forked from OSchip/llvm-project
1185 lines
46 KiB
C++
1185 lines
46 KiB
C++
//=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// \brief This file lowers exception-related instructions and setjmp/longjmp
|
|
/// function calls in order to use Emscripten's JavaScript try and catch
|
|
/// mechanism.
|
|
///
|
|
/// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's
|
|
/// try and catch syntax and relevant exception-related libraries implemented
|
|
/// in JavaScript glue code that will be produced by Emscripten. This is similar
|
|
/// to the current Emscripten asm.js exception handling in fastcomp. For
|
|
/// fastcomp's EH / SjLj scheme, see these files in fastcomp LLVM branch:
|
|
/// (Location: https://github.com/kripken/emscripten-fastcomp)
|
|
/// lib/Target/JSBackend/NaCl/LowerEmExceptionsPass.cpp
|
|
/// lib/Target/JSBackend/NaCl/LowerEmSetjmp.cpp
|
|
/// lib/Target/JSBackend/JSBackend.cpp
|
|
/// lib/Target/JSBackend/CallHandlers.h
|
|
///
|
|
/// * Exception handling
|
|
/// This pass lowers invokes and landingpads into library functions in JS glue
|
|
/// code. Invokes are lowered into function wrappers called invoke wrappers that
|
|
/// exist in JS side, which wraps the original function call with JS try-catch.
|
|
/// If an exception occurred, cxa_throw() function in JS side sets some
|
|
/// variables (see below) so we can check whether an exception occurred from
|
|
/// wasm code and handle it appropriately.
|
|
///
|
|
/// * Setjmp-longjmp handling
|
|
/// This pass lowers setjmp to a reasonably-performant approach for emscripten.
|
|
/// The idea is that each block with a setjmp is broken up into two parts: the
|
|
/// part containing setjmp and the part right after the setjmp. The latter part
|
|
/// is either reached from the setjmp, or later from a longjmp. To handle the
|
|
/// longjmp, all calls that might longjmp are also called using invoke wrappers
|
|
/// and thus JS / try-catch. JS longjmp() function also sets some variables so
|
|
/// we can check / whether a longjmp occurred from wasm code. Each block with a
|
|
/// function call that might longjmp is also split up after the longjmp call.
|
|
/// After the longjmp call, we check whether a longjmp occurred, and if it did,
|
|
/// which setjmp it corresponds to, and jump to the right post-setjmp block.
|
|
/// We assume setjmp-longjmp handling always run after EH handling, which means
|
|
/// we don't expect any exception-related instructions when SjLj runs.
|
|
/// FIXME Currently this scheme does not support indirect call of setjmp,
|
|
/// because of the limitation of the scheme itself. fastcomp does not support it
|
|
/// either.
|
|
///
|
|
/// In detail, this pass does following things:
|
|
///
|
|
/// 1) Create three global variables: __THREW__, __threwValue, and __tempRet0.
|
|
/// __tempRet0 will be set within __cxa_find_matching_catch() function in
|
|
/// JS library, and __THREW__ and __threwValue will be set in invoke wrappers
|
|
/// in JS glue code. For what invoke wrappers are, refer to 3). These
|
|
/// variables are used for both exceptions and setjmp/longjmps.
|
|
/// __THREW__ indicates whether an exception or a longjmp occurred or not. 0
|
|
/// means nothing occurred, 1 means an exception occurred, and other numbers
|
|
/// mean a longjmp occurred. In the case of longjmp, __threwValue variable
|
|
/// indicates the corresponding setjmp buffer the longjmp corresponds to.
|
|
/// In exception handling, __tempRet0 indicates the type of an exception
|
|
/// caught, and in setjmp/longjmp, it means the second argument to longjmp
|
|
/// function.
|
|
///
|
|
/// * Exception handling
|
|
///
|
|
/// 2) Create setThrew and setTempRet0 functions.
|
|
/// The global variables created in 1) will exist in wasm address space,
|
|
/// but their values should be set in JS code, so we provide these functions
|
|
/// as interfaces to JS glue code. These functions are equivalent to the
|
|
/// following JS functions, which actually exist in asm.js version of JS
|
|
/// library.
|
|
///
|
|
/// function setThrew(threw, value) {
|
|
/// if (__THREW__ == 0) {
|
|
/// __THREW__ = threw;
|
|
/// __threwValue = value;
|
|
/// }
|
|
/// }
|
|
///
|
|
/// function setTempRet0(value) {
|
|
/// __tempRet0 = value;
|
|
/// }
|
|
///
|
|
/// 3) Lower
|
|
/// invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
|
|
/// into
|
|
/// __THREW__ = 0;
|
|
/// call @__invoke_SIG(func, arg1, arg2)
|
|
/// %__THREW__.val = __THREW__;
|
|
/// __THREW__ = 0;
|
|
/// if (%__THREW__.val == 1)
|
|
/// goto %lpad
|
|
/// else
|
|
/// goto %invoke.cont
|
|
/// SIG is a mangled string generated based on the LLVM IR-level function
|
|
/// signature. After LLVM IR types are lowered to the target wasm types,
|
|
/// the names for these wrappers will change based on wasm types as well,
|
|
/// as in invoke_vi (function takes an int and returns void). The bodies of
|
|
/// these wrappers will be generated in JS glue code, and inside those
|
|
/// wrappers we use JS try-catch to generate actual exception effects. It
|
|
/// also calls the original callee function. An example wrapper in JS code
|
|
/// would look like this:
|
|
/// function invoke_vi(index,a1) {
|
|
/// try {
|
|
/// Module["dynCall_vi"](index,a1); // This calls original callee
|
|
/// } catch(e) {
|
|
/// if (typeof e !== 'number' && e !== 'longjmp') throw e;
|
|
/// asm["setThrew"](1, 0); // setThrew is called here
|
|
/// }
|
|
/// }
|
|
/// If an exception is thrown, __THREW__ will be set to true in a wrapper,
|
|
/// so we can jump to the right BB based on this value.
|
|
///
|
|
/// 4) Lower
|
|
/// %val = landingpad catch c1 catch c2 catch c3 ...
|
|
/// ... use %val ...
|
|
/// into
|
|
/// %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
|
|
/// %val = {%fmc, __tempRet0}
|
|
/// ... use %val ...
|
|
/// Here N is a number calculated based on the number of clauses.
|
|
/// Global variable __tempRet0 is set within __cxa_find_matching_catch() in
|
|
/// JS glue code.
|
|
///
|
|
/// 5) Lower
|
|
/// resume {%a, %b}
|
|
/// into
|
|
/// call @__resumeException(%a)
|
|
/// where __resumeException() is a function in JS glue code.
|
|
///
|
|
/// 6) Lower
|
|
/// call @llvm.eh.typeid.for(type) (intrinsic)
|
|
/// into
|
|
/// call @llvm_eh_typeid_for(type)
|
|
/// llvm_eh_typeid_for function will be generated in JS glue code.
