forked from OSchip/llvm-project
629 lines
22 KiB
C++
629 lines
22 KiB
C++
//===-- FixupStatepointCallerSaved.cpp - Fixup caller saved registers ----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// Statepoint instruction in deopt parameters contains values which are
|
|
/// meaningful to the runtime and should be able to be read at the moment the
|
|
/// call returns. So we can say that we need to encode the fact that these
|
|
/// values are "late read" by runtime. If we could express this notion for
|
|
/// register allocator it would produce the right form for us.
|
|
/// The need to fixup (i.e this pass) is specifically handling the fact that
|
|
/// we cannot describe such a late read for the register allocator.
|
|
/// Register allocator may put the value on a register clobbered by the call.
|
|
/// This pass forces the spill of such registers and replaces corresponding
|
|
/// statepoint operands to added spill slots.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/StackMaps.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/IR/Statepoint.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "fixup-statepoint-caller-saved"
|
|
STATISTIC(NumSpilledRegisters, "Number of spilled register");
|
|
STATISTIC(NumSpillSlotsAllocated, "Number of spill slots allocated");
|
|
STATISTIC(NumSpillSlotsExtended, "Number of spill slots extended");
|
|
|
|
static cl::opt<bool> FixupSCSExtendSlotSize(
|
|
"fixup-scs-extend-slot-size", cl::Hidden, cl::init(false),
|
|
cl::desc("Allow spill in spill slot of greater size than register size"),
|
|
cl::Hidden);
|
|
|
|
static cl::opt<bool> PassGCPtrInCSR(
|
|
"fixup-allow-gcptr-in-csr", cl::Hidden, cl::init(false),
|
|
cl::desc("Allow passing GC Pointer arguments in callee saved registers"));
|
|
|
|
static cl::opt<bool> EnableCopyProp(
|
|
"fixup-scs-enable-copy-propagation", cl::Hidden, cl::init(true),
|
|
cl::desc("Enable simple copy propagation during register reloading"));
|
|
|
|
// This is purely debugging option.
|
|
// It may be handy for investigating statepoint spilling issues.
|
|
static cl::opt<unsigned> MaxStatepointsWithRegs(
|
|
"fixup-max-csr-statepoints", cl::Hidden,
|
|
cl::desc("Max number of statepoints allowed to pass GC Ptrs in registers"));
|
|
|
|
namespace {
|
|
|
|
class FixupStatepointCallerSaved : public MachineFunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
FixupStatepointCallerSaved() : MachineFunctionPass(ID) {
|
|
initializeFixupStatepointCallerSavedPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
StringRef getPassName() const override {
|
|
return "Fixup Statepoint Caller Saved";
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
};
|
|
|
|
} // End anonymous namespace.
|
|
|
|
char FixupStatepointCallerSaved::ID = 0;
|
|
char &llvm::FixupStatepointCallerSavedID = FixupStatepointCallerSaved::ID;
|
|
|
|
INITIALIZE_PASS_BEGIN(FixupStatepointCallerSaved, DEBUG_TYPE,
|
|
"Fixup Statepoint Caller Saved", false, false)
|
|
INITIALIZE_PASS_END(FixupStatepointCallerSaved, DEBUG_TYPE,
|
|
"Fixup Statepoint Caller Saved", false, false)
|
|
|
|
// Utility function to get size of the register.
|
|
static unsigned getRegisterSize(const TargetRegisterInfo &TRI, Register Reg) {
|
|
const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(Reg);
|
|
return TRI.getSpillSize(*RC);
|
|
}
|
|
|
|
// Try to eliminate redundant copy to register which we're going to
|
|
// spill, i.e. try to change:
|
|
// X = COPY Y
|
|
// SPILL X
|
|
// to
|
|
// SPILL Y
|
|
// If there are no uses of X between copy and STATEPOINT, that COPY
|
|
// may be eliminated.
|
|
// Reg - register we're about to spill
|
|
// RI - On entry points to statepoint.
|
|
// On successful copy propagation set to new spill point.
|
|
// IsKill - set to true if COPY is Kill (there are no uses of Y)
|
|
// Returns either found source copy register or original one.
