llvm-project/llvm/lib/CodeGen/CFIFixup.cpp

226 lines
8.8 KiB
C++

//===------ CFIFixup.cpp - Insert CFI remember/restore instructions -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass inserts the necessary instructions to adjust for the inconsistency
// of the call-frame information caused by final machine basic block layout.
// The pass relies in constraints LLVM imposes on the placement of
// save/restore points (cf. ShrinkWrap):
// * there is a single basic block, containing the function prologue
// * possibly multiple epilogue blocks, where each epilogue block is
// complete and self-contained, i.e. CSR restore instructions (and the
// corresponding CFI instructions are not split across two or more blocks.
// * prologue and epilogue blocks are outside of any loops
// Thus, during execution, at the beginning and at the end of each basic block
// the function can be in one of two states:
// - "has a call frame", if the function has executed the prologue, and
// has not executed any epilogue
// - "does not have a call frame", if the function has not executed the
// prologue, or has executed an epilogue
// which can be computed by a single RPO traversal.
// In order to accommodate backends which do not generate unwind info in
// epilogues we compute an additional property "strong no call frame on entry",
// which is set for the entry point of the function and for every block
// reachable from the entry along a path that does not execute the prologue. If
// this property holds, it takes precedence over the "has a call frame"
// property.
// From the point of view of the unwind tables, the "has/does not have call
// frame" state at beginning of each block is determined by the state at the end
// of the previous block, in layout order. Where these states differ, we insert
// compensating CFI instructions, which come in two flavours:
// - CFI instructions, which reset the unwind table state to the initial one.
// This is done by a target specific hook and is expected to be trivial
// to implement, for example it could be:
// .cfi_def_cfa <sp>, 0
// .cfi_same_value <rN>
// .cfi_same_value <rN-1>
// ...
// where <rN> are the callee-saved registers.
// - CFI instructions, which reset the unwind table state to the one
// created by the function prologue. These are
// .cfi_restore_state
// .cfi_remember_state
// In this case we also insert a `.cfi_remember_state` after the last CFI
// instruction in the function prologue.
//
// Known limitations:
// * the pass cannot handle an epilogue preceding the prologue in the basic
// block layout
// * the pass does not handle functions where SP is used as a frame pointer and
// SP adjustments up and down are done in different basic blocks (TODO)
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/CFIFixup.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
#define DEBUG_TYPE "cfi-fixup"
char CFIFixup::ID = 0;
INITIALIZE_PASS(CFIFixup, "cfi-fixup",
"Insert CFI remember/restore state instructions", false, false)
FunctionPass *llvm::createCFIFixup() { return new CFIFixup(); }
static bool isPrologueCFIInstruction(const MachineInstr &MI) {
return MI.getOpcode() == TargetOpcode::CFI_INSTRUCTION &&
MI.getFlag(MachineInstr::FrameSetup);
}
static bool containsPrologue(const MachineBasicBlock &MBB) {
return llvm::any_of(MBB.instrs(), isPrologueCFIInstruction);
}
static bool containsEpilogue(const MachineBasicBlock &MBB) {
return llvm::any_of(llvm::reverse(MBB), [](const auto &MI) {
return MI.getOpcode() == TargetOpcode::CFI_INSTRUCTION &&
MI.getFlag(MachineInstr::FrameDestroy);
});
}
bool CFIFixup::runOnMachineFunction(MachineFunction &MF) {
const TargetFrameLowering &TFL = *MF.getSubtarget().getFrameLowering();
if (!TFL.enableCFIFixup(MF))
return false;
const unsigned NumBlocks = MF.getNumBlockIDs();
if (NumBlocks < 2)
return false;
struct BlockFlags {
bool Reachable : 1;
bool StrongNoFrameOnEntry : 1;
bool HasFrameOnEntry : 1;
bool HasFrameOnExit : 1;
};
SmallVector<BlockFlags, 32> BlockInfo(NumBlocks, {false, false, false, false});
BlockInfo[0].Reachable = true;
BlockInfo[0].StrongNoFrameOnEntry = true;
// Compute the presence/absence of frame at each basic block.
