llvm-project/llvm/lib/Target/AMDGPU/Utils/AMDGPUBaseInfo.cpp

948 lines
29 KiB
C++

//===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "AMDGPUBaseInfo.h"
#include "AMDGPUTargetTransformInfo.h"
#include "AMDGPU.h"
#include "SIDefines.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstring>
#include <utility>
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#define GET_INSTRINFO_NAMED_OPS
#define GET_INSTRMAP_INFO
#include "AMDGPUGenInstrInfo.inc"
#undef GET_INSTRMAP_INFO
#undef GET_INSTRINFO_NAMED_OPS
namespace {
/// \returns Bit mask for given bit \p Shift and bit \p Width.
unsigned getBitMask(unsigned Shift, unsigned Width) {
return ((1 << Width) - 1) << Shift;
}
/// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
///
/// \returns Packed \p Dst.
unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width);
Dst |= (Src << Shift) & getBitMask(Shift, Width);
return Dst;
}
/// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
///
/// \returns Unpacked bits.
unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
return (Src & getBitMask(Shift, Width)) >> Shift;
}
/// \returns Vmcnt bit shift (lower bits).
unsigned getVmcntBitShiftLo() { return 0; }
/// \returns Vmcnt bit width (lower bits).
unsigned getVmcntBitWidthLo() { return 4; }
/// \returns Expcnt bit shift.
unsigned getExpcntBitShift() { return 4; }
/// \returns Expcnt bit width.
unsigned getExpcntBitWidth() { return 3; }
/// \returns Lgkmcnt bit shift.
unsigned getLgkmcntBitShift() { return 8; }
/// \returns Lgkmcnt bit width.
unsigned getLgkmcntBitWidth() { return 4; }
/// \returns Vmcnt bit shift (higher bits).
unsigned getVmcntBitShiftHi() { return 14; }
/// \returns Vmcnt bit width (higher bits).
unsigned getVmcntBitWidthHi() { return 2; }
} // end namespace anonymous
namespace llvm {
namespace AMDGPU {
struct MIMGInfo {
uint16_t Opcode;
uint16_t BaseOpcode;
uint8_t MIMGEncoding;
uint8_t VDataDwords;
uint8_t VAddrDwords;
};
#define GET_MIMGBaseOpcodesTable_IMPL
#define GET_MIMGDimInfoTable_IMPL
#define GET_MIMGInfoTable_IMPL
#define GET_MIMGLZMappingTable_IMPL
#include "AMDGPUGenSearchableTables.inc"
int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
unsigned VDataDwords, unsigned VAddrDwords) {
const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
VDataDwords, VAddrDwords);
return Info ? Info->Opcode : -1;
}
int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
const MIMGInfo *NewInfo =
getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
NewChannels, OrigInfo->VAddrDwords);
return NewInfo ? NewInfo->Opcode : -1;
}
// Wrapper for Tablegen'd function. enum Subtarget is not defined in any
// header files, so we need to wrap it in a function that takes unsigned
// instead.
int getMCOpcode(uint16_t Opcode, unsigned Gen) {
return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
}
namespace IsaInfo {
void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) {
auto TargetTriple = STI->getTargetTriple();
auto Version = getIsaVersion(STI->getCPU());
Stream << TargetTriple.getArchName() << '-'
<< TargetTriple.getVendorName() << '-'
<< TargetTriple.getOSName() << '-'
<< TargetTriple.getEnvironmentName() << '-'
<< "gfx"
<< Version.Major
<< Version.Minor
<< Version.Stepping;
if (hasXNACK(*STI))
Stream << "+xnack";
Stream.flush();
}
bool hasCodeObjectV3(const MCSubtargetInfo *STI) {
return STI->getFeatureBits().test(FeatureCodeObjectV3);
}
unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
if (STI->getFeatureBits().test(FeatureWavefrontSize16))
return 16;
if (STI->getFeatureBits().test(FeatureWavefrontSize32))
return 32;
return 64;
}
unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
return 32768;
if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
return 65536;
return 0;
}
unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
return 4;
}
unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
unsigned FlatWorkGroupSize) {
if (!STI->getFeatureBits().test(FeatureGCN))
return 8;
unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
if (N == 1)
return 40;
N = 40 / N;
return std::min(N, 16u);
}
unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI) {
return getMaxWavesPerEU() * getEUsPerCU(STI);
}
unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI,
unsigned FlatWorkGroupSize) {
return getWavesPerWorkGroup(STI, FlatWorkGroupSize);
}
unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
return 1;
}
unsigned getMaxWavesPerEU() {
// FIXME: Need to take scratch memory into account.