|
|
///
|
|
/// * Setjmp / Longjmp handling
|
|
///
|
|
/// 7) In the function entry that calls setjmp, initialize setjmpTable and
|
|
/// sejmpTableSize as follows:
|
|
/// setjmpTableSize = 4;
|
|
/// setjmpTable = (int *) malloc(40);
|
|
/// setjmpTable[0] = 0;
|
|
/// setjmpTable and setjmpTableSize are used in saveSetjmp() function in JS
|
|
/// code.
|
|
///
|
|
/// 8) Lower
|
|
/// setjmp(buf)
|
|
/// into
|
|
/// setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
|
|
/// setjmpTableSize = __tempRet0;
|
|
/// For each dynamic setjmp call, setjmpTable stores its ID (a number which
|
|
/// is incrementally assigned from 0) and its label (a unique number that
|
|
/// represents each callsite of setjmp). When we need more entries in
|
|
/// setjmpTable, it is reallocated in saveSetjmp() in JS code and it will
|
|
/// return the new table address, and assign the new table size in
|
|
/// __tempRet0. saveSetjmp also stores the setjmp's ID into the buffer buf.
|
|
/// A BB with setjmp is split into two after setjmp call in order to make the
|
|
/// post-setjmp BB the possible destination of longjmp BB.
|
|
///
|
|
/// 9) Lower
|
|
/// longjmp(buf, value)
|
|
/// into
|
|
/// emscripten_longjmp_jmpbuf(buf, value)
|
|
/// emscripten_longjmp_jmpbuf will be lowered to emscripten_longjmp later.
|
|
///
|
|
/// 10) Lower every call that might longjmp into
|
|
/// __THREW__ = 0;
|
|
/// call @__invoke_SIG(func, arg1, arg2)
|
|
/// %__THREW__.val = __THREW__;
|
|
/// __THREW__ = 0;
|
|
/// if (%__THREW__.val != 0 & __threwValue != 0) {
|
|
/// %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
|
|
/// setjmpTableSize);
|
|
/// if (%label == 0)
|
|
/// emscripten_longjmp(%__THREW__.val, __threwValue);
|
|
/// __tempRet0 = __threwValue;
|
|
/// } else {
|
|
/// %label = -1;
|
|
/// }
|
|
/// longjmp_result = __tempRet0;
|
|
/// switch label {
|
|
/// label 1: goto post-setjmp BB 1
|
|
/// label 2: goto post-setjmp BB 2
|
|
/// ...
|
|
/// default: goto splitted next BB
|
|
/// }
|
|
/// testSetjmp examines setjmpTable to see if there is a matching setjmp
|
|
/// call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
|
|
/// will be the address of matching jmp_buf buffer and __threwValue be the
|
|
/// second argument to longjmp. mem[__THREW__.val] is a setjmp ID that is
|
|
/// stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
|
|
/// each setjmp callsite. Label 0 means this longjmp buffer does not
|
|
/// correspond to one of the setjmp callsites in this function, so in this
|
|
/// case we just chain the longjmp to the caller. (Here we call
|
|
/// emscripten_longjmp, which is different from emscripten_longjmp_jmpbuf.
|
|
/// emscripten_longjmp_jmpbuf takes jmp_buf as its first argument, while
|
|
/// emscripten_longjmp takes an int. Both of them will eventually be lowered
|
|
/// to emscripten_longjmp in s2wasm, but here we need two signatures - we
|
|
/// can't translate an int value to a jmp_buf.)
|
|
/// Label -1 means no longjmp occurred. Otherwise we jump to the right
|
|
/// post-setjmp BB based on the label.
|
|
///
|
|
///===----------------------------------------------------------------------===//
|
|
|
|
#include "WebAssembly.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/SSAUpdater.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "wasm-lower-em-ehsjlj"
|
|
|
|
static cl::list<std::string>
|
|
EHWhitelist("emscripten-cxx-exceptions-whitelist",
|
|
cl::desc("The list of function names in which Emscripten-style "
|
|
"exception handling is enabled (see emscripten "
|
|
"EMSCRIPTEN_CATCHING_WHITELIST options)"),
|
|
cl::CommaSeparated);
|
|
|
|
namespace {
|
|
class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
|
|
static const char *ThrewGVName;
|
|
static const char *ThrewValueGVName;
|
|
static const char *TempRet0GVName;
|
|
static const char *ResumeFName;
|
|
static const char *EHTypeIDFName;
|
|
static const char *SetThrewFName;
|
|
static const char *SetTempRet0FName;
|
|
static const char *EmLongjmpFName;
|
|
static const char *EmLongjmpJmpbufFName;
|
|
static const char *SaveSetjmpFName;
|
|
static const char *TestSetjmpFName;
|
|
static const char *FindMatchingCatchPrefix;
|
|
static const char *InvokePrefix;
|
|
|
|
bool EnableEH; // Enable exception handling
|
|
bool EnableSjLj; // Enable setjmp/longjmp handling
|
|
|
|
GlobalVariable *ThrewGV;
|
|
GlobalVariable *ThrewValueGV;
|
|
GlobalVariable *TempRet0GV;
|
|
Function *ResumeF;
|
|
Function *EHTypeIDF;
|
|
Function *EmLongjmpF;
|
|
Function *EmLongjmpJmpbufF;
|
|
Function *SaveSetjmpF;
|
|
Function *TestSetjmpF;
|
|
|
|
// __cxa_find_matching_catch_N functions.
|
|
// Indexed by the number of clauses in an original landingpad instruction.