MachineBasicBlock *PrologueBlock = nullptr;
ReversePostOrderTraversal<MachineBasicBlock *> RPOT(&*MF.begin());
for (MachineBasicBlock *MBB : RPOT) {
BlockFlags &Info = BlockInfo[MBB->getNumber()];
// Set to true if the current block contains the prologue or the epilogue,
// respectively.
bool HasPrologue = false;
bool HasEpilogue = false;
if (!PrologueBlock && !Info.HasFrameOnEntry && containsPrologue(*MBB)) {
PrologueBlock = MBB;
HasPrologue = true;
}
if (Info.HasFrameOnEntry || HasPrologue)
HasEpilogue = containsEpilogue(*MBB);
// If the function has a call frame at the entry of the current block or the
// current block contains the prologue, then the function has a call frame
// at the exit of the block, unless the block contains the epilogue.
Info.HasFrameOnExit = (Info.HasFrameOnEntry || HasPrologue) && !HasEpilogue;
// Set the successors' state on entry.
for (MachineBasicBlock *Succ : MBB->successors()) {
BlockFlags &SuccInfo = BlockInfo[Succ->getNumber()];
SuccInfo.Reachable = true;
SuccInfo.StrongNoFrameOnEntry |=
Info.StrongNoFrameOnEntry && !HasPrologue;
SuccInfo.HasFrameOnEntry = Info.HasFrameOnExit;
}
}
if (!PrologueBlock)
return false;
// Walk the blocks of the function in "physical" order.
// Every block inherits the frame state (as recorded in the unwind tables)
// of the previous block. If the intended frame state is different, insert
// compensating CFI instructions.
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
bool Change = false;
// `InsertPt` always points to the point in a preceding block where we have to
// insert a `.cfi_remember_state`, in the case that the current block needs a
// `.cfi_restore_state`.
MachineBasicBlock *InsertMBB = PrologueBlock;
MachineBasicBlock::iterator InsertPt = PrologueBlock->begin();
for (MachineInstr &MI : *PrologueBlock)
if (isPrologueCFIInstruction(MI))
InsertPt = std::next(MI.getIterator());
assert(InsertPt != PrologueBlock->begin() &&
"Inconsistent notion of \"prologue block\"");
// No point starting before the prologue block.
// TODO: the unwind tables will still be incorrect if an epilogue physically
// preceeds the prologue.
MachineFunction::iterator CurrBB = std::next(PrologueBlock->getIterator());
bool HasFrame = BlockInfo[PrologueBlock->getNumber()].HasFrameOnExit;
while (CurrBB != MF.end()) {
const BlockFlags &Info = BlockInfo[CurrBB->getNumber()];
if (!Info.Reachable) {
++CurrBB;
continue;
}
#ifndef NDEBUG
if (!Info.StrongNoFrameOnEntry) {
for (auto *Pred : CurrBB->predecessors()) {
BlockFlags &PredInfo = BlockInfo[Pred->getNumber()];
assert((!PredInfo.Reachable ||
Info.HasFrameOnEntry == PredInfo.HasFrameOnExit) &&
"Inconsistent call frame state");
}
}
#endif
if (!Info.StrongNoFrameOnEntry && Info.HasFrameOnEntry && !HasFrame) {
// Reset to the "after prologue" state.
// Insert a `.cfi_remember_state` into the last block known to have a
// stack frame.
unsigned CFIIndex =
MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr));
BuildMI(*InsertMBB, InsertPt, DebugLoc(),
TII.get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex);
// Insert a `.cfi_restore_state` at the beginning of the current block.
CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr));
InsertPt = BuildMI(*CurrBB, CurrBB->begin(), DebugLoc(),
TII.get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex);
++InsertPt;
InsertMBB = &*CurrBB;
Change = true;
} else if ((Info.StrongNoFrameOnEntry || !Info.HasFrameOnEntry) &&
HasFrame) {
// Reset to the state upon function entry.
TFL.resetCFIToInitialState(*CurrBB);
Change = true;
}
HasFrame = Info.HasFrameOnExit;
++CurrBB;
}
return Change;
}