|
|
static Register performCopyPropagation(Register Reg,
|
|
MachineBasicBlock::iterator &RI,
|
|
bool &IsKill, const TargetInstrInfo &TII,
|
|
const TargetRegisterInfo &TRI) {
|
|
// First check if statepoint itself uses Reg in non-meta operands.
|
|
int Idx = RI->findRegisterUseOperandIdx(Reg, false, &TRI);
|
|
if (Idx >= 0 && (unsigned)Idx < StatepointOpers(&*RI).getNumDeoptArgsIdx()) {
|
|
IsKill = false;
|
|
return Reg;
|
|
}
|
|
|
|
if (!EnableCopyProp)
|
|
return Reg;
|
|
|
|
MachineBasicBlock *MBB = RI->getParent();
|
|
MachineBasicBlock::reverse_iterator E = MBB->rend();
|
|
MachineInstr *Def = nullptr, *Use = nullptr;
|
|
for (auto It = ++(RI.getReverse()); It != E; ++It) {
|
|
if (It->readsRegister(Reg, &TRI) && !Use)
|
|
Use = &*It;
|
|
if (It->modifiesRegister(Reg, &TRI)) {
|
|
Def = &*It;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!Def)
|
|
return Reg;
|
|
|
|
auto DestSrc = TII.isCopyInstr(*Def);
|
|
if (!DestSrc || DestSrc->Destination->getReg() != Reg)
|
|
return Reg;
|
|
|
|
Register SrcReg = DestSrc->Source->getReg();
|
|
|
|
if (getRegisterSize(TRI, Reg) != getRegisterSize(TRI, SrcReg))
|
|
return Reg;
|
|
|
|
LLVM_DEBUG(dbgs() << "spillRegisters: perform copy propagation "
|
|
<< printReg(Reg, &TRI) << " -> " << printReg(SrcReg, &TRI)
|
|
<< "\n");
|
|
|
|
// Insert spill immediately after Def
|
|
RI = ++MachineBasicBlock::iterator(Def);
|
|
IsKill = DestSrc->Source->isKill();
|
|
|
|
if (!Use) {
|
|
// There are no uses of original register between COPY and STATEPOINT.
|
|
// There can't be any after STATEPOINT, so we can eliminate Def.
|
|
LLVM_DEBUG(dbgs() << "spillRegisters: removing dead copy " << *Def);
|
|
Def->eraseFromParent();
|
|
} else if (IsKill) {
|
|
// COPY will remain in place, spill will be inserted *after* it, so it is
|
|
// not a kill of source anymore.
|
|
const_cast<MachineOperand *>(DestSrc->Source)->setIsKill(false);
|
|
}
|
|
|
|
return SrcReg;
|
|
}
|
|
|
|
namespace {
|
|
// Pair {Register, FrameIndex}
|
|
using RegSlotPair = std::pair<Register, int>;
|
|
|
|
// Keeps track of what reloads were inserted in MBB.
|
|
class RegReloadCache {
|
|
using ReloadSet = SmallSet<RegSlotPair, 8>;
|
|
DenseMap<const MachineBasicBlock *, ReloadSet> Reloads;
|
|
|
|
public:
|
|
RegReloadCache() = default;
|
|
|
|
// Record reload of Reg from FI in block MBB
|
|
void recordReload(Register Reg, int FI, const MachineBasicBlock *MBB) {
|
|
RegSlotPair RSP(Reg, FI);
|
|
auto Res = Reloads[MBB].insert(RSP);
|
|
(void)Res;
|
|
assert(Res.second && "reload already exists");
|
|
}
|
|
|
|
// Does basic block MBB contains reload of Reg from FI?
|
|
bool hasReload(Register Reg, int FI, const MachineBasicBlock *MBB) {
|
|
RegSlotPair RSP(Reg, FI);
|
|
return Reloads.count(MBB) && Reloads[MBB].count(RSP);
|
|
}
|
|
};
|
|
|
|
// Cache used frame indexes during statepoint re-write to re-use them in
|
|
// processing next statepoint instruction.
|
|
// Two strategies. One is to preserve the size of spill slot while another one
|
|
// extends the size of spill slots to reduce the number of them, causing
|
|
// the less total frame size. But unspill will have "implicit" any extend.
