValue = PN->getIncomingValue(i);
|
|
|
|
if (isNotExclusivelyConstantDerived(InValue) &&
|
|
!InBBS->AvailableOut.count(InValue))
|
|
reportInvalidUse(*InValue, *PN);
|
|
}
|
|
} else if (isa<CmpInst>(I) &&
|
|
containsGCPtrType(I.getOperand(0)->getType())) {
|
|
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
|
|
enum BaseType baseTyLHS = getBaseType(LHS),
|
|
baseTyRHS = getBaseType(RHS);
|
|
|
|
// Returns true if LHS and RHS are unrelocated pointers and they are
|
|
// valid unrelocated uses.
|
|
auto hasValidUnrelocatedUse = [&AvailableSet, Tracker, baseTyLHS, baseTyRHS,
|
|
&LHS, &RHS] () {
|
|
// A cmp instruction has valid unrelocated pointer operands only if
|
|
// both operands are unrelocated pointers.
|
|
// In the comparison between two pointers, if one is an unrelocated
|
|
// use, the other *should be* an unrelocated use, for this
|
|
// instruction to contain valid unrelocated uses. This unrelocated
|
|
// use can be a null constant as well, or another unrelocated
|
|
// pointer.
|
|
if (AvailableSet.count(LHS) || AvailableSet.count(RHS))
|
|
return false;
|
|
// Constant pointers (that are not exclusively null) may have
|
|
// meaning in different VMs, so we cannot reorder the compare
|
|
// against constant pointers before the safepoint. In other words,
|
|
// comparison of an unrelocated use against a non-null constant
|
|
// maybe invalid.
|
|
if ((baseTyLHS == BaseType::ExclusivelySomeConstant &&
|
|
baseTyRHS == BaseType::NonConstant) ||
|
|
(baseTyLHS == BaseType::NonConstant &&
|
|
baseTyRHS == BaseType::ExclusivelySomeConstant))
|
|
return false;
|
|
|
|
// If one of pointers is poisoned and other is not exclusively derived
|
|
// from null it is an invalid expression: it produces poisoned result
|
|
// and unless we want to track all defs (not only gc pointers) the only
|
|
// option is to prohibit such instructions.
|
|
if ((Tracker->isValuePoisoned(LHS) && baseTyRHS != ExclusivelyNull) ||
|
|
(Tracker->isValuePoisoned(RHS) && baseTyLHS != ExclusivelyNull))
|
|
return false;
|
|
|
|
// All other cases are valid cases enumerated below:
|
|
// 1. Comparison between an exclusively derived null pointer and a
|
|
// constant base pointer.
|
|
// 2. Comparison between an exclusively derived null pointer and a
|
|
// non-constant unrelocated base pointer.
|
|
// 3. Comparison between 2 unrelocated pointers.
|
|
// 4. Comparison between a pointer exclusively derived from null and a
|
|
// non-constant poisoned pointer.
|
|
return true;
|
|
};
|
|
if (!hasValidUnrelocatedUse()) {
|
|
// Print out all non-constant derived pointers that are unrelocated
|
|
// uses, which are invalid.
|
|
if (baseTyLHS == BaseType::NonConstant && !AvailableSet.count(LHS))
|
|
reportInvalidUse(*LHS, I);
|
|
if (baseTyRHS == BaseType::NonConstant && !AvailableSet.count(RHS))
|
|
reportInvalidUse(*RHS, I);
|
|
}
|
|
} else {
|
|
for (const Value *V : I.operands())
|
|
if (containsGCPtrType(V->getType()) &&
|
|
isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V))
|
|
reportInvalidUse(*V, I);
|
|
}
|
|
}
|
|
|
|
void InstructionVerifier::reportInvalidUse(const Value &V,
|
|
const Instruction &I) {
|
|
errs() << "Illegal use of unrelocated value found!\n";
|
|
errs() << "Def: " << V << "\n";
|
|
errs() << "Use: " << I << "\n";
|
|
if (!PrintOnly)
|
|
abort();
|
|
AnyInvalidUses = true;
|
|
}
|
|
|
|
static void Verify(const Function &F, const DominatorTree &DT,
|
|
const CFGDeadness &CD) {
|
|
LLVM_DEBUG(dbgs() << "Verifying gc pointers in function: " << F.getName()
|
|
<< "\n");
|
|
if (PrintOnly)
|
|
dbgs() << "Verifying gc pointers in function: " << F.getName() << "\n";
|
|
|
|
GCPtrTracker Tracker(F, DT, CD);
|
|
|
|
// We now have all the information we need to decide if the use of a heap
|
|
// reference is legal or not, given our safepoint semantics.
|
|
|
|
InstructionVerifier Verifier;
|
|
GCPtrTracker::verifyFunction(std::move(Tracker), Verifier);
|
|
|
|
if (PrintOnly && !Verifier.hasAnyInvalidUses()) {
|
|
dbgs() << "No illegal uses found by SafepointIRVerifier in: " << F.getName()
|
|
<< "\n";
|
|
}
|
|
}
|