return 10;
}
unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI,
unsigned FlatWorkGroupSize) {
return alignTo(getMaxWavesPerCU(STI, FlatWorkGroupSize),
getEUsPerCU(STI)) / getEUsPerCU(STI);
}
unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
return 1;
}
unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
return 2048;
}
unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
unsigned FlatWorkGroupSize) {
return alignTo(FlatWorkGroupSize, getWavefrontSize(STI)) /
getWavefrontSize(STI);
}
unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
IsaVersion Version = getIsaVersion(STI->getCPU());
if (Version.Major >= 8)
return 16;
return 8;
}
unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
return 8;
}
unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
IsaVersion Version = getIsaVersion(STI->getCPU());
if (Version.Major >= 8)
return 800;
return 512;
}
unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
if (STI->getFeatureBits().test(FeatureSGPRInitBug))
return FIXED_NUM_SGPRS_FOR_INIT_BUG;
IsaVersion Version = getIsaVersion(STI->getCPU());
if (Version.Major >= 8)
return 102;
return 104;
}
unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
assert(WavesPerEU != 0);
if (WavesPerEU >= getMaxWavesPerEU())
return 0;
unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
if (STI->getFeatureBits().test(FeatureTrapHandler))
MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
}
unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
bool Addressable) {
assert(WavesPerEU != 0);
IsaVersion Version = getIsaVersion(STI->getCPU());
unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
if (Version.Major >= 8 && !Addressable)
AddressableNumSGPRs = 112;
unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
if (STI->getFeatureBits().test(FeatureTrapHandler))
MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
return std::min(MaxNumSGPRs, AddressableNumSGPRs);
}
unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
bool FlatScrUsed, bool XNACKUsed) {
unsigned ExtraSGPRs = 0;
if (VCCUsed)
ExtraSGPRs = 2;
IsaVersion Version = getIsaVersion(STI->getCPU());
if (Version.Major < 8) {
if (FlatScrUsed)
ExtraSGPRs = 4;
} else {
if (XNACKUsed)
ExtraSGPRs = 4;
if (FlatScrUsed)
ExtraSGPRs = 6;
}
return ExtraSGPRs;
}
unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
bool FlatScrUsed) {
return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
}
unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
// SGPRBlocks is actual number of SGPR blocks minus 1.
return NumSGPRs / getSGPREncodingGranule(STI) - 1;
}
unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI) {
return 4;
}
unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI) {
return getVGPRAllocGranule(STI);
}
unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
return 256;
}
unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
return getTotalNumVGPRs(STI);
}
unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
assert(WavesPerEU != 0);
if (WavesPerEU >= getMaxWavesPerEU())
return 0;
unsigned MinNumVGPRs =
alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1),
getVGPRAllocGranule(STI)) + 1;
return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI));
}
unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
assert(WavesPerEU != 0);
unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
getVGPRAllocGranule(STI));
unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
return std::min(MaxNumVGPRs, AddressableNumVGPRs);
}
unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs) {
NumVGPRs = alignTo(std::max(1u, NumVGPRs), getVGPREncodingGranule(STI));
// VGPRBlocks is actual number of VGPR blocks minus 1.
return NumVGPRs / getVGPREncodingGranule(STI) - 1;
}
} // end namespace IsaInfo
void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
const MCSubtargetInfo *STI) {
IsaVersion Version = getIsaVersion(STI->getCPU());
memset(&Header, 0, sizeof(Header));
Header.amd_kernel_code_version_major = 1;
Header.amd_kernel_code_version_minor = 2;
Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
Header.amd_machine_version_major = Version.Major;
Header.amd_machine_version_minor = Version.Minor;
Header.amd_machine_version_stepping = Version.Stepping;
Header.kernel_code_entry_byte_offset = sizeof(Header);
// wavefront_size is specified as a power of 2: 2^6 = 64 threads.
