forked from OSchip/llvm-project
948 lines
29 KiB
C++
948 lines
29 KiB
C++
//===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPUBaseInfo.h"
|
|
#include "AMDGPUTargetTransformInfo.h"
|
|
#include "AMDGPU.h"
|
|
#include "SIDefines.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/BinaryFormat/ELF.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
#include "llvm/MC/MCInstrInfo.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/MC/MCSectionELF.h"
|
|
#include "llvm/MC/MCSubtargetInfo.h"
|
|
#include "llvm/MC/SubtargetFeature.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <utility>
|
|
|
|
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
|
|
|
|
#define GET_INSTRINFO_NAMED_OPS
|
|
#define GET_INSTRMAP_INFO
|
|
#include "AMDGPUGenInstrInfo.inc"
|
|
#undef GET_INSTRMAP_INFO
|
|
#undef GET_INSTRINFO_NAMED_OPS
|
|
|
|
namespace {
|
|
|
|
/// \returns Bit mask for given bit \p Shift and bit \p Width.
|
|
unsigned getBitMask(unsigned Shift, unsigned Width) {
|
|
return ((1 << Width) - 1) << Shift;
|
|
}
|
|
|
|
/// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
|
|
///
|
|
/// \returns Packed \p Dst.
|
|
unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
|
|
Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width);
|
|
Dst |= (Src << Shift) & getBitMask(Shift, Width);
|
|
return Dst;
|
|
}
|
|
|
|
/// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
|
|
///
|
|
/// \returns Unpacked bits.
|
|
unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
|
|
return (Src & getBitMask(Shift, Width)) >> Shift;
|
|
}
|
|
|
|
/// \returns Vmcnt bit shift (lower bits).
|
|
unsigned getVmcntBitShiftLo() { return 0; }
|
|
|
|
/// \returns Vmcnt bit width (lower bits).
|
|
unsigned getVmcntBitWidthLo() { return 4; }
|
|
|
|
/// \returns Expcnt bit shift.
|
|
unsigned getExpcntBitShift() { return 4; }
|
|
|
|
/// \returns Expcnt bit width.
|
|
unsigned getExpcntBitWidth() { return 3; }
|
|
|
|
/// \returns Lgkmcnt bit shift.
|
|
unsigned getLgkmcntBitShift() { return 8; }
|
|
|
|
/// \returns Lgkmcnt bit width.
|
|
unsigned getLgkmcntBitWidth() { return 4; }
|
|
|
|
/// \returns Vmcnt bit shift (higher bits).
|
|
unsigned getVmcntBitShiftHi() { return 14; }
|
|
|
|
/// \returns Vmcnt bit width (higher bits).
|
|
unsigned getVmcntBitWidthHi() { return 2; }
|
|
|
|
} // end namespace anonymous
|
|
|
|
namespace llvm {
|
|
|
|
namespace AMDGPU {
|
|
|
|
struct MIMGInfo {
|
|
uint16_t Opcode;
|
|
uint16_t BaseOpcode;
|
|
uint8_t MIMGEncoding;
|
|
uint8_t VDataDwords;
|
|
uint8_t VAddrDwords;
|
|
};
|
|
|
|
#define GET_MIMGBaseOpcodesTable_IMPL
|
|
#define GET_MIMGDimInfoTable_IMPL
|
|
#define GET_MIMGInfoTable_IMPL
|
|
#define GET_MIMGLZMappingTable_IMPL
|
|
#include "AMDGPUGenSearchableTables.inc"
|
|
|
|
int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
|
|
unsigned VDataDwords, unsigned VAddrDwords) {
|
|
const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
|
|
VDataDwords, VAddrDwords);
|
|
return Info ? Info->Opcode : -1;
|
|
}
|
|
|
|
int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
|
|
const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
|
|
const MIMGInfo *NewInfo =
|
|
getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
|
|
NewChannels, OrigInfo->VAddrDwords);
|
|
return NewInfo ? NewInfo->Opcode : -1;
|
|
}
|
|
|
|
// Wrapper for Tablegen'd function. enum Subtarget is not defined in any
|
|
// header files, so we need to wrap it in a function that takes unsigned
|
|
// instead.
