forked from OSchip/llvm-project
12040 lines
458 KiB
C++
12040 lines
458 KiB
C++
//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the AArch64TargetLowering class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AArch64ExpandImm.h"
|
|
#include "AArch64ISelLowering.h"
|
|
#include "AArch64CallingConvention.h"
|
|
#include "AArch64MachineFunctionInfo.h"
|
|
#include "AArch64PerfectShuffle.h"
|
|
#include "AArch64RegisterInfo.h"
|
|
#include "AArch64Subtarget.h"
|
|
#include "MCTargetDesc/AArch64AddressingModes.h"
|
|
#include "Utils/AArch64BaseInfo.h"
|
|
#include "llvm/ADT/APFloat.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
#include "llvm/CodeGen/CallingConvLower.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/RuntimeLibcalls.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/SelectionDAGNodes.h"
|
|
#include "llvm/CodeGen/TargetCallingConv.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GetElementPtrTypeIterator.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/OperandTraits.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CodeGen.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Support/MachineValueType.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include <algorithm>
|
|
#include <bitset>
|
|
#include <cassert>
|
|
#include <cctype>
|
|
#include <cstdint>
|
|
#include <cstdlib>
|
|
#include <iterator>
|
|
#include <limits>
|
|
#include <tuple>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::PatternMatch;
|
|
|
|
#define DEBUG_TYPE "aarch64-lower"
|
|
|
|
STATISTIC(NumTailCalls, "Number of tail calls");
|
|
STATISTIC(NumShiftInserts, "Number of vector shift inserts");
|
|
STATISTIC(NumOptimizedImms, "Number of times immediates were optimized");
|
|
|
|
static cl::opt<bool>
|
|
EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
|
|
cl::desc("Allow AArch64 SLI/SRI formation"),
|
|
cl::init(false));
|
|
|
|
// FIXME: The necessary dtprel relocations don't seem to be supported
|
|
// well in the GNU bfd and gold linkers at the moment. Therefore, by
|
|
// default, for now, fall back to GeneralDynamic code generation.
|
|
cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration(
|
|
"aarch64-elf-ldtls-generation", cl::Hidden,
|
|
cl::desc("Allow AArch64 Local Dynamic TLS code generation"),
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool>
|
|
EnableOptimizeLogicalImm("aarch64-enable-logical-imm", cl::Hidden,
|
|
cl::desc("Enable AArch64 logical imm instruction "
|
|
"optimization"),
|
|
cl::init(true));
|
|
|
|
/// Value type used for condition codes.
|
|
static const MVT MVT_CC = MVT::i32;
|
|
|
|
AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM,
|
|
const AArch64Subtarget &STI)
|
|
: TargetLowering(TM), Subtarget(&STI) {
|
|
// AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
|
|
// we have to make something up. Arbitrarily, choose ZeroOrOne.
|
|
setBooleanContents(ZeroOrOneBooleanContent);
|
|
// When comparing vectors the result sets the different elements in the
|
|
// vector to all-one or all-zero.
|
|
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
|
|
|
|
// Set up the register classes.
|
|
addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
|
|
addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
|
|
|
|
if (Subtarget->hasFPARMv8()) {
|
|
addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
|
|
addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
|
|
addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
|
|
addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
|
|
}
|
|
|
|
if (Subtarget->hasNEON()) {
|
|
addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
|
|
addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
|
|
// Someone set us up the NEON.
|
|
addDRTypeForNEON(MVT::v2f32);
|
|
addDRTypeForNEON(MVT::v8i8);
|
|
addDRTypeForNEON(MVT::v4i16);
|
|
addDRTypeForNEON(MVT::v2i32);
|
|
addDRTypeForNEON(MVT::v1i64);
|
|
addDRTypeForNEON(MVT::v1f64);
|
|
addDRTypeForNEON(MVT::v4f16);
|
|
|
|
addQRTypeForNEON(MVT::v4f32);
|
|
addQRTypeForNEON(MVT::v2f64);
|
|
addQRTypeForNEON(MVT::v16i8);
|
|
addQRTypeForNEON(MVT::v8i16);
|
|
addQRTypeForNEON(MVT::v4i32);
|
|
addQRTypeForNEON(MVT::v2i64);
|
|
addQRTypeForNEON(MVT::v8f16);
|
|
}
|
|
|
|
// Compute derived properties from the register classes
|
|
computeRegisterProperties(Subtarget->getRegisterInfo());
|
|
|
|
// Provide all sorts of operation actions
|
|
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
|
|
setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::i32, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::i64, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::f16, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::f32, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::f64, Custom);
|
|
setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
|
|
setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
|
|
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
|
|
setOperationAction(ISD::BR_CC, MVT::i32, Custom);
|
|
setOperationAction(ISD::BR_CC, MVT::i64, Custom);
|
|
setOperationAction(ISD::BR_CC, MVT::f16, Custom);
|
|
setOperationAction(ISD::BR_CC, MVT::f32, Custom);
|
|
setOperationAction(ISD::BR_CC, MVT::f64, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::i32, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::i64, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::f16, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::f32, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::f64, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
|
|
setOperationAction(ISD::BR_JT, MVT::Other, Custom);
|
|
setOperationAction(ISD::JumpTable, MVT::i64, Custom);
|
|
|
|
setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
|
|
setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
|
|
setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
|
|
|
|
setOperationAction(ISD::FREM, MVT::f32, Expand);
|
|
setOperationAction(ISD::FREM, MVT::f64, Expand);
|
|
setOperationAction(ISD::FREM, MVT::f80, Expand);
|
|
|
|
setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
|
|
|
|
// Custom lowering hooks are needed for XOR
|
|
// to fold it into CSINC/CSINV.
|
|
setOperationAction(ISD::XOR, MVT::i32, Custom);
|
|
setOperationAction(ISD::XOR, MVT::i64, Custom);
|
|
|
|
// Virtually no operation on f128 is legal, but LLVM can't expand them when
|
|
// there's a valid register class, so we need custom operations in most cases.
|
|
setOperationAction(ISD::FABS, MVT::f128, Expand);
|
|
setOperationAction(ISD::FADD, MVT::f128, Custom);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::f128, Expand);
|
|
setOperationAction(ISD::FDIV, MVT::f128, Custom);
|
|
setOperationAction(ISD::FMA, MVT::f128, Expand);
|
|
setOperationAction(ISD::FMUL, MVT::f128, Custom);
|
|
setOperationAction(ISD::FNEG, MVT::f128, Expand);
|
|
setOperationAction(ISD::FPOW, MVT::f128, Expand);
|
|
setOperationAction(ISD::FREM, MVT::f128, Expand);
|
|
setOperationAction(ISD::FRINT, MVT::f128, Expand);
|
|
setOperationAction(ISD::FSIN, MVT::f128, Expand);
|
|
setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
|
|
setOperationAction(ISD::FSQRT, MVT::f128, Expand);
|
|
setOperationAction(ISD::FSUB, MVT::f128, Custom);
|
|
setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
|
|
setOperationAction(ISD::SETCC, MVT::f128, Custom);
|
|
setOperationAction(ISD::BR_CC, MVT::f128, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::f128, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
|
|
setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
|
|
|
|
// Lowering for many of the conversions is actually specified by the non-f128
|
|
// type. The LowerXXX function will be trivial when f128 isn't involved.