|
|
DenseMap<int, Function *> FindMatchingCatches;
|
|
// Map of <function signature string, invoke_ wrappers>
|
|
StringMap<Function *> InvokeWrappers;
|
|
// Set of whitelisted function names for exception handling
|
|
std::set<std::string> EHWhitelistSet;
|
|
|
|
const char *getPassName() const override {
|
|
return "WebAssembly Lower Emscripten Exceptions";
|
|
}
|
|
|
|
bool runEHOnFunction(Function &F);
|
|
bool runSjLjOnFunction(Function &F);
|
|
Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
|
|
|
|
template <typename CallOrInvoke> Value *wrapInvoke(CallOrInvoke *CI);
|
|
void wrapTestSetjmp(BasicBlock *BB, Instruction *InsertPt, Value *Threw,
|
|
Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label,
|
|
Value *&LongjmpResult, BasicBlock *&EndBB);
|
|
template <typename CallOrInvoke> Function *getInvokeWrapper(CallOrInvoke *CI);
|
|
|
|
bool areAllExceptionsAllowed() const { return EHWhitelistSet.empty(); }
|
|
bool canLongjmp(Module &M, const Value *Callee) const;
|
|
|
|
void createSetThrewFunction(Module &M);
|
|
void createSetTempRet0Function(Module &M);
|
|
|
|
void rebuildSSA(Function &F);
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH = true, bool EnableSjLj = true)
|
|
: ModulePass(ID), EnableEH(EnableEH), EnableSjLj(EnableSjLj),
|
|
ThrewGV(nullptr), ThrewValueGV(nullptr), TempRet0GV(nullptr),
|
|
ResumeF(nullptr), EHTypeIDF(nullptr), EmLongjmpF(nullptr),
|
|
EmLongjmpJmpbufF(nullptr), SaveSetjmpF(nullptr), TestSetjmpF(nullptr) {
|
|
EHWhitelistSet.insert(EHWhitelist.begin(), EHWhitelist.end());
|
|
}
|
|
bool runOnModule(Module &M) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
}
|
|
};
|
|
} // End anonymous namespace
|
|
|
|
const char *WebAssemblyLowerEmscriptenEHSjLj::ThrewGVName = "__THREW__";
|
|
const char *WebAssemblyLowerEmscriptenEHSjLj::ThrewValueGVName = "__threwValue";
|
|
const char *WebAssemblyLowerEmscriptenEHSjLj::TempRet0GVName = "__tempRet0";
|
|
const char *WebAssemblyLowerEmscriptenEHSjLj::ResumeFName = "__resumeException";
|
|
const char *WebAssemblyLowerEmscriptenEHSjLj::EHTypeIDFName =
|
|
"llvm_eh_typeid_for";
|
|
const char *WebAssemblyLowerEmscriptenEHSjLj::SetThrewFName = "setThrew";
|
|
const char *WebAssemblyLowerEmscriptenEHSjLj::SetTempRet0FName = "setTempRet0";
|
|
const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpFName =
|
|
"emscripten_longjmp";
|
|
const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpJmpbufFName =
|
|
"emscripten_longjmp_jmpbuf";
|
|
const char *WebAssemblyLowerEmscriptenEHSjLj::SaveSetjmpFName = "saveSetjmp";
|
|
const char *WebAssemblyLowerEmscriptenEHSjLj::TestSetjmpFName = "testSetjmp";
|
|
const char *WebAssemblyLowerEmscriptenEHSjLj::FindMatchingCatchPrefix =
|
|
"__cxa_find_matching_catch_";
|
|
const char *WebAssemblyLowerEmscriptenEHSjLj::InvokePrefix = "__invoke_";
|
|
|
|
char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
|
|
INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
|
|
"WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
|
|
false, false)
|
|
|
|
ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH,
|
|
bool EnableSjLj) {
|
|
return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH, EnableSjLj);
|
|
}
|
|
|
|
static bool canThrow(const Value *V) {
|
|
if (const auto *F = dyn_cast<const Function>(V)) {
|
|
// Intrinsics cannot throw
|
|
if (F->isIntrinsic())
|
|
return false;
|
|
StringRef Name = F->getName();
|
|
// leave setjmp and longjmp (mostly) alone, we process them properly later
|
|
if (Name == "setjmp" || Name == "longjmp")
|
|
return false;
|
|
return !F->doesNotThrow();
|
|
}
|
|
// not a function, so an indirect call - can throw, we can't tell
|
|
return true;
|
|
}
|
|
|
|
// Returns an available name for a global value.
|
|
// If the proposed name already exists in the module, adds '_' at the end of
|
|
// the name until the name is available.
|
|
static inline std::string createGlobalValueName(const Module &M,
|
|
const std::string &Propose) {
|
|
std::string Name = Propose;
|
|
while (M.getNamedGlobal(Name))
|
|
Name += "_";
|
|
return Name;
|
|
}
|
|
|
|
// Simple function name mangler.
|
|
// This function simply takes LLVM's string representation of parameter types
|
|
// and concatenate them with '_'. There are non-alphanumeric characters but llc
|
|
// is ok with it, and we need to postprocess these names after the lowering
|
|
// phase anyway.
|
|
static std::string getSignature(FunctionType *FTy) {
|
|
std::string Sig;
|
|
raw_string_ostream OS(Sig);
|
|
OS << *FTy->getReturnType();
|
|
for (Type *ParamTy : FTy->params())
|
|
OS << "_" << *ParamTy;
|
|
if (FTy->isVarArg())
|
|
OS << "_...";
|
|
Sig = OS.str();
|
|
Sig.erase(remove_if(Sig, isspace), Sig.end());
|
|
// When s2wasm parses .s file, a comma means the end of an argument. So a
|
|
// mangled function name can contain any character but a comma.
|
|
std::replace(Sig.begin(), Sig.end(), ',', '.');
|
|
return Sig;
|
|
}
|
|
|
|
// Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
|
|
// This is because a landingpad instruction contains two more arguments, a
|
|
// personality function and a cleanup bit, and __cxa_find_matching_catch_N
|
|
// functions are named after the number of arguments in the original landingpad
|
|
// instruction.
|
|
Function *
|
|
WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
|
|
unsigned NumClauses) {
|
|
if (FindMatchingCatches.count(NumClauses))
|
|
return FindMatchingCatches[NumClauses];
|
|
PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
|
|
SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
|
|
FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
|
|
Function *F =
|
|
Function::Create(FTy, GlobalValue::ExternalLinkage,
|
|
FindMatchingCatchPrefix + Twine(NumClauses + 2), &M);
|
|
FindMatchingCatches[NumClauses] = F;
|
|
return F;
|
|
}
|
|
|
|
// Generate invoke wrapper seqence with preamble and postamble
|
|
// Preamble:
|
|
// __THREW__ = 0;
|
|
// Postamble:
|
|
// %__THREW__.val = __THREW__; __THREW__ = 0;
|
|
// Returns %__THREW__.val, which indicates whether an exception is thrown (or
|
|
// whether longjmp occurred), for future use.
|
|
template <typename CallOrInvoke>
|
|
Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallOrInvoke *CI) {
|
|
LLVMContext &C = CI->getModule()->getContext();
|
|
|
|
// If we are calling a function that is noreturn, we must remove that
|
|
// attribute. The code we insert here does expect it to return, after we
|
|
// catch the exception.
|
|
if (CI->doesNotReturn()) {
|
|
if (auto *F = dyn_cast<Function>(CI->getCalledValue()))
|
|
F->removeFnAttr(Attribute::NoReturn);
|
|
CI->removeAttribute(AttributeSet::FunctionIndex, Attribute::NoReturn);
|
|
}
|
|
|
|
IRBuilder<> IRB(C);
|
|
IRB.SetInsertPoint(CI);
|
|
|
|
// Pre-invoke
|
|
// __THREW__ = 0;
|
|
IRB.CreateStore(IRB.getInt32(0), ThrewGV);
|
|
|
|
// Invoke function wrapper in JavaScript
|
|
SmallVector<Value *, 16> Args;
|
|
// Put the pointer to the callee as first argument, so it can be called
|
|
// within the invoke wrapper later
|
|
Args.push_back(CI->getCalledValue());
|
|
Args.append(CI->arg_begin(), CI->arg_end());
|
|
CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
|
|
NewCall->takeName(CI);
|
|
NewCall->setCallingConv(CI->getCallingConv());
|
|
NewCall->setDebugLoc(CI->getDebugLoc());
|
|
|
|
// Because we added the pointer to the callee as first argument, all
|
|
// argument attribute indices have to be incremented by one.
