llvm-project/llvm/lib/ExecutionEngine/JITLink/JITLink.cpp

431 lines
14 KiB
C++

//===------------- JITLink.cpp - Core Run-time JIT linker APIs ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ExecutionEngine/JITLink/JITLink.h"
#include "llvm/BinaryFormat/Magic.h"
#include "llvm/ExecutionEngine/JITLink/ELF.h"
#include "llvm/ExecutionEngine/JITLink/MachO.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
using namespace llvm::object;
#define DEBUG_TYPE "jitlink"
namespace {
enum JITLinkErrorCode { GenericJITLinkError = 1 };
// FIXME: This class is only here to support the transition to llvm::Error. It
// will be removed once this transition is complete. Clients should prefer to
// deal with the Error value directly, rather than converting to error_code.
class JITLinkerErrorCategory : public std::error_category {
public:
const char *name() const noexcept override { return "runtimedyld"; }
std::string message(int Condition) const override {
switch (static_cast<JITLinkErrorCode>(Condition)) {
case GenericJITLinkError:
return "Generic JITLink error";
}
llvm_unreachable("Unrecognized JITLinkErrorCode");
}
};
static ManagedStatic<JITLinkerErrorCategory> JITLinkerErrorCategory;
} // namespace
namespace llvm {
namespace jitlink {
char JITLinkError::ID = 0;
void JITLinkError::log(raw_ostream &OS) const { OS << ErrMsg; }
std::error_code JITLinkError::convertToErrorCode() const {
return std::error_code(GenericJITLinkError, *JITLinkerErrorCategory);
}
const char *getGenericEdgeKindName(Edge::Kind K) {
switch (K) {
case Edge::Invalid:
return "INVALID RELOCATION";
case Edge::KeepAlive:
return "Keep-Alive";
default:
return "<Unrecognized edge kind>";
}
}
const char *getLinkageName(Linkage L) {
switch (L) {
case Linkage::Strong:
return "strong";
case Linkage::Weak:
return "weak";
}
llvm_unreachable("Unrecognized llvm.jitlink.Linkage enum");
}
const char *getScopeName(Scope S) {
switch (S) {
case Scope::Default:
return "default";
case Scope::Hidden:
return "hidden";
case Scope::Local:
return "local";
}
llvm_unreachable("Unrecognized llvm.jitlink.Scope enum");
}
raw_ostream &operator<<(raw_ostream &OS, const Block &B) {
return OS << B.getAddress() << " -- " << (B.getAddress() + B.getSize())
<< ": "
<< "size = " << formatv("{0:x8}", B.getSize()) << ", "
<< (B.isZeroFill() ? "zero-fill" : "content")
<< ", align = " << B.getAlignment()
<< ", align-ofs = " << B.getAlignmentOffset()
<< ", section = " << B.getSection().getName();
}
raw_ostream &operator<<(raw_ostream &OS, const Symbol &Sym) {
OS << Sym.getAddress() << " (" << (Sym.isDefined() ? "block" : "addressable")
<< " + " << formatv("{0:x8}", Sym.getOffset())
<< "): size: " << formatv("{0:x8}", Sym.getSize())
<< ", linkage: " << formatv("{0:6}", getLinkageName(Sym.getLinkage()))
<< ", scope: " << formatv("{0:8}", getScopeName(Sym.getScope())) << ", "
<< (Sym.isLive() ? "live" : "dead") << " - "
<< (Sym.hasName() ? Sym.getName() : "<anonymous symbol>");
return OS;
}
void printEdge(raw_ostream &OS, const Block &B, const Edge &E,
StringRef EdgeKindName) {
OS << "edge@" << B.getAddress() + E.getOffset() << ": " << B.getAddress()
<< " + " << formatv("{0:x}", E.getOffset()) << " -- " << EdgeKindName
<< " -> ";
auto &TargetSym = E.getTarget();
if (TargetSym.hasName())
OS << TargetSym.getName();
else {
auto &TargetBlock = TargetSym.getBlock();
auto &TargetSec = TargetBlock.getSection();
orc::ExecutorAddr SecAddress(~uint64_t(0));
for (auto *B : TargetSec.blocks())
if (B->getAddress() < SecAddress)
SecAddress = B->getAddress();
orc::ExecutorAddrDiff SecDelta = TargetSym.getAddress() - SecAddress;
OS << TargetSym.getAddress() << " (section " << TargetSec.getName();
if (SecDelta)
OS << " + " << formatv("{0:x}", SecDelta);
OS << " / block " << TargetBlock.getAddress();
if (TargetSym.getOffset())
OS << " + " << formatv("{0:x}", TargetSym.getOffset());
OS << ")";
}
if (E.getAddend() != 0)
OS << " + " << E.getAddend();
}
Section::~Section() {
for (auto *Sym : Symbols)
Sym->~Symbol();
for (auto *B : Blocks)
B->~Block();
}
Block &LinkGraph::splitBlock(Block &B, size_t SplitIndex,
SplitBlockCache *Cache) {
assert(SplitIndex > 0 && "splitBlock can not be called with SplitIndex == 0");
// If the split point covers all of B then just return B.
if (SplitIndex == B.getSize())
return B;
assert(SplitIndex < B.getSize() && "SplitIndex out of range");
// Create the new block covering [ 0, SplitIndex ).
auto &NewBlock =
B.isZeroFill()
? createZeroFillBlock(B.getSection(), SplitIndex, B.getAddress(),
B.getAlignment(), B.getAlignmentOffset())
: createContentBlock(
B.getSection(), B.getContent().slice(0, SplitIndex),
B.getAddress(), B.getAlignment(), B.getAlignmentOffset());
// Modify B to cover [ SplitIndex, B.size() ).