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
|
|
setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
|
|
setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
|
|
|
|
// Variable arguments.
|
|
setOperationAction(ISD::VASTART, MVT::Other, Custom);
|
|
setOperationAction(ISD::VAARG, MVT::Other, Custom);
|
|
setOperationAction(ISD::VACOPY, MVT::Other, Custom);
|
|
setOperationAction(ISD::VAEND, MVT::Other, Expand);
|
|
|
|
// Variable-sized objects.
|
|
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
|
|
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
|
|
|
|
if (Subtarget->isTargetWindows())
|
|
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
|
|
else
|
|
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
|
|
|
|
// Constant pool entries
|
|
setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
|
|
|
|
// BlockAddress
|
|
setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
|
|
|
|
// Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
|
|
setOperationAction(ISD::ADDC, MVT::i32, Custom);
|
|
setOperationAction(ISD::ADDE, MVT::i32, Custom);
|
|
setOperationAction(ISD::SUBC, MVT::i32, Custom);
|
|
setOperationAction(ISD::SUBE, MVT::i32, Custom);
|
|
setOperationAction(ISD::ADDC, MVT::i64, Custom);
|
|
setOperationAction(ISD::ADDE, MVT::i64, Custom);
|
|
setOperationAction(ISD::SUBC, MVT::i64, Custom);
|
|
setOperationAction(ISD::SUBE, MVT::i64, Custom);
|
|
|
|
// AArch64 lacks both left-rotate and popcount instructions.
|
|
setOperationAction(ISD::ROTL, MVT::i32, Expand);
|
|
setOperationAction(ISD::ROTL, MVT::i64, Expand);
|
|
for (MVT VT : MVT::vector_valuetypes()) {
|
|
setOperationAction(ISD::ROTL, VT, Expand);
|
|
setOperationAction(ISD::ROTR, VT, Expand);
|
|
}
|
|
|
|
// AArch64 doesn't have {U|S}MUL_LOHI.
|
|
setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
|
|
setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
|
|
|
|
setOperationAction(ISD::CTPOP, MVT::i32, Custom);
|
|
setOperationAction(ISD::CTPOP, MVT::i64, Custom);
|
|
|
|
setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
|
|
for (MVT VT : MVT::vector_valuetypes()) {
|
|
setOperationAction(ISD::SDIVREM, VT, Expand);
|
|
setOperationAction(ISD::UDIVREM, VT, Expand);
|
|
}
|
|
setOperationAction(ISD::SREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::SREM, MVT::i64, Expand);
|
|
setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
|
|
setOperationAction(ISD::UREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::UREM, MVT::i64, Expand);
|
|
|
|
// Custom lower Add/Sub/Mul with overflow.
|
|
setOperationAction(ISD::SADDO, MVT::i32, Custom);
|
|
setOperationAction(ISD::SADDO, MVT::i64, Custom);
|
|
setOperationAction(ISD::UADDO, MVT::i32, Custom);
|
|
setOperationAction(ISD::UADDO, MVT::i64, Custom);
|
|
setOperationAction(ISD::SSUBO, MVT::i32, Custom);
|
|
setOperationAction(ISD::SSUBO, MVT::i64, Custom);
|
|
setOperationAction(ISD::USUBO, MVT::i32, Custom);
|
|
setOperationAction(ISD::USUBO, MVT::i64, Custom);
|
|
setOperationAction(ISD::SMULO, MVT::i32, Custom);
|
|
setOperationAction(ISD::SMULO, MVT::i64, Custom);
|
|
setOperationAction(ISD::UMULO, MVT::i32, Custom);
|
|
setOperationAction(ISD::UMULO, MVT::i64, Custom);
|
|
|
|
setOperationAction(ISD::FSIN, MVT::f32, Expand);
|
|
setOperationAction(ISD::FSIN, MVT::f64, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::f32, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::f64, Expand);
|
|
setOperationAction(ISD::FPOW, MVT::f32, Expand);
|
|
setOperationAction(ISD::FPOW, MVT::f64, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
|
|
if (Subtarget->hasFullFP16())
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f16, Custom);
|
|
else
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote);
|
|
|
|
setOperationAction(ISD::FREM, MVT::f16, Promote);
|
|
setOperationAction(ISD::FREM, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FREM, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FPOW, MVT::f16, Promote);
|
|
setOperationAction(ISD::FPOW, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FPOW, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FPOWI, MVT::f16, Promote);
|
|
setOperationAction(ISD::FPOWI, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FPOWI, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::f16, Promote);
|
|
setOperationAction(ISD::FCOS, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FSIN, MVT::f16, Promote);
|
|
setOperationAction(ISD::FSIN, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FSIN, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
|
|
setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FEXP, MVT::f16, Promote);
|
|
setOperationAction(ISD::FEXP, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FEXP, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FEXP2, MVT::f16, Promote);
|
|
setOperationAction(ISD::FEXP2, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FEXP2, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FLOG, MVT::f16, Promote);
|
|
setOperationAction(ISD::FLOG, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FLOG, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FLOG2, MVT::f16, Promote);
|
|
setOperationAction(ISD::FLOG2, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FLOG2, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FLOG10, MVT::f16, Promote);
|
|
setOperationAction(ISD::FLOG10, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FLOG10, MVT::v8f16, Expand);
|
|
|
|
if (!Subtarget->hasFullFP16()) {
|
|
setOperationAction(ISD::SELECT, MVT::f16, Promote);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f16, Promote);
|
|
setOperationAction(ISD::SETCC, MVT::f16, Promote);
|
|
setOperationAction(ISD::BR_CC, MVT::f16, Promote);
|
|
setOperationAction(ISD::FADD, MVT::f16, Promote);
|
|
setOperationAction(ISD::FSUB, MVT::f16, Promote);
|
|
setOperationAction(ISD::FMUL, MVT::f16, Promote);
|
|
setOperationAction(ISD::FDIV, MVT::f16, Promote);
|
|
setOperationAction(ISD::FMA, MVT::f16, Promote);
|
|
setOperationAction(ISD::FNEG, MVT::f16, Promote);
|
|
setOperationAction(ISD::FABS, MVT::f16, Promote);
|
|
setOperationAction(ISD::FCEIL, MVT::f16, Promote);
|
|
setOperationAction(ISD::FSQRT, MVT::f16, Promote);
|
|
setOperationAction(ISD::FFLOOR, MVT::f16, Promote);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
|
|
setOperationAction(ISD::FRINT, MVT::f16, Promote);
|
|
setOperationAction(ISD::FROUND, MVT::f16, Promote);
|
|
setOperationAction(ISD::FTRUNC, MVT::f16, Promote);
|
|
setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
|
|
setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
|
|
setOperationAction(ISD::FMINIMUM, MVT::f16, Promote);
|
|
setOperationAction(ISD::FMAXIMUM, MVT::f16, Promote);
|
|
|
|
// promote v4f16 to v4f32 when that is known to be safe.
|
|
setOperationAction(ISD::FADD, MVT::v4f16, Promote);
|
|
setOperationAction(ISD::FSUB, MVT::v4f16, Promote);
|
|
setOperationAction(ISD::FMUL, MVT::v4f16, Promote);
|
|
setOperationAction(ISD::FDIV, MVT::v4f16, Promote);
|
|
setOperationAction(ISD::FP_EXTEND, MVT::v4f16, Promote);
|
|
setOperationAction(ISD::FP_ROUND, MVT::v4f16, Promote);
|
|
AddPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32);
|
|
AddPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32);
|
|
AddPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32);
|
|
AddPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32);
|
|
AddPromotedToType(ISD::FP_EXTEND, MVT::v4f16, MVT::v4f32);
|
|
AddPromotedToType(ISD::FP_ROUND, MVT::v4f16, MVT::v4f32);
|
|
|
|
setOperationAction(ISD::FABS, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FNEG, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FROUND, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FMA, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::SETCC, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::BR_CC, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FCEIL, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FRINT, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FSQRT, MVT::v4f16, Expand);
|
|
|
|
setOperationAction(ISD::FABS, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FADD, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FCEIL, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FDIV, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FMA, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FMUL, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FNEG, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FROUND, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FRINT, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FSQRT, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FSUB, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::SETCC, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::BR_CC, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand);
|
|
}
|
|
|
|
// AArch64 has implementations of a lot of rounding-like FP operations.
