llvm-project/libc/benchmarks/LibcBenchmarkTest.cpp

177 lines
6.3 KiB
C++

//===-- Benchmark function tests -----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "LibcBenchmark.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include <chrono>
#include <limits>
#include <queue>
#include <vector>
using std::chrono::nanoseconds;
using ::testing::ElementsAre;
using ::testing::Field;
using ::testing::IsEmpty;
using ::testing::SizeIs;
namespace llvm {
namespace libc_benchmarks {
namespace {
// A simple parameter provider returning a zero initialized vector of size
// `iterations`.
struct DummyParameterProvider {
std::vector<char> generateBatch(size_t iterations) {
return std::vector<char>(iterations);
}
};
class LibcBenchmark : public ::testing::Test {
public:
// A Clock interface suitable for testing.
// - Either it returns 0,
// - Or a timepoint coming from the `setMeasurements` call.
Duration now() {
if (!MaybeTimepoints)
return {};
assert(!MaybeTimepoints->empty());
const Duration timepoint = MaybeTimepoints->front();
MaybeTimepoints->pop();
return timepoint;
}
protected:
void SetUp() override { Options.Log = BenchmarkLog::Full; }
void TearDown() override {
// We make sure all the expected measurements were performed.
if (MaybeTimepoints)
EXPECT_THAT(*MaybeTimepoints, IsEmpty());
}
BenchmarkResult run() {
return benchmark(Options, ParameterProvider, DummyFunction, *this);
}
void setMeasurements(llvm::ArrayRef<Duration> Durations) {
MaybeTimepoints.emplace(); // Create the optional value.
Duration CurrentTime = nanoseconds(1);
for (const auto &Duration : Durations) {
MaybeTimepoints->push(CurrentTime);
CurrentTime += Duration;
MaybeTimepoints->push(CurrentTime);
CurrentTime += nanoseconds(1);
}
}
BenchmarkOptions Options;
private:
DummyParameterProvider ParameterProvider;
static char DummyFunction(char Payload) { return Payload; }
llvm::Optional<std::queue<Duration>> MaybeTimepoints;
};
TEST_F(LibcBenchmark, MaxSamplesReached) {
Options.MaxSamples = 1;
const auto Result = run();
EXPECT_THAT(Result.MaybeBenchmarkLog->size(), 1);
EXPECT_THAT(Result.TerminationStatus, BenchmarkStatus::MaxSamplesReached);
}
TEST_F(LibcBenchmark, MaxDurationReached) {
Options.MaxDuration = nanoseconds(10);
setMeasurements({nanoseconds(11)});
const auto Result = run();
EXPECT_THAT(Result.MaybeBenchmarkLog->size(), 1);
EXPECT_THAT(Result.TerminationStatus, BenchmarkStatus::MaxDurationReached);
}
TEST_F(LibcBenchmark, MaxIterationsReached) {
Options.InitialIterations = 1;
Options.MaxIterations = 20;
Options.ScalingFactor = 2;
Options.Epsilon = 0; // unreachable.
const auto Result = run();
EXPECT_THAT(*Result.MaybeBenchmarkLog,
ElementsAre(Field(&BenchmarkState::LastSampleIterations, 1),
Field(&BenchmarkState::LastSampleIterations, 2),
Field(&BenchmarkState::LastSampleIterations, 4),
Field(&BenchmarkState::LastSampleIterations, 8),
Field(&BenchmarkState::LastSampleIterations, 16),
Field(&BenchmarkState::LastSampleIterations, 32)));
EXPECT_THAT(Result.MaybeBenchmarkLog->size(), 6);
EXPECT_THAT(Result.TerminationStatus, BenchmarkStatus::MaxIterationsReached);
}
TEST_F(LibcBenchmark, MinSamples) {
Options.MinSamples = 4;
Options.ScalingFactor = 2;
Options.Epsilon = std::numeric_limits<double>::max(); // always reachable.
setMeasurements(
{nanoseconds(1), nanoseconds(2), nanoseconds(4), nanoseconds(8)});
const auto Result = run();
EXPECT_THAT(*Result.MaybeBenchmarkLog,
ElementsAre(Field(&BenchmarkState::LastSampleIterations, 1),
Field(&BenchmarkState::LastSampleIterations, 2),
Field(&BenchmarkState::LastSampleIterations, 4),
Field(&BenchmarkState::LastSampleIterations, 8)));
EXPECT_THAT(Result.MaybeBenchmarkLog->size(), 4);
EXPECT_THAT(Result.TerminationStatus, BenchmarkStatus::PrecisionReached);
}
TEST_F(LibcBenchmark, Epsilon) {
Options.MinSamples = 4;
Options.ScalingFactor = 2;
Options.Epsilon = std::numeric_limits<double>::max(); // always reachable.
setMeasurements(
{nanoseconds(1), nanoseconds(2), nanoseconds(4), nanoseconds(8)});
const auto Result = run();
EXPECT_THAT(*Result.MaybeBenchmarkLog,
ElementsAre(Field(&BenchmarkState::LastSampleIterations, 1),
Field(&BenchmarkState::LastSampleIterations, 2),
Field(&BenchmarkState::LastSampleIterations, 4),
Field(&BenchmarkState::LastSampleIterations, 8)));
EXPECT_THAT(Result.MaybeBenchmarkLog->size(), 4);
EXPECT_THAT(Result.TerminationStatus, BenchmarkStatus::PrecisionReached);
}
TEST(ArrayRefLoop, Cycle) {
std::array<int, 2> array = {1, 2};
EXPECT_THAT(cycle(array, 0), ElementsAre());
EXPECT_THAT(cycle(array, 1), ElementsAre(1));
EXPECT_THAT(cycle(array, 2), ElementsAre(1, 2));
EXPECT_THAT(cycle(array, 3), ElementsAre(1, 2, 1));
EXPECT_THAT(cycle(array, 4), ElementsAre(1, 2, 1, 2));
EXPECT_THAT(cycle(array, 5), ElementsAre(1, 2, 1, 2, 1));
}
TEST(ByteConstrainedArray, Simple) {
EXPECT_THAT((ByteConstrainedArray<char, 17>()), SizeIs(17));
EXPECT_THAT((ByteConstrainedArray<uint16_t, 17>()), SizeIs(8));
EXPECT_THAT((ByteConstrainedArray<uint32_t, 17>()), SizeIs(4));
EXPECT_THAT((ByteConstrainedArray<uint64_t, 17>()), SizeIs(2));
EXPECT_LE(sizeof(ByteConstrainedArray<char, 17>), 17U);
EXPECT_LE(sizeof(ByteConstrainedArray<uint16_t, 17>), 17U);
EXPECT_LE(sizeof(ByteConstrainedArray<uint32_t, 17>), 17U);
EXPECT_LE(sizeof(ByteConstrainedArray<uint64_t, 17>), 17U);
}
TEST(ByteConstrainedArray, Cycle) {
ByteConstrainedArray<uint64_t, 17> TwoValues{{1UL, 2UL}};
EXPECT_THAT(cycle(TwoValues, 5), ElementsAre(1, 2, 1, 2, 1));
}
} // namespace
} // namespace libc_benchmarks
} // namespace llvm