|
|
class FrameIndexesCache {
|
|
private:
|
|
struct FrameIndexesPerSize {
|
|
// List of used frame indexes during processing previous statepoints.
|
|
SmallVector<int, 8> Slots;
|
|
// Current index of un-used yet frame index.
|
|
unsigned Index = 0;
|
|
};
|
|
MachineFrameInfo &MFI;
|
|
const TargetRegisterInfo &TRI;
|
|
// Map size to list of frame indexes of this size. If the mode is
|
|
// FixupSCSExtendSlotSize then the key 0 is used to keep all frame indexes.
|
|
// If the size of required spill slot is greater than in a cache then the
|
|
// size will be increased.
|
|
DenseMap<unsigned, FrameIndexesPerSize> Cache;
|
|
|
|
// Keeps track of slots reserved for the shared landing pad processing.
|
|
// Initialized from GlobalIndices for the current EHPad.
|
|
SmallSet<int, 8> ReservedSlots;
|
|
|
|
// Landing pad can be destination of several statepoints. Every register
|
|
// defined by such statepoints must be spilled to the same stack slot.
|
|
// This map keeps that information.
|
|
DenseMap<const MachineBasicBlock *, SmallVector<RegSlotPair, 8>>
|
|
GlobalIndices;
|
|
|
|
FrameIndexesPerSize &getCacheBucket(unsigned Size) {
|
|
// In FixupSCSExtendSlotSize mode the bucket with 0 index is used
|
|
// for all sizes.
|
|
return Cache[FixupSCSExtendSlotSize ? 0 : Size];
|
|
}
|
|
|
|
public:
|
|
FrameIndexesCache(MachineFrameInfo &MFI, const TargetRegisterInfo &TRI)
|
|
: MFI(MFI), TRI(TRI) {}
|
|
// Reset the current state of used frame indexes. After invocation of
|
|
// this function all frame indexes are available for allocation with
|
|
// the exception of slots reserved for landing pad processing (if any).
|
|
void reset(const MachineBasicBlock *EHPad) {
|
|
for (auto &It : Cache)
|
|
It.second.Index = 0;
|
|
|
|
ReservedSlots.clear();
|
|
if (EHPad && GlobalIndices.count(EHPad))
|
|
for (auto &RSP : GlobalIndices[EHPad])
|
|
ReservedSlots.insert(RSP.second);
|
|
}
|
|
|
|
// Get frame index to spill the register.
|
|
int getFrameIndex(Register Reg, MachineBasicBlock *EHPad) {
|
|
// Check if slot for Reg is already reserved at EHPad.
|
|
auto It = GlobalIndices.find(EHPad);
|
|
if (It != GlobalIndices.end()) {
|
|
auto &Vec = It->second;
|
|
auto Idx = llvm::find_if(
|
|
Vec, [Reg](RegSlotPair &RSP) { return Reg == RSP.first; });
|
|
if (Idx != Vec.end()) {
|
|
int FI = Idx->second;
|
|
LLVM_DEBUG(dbgs() << "Found global FI " << FI << " for register "
|
|
<< printReg(Reg, &TRI) << " at "
|
|
<< printMBBReference(*EHPad) << "\n");
|
|
assert(ReservedSlots.count(FI) && "using unreserved slot");
|
|
return FI;
|
|
}
|
|
}
|
|
|
|
unsigned Size = getRegisterSize(TRI, Reg);
|
|
FrameIndexesPerSize &Line = getCacheBucket(Size);
|
|
while (Line.Index < Line.Slots.size()) {
|
|
int FI = Line.Slots[Line.Index++];
|
|
if (ReservedSlots.count(FI))
|
|
continue;
|
|
// If all sizes are kept together we probably need to extend the
|
|
// spill slot size.