|
|
for (MVT Ty : {MVT::f32, MVT::f64}) {
|
|
setOperationAction(ISD::FFLOOR, Ty, Legal);
|
|
setOperationAction(ISD::FNEARBYINT, Ty, Legal);
|
|
setOperationAction(ISD::FCEIL, Ty, Legal);
|
|
setOperationAction(ISD::FRINT, Ty, Legal);
|
|
setOperationAction(ISD::FTRUNC, Ty, Legal);
|
|
setOperationAction(ISD::FROUND, Ty, Legal);
|
|
setOperationAction(ISD::FMINNUM, Ty, Legal);
|
|
setOperationAction(ISD::FMAXNUM, Ty, Legal);
|
|
setOperationAction(ISD::FMINIMUM, Ty, Legal);
|
|
setOperationAction(ISD::FMAXIMUM, Ty, Legal);
|
|
}
|
|
|
|
if (Subtarget->hasFullFP16()) {
|
|
setOperationAction(ISD::FNEARBYINT, MVT::f16, Legal);
|
|
setOperationAction(ISD::FFLOOR, MVT::f16, Legal);
|
|
setOperationAction(ISD::FCEIL, MVT::f16, Legal);
|
|
setOperationAction(ISD::FRINT, MVT::f16, Legal);
|
|
setOperationAction(ISD::FTRUNC, MVT::f16, Legal);
|
|
setOperationAction(ISD::FROUND, MVT::f16, Legal);
|
|
setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
|
|
setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
|
|
setOperationAction(ISD::FMINIMUM, MVT::f16, Legal);
|
|
setOperationAction(ISD::FMAXIMUM, MVT::f16, Legal);
|
|
}
|
|
|
|
setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
|
|
|
|
setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
|
|
|
|
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
|
|
setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
|
|
setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
|
|
setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom);
|
|
setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
|
|
|
|
// Lower READCYCLECOUNTER using an mrs from PMCCNTR_EL0.
|
|
// This requires the Performance Monitors extension.
|
|
if (Subtarget->hasPerfMon())
|
|
setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
|
|
|
|
if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
|
|
getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
|
|
// Issue __sincos_stret if available.
|
|
setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
|
|
setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
|
|
} else {
|
|
setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
|
|
setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
|
|
}
|
|
|
|
// Make floating-point constants legal for the large code model, so they don't
|
|
// become loads from the constant pool.
|
|
if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
|
|
setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
|
|
setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
|
|
}
|
|
|
|
// AArch64 does not have floating-point extending loads, i1 sign-extending
|
|
// load, floating-point truncating stores, or v2i32->v2i16 truncating store.
|
|
for (MVT VT : MVT::fp_valuetypes()) {
|
|
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
|
|
}
|
|
for (MVT VT : MVT::integer_valuetypes())
|
|
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand);
|
|
|
|
setTruncStoreAction(MVT::f32, MVT::f16, Expand);
|
|
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
|
|
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
|
|
setTruncStoreAction(MVT::f128, MVT::f80, Expand);
|
|
setTruncStoreAction(MVT::f128, MVT::f64, Expand);
|
|
setTruncStoreAction(MVT::f128, MVT::f32, Expand);
|
|
setTruncStoreAction(MVT::f128, MVT::f16, Expand);
|
|
|
|
setOperationAction(ISD::BITCAST, MVT::i16, Custom);
|
|
setOperationAction(ISD::BITCAST, MVT::f16, Custom);
|
|
|
|
// Indexed loads and stores are supported.
|
|
for (unsigned im = (unsigned)ISD::PRE_INC;
|
|
im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
|
|
setIndexedLoadAction(im, MVT::i8, Legal);
|
|
setIndexedLoadAction(im, MVT::i16, Legal);
|
|
setIndexedLoadAction(im, MVT::i32, Legal);
|
|
setIndexedLoadAction(im, MVT::i64, Legal);
|
|
setIndexedLoadAction(im, MVT::f64, Legal);
|
|
setIndexedLoadAction(im, MVT::f32, Legal);
|
|
setIndexedLoadAction(im, MVT::f16, Legal);
|
|
setIndexedStoreAction(im, MVT::i8, Legal);
|
|
setIndexedStoreAction(im, MVT::i16, Legal);
|
|
setIndexedStoreAction(im, MVT::i32, Legal);
|
|
setIndexedStoreAction(im, MVT::i64, Legal);
|
|
setIndexedStoreAction(im, MVT::f64, Legal);
|
|
setIndexedStoreAction(im, MVT::f32, Legal);
|
|
setIndexedStoreAction(im, MVT::f16, Legal);
|
|
}
|
|
|
|
// Trap.
|
|
setOperationAction(ISD::TRAP, MVT::Other, Legal);
|
|
|
|
// We combine OR nodes for bitfield operations.
|
|
setTargetDAGCombine(ISD::OR);
|
|
// Try to create BICs for vector ANDs.
|
|
setTargetDAGCombine(ISD::AND);
|
|
|
|
// Vector add and sub nodes may conceal a high-half opportunity.
|
|
// Also, try to fold ADD into CSINC/CSINV..
|
|
setTargetDAGCombine(ISD::ADD);
|
|
setTargetDAGCombine(ISD::SUB);
|
|
setTargetDAGCombine(ISD::SRL);
|
|
setTargetDAGCombine(ISD::XOR);
|
|
setTargetDAGCombine(ISD::SINT_TO_FP);
|
|
setTargetDAGCombine(ISD::UINT_TO_FP);
|
|
|
|
setTargetDAGCombine(ISD::FP_TO_SINT);
|
|
setTargetDAGCombine(ISD::FP_TO_UINT);
|
|
setTargetDAGCombine(ISD::FDIV);
|
|
|
|
setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
|
|
|
|
setTargetDAGCombine(ISD::ANY_EXTEND);
|
|
setTargetDAGCombine(ISD::ZERO_EXTEND);
|
|
setTargetDAGCombine(ISD::SIGN_EXTEND);
|
|
setTargetDAGCombine(ISD::BITCAST);
|
|
setTargetDAGCombine(ISD::CONCAT_VECTORS);
|
|
setTargetDAGCombine(ISD::STORE);
|
|
if (Subtarget->supportsAddressTopByteIgnored())
|
|
setTargetDAGCombine(ISD::LOAD);
|
|
|
|
setTargetDAGCombine(ISD::MUL);
|
|
|
|
setTargetDAGCombine(ISD::SELECT);
|
|
setTargetDAGCombine(ISD::VSELECT);
|
|
|
|
setTargetDAGCombine(ISD::INTRINSIC_VOID);
|
|
setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
|
|
setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
|
|
|
|
setTargetDAGCombine(ISD::GlobalAddress);
|
|
|
|
// In case of strict alignment, avoid an excessive number of byte wide stores.
|
|
MaxStoresPerMemsetOptSize = 8;
|
|
MaxStoresPerMemset = Subtarget->requiresStrictAlign()
|
|
? MaxStoresPerMemsetOptSize : 32;
|
|
|
|
MaxGluedStoresPerMemcpy = 4;
|
|
MaxStoresPerMemcpyOptSize = 4;
|
|
MaxStoresPerMemcpy = Subtarget->requiresStrictAlign()
|
|
? MaxStoresPerMemcpyOptSize : 16;
|
|
|
|
MaxStoresPerMemmoveOptSize = MaxStoresPerMemmove = 4;
|
|
|
|
setStackPointerRegisterToSaveRestore(AArch64::SP);
|
|
|
|
setSchedulingPreference(Sched::Hybrid);
|
|
|
|
EnableExtLdPromotion = true;
|
|
|
|
// Set required alignment.
|
|
setMinFunctionAlignment(2);
|
|
// Set preferred alignments.