|
|
SmallVector<AttributeSet, 8> AttributesVec;
|
|
const AttributeSet &InvokePAL = CI->getAttributes();
|
|
CallSite::arg_iterator AI = CI->arg_begin();
|
|
unsigned i = 1; // Argument attribute index starts from 1
|
|
for (unsigned e = CI->getNumArgOperands(); i <= e; ++AI, ++i) {
|
|
if (InvokePAL.hasAttributes(i)) {
|
|
AttrBuilder B(InvokePAL, i);
|
|
AttributesVec.push_back(AttributeSet::get(C, i + 1, B));
|
|
}
|
|
}
|
|
// Add any return attributes.
|
|
if (InvokePAL.hasAttributes(AttributeSet::ReturnIndex))
|
|
AttributesVec.push_back(AttributeSet::get(C, InvokePAL.getRetAttributes()));
|
|
// Add any function attributes.
|
|
if (InvokePAL.hasAttributes(AttributeSet::FunctionIndex))
|
|
AttributesVec.push_back(AttributeSet::get(C, InvokePAL.getFnAttributes()));
|
|
// Reconstruct the AttributesList based on the vector we constructed.
|
|
AttributeSet NewCallPAL = AttributeSet::get(C, AttributesVec);
|
|
NewCall->setAttributes(NewCallPAL);
|
|
|
|
CI->replaceAllUsesWith(NewCall);
|
|
|
|
// Post-invoke
|
|
// %__THREW__.val = __THREW__; __THREW__ = 0;
|
|
Value *Threw = IRB.CreateLoad(ThrewGV, ThrewGV->getName() + ".val");
|
|
IRB.CreateStore(IRB.getInt32(0), ThrewGV);
|
|
return Threw;
|
|
}
|
|
|
|
// Get matching invoke wrapper based on callee signature
|
|
template <typename CallOrInvoke>
|
|
Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallOrInvoke *CI) {
|
|
Module *M = CI->getModule();
|
|
SmallVector<Type *, 16> ArgTys;
|
|
Value *Callee = CI->getCalledValue();
|
|
FunctionType *CalleeFTy;
|
|
if (auto *F = dyn_cast<Function>(Callee))
|
|
CalleeFTy = F->getFunctionType();
|
|
else {
|
|
auto *CalleeTy = cast<PointerType>(Callee->getType())->getElementType();
|
|
CalleeFTy = dyn_cast<FunctionType>(CalleeTy);
|
|
}
|
|
|
|
std::string Sig = getSignature(CalleeFTy);
|
|
if (InvokeWrappers.find(Sig) != InvokeWrappers.end())
|
|
return InvokeWrappers[Sig];
|
|
|
|
// Put the pointer to the callee as first argument
|
|
ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
|
|
// Add argument types
|
|
ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
|
|
|
|
FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
|
|
CalleeFTy->isVarArg());
|
|
Function *F = Function::Create(FTy, GlobalValue::ExternalLinkage,
|
|
InvokePrefix + Sig, M);
|
|
InvokeWrappers[Sig] = F;
|
|
return F;
|
|
}
|
|
|
|
bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module &M,
|
|
const Value *Callee) const {
|
|
if (auto *CalleeF = dyn_cast<Function>(Callee))
|
|
if (CalleeF->isIntrinsic())
|
|
return false;
|
|
|
|
// The reason we include malloc/free here is to exclude the malloc/free
|
|
// calls generated in setjmp prep / cleanup routines.
|
|
Function *SetjmpF = M.getFunction("setjmp");
|
|
Function *MallocF = M.getFunction("malloc");
|
|
Function *FreeF = M.getFunction("free");
|
|
if (Callee == SetjmpF || Callee == MallocF || Callee == FreeF)
|
|
return false;
|
|
|
|
// There are functions in JS glue code
|
|
if (Callee == ResumeF || Callee == EHTypeIDF || Callee == SaveSetjmpF ||
|
|
Callee == TestSetjmpF)
|
|
return false;
|
|
|
|
// __cxa_find_matching_catch_N functions cannot longjmp
|
|
if (Callee->getName().startswith(FindMatchingCatchPrefix))
|
|
return false;
|
|
|
|
// Exception-catching related functions
|
|
Function *BeginCatchF = M.getFunction("__cxa_begin_catch");
|
|
Function *EndCatchF = M.getFunction("__cxa_end_catch");
|
|
Function *AllocExceptionF = M.getFunction("__cxa_allocate_exception");
|
|
Function *ThrowF = M.getFunction("__cxa_throw");
|
|
Function *TerminateF = M.getFunction("__clang_call_terminate");
|
|
if (Callee == BeginCatchF || Callee == EndCatchF ||
|
|
Callee == AllocExceptionF || Callee == ThrowF || Callee == TerminateF)
|
|
return false;
|
|
|
|
// Otherwise we don't know
|
|
return true;
|
|
}
|
|
|
|
// Generate testSetjmp function call seqence with preamble and postamble.
|
|
// The code this generates is equivalent to the following JavaScript code:
|
|
// if (%__THREW__.val != 0 & threwValue != 0) {
|
|
// %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
|
|
// if (%label == 0)
|
|
// emscripten_longjmp(%__THREW__.val, threwValue);
|
|
// __tempRet0 = threwValue;
|
|
// } else {
|
|
// %label = -1;
|
|
// }
|
|
// %longjmp_result = __tempRet0;
|
|
//
|
|
// As output parameters. returns %label, %longjmp_result, and the BB the last
|
|
// instruction (%longjmp_result = ...) is in.