|
|
int getMCOpcode(uint16_t Opcode, unsigned Gen) {
|
|
return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
|
|
}
|
|
|
|
namespace IsaInfo {
|
|
|
|
void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) {
|
|
auto TargetTriple = STI->getTargetTriple();
|
|
auto Version = getIsaVersion(STI->getCPU());
|
|
|
|
Stream << TargetTriple.getArchName() << '-'
|
|
<< TargetTriple.getVendorName() << '-'
|
|
<< TargetTriple.getOSName() << '-'
|
|
<< TargetTriple.getEnvironmentName() << '-'
|
|
<< "gfx"
|
|
<< Version.Major
|
|
<< Version.Minor
|
|
<< Version.Stepping;
|
|
|
|
if (hasXNACK(*STI))
|
|
Stream << "+xnack";
|
|
|
|
Stream.flush();
|
|
}
|
|
|
|
bool hasCodeObjectV3(const MCSubtargetInfo *STI) {
|
|
return STI->getFeatureBits().test(FeatureCodeObjectV3);
|
|
}
|
|
|
|
unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
|
|
if (STI->getFeatureBits().test(FeatureWavefrontSize16))
|
|
return 16;
|
|
if (STI->getFeatureBits().test(FeatureWavefrontSize32))
|
|
return 32;
|
|
|
|
return 64;
|
|
}
|
|
|
|
unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
|
|
if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
|
|
return 32768;
|
|
if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
|
|
return 65536;
|
|
|
|
return 0;
|
|
}
|
|
|
|
unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
|
|
return 4;
|
|
}
|
|
|
|
unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
|
|
unsigned FlatWorkGroupSize) {
|
|
if (!STI->getFeatureBits().test(FeatureGCN))
|
|
return 8;
|
|
unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
|
|
if (N == 1)
|
|
return 40;
|
|
N = 40 / N;
|
|
return std::min(N, 16u);
|
|
}
|
|
|
|
unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI) {
|
|
return getMaxWavesPerEU() * getEUsPerCU(STI);
|
|
}
|
|
|
|
unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI,
|
|
unsigned FlatWorkGroupSize) {
|
|
return getWavesPerWorkGroup(STI, FlatWorkGroupSize);
|
|
}
|
|
|
|
unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
|
|
return 1;
|
|
}
|
|
|
|
unsigned getMaxWavesPerEU() {
|
|
// FIXME: Need to take scratch memory into account.
|
|
return 10;
|
|
}
|
|
|
|
unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI,
|
|
unsigned FlatWorkGroupSize) {
|
|
return alignTo(getMaxWavesPerCU(STI, FlatWorkGroupSize),
|
|
getEUsPerCU(STI)) / getEUsPerCU(STI);
|
|
}
|
|
|
|
unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
|
|
return 1;
|
|
}
|
|
|
|
unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
|
|
return 2048;
|
|
}
|
|
|
|
unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
|
|
unsigned FlatWorkGroupSize) {
|
|
return alignTo(FlatWorkGroupSize, getWavefrontSize(STI)) /
|
|
getWavefrontSize(STI);
|
|
}
|
|
|
|
unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
|
|
IsaVersion Version = getIsaVersion(STI->getCPU());
|
|
if (Version.Major >= 8)
|
|
return 16;
|
|
return 8;
|
|
}
|
|
|
|
unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
|
|
return 8;
|
|
}
|
|
|
|
unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
|
|
IsaVersion Version = getIsaVersion(STI->getCPU());
|
|
if (Version.Major >= 8)
|
|
return 800;
|
|
return 512;
|
|
}
|
|
|
|
unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
|
|
if (STI->getFeatureBits().test(FeatureSGPRInitBug))
|
|
return FIXED_NUM_SGPRS_FOR_INIT_BUG;
|
|
|
|
IsaVersion Version = getIsaVersion(STI->getCPU());
|
|
if (Version.Major >= 8)
|
|
return 102;
|
|
return 104;
|
|
}
|
|
|
|
unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
|
|
assert(WavesPerEU != 0);
|
|
|
|
if (WavesPerEU >= getMaxWavesPerEU())
|
|
return 0;
|
|
|
|
unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
|
|
if (STI->getFeatureBits().test(FeatureTrapHandler))
|
|
MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
|
|
MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
|
|