|
|
setPrefFunctionAlignment(STI.getPrefFunctionAlignment());
|
|
setPrefLoopAlignment(STI.getPrefLoopAlignment());
|
|
|
|
// Only change the limit for entries in a jump table if specified by
|
|
// the sub target, but not at the command line.
|
|
unsigned MaxJT = STI.getMaximumJumpTableSize();
|
|
if (MaxJT && getMaximumJumpTableSize() == UINT_MAX)
|
|
setMaximumJumpTableSize(MaxJT);
|
|
|
|
setHasExtractBitsInsn(true);
|
|
|
|
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
|
|
|
|
if (Subtarget->hasNEON()) {
|
|
// FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
|
|
// silliness like this:
|
|
setOperationAction(ISD::FABS, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FADD, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FMA, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FREM, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
|
|
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
|
|
setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
|
|
|
|
setOperationAction(ISD::MUL, MVT::v1i64, Expand);
|
|
|
|
// AArch64 doesn't have a direct vector ->f32 conversion instructions for
|
|
// elements smaller than i32, so promote the input to i32 first.
|
|
setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i8, MVT::v4i32);
|
|
setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i8, MVT::v4i32);
|
|
// i8 vector elements also need promotion to i32 for v8i8
|
|
setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i8, MVT::v8i32);
|
|
setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i8, MVT::v8i32);
|
|
// Similarly, there is no direct i32 -> f64 vector conversion instruction.
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
|
|
// Or, direct i32 -> f16 vector conversion. Set it so custom, so the
|
|
// conversion happens in two steps: v4i32 -> v4f32 -> v4f16
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom);
|
|
|
|
if (Subtarget->hasFullFP16()) {
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
|
|
} else {
|
|
// when AArch64 doesn't have fullfp16 support, promote the input
|
|
// to i32 first.
|
|
setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i16, MVT::v4i32);
|
|
setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i16, MVT::v4i32);
|
|
setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i16, MVT::v8i32);
|
|
setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i16, MVT::v8i32);
|
|
}
|
|
|
|
setOperationAction(ISD::CTLZ, MVT::v1i64, Expand);
|
|
setOperationAction(ISD::CTLZ, MVT::v2i64, Expand);
|
|
|
|
// AArch64 doesn't have MUL.2d:
|
|
setOperationAction(ISD::MUL, MVT::v2i64, Expand);
|
|
// Custom handling for some quad-vector types to detect MULL.
|
|
setOperationAction(ISD::MUL, MVT::v8i16, Custom);
|
|
setOperationAction(ISD::MUL, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::MUL, MVT::v2i64, Custom);
|
|
|
|
// Vector reductions
|
|
for (MVT VT : { MVT::v8i8, MVT::v4i16, MVT::v2i32,
|
|
MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64 }) {
|
|
setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
|
|
setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
|
|
setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
|
|
setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
|
|
setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
|
|
}
|
|
for (MVT VT : { MVT::v4f16, MVT::v2f32,
|
|
MVT::v8f16, MVT::v4f32, MVT::v2f64 }) {
|
|
setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
|
|
setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
|
|
}
|
|
|
|
setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
|
|
setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
|
|
// Likewise, narrowing and extending vector loads/stores aren't handled
|
|
// directly.
|
|
for (MVT VT : MVT::vector_valuetypes()) {
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
|
|
|
|
if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32) {
|
|
setOperationAction(ISD::MULHS, VT, Legal);
|
|
setOperationAction(ISD::MULHU, VT, Legal);
|
|
} else {
|
|
setOperationAction(ISD::MULHS, VT, Expand);
|
|
setOperationAction(ISD::MULHU, VT, Expand);
|
|
}
|
|
setOperationAction(ISD::SMUL_LOHI, VT, Expand);
|
|
setOperationAction(ISD::UMUL_LOHI, VT, Expand);
|
|
|
|
setOperationAction(ISD::BSWAP, VT, Expand);
|
|
setOperationAction(ISD::CTTZ, VT, Expand);
|
|
|
|
for (MVT InnerVT : MVT::vector_valuetypes()) {
|
|
setTruncStoreAction(VT, InnerVT, Expand);
|
|
setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
|
|
setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
|
|
}
|
|
}
|
|
|
|
// AArch64 has implementations of a lot of rounding-like FP operations.
|
|
for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64}) {
|
|
setOperationAction(ISD::FFLOOR, Ty, Legal);
|
|
setOperationAction(ISD::FNEARBYINT, Ty, Legal);
|
|
setOperationAction(ISD::FCEIL, Ty, Legal);
|
|
setOperationAction(ISD::FRINT, Ty, Legal);
|
|
setOperationAction(ISD::FTRUNC, Ty, Legal);
|
|
setOperationAction(ISD::FROUND, Ty, Legal);
|
|
}
|
|
|
|
if (Subtarget->hasFullFP16()) {
|
|
for (MVT Ty : {MVT::v4f16, MVT::v8f16}) {
|
|
setOperationAction(ISD::FFLOOR, Ty, Legal);
|
|
setOperationAction(ISD::FNEARBYINT, Ty, Legal);
|
|
setOperationAction(ISD::FCEIL, Ty, Legal);
|
|
setOperationAction(ISD::FRINT, Ty, Legal);
|
|
setOperationAction(ISD::FTRUNC, Ty, Legal);
|
|
setOperationAction(ISD::FROUND, Ty, Legal);
|
|
}
|
|
}
|
|
|
|
setTruncStoreAction(MVT::v4i16, MVT::v4i8, Custom);
|
|
}
|
|
|
|
PredictableSelectIsExpensive = Subtarget->predictableSelectIsExpensive();
|
|
}
|
|
|
|
void AArch64TargetLowering::addTypeForNEON(MVT VT, MVT PromotedBitwiseVT) {
|
|
assert(VT.isVector() && "VT should be a vector type");
|
|
|
|
if (VT.isFloatingPoint()) {
|
|
MVT PromoteTo = EVT(VT).changeVectorElementTypeToInteger().getSimpleVT();
|
|
setOperationPromotedToType(ISD::LOAD, VT, PromoteTo);
|
|
setOperationPromotedToType(ISD::STORE, VT, PromoteTo);
|
|
}
|
|
|
|
// Mark vector float intrinsics as expand.
|
|
if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
|
|
setOperationAction(ISD::FSIN, VT, Expand);
|
|
setOperationAction(ISD::FCOS, VT, Expand);
|
|
setOperationAction(ISD::FPOW, VT, Expand);
|
|
setOperationAction(ISD::FLOG, VT, Expand);
|
|
setOperationAction(ISD::FLOG2, VT, Expand);
|
|
setOperationAction(ISD::FLOG10, VT, Expand);
|
|
setOperationAction(ISD::FEXP, VT, Expand);
|
|
setOperationAction(ISD::FEXP2, VT, Expand);
|
|
|
|
// But we do support custom-lowering for FCOPYSIGN.
|
|
setOperationAction(ISD::FCOPYSIGN, VT, Custom);
|
|
}
|
|
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
|
|
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
|
|
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
|
|
setOperationAction(ISD::SRA, VT, Custom);
|
|
setOperationAction(ISD::SRL, VT, Custom);
|
|
setOperationAction(ISD::SHL, VT, Custom);
|
|
setOperationAction(ISD::OR, VT, Custom);
|
|
setOperationAction(ISD::SETCC, VT, Custom);
|
|
setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);
|
|
|
|
setOperationAction(ISD::SELECT, VT, Expand);
|
|
setOperationAction(ISD::SELECT_CC, VT, Expand);
|
|
setOperationAction(ISD::VSELECT, VT, Expand);
|
|
for (MVT InnerVT : MVT::all_valuetypes())
|
|
setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
|
|
|
|
// CNT supports only B element sizes, then use UADDLP to widen.