|
|
void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
|
|
BasicBlock *BB, Instruction *InsertPt, Value *Threw, Value *SetjmpTable,
|
|
Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult,
|
|
BasicBlock *&EndBB) {
|
|
Function *F = BB->getParent();
|
|
LLVMContext &C = BB->getModule()->getContext();
|
|
IRBuilder<> IRB(C);
|
|
IRB.SetInsertPoint(InsertPt);
|
|
|
|
// if (%__THREW__.val != 0 & threwValue != 0)
|
|
IRB.SetInsertPoint(BB);
|
|
BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
|
|
BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
|
|
BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
|
|
Value *ThrewCmp = IRB.CreateICmpNE(Threw, IRB.getInt32(0));
|
|
Value *ThrewValue =
|
|
IRB.CreateLoad(ThrewValueGV, ThrewValueGV->getName() + ".val");
|
|
Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
|
|
Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
|
|
IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
|
|
|
|
// %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize);
|
|
// if (%label == 0)
|
|
IRB.SetInsertPoint(ThenBB1);
|
|
BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F);
|
|
BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
|
|
Value *ThrewInt = IRB.CreateIntToPtr(Threw, Type::getInt32PtrTy(C),
|
|
Threw->getName() + ".i32p");
|
|
Value *LoadedThrew =
|
|
IRB.CreateLoad(ThrewInt, ThrewInt->getName() + ".loaded");
|
|
Value *ThenLabel = IRB.CreateCall(
|
|
TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label");
|
|
Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
|
|
IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2);
|
|
|
|
// emscripten_longjmp(%__THREW__.val, threwValue);
|
|
IRB.SetInsertPoint(ThenBB2);
|
|
IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue});
|
|
IRB.CreateUnreachable();
|
|
|
|
// __tempRet0 = threwValue;
|
|
IRB.SetInsertPoint(EndBB2);
|
|
IRB.CreateStore(ThrewValue, TempRet0GV);
|
|
IRB.CreateBr(EndBB1);
|
|
|
|
IRB.SetInsertPoint(ElseBB1);
|
|
IRB.CreateBr(EndBB1);
|
|
|
|
// longjmp_result = __tempRet0;
|
|
IRB.SetInsertPoint(EndBB1);
|
|
PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
|
|
LabelPHI->addIncoming(ThenLabel, EndBB2);
|
|
|
|
LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
|
|
|
|
// Output parameter assignment
|
|
Label = LabelPHI;
|
|
EndBB = EndBB1;
|
|
LongjmpResult = IRB.CreateLoad(TempRet0GV, "longjmp_result");
|
|
}
|
|
|
|
// Create setThrew function
|
|
// function setThrew(threw, value) {
|
|
// if (__THREW__ == 0) {
|
|
// __THREW__ = threw;
|
|
// __threwValue = value;
|
|
// }
|
|
// }
|
|
void WebAssemblyLowerEmscriptenEHSjLj::createSetThrewFunction(Module &M) {
|
|
LLVMContext &C = M.getContext();
|
|
IRBuilder<> IRB(C);
|
|
|
|
assert(!M.getNamedGlobal(SetThrewFName) && "setThrew already exists");
|
|
Type *Params[] = {IRB.getInt32Ty(), IRB.getInt32Ty()};
|
|
FunctionType *FTy = FunctionType::get(IRB.getVoidTy(), Params, false);
|
|
Function *F =
|
|
Function::Create(FTy, GlobalValue::ExternalLinkage, SetThrewFName, &M);
|
|
Argument *Arg1 = &*(F->arg_begin());
|
|
Argument *Arg2 = &*(++F->arg_begin());
|
|
Arg1->setName("threw");
|
|
Arg2->setName("value");
|
|
BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
|
|
BasicBlock *ThenBB = BasicBlock::Create(C, "if.then", F);
|
|
BasicBlock *EndBB = BasicBlock::Create(C, "if.end", F);
|
|
|
|
IRB.SetInsertPoint(EntryBB);
|
|
Value *Threw = IRB.CreateLoad(ThrewGV, ThrewGV->getName() + ".val");
|
|
Value *Cmp = IRB.CreateICmpEQ(Threw, IRB.getInt32(0), "cmp");
|
|
IRB.CreateCondBr(Cmp, ThenBB, EndBB);
|
|
|
|
IRB.SetInsertPoint(ThenBB);
|
|
IRB.CreateStore(Arg1, ThrewGV);
|
|
IRB.CreateStore(Arg2, ThrewValueGV);
|
|
IRB.CreateBr(EndBB);
|
|
|
|
IRB.SetInsertPoint(EndBB);
|
|
IRB.CreateRetVoid();
|
|
}
|
|
|
|
// Create setTempRet0 function
|
|
// function setTempRet0(value) {
|
|
// __tempRet0 = value;
|
|
// }
|
|
void WebAssemblyLowerEmscriptenEHSjLj::createSetTempRet0Function(Module &M) {
|
|
LLVMContext &C = M.getContext();
|
|
IRBuilder<> IRB(C);
|
|
|
|
assert(!M.getNamedGlobal(SetTempRet0FName) && "setTempRet0 already exists");
|
|
Type *Params[] = {IRB.getInt32Ty()};
|
|
FunctionType *FTy = FunctionType::get(IRB.getVoidTy(), Params, false);
|
|
Function *F =
|
|
Function::Create(FTy, GlobalValue::ExternalLinkage, SetTempRet0FName, &M);
|
|
F->arg_begin()->setName("value");
|
|
BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
|
|
IRB.SetInsertPoint(EntryBB);
|
|
IRB.CreateStore(&*F->arg_begin(), TempRet0GV);
|
|
IRB.CreateRetVoid();
|
|
}
|
|
|
|
void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
|
|
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
|
|
DT.recalculate(F); // CFG has been changed
|
|
SSAUpdater SSA;
|
|
for (BasicBlock &BB : F) {
|
|
for (Instruction &I : BB) {
|
|
for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) {
|
|
Use &U = *UI;
|
|
++UI;
|
|
SSA.Initialize(I.getType(), I.getName());
|
|
SSA.AddAvailableValue(&BB, &I);
|
|
Instruction *User = cast<Instruction>(U.getUser());
|
|
if (User->getParent() == &BB)
|
|
continue;
|
|
|
|
if (PHINode *UserPN = dyn_cast<PHINode>(User))
|
|
if (UserPN->getIncomingBlock(U) == &BB)
|
|
continue;
|
|
|
|
if (DT.dominates(&I, User))
|
|
continue;
|
|
SSA.RewriteUseAfterInsertions(U);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
|
|
LLVMContext &C = M.getContext();
|
|
IRBuilder<> IRB(C);
|
|
|
|
Function *SetjmpF = M.getFunction("setjmp");
|
|
Function *LongjmpF = M.getFunction("longjmp");
|
|
bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty();
|
|
bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
|
|
bool DoSjLj = EnableSjLj && (SetjmpUsed || LongjmpUsed);
|
|
|
|
// Create global variables __THREW__, threwValue, and __tempRet0, which are
|
|
// used in common for both exception handling and setjmp/longjmp handling
|
|
ThrewGV = new GlobalVariable(M, IRB.getInt32Ty(), false,
|
|
GlobalValue::ExternalLinkage, IRB.getInt32(0),
|
|
createGlobalValueName(M, ThrewGVName));
|
|
ThrewValueGV = new GlobalVariable(
|
|
M, IRB.getInt32Ty(), false, GlobalValue::ExternalLinkage, IRB.getInt32(0),
|
|
createGlobalValueName(M, ThrewValueGVName));
|
|
TempRet0GV = new GlobalVariable(M, IRB.getInt32Ty(), false,
|
|
GlobalValue::ExternalLinkage, IRB.getInt32(0),
|
|
createGlobalValueName(M, TempRet0GVName));
|
|
|
|
bool Changed = false;
|
|
|
|
// Exception handling
|
|
if (EnableEH) {
|
|
// Register __resumeException function
|
|
FunctionType *ResumeFTy =
|
|
FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false);
|
|