return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
|
|
}
|
|
|
|
unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
|
|
bool Addressable) {
|
|
assert(WavesPerEU != 0);
|
|
|
|
IsaVersion Version = getIsaVersion(STI->getCPU());
|
|
unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
|
|
if (Version.Major >= 8 && !Addressable)
|
|
AddressableNumSGPRs = 112;
|
|
unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
|
|
if (STI->getFeatureBits().test(FeatureTrapHandler))
|
|
MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
|
|
MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
|
|
return std::min(MaxNumSGPRs, AddressableNumSGPRs);
|
|
}
|
|
|
|
unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
|
|
bool FlatScrUsed, bool XNACKUsed) {
|
|
unsigned ExtraSGPRs = 0;
|
|
if (VCCUsed)
|
|
ExtraSGPRs = 2;
|
|
|
|
IsaVersion Version = getIsaVersion(STI->getCPU());
|
|
if (Version.Major < 8) {
|
|
if (FlatScrUsed)
|
|
ExtraSGPRs = 4;
|
|
} else {
|
|
if (XNACKUsed)
|
|
ExtraSGPRs = 4;
|
|
|
|
if (FlatScrUsed)
|
|
ExtraSGPRs = 6;
|
|
}
|
|
|
|
return ExtraSGPRs;
|
|
}
|
|
|
|
unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
|
|
bool FlatScrUsed) {
|
|
return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
|
|
STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
|
|
}
|
|
|
|
unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
|
|
NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
|
|
// SGPRBlocks is actual number of SGPR blocks minus 1.
|
|
return NumSGPRs / getSGPREncodingGranule(STI) - 1;
|
|
}
|
|
|
|
unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI) {
|
|
return 4;
|
|
}
|
|
|
|
unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI) {
|
|
return getVGPRAllocGranule(STI);
|
|
}
|
|
|
|
unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
|
|
return 256;
|
|
}
|
|
|
|
unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
|
|
return getTotalNumVGPRs(STI);
|
|
}
|
|
|
|
unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
|
|
assert(WavesPerEU != 0);
|
|
|
|
if (WavesPerEU >= getMaxWavesPerEU())
|
|
return 0;
|
|
unsigned MinNumVGPRs =
|
|
alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1),
|
|
getVGPRAllocGranule(STI)) + 1;
|
|
return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI));
|
|
}
|
|
|
|
unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
|
|
assert(WavesPerEU != 0);
|
|
|
|
unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
|
|
getVGPRAllocGranule(STI));
|
|
unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
|
|
return std::min(MaxNumVGPRs, AddressableNumVGPRs);
|
|
}
|
|
|
|
unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs) {
|
|
NumVGPRs = alignTo(std::max(1u, NumVGPRs), getVGPREncodingGranule(STI));
|
|
// VGPRBlocks is actual number of VGPR blocks minus 1.
|
|
return NumVGPRs / getVGPREncodingGranule(STI) - 1;
|
|
}
|
|
|
|
} // end namespace IsaInfo
|
|
|
|
void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
|
|
const MCSubtargetInfo *STI) {
|
|
IsaVersion Version = getIsaVersion(STI->getCPU());
|
|
|
|
memset(&Header, 0, sizeof(Header));
|
|
|
|
Header.amd_kernel_code_version_major = 1;
|
|
Header.amd_kernel_code_version_minor = 2;
|
|
Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
|
|
Header.amd_machine_version_major = Version.Major;
|
|
Header.amd_machine_version_minor = Version.Minor;
|
|
Header.amd_machine_version_stepping = Version.Stepping;
|
|
Header.kernel_code_entry_byte_offset = sizeof(Header);
|
|
// wavefront_size is specified as a power of 2: 2^6 = 64 threads.
|
|
Header.wavefront_size = 6;
|
|
|
|
// If the code object does not support indirect functions, then the value must
|
|
// be 0xffffffff.
|
|
Header.call_convention = -1;
|
|
|
|
// These alignment values are specified in powers of two, so alignment =
|
|
// 2^n. The minimum alignment is 2^4 = 16.