|
|
if (VT != MVT::v8i8 && VT != MVT::v16i8)
|
|
setOperationAction(ISD::CTPOP, VT, Custom);
|
|
|
|
setOperationAction(ISD::UDIV, VT, Expand);
|
|
setOperationAction(ISD::SDIV, VT, Expand);
|
|
setOperationAction(ISD::UREM, VT, Expand);
|
|
setOperationAction(ISD::SREM, VT, Expand);
|
|
setOperationAction(ISD::FREM, VT, Expand);
|
|
|
|
setOperationAction(ISD::FP_TO_SINT, VT, Custom);
|
|
setOperationAction(ISD::FP_TO_UINT, VT, Custom);
|
|
|
|
if (!VT.isFloatingPoint())
|
|
setOperationAction(ISD::ABS, VT, Legal);
|
|
|
|
// [SU][MIN|MAX] are available for all NEON types apart from i64.
|
|
if (!VT.isFloatingPoint() && VT != MVT::v2i64 && VT != MVT::v1i64)
|
|
for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
|
|
setOperationAction(Opcode, VT, Legal);
|
|
|
|
// F[MIN|MAX][NUM|NAN] are available for all FP NEON types.
|
|
if (VT.isFloatingPoint() &&
|
|
(VT.getVectorElementType() != MVT::f16 || Subtarget->hasFullFP16()))
|
|
for (unsigned Opcode :
|
|
{ISD::FMINIMUM, ISD::FMAXIMUM, ISD::FMINNUM, ISD::FMAXNUM})
|
|
setOperationAction(Opcode, VT, Legal);
|
|
|
|
if (Subtarget->isLittleEndian()) {
|
|
for (unsigned im = (unsigned)ISD::PRE_INC;
|
|
im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
|
|
setIndexedLoadAction(im, VT, Legal);
|
|
setIndexedStoreAction(im, VT, Legal);
|
|
}
|
|
}
|
|
}
|
|
|
|
void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
|
|
addRegisterClass(VT, &AArch64::FPR64RegClass);
|
|
addTypeForNEON(VT, MVT::v2i32);
|
|
}
|
|
|
|
void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
|
|
addRegisterClass(VT, &AArch64::FPR128RegClass);
|
|
addTypeForNEON(VT, MVT::v4i32);
|
|
}
|
|
|
|
EVT AArch64TargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
|
|
EVT VT) const {
|
|
if (!VT.isVector())
|
|
return MVT::i32;
|
|
return VT.changeVectorElementTypeToInteger();
|
|
}
|
|
|
|
static bool optimizeLogicalImm(SDValue Op, unsigned Size, uint64_t Imm,
|
|
const APInt &Demanded,
|
|
TargetLowering::TargetLoweringOpt &TLO,
|
|
unsigned NewOpc) {
|
|
uint64_t OldImm = Imm, NewImm, Enc;
|
|
uint64_t Mask = ((uint64_t)(-1LL) >> (64 - Size)), OrigMask = Mask;
|
|
|
|
// Return if the immediate is already all zeros, all ones, a bimm32 or a
|
|
// bimm64.
|
|
if (Imm == 0 || Imm == Mask ||
|
|
AArch64_AM::isLogicalImmediate(Imm & Mask, Size))
|
|
return false;
|
|
|
|
unsigned EltSize = Size;
|
|
uint64_t DemandedBits = Demanded.getZExtValue();
|
|
|
|
// Clear bits that are not demanded.
|
|
Imm &= DemandedBits;
|
|
|
|
while (true) {
|
|
// The goal here is to set the non-demanded bits in a way that minimizes
|
|
// the number of switching between 0 and 1. In order to achieve this goal,
|
|
// we set the non-demanded bits to the value of the preceding demanded bits.
|
|
// For example, if we have an immediate 0bx10xx0x1 ('x' indicates a
|
|
// non-demanded bit), we copy bit0 (1) to the least significant 'x',
|
|
// bit2 (0) to 'xx', and bit6 (1) to the most significant 'x'.
|
|
// The final result is 0b11000011.
|
|
uint64_t NonDemandedBits = ~DemandedBits;
|
|
uint64_t InvertedImm = ~Imm & DemandedBits;
|
|
uint64_t RotatedImm =
|
|
((InvertedImm << 1) | (InvertedImm >> (EltSize - 1) & 1)) &
|
|
NonDemandedBits;
|
|
uint64_t Sum = RotatedImm + NonDemandedBits;
|
|
bool Carry = NonDemandedBits & ~Sum & (1ULL << (EltSize - 1));
|
|
uint64_t Ones = (Sum + Carry) & NonDemandedBits;
|
|
NewImm = (Imm | Ones) & Mask;
|
|
|
|
// If NewImm or its bitwise NOT is a shifted mask, it is a bitmask immediate
|
|
// or all-ones or all-zeros, in which case we can stop searching. Otherwise,
|
|
// we halve the element size and continue the search.
|
|
if (isShiftedMask_64(NewImm) || isShiftedMask_64(~(NewImm | ~Mask)))
|
|
break;
|
|
|
|
// We cannot shrink the element size any further if it is 2-bits.
|
|
if (EltSize == 2)
|
|
return false;
|
|
|
|
EltSize /= 2;
|
|
Mask >>= EltSize;
|
|
uint64_t Hi = Imm >> EltSize, DemandedBitsHi = DemandedBits >> EltSize;
|
|
|
|
// Return if there is mismatch in any of the demanded bits of Imm and Hi.
|
|
if (((Imm ^ Hi) & (DemandedBits & DemandedBitsHi) & Mask) != 0)
|
|
return false;
|
|
|
|
// Merge the upper and lower halves of Imm and DemandedBits.
|
|
Imm |= Hi;
|
|
DemandedBits |= DemandedBitsHi;
|
|
}
|
|
|
|
++NumOptimizedImms;
|
|
|
|
// Replicate the element across the register width.
|
|
while (EltSize < Size) {
|
|
NewImm |= NewImm << EltSize;
|
|
EltSize *= 2;
|
|
}
|
|
|
|
(void)OldImm;
|
|
assert(((OldImm ^ NewImm) & Demanded.getZExtValue()) == 0 &&
|
|
"demanded bits should never be altered");
|
|
assert(OldImm != NewImm && "the new imm shouldn't be equal to the old imm");
|
|
|
|
// Create the new constant immediate node.
|
|
EVT VT = Op.getValueType();
|
|
SDLoc DL(Op);
|
|
SDValue New;
|
|
|
|
// If the new constant immediate is all-zeros or all-ones, let the target
|
|
// independent DAG combine optimize this node.
|
|
if (NewImm == 0 || NewImm == OrigMask) {
|
|
New = TLO.DAG.getNode(Op.getOpcode(), DL, VT, Op.getOperand(0),
|
|
TLO.DAG.getConstant(NewImm, DL, VT));
|
|
// Otherwise, create a machine node so that target independent DAG combine
|
|
// doesn't undo this optimization.
|
|
} else {
|
|
Enc = AArch64_AM::encodeLogicalImmediate(NewImm, Size);
|
|
SDValue EncConst = TLO.DAG.getTargetConstant(Enc, DL, VT);
|
|
New = SDValue(
|
|
TLO.DAG.getMachineNode(NewOpc, DL, VT, Op.getOperand(0), EncConst), 0);
|
|
}
|
|
|
|
return TLO.CombineTo(Op, New);
|
|
}
|
|
|
|
bool AArch64TargetLowering::targetShrinkDemandedConstant(
|
|
SDValue Op, const APInt &Demanded, TargetLoweringOpt &TLO) const {
|
|
// Delay this optimization to as late as possible.
|
|
if (!TLO.LegalOps)
|
|
return false;
|
|
|
|
if (!EnableOptimizeLogicalImm)
|
|
return false;
|
|
|
|
EVT VT = Op.getValueType();
|
|
if (VT.isVector())
|
|
return false;
|
|
|
|
unsigned Size = VT.getSizeInBits();
|
|
assert((Size == 32 || Size == 64) &&
|
|
"i32 or i64 is expected after legalization.");
|
|
|
|
// Exit early if we demand all bits.