|
|
if (MFI.getObjectSize(FI) < Size) {
|
|
MFI.setObjectSize(FI, Size);
|
|
MFI.setObjectAlignment(FI, Align(Size));
|
|
NumSpillSlotsExtended++;
|
|
}
|
|
return FI;
|
|
}
|
|
int FI = MFI.CreateSpillStackObject(Size, Align(Size));
|
|
NumSpillSlotsAllocated++;
|
|
Line.Slots.push_back(FI);
|
|
++Line.Index;
|
|
|
|
// Remember assignment {Reg, FI} for EHPad
|
|
if (EHPad) {
|
|
GlobalIndices[EHPad].push_back(std::make_pair(Reg, FI));
|
|
LLVM_DEBUG(dbgs() << "Reserved FI " << FI << " for spilling reg "
|
|
<< printReg(Reg, &TRI) << " at landing pad "
|
|
<< printMBBReference(*EHPad) << "\n");
|
|
}
|
|
|
|
return FI;
|
|
}
|
|
|
|
// Sort all registers to spill in descendent order. In the
|
|
// FixupSCSExtendSlotSize mode it will minimize the total frame size.
|
|
// In non FixupSCSExtendSlotSize mode we can skip this step.
|
|
void sortRegisters(SmallVectorImpl<Register> &Regs) {
|
|
if (!FixupSCSExtendSlotSize)
|
|
return;
|
|
llvm::sort(Regs, [&](Register &A, Register &B) {
|
|
return getRegisterSize(TRI, A) > getRegisterSize(TRI, B);
|
|
});
|
|
}
|
|
};
|
|
|
|
// Describes the state of the current processing statepoint instruction.
|
|
class StatepointState {
|
|
private:
|
|
// statepoint instruction.
|
|
MachineInstr &MI;
|
|
MachineFunction &MF;
|
|
// If non-null then statepoint is invoke, and this points to the landing pad.
|
|
MachineBasicBlock *EHPad;
|
|
const TargetRegisterInfo &TRI;
|
|
const TargetInstrInfo &TII;
|
|
MachineFrameInfo &MFI;
|
|
// Mask with callee saved registers.
|
|
const uint32_t *Mask;
|
|
// Cache of frame indexes used on previous instruction processing.
|
|
FrameIndexesCache &CacheFI;
|
|
bool AllowGCPtrInCSR;
|
|
// Operands with physical registers requiring spilling.
|
|
SmallVector<unsigned, 8> OpsToSpill;
|
|
// Set of register to spill.
|
|
SmallVector<Register, 8> RegsToSpill;
|
|
// Set of registers to reload after statepoint.
|
|
SmallVector<Register, 8> RegsToReload;
|
|
// Map Register to Frame Slot index.
|
|
DenseMap<Register, int> RegToSlotIdx;
|
|
|
|
public:
|
|
StatepointState(MachineInstr &MI, const uint32_t *Mask,
|
|
FrameIndexesCache &CacheFI, bool AllowGCPtrInCSR)
|
|
: MI(MI), MF(*MI.getMF()), TRI(*MF.getSubtarget().getRegisterInfo()),
|
|
TII(*MF.getSubtarget().getInstrInfo()), MFI(MF.getFrameInfo()),
|
|
Mask(Mask), CacheFI(CacheFI), AllowGCPtrInCSR(AllowGCPtrInCSR) {
|
|
|
|
// Find statepoint's landing pad, if any.
|
|
EHPad = nullptr;
|
|
MachineBasicBlock *MBB = MI.getParent();
|
|
// Invoke statepoint must be last one in block.
|
|
bool Last = std::none_of(++MI.getIterator(), MBB->end().getInstrIterator(),
|
|
[](MachineInstr &I) {
|
|
return I.getOpcode() == TargetOpcode::STATEPOINT;
|
|
});
|
|
|
|
if (!Last)
|
|
return;
|
|
|
|
auto IsEHPad = [](MachineBasicBlock *B) { return B->isEHPad(); };
|
|
|
|
assert(llvm::count_if(MBB->successors(), IsEHPad) < 2 && "multiple EHPads");
|
|
|
|
auto It = llvm::find_if(MBB->successors(), IsEHPad);
|
|
if (It != MBB->succ_end())
|
|
EHPad = *It;
|
|
}
|
|
|
|
MachineBasicBlock *getEHPad() const { return EHPad; }
|
|
|
|
// Return true if register is callee saved.
|
|
bool isCalleeSaved(Register Reg) { return (Mask[Reg / 32] >> Reg % 32) & 1; }
|
|
|
|
// Iterates over statepoint meta args to find caller saver registers.