B.setAddress(B.getAddress() + SplitIndex);
B.setContent(B.getContent().slice(SplitIndex));
B.setAlignmentOffset((B.getAlignmentOffset() + SplitIndex) %
B.getAlignment());
// Handle edge transfer/update.
{
// Copy edges to NewBlock (recording their iterators so that we can remove
// them from B), and update of Edges remaining on B.
std::vector<Block::edge_iterator> EdgesToRemove;
for (auto I = B.edges().begin(); I != B.edges().end();) {
if (I->getOffset() < SplitIndex) {
NewBlock.addEdge(*I);
I = B.removeEdge(I);
} else {
I->setOffset(I->getOffset() - SplitIndex);
++I;
}
}
}
// Handle symbol transfer/update.
{
// Initialize the symbols cache if necessary.
SplitBlockCache LocalBlockSymbolsCache;
if (!Cache)
Cache = &LocalBlockSymbolsCache;
if (*Cache == None) {
*Cache = SplitBlockCache::value_type();
for (auto *Sym : B.getSection().symbols())
if (&Sym->getBlock() == &B)
(*Cache)->push_back(Sym);
llvm::sort(**Cache, [](const Symbol *LHS, const Symbol *RHS) {
return LHS->getOffset() > RHS->getOffset();
});
}
auto &BlockSymbols = **Cache;
// Transfer all symbols with offset less than SplitIndex to NewBlock.
while (!BlockSymbols.empty() &&
BlockSymbols.back()->getOffset() < SplitIndex) {
auto *Sym = BlockSymbols.back();
// If the symbol extends beyond the split, update the size to be within
// the new block.
if (Sym->getOffset() + Sym->getSize() > SplitIndex)
Sym->setSize(SplitIndex - Sym->getOffset());
Sym->setBlock(NewBlock);
BlockSymbols.pop_back();
}
// Update offsets for all remaining symbols in B.
for (auto *Sym : BlockSymbols)
Sym->setOffset(Sym->getOffset() - SplitIndex);
}
return NewBlock;
}
void LinkGraph::dump(raw_ostream &OS) {
DenseMap<Block *, std::vector<Symbol *>> BlockSymbols;
// Map from blocks to the symbols pointing at them.
for (auto *Sym : defined_symbols())
BlockSymbols[&Sym->getBlock()].push_back(Sym);
// For each block, sort its symbols by something approximating
// relevance.
for (auto &KV : BlockSymbols)
llvm::sort(KV.second, [](const Symbol *LHS, const Symbol *RHS) {
if (LHS->getOffset() != RHS->getOffset())
return LHS->getOffset() < RHS->getOffset();
if (LHS->getLinkage() != RHS->getLinkage())
return LHS->getLinkage() < RHS->getLinkage();
if (LHS->getScope() != RHS->getScope())
return LHS->getScope() < RHS->getScope();
if (LHS->hasName()) {
if (!RHS->hasName())
return true;
return LHS->getName() < RHS->getName();
}
return false;
});
for (auto &Sec : sections()) {
OS << "section " << Sec.getName() << ":\n\n";
std::vector<Block *> SortedBlocks;
llvm::copy(Sec.blocks(), std::back_inserter(SortedBlocks));
llvm::sort(SortedBlocks, [](const Block *LHS, const Block *RHS) {
return LHS->getAddress() < RHS->getAddress();
});
for (auto *B : SortedBlocks) {
OS << " block " << B->getAddress()
<< " size = " << formatv("{0:x8}", B->getSize())
<< ", align = " << B->getAlignment()
<< ", alignment-offset = " << B->getAlignmentOffset();
if (B->isZeroFill())
OS << ", zero-fill";
OS << "\n";
auto BlockSymsI = BlockSymbols.find(B);
if (BlockSymsI != BlockSymbols.end()) {
OS << " symbols:\n";
auto &Syms = BlockSymsI->second;
for (auto *Sym : Syms)
OS << " " << *Sym << "\n";
} else
OS << " no symbols\n";
if (!B->edges_empty()) {
OS << " edges:\n";
std::vector<Edge> SortedEdges;
llvm::copy(B->edges(), std::back_inserter(SortedEdges));
llvm::sort(SortedEdges, [](const Edge &LHS, const Edge &RHS) {
return LHS.getOffset() < RHS.getOffset();
});
for (auto &E : SortedEdges) {
OS << " " << B->getFixupAddress(E) << " (block + "
<< formatv("{0:x8}", E.getOffset()) << "), addend = ";
if (E.getAddend() >= 0)
OS << formatv("+{0:x8}", E.getAddend());
else
OS << formatv("-{0:x8}", -E.getAddend());
OS << ", kind = " << getEdgeKindName(E.getKind()) << ", target = ";
if (E.getTarget().hasName())
OS << E.getTarget().getName();