|
|
if (Demanded.countPopulation() == Size)
|
|
return false;
|
|
|
|
unsigned NewOpc;
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
return false;
|
|
case ISD::AND:
|
|
NewOpc = Size == 32 ? AArch64::ANDWri : AArch64::ANDXri;
|
|
break;
|
|
case ISD::OR:
|
|
NewOpc = Size == 32 ? AArch64::ORRWri : AArch64::ORRXri;
|
|
break;
|
|
case ISD::XOR:
|
|
NewOpc = Size == 32 ? AArch64::EORWri : AArch64::EORXri;
|
|
break;
|
|
}
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
|
|
if (!C)
|
|
return false;
|
|
uint64_t Imm = C->getZExtValue();
|
|
return optimizeLogicalImm(Op, Size, Imm, Demanded, TLO, NewOpc);
|
|
}
|
|
|
|
/// computeKnownBitsForTargetNode - Determine which of the bits specified in
|
|
/// Mask are known to be either zero or one and return them Known.
|
|
void AArch64TargetLowering::computeKnownBitsForTargetNode(
|
|
const SDValue Op, KnownBits &Known,
|
|
const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
break;
|
|
case AArch64ISD::CSEL: {
|
|
KnownBits Known2;
|
|
Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
|
|
Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1);
|
|
Known.Zero &= Known2.Zero;
|
|
Known.One &= Known2.One;
|
|
break;
|
|
}
|
|
case ISD::INTRINSIC_W_CHAIN: {
|
|
ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
|
|
Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
|
|
switch (IntID) {
|
|
default: return;
|
|
case Intrinsic::aarch64_ldaxr:
|
|
case Intrinsic::aarch64_ldxr: {
|
|
unsigned BitWidth = Known.getBitWidth();
|
|
EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
|
|
unsigned MemBits = VT.getScalarSizeInBits();
|
|
Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
|
|
return;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case ISD::INTRINSIC_WO_CHAIN:
|
|
case ISD::INTRINSIC_VOID: {
|
|
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
switch (IntNo) {
|
|
default:
|
|
break;
|
|
case Intrinsic::aarch64_neon_umaxv:
|
|
case Intrinsic::aarch64_neon_uminv: {
|
|
// Figure out the datatype of the vector operand. The UMINV instruction
|
|
// will zero extend the result, so we can mark as known zero all the
|
|
// bits larger than the element datatype. 32-bit or larget doesn't need
|
|
// this as those are legal types and will be handled by isel directly.
|
|
MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
|
|
unsigned BitWidth = Known.getBitWidth();
|
|
if (VT == MVT::v8i8 || VT == MVT::v16i8) {
|
|
assert(BitWidth >= 8 && "Unexpected width!");
|
|
APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
|
|
Known.Zero |= Mask;
|
|
} else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
|
|
assert(BitWidth >= 16 && "Unexpected width!");
|
|
APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
|
|
Known.Zero |= Mask;
|
|
}
|
|
break;
|
|
} break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
MVT AArch64TargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
|
|
EVT) const {
|
|
return MVT::i64;
|
|
}
|
|
|
|
bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
|
|
unsigned AddrSpace,
|
|
unsigned Align,
|
|
bool *Fast) const {
|
|
if (Subtarget->requiresStrictAlign())
|
|
return false;
|
|
|
|
if (Fast) {
|
|
// Some CPUs are fine with unaligned stores except for 128-bit ones.
|
|
*Fast = !Subtarget->isMisaligned128StoreSlow() || VT.getStoreSize() != 16 ||
|
|
// See comments in performSTORECombine() for more details about
|
|
// these conditions.
|
|
|
|
// Code that uses clang vector extensions can mark that it
|
|
// wants unaligned accesses to be treated as fast by
|
|
// underspecifying alignment to be 1 or 2.
|
|
Align <= 2 ||
|
|
|
|
// Disregard v2i64. Memcpy lowering produces those and splitting
|
|
// them regresses performance on micro-benchmarks and olden/bh.
|
|
VT == MVT::v2i64;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
FastISel *
|
|
AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
|
|
const TargetLibraryInfo *libInfo) const {
|
|
return AArch64::createFastISel(funcInfo, libInfo);
|
|
}
|
|
|
|
const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
|
|
switch ((AArch64ISD::NodeType)Opcode) {
|
|
case AArch64ISD::FIRST_NUMBER: break;
|
|
case AArch64ISD::CALL: return "AArch64ISD::CALL";
|
|
case AArch64ISD::ADRP: return "AArch64ISD::ADRP";
|
|
case AArch64ISD::ADR: return "AArch64ISD::ADR";
|
|
case AArch64ISD::ADDlow: return "AArch64ISD::ADDlow";
|
|
case AArch64ISD::LOADgot: return "AArch64ISD::LOADgot";
|
|
case AArch64ISD::RET_FLAG: return "AArch64ISD::RET_FLAG";
|
|
case AArch64ISD::BRCOND: return "AArch64ISD::BRCOND";
|
|
case AArch64ISD::CSEL: return "AArch64ISD::CSEL";
|
|
case AArch64ISD::FCSEL: return "AArch64ISD::FCSEL";
|
|
case AArch64ISD::CSINV: return "AArch64ISD::CSINV";
|
|
case AArch64ISD::CSNEG: return "AArch64ISD::CSNEG";
|
|
case AArch64ISD::CSINC: return "AArch64ISD::CSINC";
|
|
case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
|
|
case AArch64ISD::TLSDESC_CALLSEQ: return "AArch64ISD::TLSDESC_CALLSEQ";
|
|
case AArch64ISD::ADC: return "AArch64ISD::ADC";
|
|
case AArch64ISD::SBC: return "AArch64ISD::SBC";
|
|
case AArch64ISD::ADDS: return "AArch64ISD::ADDS";
|
|
case AArch64ISD::SUBS: return "AArch64ISD::SUBS";
|
|
case AArch64ISD::ADCS: return "AArch64ISD::ADCS";
|
|
case AArch64ISD::SBCS: return "AArch64ISD::SBCS";
|
|
case AArch64ISD::ANDS: return "AArch64ISD::ANDS";
|
|
case AArch64ISD::CCMP: return "AArch64ISD::CCMP";
|
|
case AArch64ISD::CCMN: return "AArch64ISD::CCMN";
|
|
case AArch64ISD::FCCMP: return "AArch64ISD::FCCMP";
|
|
case AArch64ISD::FCMP: return "AArch64ISD::FCMP";
|
|
case AArch64ISD::DUP: return "AArch64ISD::DUP";
|
|
case AArch64ISD::DUPLANE8: return "AArch64ISD::DUPLANE8";
|
|
case AArch64ISD::DUPLANE16: return "AArch64ISD::DUPLANE16";
|
|
case AArch64ISD::DUPLANE32: return "AArch64ISD::DUPLANE32";
|
|
case AArch64ISD::DUPLANE64: return "AArch64ISD::DUPLANE64";