|
|
// Also cache the size of found registers.
|
|
// Returns true if caller save registers found.
|
|
bool findRegistersToSpill() {
|
|
SmallSet<Register, 8> GCRegs;
|
|
// All GC pointer operands assigned to registers produce new value.
|
|
// Since they're tied to their defs, it is enough to collect def registers.
|
|
for (const auto &Def : MI.defs())
|
|
GCRegs.insert(Def.getReg());
|
|
|
|
SmallSet<Register, 8> VisitedRegs;
|
|
for (unsigned Idx = StatepointOpers(&MI).getVarIdx(),
|
|
EndIdx = MI.getNumOperands();
|
|
Idx < EndIdx; ++Idx) {
|
|
MachineOperand &MO = MI.getOperand(Idx);
|
|
// Leave `undef` operands as is, StackMaps will rewrite them
|
|
// into a constant.
|
|
if (!MO.isReg() || MO.isImplicit() || MO.isUndef())
|
|
continue;
|
|
Register Reg = MO.getReg();
|
|
assert(Reg.isPhysical() && "Only physical regs are expected");
|
|
|
|
if (isCalleeSaved(Reg) && (AllowGCPtrInCSR || !is_contained(GCRegs, Reg)))
|
|
continue;
|
|
|
|
LLVM_DEBUG(dbgs() << "Will spill " << printReg(Reg, &TRI) << " at index "
|
|
<< Idx << "\n");
|
|
|
|
if (VisitedRegs.insert(Reg).second)
|
|
RegsToSpill.push_back(Reg);
|
|
OpsToSpill.push_back(Idx);
|
|
}
|
|
CacheFI.sortRegisters(RegsToSpill);
|
|
return !RegsToSpill.empty();
|
|
}
|
|
|
|
// Spill all caller saved registers right before statepoint instruction.
|
|
// Remember frame index where register is spilled.
|
|
void spillRegisters() {
|
|
for (Register Reg : RegsToSpill) {
|
|
int FI = CacheFI.getFrameIndex(Reg, EHPad);
|
|
const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(Reg);
|
|
|
|
NumSpilledRegisters++;
|
|
RegToSlotIdx[Reg] = FI;
|
|
|
|
LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, &TRI) << " to FI " << FI
|
|
<< "\n");
|
|
|
|
// Perform trivial copy propagation
|
|
bool IsKill = true;
|
|
MachineBasicBlock::iterator InsertBefore(MI);
|
|
Reg = performCopyPropagation(Reg, InsertBefore, IsKill, TII, TRI);
|
|
|
|
LLVM_DEBUG(dbgs() << "Insert spill before " << *InsertBefore);
|
|
TII.storeRegToStackSlot(*MI.getParent(), InsertBefore, Reg, IsKill, FI,
|
|
RC, &TRI);
|
|
}
|
|
}
|
|
|
|
void insertReloadBefore(unsigned Reg, MachineBasicBlock::iterator It,
|
|
MachineBasicBlock *MBB) {
|
|
const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(Reg);
|
|
int FI = RegToSlotIdx[Reg];
|
|
if (It != MBB->end()) {
|
|
TII.loadRegFromStackSlot(*MBB, It, Reg, FI, RC, &TRI);
|
|
return;
|
|
}
|
|
|
|
// To insert reload at the end of MBB, insert it before last instruction
|
|
// and then swap them.
|
|
assert(!MBB->empty() && "Empty block");
|
|
--It;
|
|
TII.loadRegFromStackSlot(*MBB, It, Reg, FI, RC, &TRI);
|
|
MachineInstr *Reload = It->getPrevNode();
|
|
int Dummy = 0;
|
|
(void)Dummy;
|
|
assert(TII.isLoadFromStackSlot(*Reload, Dummy) == Reg);
|
|
assert(Dummy == FI);
|
|
MBB->remove(Reload);
|
|
MBB->insertAfter(It, Reload);
|
|
}
|
|
|
|
// Insert reloads of (relocated) registers spilled in statepoint.