|
|
Header.kernarg_segment_alignment = 4;
|
|
Header.group_segment_alignment = 4;
|
|
Header.private_segment_alignment = 4;
|
|
}
|
|
|
|
amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor() {
|
|
amdhsa::kernel_descriptor_t KD;
|
|
memset(&KD, 0, sizeof(KD));
|
|
AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
|
|
amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
|
|
amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
|
|
AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
|
|
amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
|
|
AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
|
|
amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
|
|
AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
|
|
amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
|
|
return KD;
|
|
}
|
|
|
|
bool isGroupSegment(const GlobalValue *GV) {
|
|
return GV->getType()->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
|
|
}
|
|
|
|
bool isGlobalSegment(const GlobalValue *GV) {
|
|
return GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
|
|
}
|
|
|
|
bool isReadOnlySegment(const GlobalValue *GV) {
|
|
return GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
|
|
GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
|
|
}
|
|
|
|
bool shouldEmitConstantsToTextSection(const Triple &TT) {
|
|
return TT.getOS() != Triple::AMDHSA;
|
|
}
|
|
|
|
int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
|
|
Attribute A = F.getFnAttribute(Name);
|
|
int Result = Default;
|
|
|
|
if (A.isStringAttribute()) {
|
|
StringRef Str = A.getValueAsString();
|
|
if (Str.getAsInteger(0, Result)) {
|
|
LLVMContext &Ctx = F.getContext();
|
|
Ctx.emitError("can't parse integer attribute " + Name);
|
|
}
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
std::pair<int, int> getIntegerPairAttribute(const Function &F,
|
|
StringRef Name,
|
|
std::pair<int, int> Default,
|
|
bool OnlyFirstRequired) {
|
|
Attribute A = F.getFnAttribute(Name);
|
|
if (!A.isStringAttribute())
|
|
return Default;
|
|
|
|
LLVMContext &Ctx = F.getContext();
|
|
std::pair<int, int> Ints = Default;
|
|
std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
|
|
if (Strs.first.trim().getAsInteger(0, Ints.first)) {
|
|
Ctx.emitError("can't parse first integer attribute " + Name);
|
|
return Default;
|
|
}
|
|
if (Strs.second.trim().getAsInteger(0, Ints.second)) {
|
|
if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
|
|
Ctx.emitError("can't parse second integer attribute " + Name);
|
|
return Default;
|
|
}
|
|
}
|
|
|
|
return Ints;
|
|
}
|
|
|
|
unsigned getVmcntBitMask(const IsaVersion &Version) {
|
|
unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1;
|
|
if (Version.Major < 9)
|
|
return VmcntLo;
|
|
|
|
unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo();
|
|
return VmcntLo | VmcntHi;
|
|
}
|
|
|
|
unsigned getExpcntBitMask(const IsaVersion &Version) {
|
|
return (1 << getExpcntBitWidth()) - 1;
|
|
}
|
|
|
|
unsigned getLgkmcntBitMask(const IsaVersion &Version) {
|
|
return (1 << getLgkmcntBitWidth()) - 1;
|
|
}
|
|
|
|
unsigned getWaitcntBitMask(const IsaVersion &Version) {
|
|
unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo());
|
|
unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth());
|
|
unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(), getLgkmcntBitWidth());
|
|
unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt;
|
|
if (Version.Major < 9)
|
|
return Waitcnt;
|
|
|
|
unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi());
|
|
return Waitcnt | VmcntHi;
|
|
}
|
|
|
|
unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
|
|
unsigned VmcntLo =
|
|
unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