|
|
case AArch64ISD::MOVI: return "AArch64ISD::MOVI";
|
|
case AArch64ISD::MOVIshift: return "AArch64ISD::MOVIshift";
|
|
case AArch64ISD::MOVIedit: return "AArch64ISD::MOVIedit";
|
|
case AArch64ISD::MOVImsl: return "AArch64ISD::MOVImsl";
|
|
case AArch64ISD::FMOV: return "AArch64ISD::FMOV";
|
|
case AArch64ISD::MVNIshift: return "AArch64ISD::MVNIshift";
|
|
case AArch64ISD::MVNImsl: return "AArch64ISD::MVNImsl";
|
|
case AArch64ISD::BICi: return "AArch64ISD::BICi";
|
|
case AArch64ISD::ORRi: return "AArch64ISD::ORRi";
|
|
case AArch64ISD::BSL: return "AArch64ISD::BSL";
|
|
case AArch64ISD::NEG: return "AArch64ISD::NEG";
|
|
case AArch64ISD::EXTR: return "AArch64ISD::EXTR";
|
|
case AArch64ISD::ZIP1: return "AArch64ISD::ZIP1";
|
|
case AArch64ISD::ZIP2: return "AArch64ISD::ZIP2";
|
|
case AArch64ISD::UZP1: return "AArch64ISD::UZP1";
|
|
case AArch64ISD::UZP2: return "AArch64ISD::UZP2";
|
|
case AArch64ISD::TRN1: return "AArch64ISD::TRN1";
|
|
case AArch64ISD::TRN2: return "AArch64ISD::TRN2";
|
|
case AArch64ISD::REV16: return "AArch64ISD::REV16";
|
|
case AArch64ISD::REV32: return "AArch64ISD::REV32";
|
|
case AArch64ISD::REV64: return "AArch64ISD::REV64";
|
|
case AArch64ISD::EXT: return "AArch64ISD::EXT";
|
|
case AArch64ISD::VSHL: return "AArch64ISD::VSHL";
|
|
case AArch64ISD::VLSHR: return "AArch64ISD::VLSHR";
|
|
case AArch64ISD::VASHR: return "AArch64ISD::VASHR";
|
|
case AArch64ISD::CMEQ: return "AArch64ISD::CMEQ";
|
|
case AArch64ISD::CMGE: return "AArch64ISD::CMGE";
|
|
case AArch64ISD::CMGT: return "AArch64ISD::CMGT";
|
|
case AArch64ISD::CMHI: return "AArch64ISD::CMHI";
|
|
case AArch64ISD::CMHS: return "AArch64ISD::CMHS";
|
|
case AArch64ISD::FCMEQ: return "AArch64ISD::FCMEQ";
|
|
case AArch64ISD::FCMGE: return "AArch64ISD::FCMGE";
|
|
case AArch64ISD::FCMGT: return "AArch64ISD::FCMGT";
|
|
case AArch64ISD::CMEQz: return "AArch64ISD::CMEQz";
|
|
case AArch64ISD::CMGEz: return "AArch64ISD::CMGEz";
|
|
case AArch64ISD::CMGTz: return "AArch64ISD::CMGTz";
|
|
case AArch64ISD::CMLEz: return "AArch64ISD::CMLEz";
|
|
case AArch64ISD::CMLTz: return "AArch64ISD::CMLTz";
|
|
case AArch64ISD::FCMEQz: return "AArch64ISD::FCMEQz";
|
|
case AArch64ISD::FCMGEz: return "AArch64ISD::FCMGEz";
|
|
case AArch64ISD::FCMGTz: return "AArch64ISD::FCMGTz";
|
|
case AArch64ISD::FCMLEz: return "AArch64ISD::FCMLEz";
|
|
case AArch64ISD::FCMLTz: return "AArch64ISD::FCMLTz";
|
|
case AArch64ISD::SADDV: return "AArch64ISD::SADDV";
|
|
case AArch64ISD::UADDV: return "AArch64ISD::UADDV";
|
|
case AArch64ISD::SMINV: return "AArch64ISD::SMINV";
|
|
case AArch64ISD::UMINV: return "AArch64ISD::UMINV";
|
|
case AArch64ISD::SMAXV: return "AArch64ISD::SMAXV";
|
|
case AArch64ISD::UMAXV: return "AArch64ISD::UMAXV";
|
|
case AArch64ISD::NOT: return "AArch64ISD::NOT";
|
|
case AArch64ISD::BIT: return "AArch64ISD::BIT";
|
|
case AArch64ISD::CBZ: return "AArch64ISD::CBZ";
|
|
case AArch64ISD::CBNZ: return "AArch64ISD::CBNZ";
|
|
case AArch64ISD::TBZ: return "AArch64ISD::TBZ";
|
|
case AArch64ISD::TBNZ: return "AArch64ISD::TBNZ";
|
|
case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN";
|
|
case AArch64ISD::PREFETCH: return "AArch64ISD::PREFETCH";
|
|
case AArch64ISD::SITOF: return "AArch64ISD::SITOF";
|
|
case AArch64ISD::UITOF: return "AArch64ISD::UITOF";
|
|
case AArch64ISD::NVCAST: return "AArch64ISD::NVCAST";
|
|
case AArch64ISD::SQSHL_I: return "AArch64ISD::SQSHL_I";
|
|
case AArch64ISD::UQSHL_I: return "AArch64ISD::UQSHL_I";
|
|
case AArch64ISD::SRSHR_I: return "AArch64ISD::SRSHR_I";
|
|
case AArch64ISD::URSHR_I: return "AArch64ISD::URSHR_I";
|
|
case AArch64ISD::SQSHLU_I: return "AArch64ISD::SQSHLU_I";
|
|
case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge";
|
|
case AArch64ISD::LD2post: return "AArch64ISD::LD2post";
|
|
case AArch64ISD::LD3post: return "AArch64ISD::LD3post";
|
|
case AArch64ISD::LD4post: return "AArch64ISD::LD4post";
|
|
case AArch64ISD::ST2post: return "AArch64ISD::ST2post";
|
|
case AArch64ISD::ST3post: return "AArch64ISD::ST3post";
|
|
case AArch64ISD::ST4post: return "AArch64ISD::ST4post";
|
|
case AArch64ISD::LD1x2post: return "AArch64ISD::LD1x2post";
|
|
case AArch64ISD::LD1x3post: return "AArch64ISD::LD1x3post";
|
|
case AArch64ISD::LD1x4post: return "AArch64ISD::LD1x4post";
|
|
case AArch64ISD::ST1x2post: return "AArch64ISD::ST1x2post";
|
|
case AArch64ISD::ST1x3post: return "AArch64ISD::ST1x3post";
|
|
case AArch64ISD::ST1x4post: return "AArch64ISD::ST1x4post";
|
|
case AArch64ISD::LD1DUPpost: return "AArch64ISD::LD1DUPpost";
|
|
case AArch64ISD::LD2DUPpost: return "AArch64ISD::LD2DUPpost";
|
|
case AArch64ISD::LD3DUPpost: return "AArch64ISD::LD3DUPpost";
|
|
case AArch64ISD::LD4DUPpost: return "AArch64ISD::LD4DUPpost";
|
|
case AArch64ISD::LD1LANEpost: return "AArch64ISD::LD1LANEpost";
|
|
case AArch64ISD::LD2LANEpost: return "AArch64ISD::LD2LANEpost";
|
|
case AArch64ISD::LD3LANEpost: return "AArch64ISD::LD3LANEpost";
|
|
case AArch64ISD::LD4LANEpost: return "AArch64ISD::LD4LANEpost";
|
|
case AArch64ISD::ST2LANEpost: return "AArch64ISD::ST2LANEpost";
|
|
case AArch64ISD::ST3LANEpost: return "AArch64ISD::ST3LANEpost";
|
|
case AArch64ISD::ST4LANEpost: return "AArch64ISD::ST4LANEpost";
|
|
case AArch64ISD::SMULL: return "AArch64ISD::SMULL";
|
|
case AArch64ISD::UMULL: return "AArch64ISD::UMULL";
|
|
case AArch64ISD::FRECPE: return "AArch64ISD::FRECPE";
|
|
case AArch64ISD::FRECPS: return "AArch64ISD::FRECPS";
|
|
case AArch64ISD::FRSQRTE: return "AArch64ISD::FRSQRTE";
|
|
case AArch64ISD::FRSQRTS: return "AArch64ISD::FRSQRTS";
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
AArch64TargetLowering::EmitF128CSEL(MachineInstr &MI,
|
|
MachineBasicBlock *MBB) const {
|
|
// We materialise the F128CSEL pseudo-instruction as some control flow and a
|
|
// phi node:
|
|
|
|
// OrigBB:
|
|
// [... previous instrs leading to comparison ...]