ResumeF = Function::Create(ResumeFTy, GlobalValue::ExternalLinkage,
|
|
ResumeFName, &M);
|
|
|
|
// Register llvm_eh_typeid_for function
|
|
FunctionType *EHTypeIDTy =
|
|
FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false);
|
|
EHTypeIDF = Function::Create(EHTypeIDTy, GlobalValue::ExternalLinkage,
|
|
EHTypeIDFName, &M);
|
|
|
|
for (Function &F : M) {
|
|
if (F.isDeclaration())
|
|
continue;
|
|
Changed |= runEHOnFunction(F);
|
|
}
|
|
}
|
|
|
|
// Setjmp/longjmp handling
|
|
if (DoSjLj) {
|
|
Changed = true; // We have setjmp or longjmp somewhere
|
|
|
|
Function *MallocF = M.getFunction("malloc");
|
|
Function *FreeF = M.getFunction("free");
|
|
if (!MallocF || !FreeF)
|
|
report_fatal_error(
|
|
"malloc and free must be linked into the module if setjmp is used");
|
|
|
|
// Register saveSetjmp function
|
|
FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
|
|
SmallVector<Type *, 4> Params = {SetjmpFTy->getParamType(0),
|
|
IRB.getInt32Ty(), Type::getInt32PtrTy(C),
|
|
IRB.getInt32Ty()};
|
|
FunctionType *FTy =
|
|
FunctionType::get(Type::getInt32PtrTy(C), Params, false);
|
|
SaveSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage,
|
|
SaveSetjmpFName, &M);
|
|
|
|
// Register testSetjmp function
|
|
Params = {IRB.getInt32Ty(), Type::getInt32PtrTy(C), IRB.getInt32Ty()};
|
|
FTy = FunctionType::get(IRB.getInt32Ty(), Params, false);
|
|
TestSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage,
|
|
TestSetjmpFName, &M);
|
|
|
|
if (LongjmpF) {
|
|
// Replace all uses of longjmp with emscripten_longjmp_jmpbuf, which is
|
|
// defined in JS code
|
|
EmLongjmpJmpbufF = Function::Create(LongjmpF->getFunctionType(),
|
|
GlobalValue::ExternalLinkage,
|
|
EmLongjmpJmpbufFName, &M);
|
|
|
|
LongjmpF->replaceAllUsesWith(EmLongjmpJmpbufF);
|
|
}
|
|
FTy = FunctionType::get(IRB.getVoidTy(),
|
|
{IRB.getInt32Ty(), IRB.getInt32Ty()}, false);
|
|
EmLongjmpF =
|
|
Function::Create(FTy, GlobalValue::ExternalLinkage, EmLongjmpFName, &M);
|
|
|
|
// Only traverse functions that uses setjmp in order not to insert
|
|
// unnecessary prep / cleanup code in every function
|
|
SmallPtrSet<Function *, 8> SetjmpUsers;
|
|
for (User *U : SetjmpF->users()) {
|
|
auto *UI = cast<Instruction>(U);
|
|
SetjmpUsers.insert(UI->getFunction());
|
|
}
|
|
for (Function *F : SetjmpUsers)
|
|
runSjLjOnFunction(*F);
|
|
}
|
|
|
|
if (!Changed) {
|
|
// Delete unused global variables and functions
|
|
ThrewGV->eraseFromParent();
|
|
ThrewValueGV->eraseFromParent();
|
|
TempRet0GV->eraseFromParent();
|
|
if (ResumeF)
|
|
ResumeF->eraseFromParent();
|
|
if (EHTypeIDF)
|
|
EHTypeIDF->eraseFromParent();
|
|
if (EmLongjmpF)
|
|
EmLongjmpF->eraseFromParent();
|
|
if (SaveSetjmpF)
|
|
SaveSetjmpF->eraseFromParent();
|
|
if (TestSetjmpF)
|
|
TestSetjmpF->eraseFromParent();
|
|
return false;
|
|
}
|
|
|
|
// If we have made any changes while doing exception handling or
|
|
// setjmp/longjmp handling, we have to create these functions for JavaScript
|
|
// to call.
|
|
createSetThrewFunction(M);
|
|
createSetTempRet0Function(M);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
|
|
Module &M = *F.getParent();
|
|
LLVMContext &C = F.getContext();
|
|
IRBuilder<> IRB(C);
|
|
bool Changed = false;
|
|
SmallVector<Instruction *, 64> ToErase;
|
|
SmallPtrSet<LandingPadInst *, 32> LandingPads;
|
|
bool AllowExceptions =
|
|
areAllExceptionsAllowed() || EHWhitelistSet.count(F.getName());
|
|
|
|
for (BasicBlock &BB : F) {
|
|
auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
|
|
if (!II)
|
|
continue;
|
|
Changed = true;
|
|
LandingPads.insert(II->getLandingPadInst());
|
|
IRB.SetInsertPoint(II);
|
|
|
|
bool NeedInvoke = AllowExceptions && canThrow(II->getCalledValue());
|
|
if (NeedInvoke) {
|
|
// Wrap invoke with invoke wrapper and generate preamble/postamble
|
|
Value *Threw = wrapInvoke(II);
|
|
ToErase.push_back(II);
|
|
|
|
// Insert a branch based on __THREW__ variable
|
|
Value *Cmp = IRB.CreateICmpEQ(Threw, IRB.getInt32(1), "cmp");
|
|
IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
|
|
|
|
} else {
|
|
// This can't throw, and we don't need this invoke, just replace it with a
|
|
// call+branch
|
|
SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end());
|
|
CallInst *NewCall = IRB.CreateCall(II->getCalledValue(), Args);
|
|
NewCall->takeName(II);
|
|
NewCall->setCallingConv(II->getCallingConv());
|
|
NewCall->setDebugLoc(II->getDebugLoc());
|
|
NewCall->setAttributes(II->getAttributes());
|
|
II->replaceAllUsesWith(NewCall);
|
|
ToErase.push_back(II);
|
|
|
|
IRB.CreateBr(II->getNormalDest());
|
|
|
|
// Remove any PHI node entries from the exception destination
|
|
II->getUnwindDest()->removePredecessor(&BB);
|
|
}
|
|
}
|
|
|
|
// Process resume instructions
|
|
for (BasicBlock &BB : F) {
|
|
// Scan the body of the basic block for resumes
|
|
for (Instruction &I : BB) {
|
|
auto *RI = dyn_cast<ResumeInst>(&I);
|
|
if (!RI)
|
|
continue;
|
|
|
|
// Split the input into legal values
|
|
Value *Input = RI->getValue();
|
|
IRB.SetInsertPoint(RI);
|
|
Value *Low = IRB.CreateExtractValue(Input, 0, "low");
|
|
// Create a call to __resumeException function
|
|
IRB.CreateCall(ResumeF, {Low});
|
|
// Add a terminator to the block
|
|
IRB.CreateUnreachable();
|
|
ToErase.push_back(RI);
|
|
}
|
|
}
|
|
|
|
// Process llvm.eh.typeid.for intrinsics
|
|
for (BasicBlock &BB : F) {
|
|
for (Instruction &I : BB) {
|
|
auto *CI = dyn_cast<CallInst>(&I);
|
|
if (!CI)
|
|
continue;
|
|
const Function *Callee = CI->getCalledFunction();
|
|
if (!Callee)
|
|
continue;
|
|
if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
|
|
continue;
|
|
|
|
IRB.SetInsertPoint(CI);
|
|
CallInst *NewCI =
|
|
IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
|
|
CI->replaceAllUsesWith(NewCI);
|
|
ToErase.push_back(CI);
|
|
}
|
|
}
|
|
|
|
// Look for orphan landingpads, can occur in blocks with no predecesors
|
|
for (BasicBlock &BB : F) {
|
|
Instruction *I = BB.getFirstNonPHI();
|
|
if (auto *LPI = dyn_cast<LandingPadInst>(I))
|
|
LandingPads.insert(LPI);
|
|
}
|
|
|
|
// Handle all the landingpad for this function together, as multiple invokes
|
|
// may share a single lp
|
|
for (LandingPadInst *LPI : LandingPads) {
|
|
IRB.SetInsertPoint(LPI);
|
|
SmallVector<Value *, 16> FMCArgs;
|
|
for (unsigned i = 0, e = LPI->getNumClauses(); i < e; ++i) {
|
|
Constant *Clause = LPI->getClause(i);
|
|
// As a temporary workaround for the lack of aggregate varargs support
|
|
// in the interface between JS and wasm, break out filter operands into
|
|
// their component elements.