|
|
if (Version.Major < 9)
|
|
return VmcntLo;
|
|
|
|
unsigned VmcntHi =
|
|
unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
|
|
VmcntHi <<= getVmcntBitWidthLo();
|
|
return VmcntLo | VmcntHi;
|
|
}
|
|
|
|
unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
|
|
return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
|
|
}
|
|
|
|
unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
|
|
return unpackBits(Waitcnt, getLgkmcntBitShift(), getLgkmcntBitWidth());
|
|
}
|
|
|
|
void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
|
|
unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
|
|
Vmcnt = decodeVmcnt(Version, Waitcnt);
|
|
Expcnt = decodeExpcnt(Version, Waitcnt);
|
|
Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
|
|
}
|
|
|
|
unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
|
|
unsigned Vmcnt) {
|
|
Waitcnt =
|
|
packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
|
|
if (Version.Major < 9)
|
|
return Waitcnt;
|
|
|
|
Vmcnt >>= getVmcntBitWidthLo();
|
|
return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
|
|
}
|
|
|
|
unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
|
|
unsigned Expcnt) {
|
|
return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
|
|
}
|
|
|
|
unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
|
|
unsigned Lgkmcnt) {
|
|
return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(), getLgkmcntBitWidth());
|
|
}
|
|
|
|
unsigned encodeWaitcnt(const IsaVersion &Version,
|
|
unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
|
|
unsigned Waitcnt = getWaitcntBitMask(Version);
|
|
Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
|
|
Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
|
|
Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
|
|
return Waitcnt;
|
|
}
|
|
|
|
unsigned getInitialPSInputAddr(const Function &F) {
|
|
return getIntegerAttribute(F, "InitialPSInputAddr", 0);
|
|
}
|
|
|
|
bool isShader(CallingConv::ID cc) {
|
|
switch(cc) {
|
|
case CallingConv::AMDGPU_VS:
|
|
case CallingConv::AMDGPU_LS:
|
|
case CallingConv::AMDGPU_HS:
|
|
case CallingConv::AMDGPU_ES:
|
|
case CallingConv::AMDGPU_GS:
|
|
case CallingConv::AMDGPU_PS:
|
|
case CallingConv::AMDGPU_CS:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool isCompute(CallingConv::ID cc) {
|
|
return !isShader(cc) || cc == CallingConv::AMDGPU_CS;
|
|
}
|
|
|
|
bool isEntryFunctionCC(CallingConv::ID CC) {
|
|
switch (CC) {
|
|
case CallingConv::AMDGPU_KERNEL:
|
|
case CallingConv::SPIR_KERNEL:
|
|
case CallingConv::AMDGPU_VS:
|
|
case CallingConv::AMDGPU_GS:
|
|
case CallingConv::AMDGPU_PS:
|
|
case CallingConv::AMDGPU_CS:
|
|
case CallingConv::AMDGPU_ES:
|
|
case CallingConv::AMDGPU_HS:
|
|
case CallingConv::AMDGPU_LS:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool hasXNACK(const MCSubtargetInfo &STI) {
|
|
return STI.getFeatureBits()[AMDGPU::FeatureXNACK];
|
|
}
|
|
|
|
bool hasMIMG_R128(const MCSubtargetInfo &STI) {
|
|
return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128];
|
|
}
|
|
|
|
bool hasPackedD16(const MCSubtargetInfo &STI) {
|
|
return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem];
|
|
}
|
|
|
|
bool isSI(const MCSubtargetInfo &STI) {
|
|
return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
|
|
}
|
|
|
|
bool isCI(const MCSubtargetInfo &STI) {
|
|
return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
|
|
}
|
|
|
|
bool isVI(const MCSubtargetInfo &STI) {
|
|
return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
|
|
}
|
|
|
|
bool isGFX9(const MCSubtargetInfo &STI) {
|
|
return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
|
|
}
|
|
|
|
bool isGCN3Encoding(const MCSubtargetInfo &STI) {
|
|