Header.wavefront_size = 6;
// If the code object does not support indirect functions, then the value must
// be 0xffffffff.
Header.call_convention = -1;
// These alignment values are specified in powers of two, so alignment =
// 2^n. The minimum alignment is 2^4 = 16.
Header.kernarg_segment_alignment = 4;
Header.group_segment_alignment = 4;
Header.private_segment_alignment = 4;
}
amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor() {
amdhsa::kernel_descriptor_t KD;
memset(&KD, 0, sizeof(KD));
AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
return KD;
}
bool isGroupSegment(const GlobalValue *GV) {
return GV->getType()->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
}
bool isGlobalSegment(const GlobalValue *GV) {
return GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
}
bool isReadOnlySegment(const GlobalValue *GV) {
return GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
}
bool shouldEmitConstantsToTextSection(const Triple &TT) {
return TT.getOS() != Triple::AMDHSA;
}
int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
Attribute A = F.getFnAttribute(Name);
int Result = Default;
if (A.isStringAttribute()) {
StringRef Str = A.getValueAsString();
if (Str.getAsInteger(0, Result)) {
LLVMContext &Ctx = F.getContext();
Ctx.emitError("can't parse integer attribute " + Name);
}
}
return Result;
}
std::pair<int, int> getIntegerPairAttribute(const Function &F,
StringRef Name,
std::pair<int, int> Default,
bool OnlyFirstRequired) {
Attribute A = F.getFnAttribute(Name);
if (!A.isStringAttribute())
return Default;
LLVMContext &Ctx = F.getContext();
std::pair<int, int> Ints = Default;
std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
if (Strs.first.trim().getAsInteger(0, Ints.first)) {
Ctx.emitError("can't parse first integer attribute " + Name);
return Default;
}
if (Strs.second.trim().getAsInteger(0, Ints.second)) {
if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
Ctx.emitError("can't parse second integer attribute " + Name);
return Default;
}
}
return Ints;
}
unsigned getVmcntBitMask(const IsaVersion &Version) {
unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1;
if (Version.Major < 9)
return VmcntLo;
unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo();
return VmcntLo | VmcntHi;
}
unsigned getExpcntBitMask(const IsaVersion &Version) {
return (1 << getExpcntBitWidth()) - 1;
}
unsigned getLgkmcntBitMask(const IsaVersion &Version) {
return (1 << getLgkmcntBitWidth()) - 1;
}
unsigned getWaitcntBitMask(const IsaVersion &Version) {
unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo());
unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth());
unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(), getLgkmcntBitWidth());
unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt;
if (Version.Major < 9)
return Waitcnt;
unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi());
return Waitcnt | VmcntHi;
}
unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
unsigned VmcntLo =
unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
if (Version.Major < 9)
return VmcntLo;
unsigned VmcntHi =
unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
VmcntHi <<= getVmcntBitWidthLo();
return VmcntLo | VmcntHi;
}
unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
}
unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
return unpackBits(Waitcnt, getLgkmcntBitShift(), getLgkmcntBitWidth());
}
void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
Vmcnt = decodeVmcnt(Version, Waitcnt);
Expcnt = decodeExpcnt(Version, Waitcnt);
Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
}
unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
unsigned Vmcnt) {
Waitcnt =
packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
if (Version.Major < 9)
return Waitcnt;
Vmcnt >>= getVmcntBitWidthLo();
return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
}
unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
unsigned Expcnt) {
return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
}
unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
unsigned Lgkmcnt) {
return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(), getLgkmcntBitWidth());
}
unsigned encodeWaitcnt(const IsaVersion &Version,
unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
unsigned Waitcnt = getWaitcntBitMask(Version);
Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
return Waitcnt;
}
unsigned getInitialPSInputAddr(const Function &F) {
return getIntegerAttribute(F, "InitialPSInputAddr", 0);
}
bool isShader(CallingConv::ID cc) {
switch(cc) {
case CallingConv::AMDGPU_VS:
case CallingConv::AMDGPU_LS:
case CallingConv::AMDGPU_HS:
case CallingConv::AMDGPU_ES:
case CallingConv::AMDGPU_GS:
case CallingConv::AMDGPU_PS:
case CallingConv::AMDGPU_CS:
return true;
default:
return false;
}
}
bool isCompute(CallingConv::ID cc) {
return !isShader(cc) || cc == CallingConv::AMDGPU_CS;
}
bool isEntryFunctionCC(CallingConv::ID CC) {
switch (CC) {
case CallingConv::AMDGPU_KERNEL:
case CallingConv::SPIR_KERNEL:
case CallingConv::AMDGPU_VS:
case CallingConv::AMDGPU_GS:
case CallingConv::AMDGPU_PS:
case CallingConv::AMDGPU_CS:
case CallingConv::AMDGPU_ES:
case CallingConv::AMDGPU_HS:
case CallingConv::AMDGPU_LS:
return true;
default:
return false;
}
}
bool hasXNACK(const MCSubtargetInfo &STI) {
return STI.getFeatureBits()[AMDGPU::FeatureXNACK];
}
bool hasMIMG_R128(const MCSubtargetInfo &STI) {
return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128];
}
bool hasPackedD16(const MCSubtargetInfo &STI) {
return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem];
}
bool isSI(const MCSubtargetInfo &STI) {
return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
}
bool isCI(const MCSubtargetInfo &STI) {
return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
}
bool isVI(const MCSubtargetInfo &STI) {
return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
}
bool isGFX9(const MCSubtargetInfo &STI) {
return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
}
bool isGCN3Encoding(const MCSubtargetInfo &STI) {
return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding];
}
bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
const unsigned FirstSubReg = TRI->getSubReg(Reg, 1);
return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
Reg == AMDGPU::SCC;
}
bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) {
for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) {
if (*R == Reg1) return true;
}
return false;
}
#define MAP_REG2REG \
using namespace AMDGPU; \
switch(Reg) { \
default: return Reg; \
CASE_CI_VI(FLAT_SCR) \
CASE_CI_VI(FLAT_SCR_LO) \
CASE_CI_VI(FLAT_SCR_HI) \
CASE_VI_GFX9(TTMP0) \
CASE_VI_GFX9(TTMP1) \
CASE_VI_GFX9(TTMP2) \
CASE_VI_GFX9(TTMP3) \
CASE_VI_GFX9(TTMP4) \
CASE_VI_GFX9(TTMP5) \
CASE_VI_GFX9(TTMP6) \
CASE_VI_GFX9(TTMP7) \
CASE_VI_GFX9(TTMP8) \
CASE_VI_GFX9(TTMP9) \
CASE_VI_GFX9(TTMP10) \
CASE_VI_GFX9(TTMP11) \
CASE_VI_GFX9(TTMP12) \
CASE_VI_GFX9(TTMP13) \
CASE_VI_GFX9(TTMP14) \
CASE_VI_GFX9(TTMP15) \
CASE_VI_GFX9(TTMP0_TTMP1) \
CASE_VI_GFX9(TTMP2_TTMP3) \
CASE_VI_GFX9(TTMP4_TTMP5) \
CASE_VI_GFX9(TTMP6_TTMP7) \
CASE_VI_GFX9(TTMP8_TTMP9) \
CASE_VI_GFX9(TTMP10_TTMP11) \
CASE_VI_GFX9(TTMP12_TTMP13) \
CASE_VI_GFX9(TTMP14_TTMP15) \
CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3) \
CASE_VI_GFX9(TTMP4_TTMP5_TTMP6_TTMP7) \
CASE_VI_GFX9(TTMP8_TTMP9_TTMP10_TTMP11) \
CASE_VI_GFX9(TTMP12_TTMP13_TTMP14_TTMP15) \
CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
CASE_VI_GFX9(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
CASE_VI_GFX9(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
}
#define CASE_CI_VI(node) \
assert(!isSI(STI)); \
case node: return isCI(STI) ? node##_ci : node##_vi;
#define CASE_VI_GFX9(node) \
case node: return isGFX9(STI) ? node##_gfx9 : node##_vi;
unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
if (STI.getTargetTriple().getArch() == Triple::r600)
return Reg;
MAP_REG2REG
}
#undef CASE_CI_VI
#undef CASE_VI_GFX9
#define CASE_CI_VI(node) case node##_ci: case node##_vi: return node;
#define CASE_VI_GFX9(node) case node##_vi: case node##_gfx9: return node;
unsigned mc2PseudoReg(unsigned Reg) {
MAP_REG2REG
}
#undef CASE_CI_VI
#undef CASE_VI_GFX9
#undef MAP_REG2REG
bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
assert(OpNo < Desc.NumOperands);
unsigned OpType = Desc.OpInfo[OpNo].OperandType;
return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
OpType <= AMDGPU::OPERAND_SRC_LAST;
}
bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
assert(OpNo < Desc.NumOperands);
unsigned OpType = Desc.OpInfo[OpNo].OperandType;
switch (OpType) {
case AMDGPU::OPERAND_REG_IMM_FP32:
case AMDGPU::OPERAND_REG_IMM_FP64:
case AMDGPU::OPERAND_REG_IMM_FP16:
case AMDGPU::OPERAND_REG_INLINE_C_FP32:
case AMDGPU::OPERAND_REG_INLINE_C_FP64:
case AMDGPU::OPERAND_REG_INLINE_C_FP16:
case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
return true;
default:
return false;
}
}
bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
assert(OpNo < Desc.NumOperands);
unsigned OpType = Desc.OpInfo[OpNo].OperandType;
return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
}
// Avoid using MCRegisterClass::getSize, since that function will go away
// (move from MC* level to Target* level). Return size in bits.
unsigned getRegBitWidth(unsigned RCID) {
switch (RCID) {
case AMDGPU::SGPR_32RegClassID:
case AMDGPU::VGPR_32RegClassID:
case AMDGPU::VS_32RegClassID:
case AMDGPU::SReg_32RegClassID:
case AMDGPU::SReg_32_XM0RegClassID:
return 32;
case AMDGPU::SGPR_64RegClassID:
case AMDGPU::VS_64RegClassID:
case AMDGPU::SReg_64RegClassID:
case AMDGPU::VReg_64RegClassID:
return 64;
case AMDGPU::VReg_96RegClassID:
return 96;
case AMDGPU::SGPR_128RegClassID:
case AMDGPU::SReg_128RegClassID:
case AMDGPU::VReg_128RegClassID:
return 128;
case AMDGPU::SReg_256RegClassID:
case AMDGPU::VReg_256RegClassID:
return 256;
case AMDGPU::SReg_512RegClassID:
case AMDGPU::VReg_512RegClassID:
return 512;
default:
llvm_unreachable("Unexpected register class");
}
}
unsigned getRegBitWidth(const MCRegisterClass &RC) {
return getRegBitWidth(RC.getID());
}
unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
unsigned OpNo) {
assert(OpNo < Desc.NumOperands);
unsigned RCID = Desc.OpInfo[OpNo].RegClass;
return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
}
bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
if (Literal >= -16 && Literal <= 64)
return true;
uint64_t Val = static_cast<uint64_t>(Literal);
return (Val == DoubleToBits(0.0)) ||
(Val == DoubleToBits(1.0)) ||
(Val == DoubleToBits(-1.0)) ||
(Val == DoubleToBits(0.5)) ||
(Val == DoubleToBits(-0.5)) ||
(Val == DoubleToBits(2.0)) ||
(Val == DoubleToBits(-2.0)) ||
(Val == DoubleToBits(4.0)) ||
(Val == DoubleToBits(-4.0)) ||
(Val == 0x3fc45f306dc9c882 && HasInv2Pi);
}
bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
if (Literal >= -16 && Literal <= 64)
return true;
// The actual type of the operand does not seem to matter as long
// as the bits match one of the inline immediate values. For example:
//
// -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
// so it is a legal inline immediate.