|
|
if (LPI->isFilter(i)) {
|
|
auto *ATy = cast<ArrayType>(Clause->getType());
|
|
for (unsigned j = 0, e = ATy->getNumElements(); j < e; ++j) {
|
|
Value *EV = IRB.CreateExtractValue(Clause, makeArrayRef(j), "filter");
|
|
FMCArgs.push_back(EV);
|
|
}
|
|
} else
|
|
FMCArgs.push_back(Clause);
|
|
}
|
|
|
|
// Create a call to __cxa_find_matching_catch_N function
|
|
Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
|
|
CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
|
|
Value *Undef = UndefValue::get(LPI->getType());
|
|
Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0");
|
|
Value *TempRet0 =
|
|
IRB.CreateLoad(TempRet0GV, TempRet0GV->getName() + ".val");
|
|
Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
|
|
|
|
LPI->replaceAllUsesWith(Pair1);
|
|
ToErase.push_back(LPI);
|
|
}
|
|
|
|
// Erase everything we no longer need in this function
|
|
for (Instruction *I : ToErase)
|
|
I->eraseFromParent();
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
|
|
Module &M = *F.getParent();
|
|
LLVMContext &C = F.getContext();
|
|
IRBuilder<> IRB(C);
|
|
SmallVector<Instruction *, 64> ToErase;
|
|
// Vector of %setjmpTable values
|
|
std::vector<Instruction *> SetjmpTableInsts;
|
|
// Vector of %setjmpTableSize values
|
|
std::vector<Instruction *> SetjmpTableSizeInsts;
|
|
|
|
// Setjmp preparation
|
|
|
|
// This instruction effectively means %setjmpTableSize = 4.
|
|
// We create this as an instruction intentionally, and we don't want to fold
|
|
// this instruction to a constant 4, because this value will be used in
|
|
// SSAUpdater.AddAvailableValue(...) later.
|
|
BasicBlock &EntryBB = F.getEntryBlock();
|
|
BinaryOperator *SetjmpTableSize = BinaryOperator::Create(
|
|
Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), "setjmpTableSize",
|
|
&*EntryBB.getFirstInsertionPt());
|
|
// setjmpTable = (int *) malloc(40);
|
|
Instruction *SetjmpTable = CallInst::CreateMalloc(
|
|
SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40),
|
|
nullptr, nullptr, "setjmpTable");
|
|
// setjmpTable[0] = 0;
|
|
IRB.SetInsertPoint(SetjmpTableSize);
|
|
IRB.CreateStore(IRB.getInt32(0), SetjmpTable);
|
|
SetjmpTableInsts.push_back(SetjmpTable);
|
|
SetjmpTableSizeInsts.push_back(SetjmpTableSize);
|
|
|
|
// Setjmp transformation
|
|
std::vector<PHINode *> SetjmpRetPHIs;
|
|
Function *SetjmpF = M.getFunction("setjmp");
|
|
for (User *U : SetjmpF->users()) {
|
|
auto *CI = dyn_cast<CallInst>(U);
|
|
if (!CI)
|
|
report_fatal_error("Does not support indirect calls to setjmp");
|
|
|
|
BasicBlock *BB = CI->getParent();
|
|
if (BB->getParent() != &F) // in other function
|
|
continue;
|
|
|
|
// The tail is everything right after the call, and will be reached once
|
|
// when setjmp is called, and later when longjmp returns to the setjmp
|
|
BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
|
|
// Add a phi to the tail, which will be the output of setjmp, which
|
|
// indicates if this is the first call or a longjmp back. The phi directly
|
|
// uses the right value based on where we arrive from
|
|
IRB.SetInsertPoint(Tail->getFirstNonPHI());
|
|
PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
|
|
|
|
// setjmp initial call returns 0
|
|
SetjmpRet->addIncoming(IRB.getInt32(0), BB);
|
|
// The proper output is now this, not the setjmp call itself
|
|
CI->replaceAllUsesWith(SetjmpRet);
|
|
// longjmp returns to the setjmp will add themselves to this phi
|
|
SetjmpRetPHIs.push_back(SetjmpRet);
|
|
|
|
// Fix call target
|
|
// Our index in the function is our place in the array + 1 to avoid index
|
|
// 0, because index 0 means the longjmp is not ours to handle.
|
|
IRB.SetInsertPoint(CI);
|
|
Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
|
|
SetjmpTable, SetjmpTableSize};
|
|
Instruction *NewSetjmpTable =
|
|
IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable");
|
|
Instruction *NewSetjmpTableSize =
|
|
IRB.CreateLoad(TempRet0GV, "setjmpTableSize");
|
|
SetjmpTableInsts.push_back(NewSetjmpTable);
|
|
SetjmpTableSizeInsts.push_back(NewSetjmpTableSize);
|
|
ToErase.push_back(CI);
|
|
}
|
|
|
|
// Update each call that can longjmp so it can return to a setjmp where
|
|
// relevant.
|
|
|
|
// Because we are creating new BBs while processing and don't want to make
|
|
// all these newly created BBs candidates again for longjmp processing, we
|
|
// first make the vector of candidate BBs.