return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding];
|
|
}
|
|
|
|
bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
|
|
const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
|
|
const unsigned FirstSubReg = TRI->getSubReg(Reg, 1);
|
|
return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
|
|
Reg == AMDGPU::SCC;
|
|
}
|
|
|
|
bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) {
|
|
for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) {
|
|
if (*R == Reg1) return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
#define MAP_REG2REG \
|
|
using namespace AMDGPU; \
|
|
switch(Reg) { \
|
|
default: return Reg; \
|
|
CASE_CI_VI(FLAT_SCR) \
|
|
CASE_CI_VI(FLAT_SCR_LO) \
|
|
CASE_CI_VI(FLAT_SCR_HI) \
|
|
CASE_VI_GFX9(TTMP0) \
|
|
CASE_VI_GFX9(TTMP1) \
|
|
CASE_VI_GFX9(TTMP2) \
|
|
CASE_VI_GFX9(TTMP3) \
|
|
CASE_VI_GFX9(TTMP4) \
|
|
CASE_VI_GFX9(TTMP5) \
|
|
CASE_VI_GFX9(TTMP6) \
|
|
CASE_VI_GFX9(TTMP7) \
|
|
CASE_VI_GFX9(TTMP8) \
|
|
CASE_VI_GFX9(TTMP9) \
|
|
CASE_VI_GFX9(TTMP10) \
|
|
CASE_VI_GFX9(TTMP11) \
|
|
CASE_VI_GFX9(TTMP12) \
|
|
CASE_VI_GFX9(TTMP13) \
|
|
CASE_VI_GFX9(TTMP14) \
|
|
CASE_VI_GFX9(TTMP15) \
|
|
CASE_VI_GFX9(TTMP0_TTMP1) \
|
|
CASE_VI_GFX9(TTMP2_TTMP3) \
|
|
CASE_VI_GFX9(TTMP4_TTMP5) \
|
|
CASE_VI_GFX9(TTMP6_TTMP7) \
|
|
CASE_VI_GFX9(TTMP8_TTMP9) \
|
|
CASE_VI_GFX9(TTMP10_TTMP11) \
|
|
CASE_VI_GFX9(TTMP12_TTMP13) \
|
|
CASE_VI_GFX9(TTMP14_TTMP15) \
|
|
CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3) \
|
|
CASE_VI_GFX9(TTMP4_TTMP5_TTMP6_TTMP7) \
|
|
CASE_VI_GFX9(TTMP8_TTMP9_TTMP10_TTMP11) \
|
|
CASE_VI_GFX9(TTMP12_TTMP13_TTMP14_TTMP15) \
|
|
CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
|
|
CASE_VI_GFX9(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
|
|
CASE_VI_GFX9(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
|
|
CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
|
|
}
|
|
|
|
#define CASE_CI_VI(node) \
|
|
assert(!isSI(STI)); \
|
|
case node: return isCI(STI) ? node##_ci : node##_vi;
|
|
|
|
#define CASE_VI_GFX9(node) \
|
|
case node: return isGFX9(STI) ? node##_gfx9 : node##_vi;
|
|
|
|
unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
|
|
if (STI.getTargetTriple().getArch() == Triple::r600)
|
|
return Reg;
|
|
MAP_REG2REG
|
|
}
|
|
|
|
#undef CASE_CI_VI
|
|
#undef CASE_VI_GFX9
|
|
|
|
#define CASE_CI_VI(node) case node##_ci: case node##_vi: return node;
|
|
#define CASE_VI_GFX9(node) case node##_vi: case node##_gfx9: return node;
|
|
|
|
unsigned mc2PseudoReg(unsigned Reg) {
|
|
MAP_REG2REG
|
|
}
|
|
|
|
#undef CASE_CI_VI
|
|
#undef CASE_VI_GFX9
|
|
#undef MAP_REG2REG
|
|
|
|
bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
|
|
assert(OpNo < Desc.NumOperands);
|
|
unsigned OpType = Desc.OpInfo[OpNo].OperandType;
|
|
return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
|
|
OpType <= AMDGPU::OPERAND_SRC_LAST;
|
|
}
|
|
|
|
bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
|
|
assert(OpNo < Desc.NumOperands);
|
|
unsigned OpType = Desc.OpInfo[OpNo].OperandType;
|
|
switch (OpType) {
|
|
case AMDGPU::OPERAND_REG_IMM_FP32:
|
|
case AMDGPU::OPERAND_REG_IMM_FP64:
|
|
case AMDGPU::OPERAND_REG_IMM_FP16:
|
|
case AMDGPU::OPERAND_REG_INLINE_C_FP32:
|
|
case AMDGPU::OPERAND_REG_INLINE_C_FP64:
|
|
case AMDGPU::OPERAND_REG_INLINE_C_FP16:
|
|
case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
|
|
assert(OpNo < Desc.NumOperands);
|
|
unsigned OpType = Desc.OpInfo[OpNo].OperandType;
|
|
return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
|
|
OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
|
|
}
|
|
|
|
// Avoid using MCRegisterClass::getSize, since that function will go away
|
|
// (move from MC* level to Target* level). Return size in bits.