else
OS << "addressable@"
<< formatv("{0:x16}", E.getTarget().getAddress()) << "+"
<< formatv("{0:x8}", E.getTarget().getOffset());
OS << "\n";
}
} else
OS << " no edges\n";
OS << "\n";
}
}
OS << "Absolute symbols:\n";
if (!llvm::empty(absolute_symbols())) {
for (auto *Sym : absolute_symbols())
OS << " " << Sym->getAddress() << ": " << *Sym << "\n";
} else
OS << " none\n";
OS << "\nExternal symbols:\n";
if (!llvm::empty(external_symbols())) {
for (auto *Sym : external_symbols())
OS << " " << Sym->getAddress() << ": " << *Sym << "\n";
} else
OS << " none\n";
}
raw_ostream &operator<<(raw_ostream &OS, const SymbolLookupFlags &LF) {
switch (LF) {
case SymbolLookupFlags::RequiredSymbol:
return OS << "RequiredSymbol";
case SymbolLookupFlags::WeaklyReferencedSymbol:
return OS << "WeaklyReferencedSymbol";
}
llvm_unreachable("Unrecognized lookup flags");
}
void JITLinkAsyncLookupContinuation::anchor() {}
JITLinkContext::~JITLinkContext() = default;
bool JITLinkContext::shouldAddDefaultTargetPasses(const Triple &TT) const {
return true;
}
LinkGraphPassFunction JITLinkContext::getMarkLivePass(const Triple &TT) const {
return LinkGraphPassFunction();
}
Error JITLinkContext::modifyPassConfig(LinkGraph &G,
PassConfiguration &Config) {
return Error::success();
}
Error markAllSymbolsLive(LinkGraph &G) {
for (auto *Sym : G.defined_symbols())
Sym->setLive(true);
return Error::success();
}
Error makeTargetOutOfRangeError(const LinkGraph &G, const Block &B,
const Edge &E) {
std::string ErrMsg;
{
raw_string_ostream ErrStream(ErrMsg);
Section &Sec = B.getSection();
ErrStream << "In graph " << G.getName() << ", section " << Sec.getName()
<< ": relocation target ";
if (E.getTarget().hasName()) {
ErrStream << "\"" << E.getTarget().getName() << "\"";
} else
ErrStream << E.getTarget().getBlock().getSection().getName() << " + "
<< formatv("{0:x}", E.getOffset());
ErrStream << " at address " << formatv("{0:x}", E.getTarget().getAddress())
<< " is out of range of " << G.getEdgeKindName(E.getKind())
<< " fixup at " << formatv("{0:x}", B.getFixupAddress(E)) << " (";
Symbol *BestSymbolForBlock = nullptr;
for (auto *Sym : Sec.symbols())
if (&Sym->getBlock() == &B && Sym->hasName() && Sym->getOffset() == 0 &&
(!BestSymbolForBlock ||
Sym->getScope() < BestSymbolForBlock->getScope() ||
Sym->getLinkage() < BestSymbolForBlock->getLinkage()))
BestSymbolForBlock = Sym;
if (BestSymbolForBlock)
ErrStream << BestSymbolForBlock->getName() << ", ";
else
ErrStream << "<anonymous block> @ ";
ErrStream << formatv("{0:x}", B.getAddress()) << " + "
<< formatv("{0:x}", E.getOffset()) << ")";
}
return make_error<JITLinkError>(std::move(ErrMsg));
}
Error makeAlignmentError(llvm::orc::ExecutorAddr Loc, uint64_t Value, int N,
const Edge &E) {
return make_error<JITLinkError>("0x" + llvm::utohexstr(Loc.getValue()) +
" improper alignment for relocation " +
formatv("{0:d}", E.getKind()) + ": 0x" +
llvm::utohexstr(Value) +
" is not aligned to " + Twine(N) + " bytes");
}
Expected<std::unique_ptr<LinkGraph>>
createLinkGraphFromObject(MemoryBufferRef ObjectBuffer) {
auto Magic = identify_magic(ObjectBuffer.getBuffer());
switch (Magic) {
case file_magic::macho_object:
return createLinkGraphFromMachOObject(ObjectBuffer);
case file_magic::elf_relocatable:
return createLinkGraphFromELFObject(ObjectBuffer);
default:
return make_error<JITLinkError>("Unsupported file format");
};
}
void link(std::unique_ptr<LinkGraph> G, std::unique_ptr<JITLinkContext> Ctx) {
switch (G->getTargetTriple().getObjectFormat()) {
case Triple::MachO:
return link_MachO(std::move(G), std::move(Ctx));
case Triple::ELF:
return link_ELF(std::move(G), std::move(Ctx));
default:
Ctx->notifyFailed(make_error<JITLinkError>("Unsupported object format"));
};
}
} // end namespace jitlink
} // end namespace llvm