|
|
std::vector<BasicBlock *> BBs;
|
|
for (BasicBlock &BB : F)
|
|
BBs.push_back(&BB);
|
|
|
|
// BBs.size() will change within the loop, so we query it every time
|
|
for (unsigned i = 0; i < BBs.size(); i++) {
|
|
BasicBlock *BB = BBs[i];
|
|
for (Instruction &I : *BB) {
|
|
assert(!isa<InvokeInst>(&I));
|
|
auto *CI = dyn_cast<CallInst>(&I);
|
|
if (!CI)
|
|
continue;
|
|
|
|
const Value *Callee = CI->getCalledValue();
|
|
if (!canLongjmp(M, Callee))
|
|
continue;
|
|
|
|
Value *Threw = nullptr;
|
|
BasicBlock *Tail;
|
|
if (Callee->getName().startswith(InvokePrefix)) {
|
|
// If invoke wrapper has already been generated for this call in
|
|
// previous EH phase, search for the load instruction
|
|
// %__THREW__.val = __THREW__;
|
|
// in postamble after the invoke wrapper call
|
|
LoadInst *ThrewLI = nullptr;
|
|
StoreInst *ThrewResetSI = nullptr;
|
|
for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
|
|
I != IE; ++I) {
|
|
if (auto *LI = dyn_cast<LoadInst>(I))
|
|
if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
|
|
if (GV == ThrewGV) {
|
|
Threw = ThrewLI = LI;
|
|
break;
|
|
}
|
|
}
|
|
// Search for the store instruction after the load above
|
|
// __THREW__ = 0;
|
|
for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
|
|
I != IE; ++I) {
|
|
if (auto *SI = dyn_cast<StoreInst>(I))
|
|
if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand()))
|
|
if (GV == ThrewGV && SI->getValueOperand() == IRB.getInt32(0)) {
|
|
ThrewResetSI = SI;
|
|
break;
|
|
}
|
|
}
|
|
assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
|
|
assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
|
|
Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
|
|
|
|
} else {
|
|
// Wrap call with invoke wrapper and generate preamble/postamble
|
|
Threw = wrapInvoke(CI);
|
|
ToErase.push_back(CI);
|
|
Tail = SplitBlock(BB, CI->getNextNode());
|
|
}
|
|
|
|
// We need to replace the terminator in Tail - SplitBlock makes BB go
|
|
// straight to Tail, we need to check if a longjmp occurred, and go to the
|
|
// right setjmp-tail if so
|
|
ToErase.push_back(BB->getTerminator());
|
|
|
|
// Generate a function call to testSetjmp function and preamble/postamble
|
|
// code to figure out (1) whether longjmp occurred (2) if longjmp
|
|
// occurred, which setjmp it corresponds to
|
|
Value *Label = nullptr;
|
|
Value *LongjmpResult = nullptr;
|
|
BasicBlock *EndBB = nullptr;
|
|
wrapTestSetjmp(BB, CI, Threw, SetjmpTable, SetjmpTableSize, Label,
|
|
LongjmpResult, EndBB);
|
|
assert(Label && LongjmpResult && EndBB);
|
|
|
|
// Create switch instruction
|
|
IRB.SetInsertPoint(EndBB);
|
|
SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
|
|
// -1 means no longjmp happened, continue normally (will hit the default
|
|
// switch case). 0 means a longjmp that is not ours to handle, needs a
|
|
// rethrow. Otherwise the index is the same as the index in P+1 (to avoid
|
|
// 0).
|
|
for (unsigned i = 0; i < SetjmpRetPHIs.size(); i++) {
|
|
SI->addCase(IRB.getInt32(i + 1), SetjmpRetPHIs[i]->getParent());
|
|
SetjmpRetPHIs[i]->addIncoming(LongjmpResult, EndBB);
|
|
}
|
|
|
|
// We are splitting the block here, and must continue to find other calls
|
|
// in the block - which is now split. so continue to traverse in the Tail
|
|
BBs.push_back(Tail);
|
|
}
|
|
}
|
|
|
|
// Erase everything we no longer need in this function
|
|
for (Instruction *I : ToErase)
|
|
I->eraseFromParent();
|
|
|
|
// Free setjmpTable buffer before each return instruction
|
|
for (BasicBlock &BB : F) {
|
|
TerminatorInst *TI = BB.getTerminator();
|
|
if (isa<ReturnInst>(TI))
|
|
CallInst::CreateFree(SetjmpTable, TI);
|
|
}
|
|
|
|
// Every call to saveSetjmp can change setjmpTable and setjmpTableSize
|
|
// (when buffer reallocation occurs)
|
|
// entry:
|
|
// setjmpTableSize = 4;
|
|
// setjmpTable = (int *) malloc(40);
|
|
// setjmpTable[0] = 0;
|
|
// ...
|
|
// somebb:
|
|
// setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
|
|
// setjmpTableSize = __tempRet0;
|
|
// So we need to make sure the SSA for these variables is valid so that every
|
|
// saveSetjmp and testSetjmp calls have the correct arguments.
|
|
SSAUpdater SetjmpTableSSA;
|
|
SSAUpdater SetjmpTableSizeSSA;
|
|
SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable");
|
|
SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize");
|
|
for (Instruction *I : SetjmpTableInsts)
|
|
SetjmpTableSSA.AddAvailableValue(I->getParent(), I);
|
|
for (Instruction *I : SetjmpTableSizeInsts)
|
|
SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I);
|
|
|
|
for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end();
|
|
UI != UE;) {
|
|
// Grab the use before incrementing the iterator.
|
|
Use &U = *UI;
|
|
// Increment the iterator before removing the use from the list.
|
|
++UI;
|
|
if (Instruction *I = dyn_cast<Instruction>(U.getUser()))
|
|
if (I->getParent() != &EntryBB)
|
|
SetjmpTableSSA.RewriteUse(U);
|
|
}
|
|
for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end();
|
|
UI != UE;) {
|
|
Use &U = *UI;
|
|
++UI;
|
|
if (Instruction *I = dyn_cast<Instruction>(U.getUser()))
|
|
if (I->getParent() != &EntryBB)
|
|
SetjmpTableSizeSSA.RewriteUse(U);
|
|
}
|
|
|
|
// Finally, our modifications to the cfg can break dominance of SSA variables.
|
|
// For example, in this code,
|
|
// if (x()) { .. setjmp() .. }
|
|
// if (y()) { .. longjmp() .. }
|
|
// We must split the longjmp block, and it can jump into the block splitted
|
|
// from setjmp one. But that means that when we split the setjmp block, it's
|
|
// first part no longer dominates its second part - there is a theoretically
|
|
// possible control flow path where x() is false, then y() is true and we
|
|
// reach the second part of the setjmp block, without ever reaching the first
|
|
// part. So, we rebuild SSA form here.
|
|
rebuildSSA(F);
|
|
return true;
|
|
}
|