|
|
unsigned getRegBitWidth(unsigned RCID) {
|
|
switch (RCID) {
|
|
case AMDGPU::SGPR_32RegClassID:
|
|
case AMDGPU::VGPR_32RegClassID:
|
|
case AMDGPU::VS_32RegClassID:
|
|
case AMDGPU::SReg_32RegClassID:
|
|
case AMDGPU::SReg_32_XM0RegClassID:
|
|
return 32;
|
|
case AMDGPU::SGPR_64RegClassID:
|
|
case AMDGPU::VS_64RegClassID:
|
|
case AMDGPU::SReg_64RegClassID:
|
|
case AMDGPU::VReg_64RegClassID:
|
|
return 64;
|
|
case AMDGPU::VReg_96RegClassID:
|
|
return 96;
|
|
case AMDGPU::SGPR_128RegClassID:
|
|
case AMDGPU::SReg_128RegClassID:
|
|
case AMDGPU::VReg_128RegClassID:
|
|
return 128;
|
|
case AMDGPU::SReg_256RegClassID:
|
|
case AMDGPU::VReg_256RegClassID:
|
|
return 256;
|
|
case AMDGPU::SReg_512RegClassID:
|
|
case AMDGPU::VReg_512RegClassID:
|
|
return 512;
|
|
default:
|
|
llvm_unreachable("Unexpected register class");
|
|
}
|
|
}
|
|
|
|
unsigned getRegBitWidth(const MCRegisterClass &RC) {
|
|
return getRegBitWidth(RC.getID());
|
|
}
|
|
|
|
unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
|
|
unsigned OpNo) {
|
|
assert(OpNo < Desc.NumOperands);
|
|
unsigned RCID = Desc.OpInfo[OpNo].RegClass;
|
|
return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
|
|
}
|
|
|
|
bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
|
|
if (Literal >= -16 && Literal <= 64)
|
|
return true;
|
|
|
|
uint64_t Val = static_cast<uint64_t>(Literal);
|
|
return (Val == DoubleToBits(0.0)) ||
|
|
(Val == DoubleToBits(1.0)) ||
|
|
(Val == DoubleToBits(-1.0)) ||
|
|
(Val == DoubleToBits(0.5)) ||
|
|
(Val == DoubleToBits(-0.5)) ||
|
|
(Val == DoubleToBits(2.0)) ||
|
|
(Val == DoubleToBits(-2.0)) ||
|
|
(Val == DoubleToBits(4.0)) ||
|
|
(Val == DoubleToBits(-4.0)) ||
|
|
(Val == 0x3fc45f306dc9c882 && HasInv2Pi);
|
|
}
|
|
|
|
bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
|
|
if (Literal >= -16 && Literal <= 64)
|
|
return true;
|
|
|
|
// The actual type of the operand does not seem to matter as long
|
|
// as the bits match one of the inline immediate values. For example:
|
|
//
|
|
// -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
|
|
// so it is a legal inline immediate.
|
|
//
|
|
// 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
|
|
// floating-point, so it is a legal inline immediate.
|
|
|
|
uint32_t Val = static_cast<uint32_t>(Literal);
|
|
return (Val == FloatToBits(0.0f)) ||
|
|
(Val == FloatToBits(1.0f)) ||
|
|
(Val == FloatToBits(-1.0f)) ||
|
|
(Val == FloatToBits(0.5f)) ||
|
|
(Val == FloatToBits(-0.5f)) ||
|
|
(Val == FloatToBits(2.0f)) ||
|
|
(Val == FloatToBits(-2.0f)) ||
|
|
(Val == FloatToBits(4.0f)) ||
|
|
(Val == FloatToBits(-4.0f)) ||
|
|
(Val == 0x3e22f983 && HasInv2Pi);
|
|
}
|
|
|
|
bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
|
|
if (!HasInv2Pi)
|
|
return false;
|
|
|
|
if (Literal >= -16 && Literal <= 64)
|
|
return true;
|
|
|
|
uint16_t Val = static_cast<uint16_t>(Literal);
|
|
return Val == 0x3C00 || // 1.0
|
|
Val == 0xBC00 || // -1.0
|
|
Val == 0x3800 || // 0.5
|
|
Val == 0xB800 || // -0.5
|
|
Val == 0x4000 || // 2.0
|
|
Val == 0xC000 || // -2.0
|
|
Val == 0x4400 || // 4.0
|
|
Val == 0xC400 || // -4.0
|
|
Val == 0x3118; // 1/2pi
|
|
}
|
|
|
|
bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
|
|
assert(HasInv2Pi);
|
|
|
|
int16_t Lo16 = static_cast<int16_t>(Literal);
|
|
int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
|
|
return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
|
|
}
|
|
|
|
bool isArgPassedInSGPR(const Argument *A) {
|
|
const Function *F = A->getParent();
|
|
|
|
// Arguments to compute shaders are never a source of divergence.