|
|
void insertReloads(MachineInstr *NewStatepoint, RegReloadCache &RC) {
|
|
MachineBasicBlock *MBB = NewStatepoint->getParent();
|
|
auto InsertPoint = std::next(NewStatepoint->getIterator());
|
|
|
|
for (auto Reg : RegsToReload) {
|
|
insertReloadBefore(Reg, InsertPoint, MBB);
|
|
LLVM_DEBUG(dbgs() << "Reloading " << printReg(Reg, &TRI) << " from FI "
|
|
<< RegToSlotIdx[Reg] << " after statepoint\n");
|
|
|
|
if (EHPad && !RC.hasReload(Reg, RegToSlotIdx[Reg], EHPad)) {
|
|
RC.recordReload(Reg, RegToSlotIdx[Reg], EHPad);
|
|
auto EHPadInsertPoint = EHPad->SkipPHIsLabelsAndDebug(EHPad->begin());
|
|
insertReloadBefore(Reg, EHPadInsertPoint, EHPad);
|
|
LLVM_DEBUG(dbgs() << "...also reload at EHPad "
|
|
<< printMBBReference(*EHPad) << "\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Re-write statepoint machine instruction to replace caller saved operands
|
|
// with indirect memory location (frame index).
|
|
MachineInstr *rewriteStatepoint() {
|
|
MachineInstr *NewMI =
|
|
MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true);
|
|
MachineInstrBuilder MIB(MF, NewMI);
|
|
|
|
unsigned NumOps = MI.getNumOperands();
|
|
|
|
// New indices for the remaining defs.
|
|
SmallVector<unsigned, 8> NewIndices;
|
|
unsigned NumDefs = MI.getNumDefs();
|
|
for (unsigned I = 0; I < NumDefs; ++I) {
|
|
MachineOperand &DefMO = MI.getOperand(I);
|
|
assert(DefMO.isReg() && DefMO.isDef() && "Expected Reg Def operand");
|
|
Register Reg = DefMO.getReg();
|
|
assert(DefMO.isTied() && "Def is expected to be tied");
|
|
// We skipped undef uses and did not spill them, so we should not
|
|
// proceed with defs here.
|
|
if (MI.getOperand(MI.findTiedOperandIdx(I)).isUndef()) {
|
|
if (AllowGCPtrInCSR) {
|
|
NewIndices.push_back(NewMI->getNumOperands());
|
|
MIB.addReg(Reg, RegState::Define);
|
|
}
|
|
continue;
|
|
}
|
|
if (!AllowGCPtrInCSR) {
|
|
assert(is_contained(RegsToSpill, Reg));
|
|
RegsToReload.push_back(Reg);
|
|
} else {
|
|
if (isCalleeSaved(Reg)) {
|
|
NewIndices.push_back(NewMI->getNumOperands());
|
|
MIB.addReg(Reg, RegState::Define);
|
|
} else {
|
|
NewIndices.push_back(NumOps);
|
|
RegsToReload.push_back(Reg);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add End marker.
|
|
OpsToSpill.push_back(MI.getNumOperands());
|
|
unsigned CurOpIdx = 0;
|
|
|
|
for (unsigned I = NumDefs; I < MI.getNumOperands(); ++I) {
|
|
MachineOperand &MO = MI.getOperand(I);
|
|
if (I == OpsToSpill[CurOpIdx]) {
|
|
int FI = RegToSlotIdx[MO.getReg()];
|
|
MIB.addImm(StackMaps::IndirectMemRefOp);
|
|
MIB.addImm(getRegisterSize(TRI, MO.getReg()));
|
|
assert(MO.isReg() && "Should be register");
|
|
assert(MO.getReg().isPhysical() && "Should be physical register");
|
|
MIB.addFrameIndex(FI);
|
|
MIB.addImm(0);
|
|
++CurOpIdx;
|
|
} else {
|
|
MIB.add(MO);
|
|
unsigned OldDef;
|
|
if (AllowGCPtrInCSR && MI.isRegTiedToDefOperand(I, &OldDef)) {
|
|
assert(OldDef < NumDefs);
|
|
assert(NewIndices[OldDef] < NumOps);
|
|
MIB->tieOperands(NewIndices[OldDef], MIB->getNumOperands() - 1);
|
|
}
|
|
}
|
|
}
|
|
assert(CurOpIdx == (OpsToSpill.size() - 1) && "Not all operands processed");
|
|
// Add mem operands.