//
// 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
// floating-point, so it is a legal inline immediate.
uint32_t Val = static_cast<uint32_t>(Literal);
return (Val == FloatToBits(0.0f)) ||
(Val == FloatToBits(1.0f)) ||
(Val == FloatToBits(-1.0f)) ||
(Val == FloatToBits(0.5f)) ||
(Val == FloatToBits(-0.5f)) ||
(Val == FloatToBits(2.0f)) ||
(Val == FloatToBits(-2.0f)) ||
(Val == FloatToBits(4.0f)) ||
(Val == FloatToBits(-4.0f)) ||
(Val == 0x3e22f983 && HasInv2Pi);
}
bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
if (!HasInv2Pi)
return false;
if (Literal >= -16 && Literal <= 64)
return true;
uint16_t Val = static_cast<uint16_t>(Literal);
return Val == 0x3C00 || // 1.0
Val == 0xBC00 || // -1.0
Val == 0x3800 || // 0.5
Val == 0xB800 || // -0.5
Val == 0x4000 || // 2.0
Val == 0xC000 || // -2.0
Val == 0x4400 || // 4.0
Val == 0xC400 || // -4.0
Val == 0x3118; // 1/2pi
}
bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
assert(HasInv2Pi);
int16_t Lo16 = static_cast<int16_t>(Literal);
int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
}
bool isArgPassedInSGPR(const Argument *A) {
const Function *F = A->getParent();
// Arguments to compute shaders are never a source of divergence.
CallingConv::ID CC = F->getCallingConv();
switch (CC) {
case CallingConv::AMDGPU_KERNEL:
case CallingConv::SPIR_KERNEL:
return true;
case CallingConv::AMDGPU_VS:
case CallingConv::AMDGPU_LS:
case CallingConv::AMDGPU_HS:
case CallingConv::AMDGPU_ES:
case CallingConv::AMDGPU_GS:
case CallingConv::AMDGPU_PS:
case CallingConv::AMDGPU_CS:
// For non-compute shaders, SGPR inputs are marked with either inreg or byval.
// Everything else is in VGPRs.
return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
default:
// TODO: Should calls support inreg for SGPR inputs?
return false;
}
}
int64_t getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) {
if (isGCN3Encoding(ST))
return ByteOffset;
return ByteOffset >> 2;
}
bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) {
int64_t EncodedOffset = getSMRDEncodedOffset(ST, ByteOffset);
return isGCN3Encoding(ST) ?
isUInt<20>(EncodedOffset) : isUInt<8>(EncodedOffset);
}
// Given Imm, split it into the values to put into the SOffset and ImmOffset
// fields in an MUBUF instruction. Return false if it is not possible (due to a
// hardware bug needing a workaround).
bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
const GCNSubtarget *Subtarget) {
const uint32_t Align = 4;
const uint32_t MaxImm = alignDown(4095, Align);
uint32_t Overflow = 0;
if (Imm > MaxImm) {
if (Imm <= MaxImm + 64) {
// Use an SOffset inline constant for 4..64
Overflow = Imm - MaxImm;
Imm = MaxImm;
} else {
// Try to keep the same value in SOffset for adjacent loads, so that
// the corresponding register contents can be re-used.
//
// Load values with all low-bits (except for alignment bits) set into
// SOffset, so that a larger range of values can be covered using
// s_movk_i32.
//
// Atomic operations fail to work correctly when individual address
// components are unaligned, even if their sum is aligned.
uint32_t High = (Imm + Align) & ~4095;
uint32_t Low = (Imm + Align) & 4095;
Imm = Low;
Overflow = High - Align;
}
}
// There is a hardware bug in SI and CI which prevents address clamping in
// MUBUF instructions from working correctly with SOffsets. The immediate
// offset is unaffected.
if (Overflow > 0 &&
Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
return false;
ImmOffset = Imm;
SOffset = Overflow;
return true;
}
namespace {
struct SourceOfDivergence {
unsigned Intr;
};
const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
#define GET_SourcesOfDivergence_IMPL
#include "AMDGPUGenSearchableTables.inc"
} // end anonymous namespace
bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
return lookupSourceOfDivergence(IntrID);
}
} // namespace AMDGPU
} // namespace llvm