|
|
CallingConv::ID CC = F->getCallingConv();
|
|
switch (CC) {
|
|
case CallingConv::AMDGPU_KERNEL:
|
|
case CallingConv::SPIR_KERNEL:
|
|
return true;
|
|
case CallingConv::AMDGPU_VS:
|
|
case CallingConv::AMDGPU_LS:
|
|
case CallingConv::AMDGPU_HS:
|
|
case CallingConv::AMDGPU_ES:
|
|
case CallingConv::AMDGPU_GS:
|
|
case CallingConv::AMDGPU_PS:
|
|
case CallingConv::AMDGPU_CS:
|
|
// For non-compute shaders, SGPR inputs are marked with either inreg or byval.
|
|
// Everything else is in VGPRs.
|
|
return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
|
|
F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
|
|
default:
|
|
// TODO: Should calls support inreg for SGPR inputs?
|
|
return false;
|
|
}
|
|
}
|
|
|
|
int64_t getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) {
|
|
if (isGCN3Encoding(ST))
|
|
return ByteOffset;
|
|
return ByteOffset >> 2;
|
|
}
|
|
|
|
bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) {
|
|
int64_t EncodedOffset = getSMRDEncodedOffset(ST, ByteOffset);
|
|
return isGCN3Encoding(ST) ?
|
|
isUInt<20>(EncodedOffset) : isUInt<8>(EncodedOffset);
|
|
}
|
|
|
|
// Given Imm, split it into the values to put into the SOffset and ImmOffset
|
|
// fields in an MUBUF instruction. Return false if it is not possible (due to a
|
|
// hardware bug needing a workaround).
|
|
bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
|
|
const GCNSubtarget *Subtarget) {
|
|
const uint32_t Align = 4;
|
|
const uint32_t MaxImm = alignDown(4095, Align);
|
|
uint32_t Overflow = 0;
|
|
|
|
if (Imm > MaxImm) {
|
|
if (Imm <= MaxImm + 64) {
|
|
// Use an SOffset inline constant for 4..64
|
|
Overflow = Imm - MaxImm;
|
|
Imm = MaxImm;
|
|
} else {
|
|
// Try to keep the same value in SOffset for adjacent loads, so that
|
|
// the corresponding register contents can be re-used.
|
|
//
|
|
// Load values with all low-bits (except for alignment bits) set into
|
|
// SOffset, so that a larger range of values can be covered using
|
|
// s_movk_i32.
|
|
//
|
|
// Atomic operations fail to work correctly when individual address
|
|
// components are unaligned, even if their sum is aligned.
|
|
uint32_t High = (Imm + Align) & ~4095;
|
|
uint32_t Low = (Imm + Align) & 4095;
|
|
Imm = Low;
|
|
Overflow = High - Align;
|
|
}
|
|
}
|
|
|
|
// There is a hardware bug in SI and CI which prevents address clamping in
|
|
// MUBUF instructions from working correctly with SOffsets. The immediate
|
|
// offset is unaffected.
|
|
if (Overflow > 0 &&
|
|
Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
|
|
return false;
|
|
|
|
ImmOffset = Imm;
|
|
SOffset = Overflow;
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct SourceOfDivergence {
|
|
unsigned Intr;
|
|
};
|
|
const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
|
|
|
|
#define GET_SourcesOfDivergence_IMPL
|
|
#include "AMDGPUGenSearchableTables.inc"
|
|
|
|
} // end anonymous namespace
|
|
|
|
bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
|
|
return lookupSourceOfDivergence(IntrID);
|
|
}
|
|
} // namespace AMDGPU
|
|
} // namespace llvm
|