|
|
NewMI->setMemRefs(MF, MI.memoperands());
|
|
for (auto It : RegToSlotIdx) {
|
|
Register R = It.first;
|
|
int FrameIndex = It.second;
|
|
auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
|
|
MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad;
|
|
if (is_contained(RegsToReload, R))
|
|
Flags |= MachineMemOperand::MOStore;
|
|
auto *MMO =
|
|
MF.getMachineMemOperand(PtrInfo, Flags, getRegisterSize(TRI, R),
|
|
MFI.getObjectAlign(FrameIndex));
|
|
NewMI->addMemOperand(MF, MMO);
|
|
}
|
|
|
|
// Insert new statepoint and erase old one.
|
|
MI.getParent()->insert(MI, NewMI);
|
|
|
|
LLVM_DEBUG(dbgs() << "rewritten statepoint to : " << *NewMI << "\n");
|
|
MI.eraseFromParent();
|
|
return NewMI;
|
|
}
|
|
};
|
|
|
|
class StatepointProcessor {
|
|
private:
|
|
MachineFunction &MF;
|
|
const TargetRegisterInfo &TRI;
|
|
FrameIndexesCache CacheFI;
|
|
RegReloadCache ReloadCache;
|
|
|
|
public:
|
|
StatepointProcessor(MachineFunction &MF)
|
|
: MF(MF), TRI(*MF.getSubtarget().getRegisterInfo()),
|
|
CacheFI(MF.getFrameInfo(), TRI) {}
|
|
|
|
bool process(MachineInstr &MI, bool AllowGCPtrInCSR) {
|
|
StatepointOpers SO(&MI);
|
|
uint64_t Flags = SO.getFlags();
|
|
// Do nothing for LiveIn, it supports all registers.
|
|
if (Flags & (uint64_t)StatepointFlags::DeoptLiveIn)
|
|
return false;
|
|
LLVM_DEBUG(dbgs() << "\nMBB " << MI.getParent()->getNumber() << " "
|
|
<< MI.getParent()->getName() << " : process statepoint "
|
|
<< MI);
|
|
CallingConv::ID CC = SO.getCallingConv();
|
|
const uint32_t *Mask = TRI.getCallPreservedMask(MF, CC);
|
|
StatepointState SS(MI, Mask, CacheFI, AllowGCPtrInCSR);
|
|
CacheFI.reset(SS.getEHPad());
|
|
|
|
if (!SS.findRegistersToSpill())
|
|
return false;
|
|
|
|
SS.spillRegisters();
|
|
auto *NewStatepoint = SS.rewriteStatepoint();
|
|
SS.insertReloads(NewStatepoint, ReloadCache);
|
|
return true;
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
bool FixupStatepointCallerSaved::runOnMachineFunction(MachineFunction &MF) {
|
|
if (skipFunction(MF.getFunction()))
|
|
return false;
|
|
|
|
const Function &F = MF.getFunction();
|
|
if (!F.hasGC())
|
|
return false;
|
|
|
|
SmallVector<MachineInstr *, 16> Statepoints;
|
|
for (MachineBasicBlock &BB : MF)
|
|
for (MachineInstr &I : BB)
|
|
if (I.getOpcode() == TargetOpcode::STATEPOINT)
|
|
Statepoints.push_back(&I);
|
|
|
|
if (Statepoints.empty())
|
|
return false;
|
|
|
|
bool Changed = false;
|
|
StatepointProcessor SPP(MF);
|
|
unsigned NumStatepoints = 0;
|
|
bool AllowGCPtrInCSR = PassGCPtrInCSR;
|
|
for (MachineInstr *I : Statepoints) {
|
|
++NumStatepoints;
|
|
if (MaxStatepointsWithRegs.getNumOccurrences() &&
|
|
NumStatepoints >= MaxStatepointsWithRegs)
|
|
AllowGCPtrInCSR = false;
|
|
Changed |= SPP.process(*I, AllowGCPtrInCSR);
|
|
}
|
|
return Changed;
|
|
}
|