|
|
// b.ne TrueBB
|
|
// b EndBB
|
|
// TrueBB:
|
|
// ; Fallthrough
|
|
// EndBB:
|
|
// Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
|
|
|
|
MachineFunction *MF = MBB->getParent();
|
|
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
|
|
const BasicBlock *LLVM_BB = MBB->getBasicBlock();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
MachineFunction::iterator It = ++MBB->getIterator();
|
|
|
|
unsigned DestReg = MI.getOperand(0).getReg();
|
|
unsigned IfTrueReg = MI.getOperand(1).getReg();
|
|
unsigned IfFalseReg = MI.getOperand(2).getReg();
|
|
unsigned CondCode = MI.getOperand(3).getImm();
|
|
bool NZCVKilled = MI.getOperand(4).isKill();
|
|
|
|
MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MF->insert(It, TrueBB);
|
|
MF->insert(It, EndBB);
|
|
|
|
// Transfer rest of current basic-block to EndBB
|
|
EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
|
|
MBB->end());
|
|
EndBB->transferSuccessorsAndUpdatePHIs(MBB);
|
|
|
|
BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
|
|
BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
|
|
MBB->addSuccessor(TrueBB);
|
|
MBB->addSuccessor(EndBB);
|
|
|
|
// TrueBB falls through to the end.
|
|
TrueBB->addSuccessor(EndBB);
|
|
|
|
if (!NZCVKilled) {
|
|
TrueBB->addLiveIn(AArch64::NZCV);
|
|
EndBB->addLiveIn(AArch64::NZCV);
|
|
}
|
|
|
|
BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
|
|
.addReg(IfTrueReg)
|
|
.addMBB(TrueBB)
|
|
.addReg(IfFalseReg)
|
|
.addMBB(MBB);
|
|
|
|
MI.eraseFromParent();
|
|
return EndBB;
|
|
}
|
|
|
|
MachineBasicBlock *AArch64TargetLowering::EmitLoweredCatchRet(
|
|
MachineInstr &MI, MachineBasicBlock *BB) const {
|
|
assert(!isAsynchronousEHPersonality(classifyEHPersonality(
|
|
BB->getParent()->getFunction().getPersonalityFn())) &&
|
|
"SEH does not use catchret!");
|
|
return BB;
|
|
}
|
|
|
|
MachineBasicBlock *AArch64TargetLowering::EmitLoweredCatchPad(
|
|
MachineInstr &MI, MachineBasicBlock *BB) const {
|
|
MI.eraseFromParent();
|
|
return BB;
|
|
}
|
|
|
|
MachineBasicBlock *AArch64TargetLowering::EmitInstrWithCustomInserter(
|
|
MachineInstr &MI, MachineBasicBlock *BB) const {
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
#ifndef NDEBUG
|
|
MI.dump();
|
|
#endif
|
|
llvm_unreachable("Unexpected instruction for custom inserter!");
|
|
|
|
case AArch64::F128CSEL:
|
|
return EmitF128CSEL(MI, BB);
|
|
|
|
case TargetOpcode::STACKMAP:
|
|
case TargetOpcode::PATCHPOINT:
|
|
return emitPatchPoint(MI, BB);
|
|
|
|
case AArch64::CATCHRET:
|
|
return EmitLoweredCatchRet(MI, BB);
|
|
case AArch64::CATCHPAD:
|
|
return EmitLoweredCatchPad(MI, BB);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AArch64 Lowering private implementation.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Lowering Code
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
|
|
/// CC
|
|
static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
|
|
switch (CC) {
|
|
default:
|
|
llvm_unreachable("Unknown condition code!");
|
|
case ISD::SETNE:
|
|
return AArch64CC::NE;
|
|
case ISD::SETEQ:
|
|
return AArch64CC::EQ;
|
|
case ISD::SETGT:
|
|
return AArch64CC::GT;
|
|
case ISD::SETGE:
|
|
return AArch64CC::GE;
|
|
case ISD::SETLT:
|
|
return AArch64CC::LT;
|
|
case ISD::SETLE:
|
|
return AArch64CC::LE;
|
|
case ISD::SETUGT:
|
|
return AArch64CC::HI;
|
|
case ISD::SETUGE:
|
|
return AArch64CC::HS;
|
|
case ISD::SETULT:
|
|
return AArch64CC::LO;
|
|
case ISD::SETULE:
|
|
return AArch64CC::LS;
|
|
}
|
|
}
|
|
|
|
/// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
|
|
static void changeFPCCToAArch64CC(ISD::CondCode CC,
|
|
AArch64CC::CondCode &CondCode,
|
|
AArch64CC::CondCode &CondCode2) {
|
|
CondCode2 = AArch64CC::AL;
|
|
switch (CC) {
|
|
default:
|
|
llvm_unreachable("Unknown FP condition!");
|
|
case ISD::SETEQ:
|
|
case ISD::SETOEQ:
|
|
CondCode = AArch64CC::EQ;
|
|
break;
|
|
case ISD::SETGT:
|
|
case ISD::SETOGT:
|
|
CondCode = AArch64CC::GT;
|
|
break;
|
|
case ISD::SETGE:
|
|
case ISD::SETOGE:
|
|
CondCode = AArch64CC::GE;
|
|
break;
|
|
case ISD::SETOLT:
|
|
CondCode = AArch64CC::MI;
|
|
break;
|
|
case ISD::SETOLE:
|
|
CondCode = AArch64CC::LS;
|
|
break;
|
|
case ISD::SETONE:
|
|
CondCode = AArch64CC::MI;
|
|
CondCode2 = AArch64CC::GT;
|
|
break;
|
|
case ISD::SETO:
|
|
CondCode = AArch64CC::VC;
|
|
break;
|
|
case ISD::SETUO:
|
|
CondCode = AArch64CC::VS;
|
|
break;
|
|
case ISD::SETUEQ:
|
|
CondCode = AArch64CC::EQ;
|
|
CondCode2 = AArch64CC::VS;
|
|
break;
|
|
case ISD::SETUGT:
|
|
CondCode = AArch64CC::HI;
|
|
break;
|
|
case ISD::SETUGE:
|
|
CondCode = AArch64CC::PL;
|
|
break;
|
|
case ISD::SETLT:
|
|
case ISD::SETULT:
|
|
CondCode = AArch64CC::LT;
|
|
break;
|
|
case ISD::SETLE:
|
|
case ISD::SETULE:
|
|
CondCode = AArch64CC::LE;
|
|
break;
|
|
case ISD::SETNE:
|
|
case ISD::SETUNE:
|
|
CondCode = AArch64CC::NE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// Convert a DAG fp condition code to an AArch64 CC.
|
|
/// This differs from changeFPCCToAArch64CC in that it returns cond codes that
|
|
/// should be AND'ed instead of OR'ed.
|
|
static void changeFPCCToANDAArch64CC(ISD::CondCode CC,
|
|
AArch64CC::CondCode &CondCode,
|
|
AArch64CC::CondCode &CondCode2) {
|
|
CondCode2 = AArch64CC::AL;
|
|
switch (CC) {
|
|
default:
|
|
changeFPCCToAArch64CC(CC, CondCode, CondCode2);
|
|
assert(CondCode2 == AArch64CC::AL);
|
|
break;
|
|
case ISD::SETONE:
|
|
// (a one b)
|
|
// == ((a olt b) || (a ogt b))
|
|
// == ((a ord b) && (a une b))
|
|
CondCode = AArch64CC::VC;
|
|
CondCode2 = AArch64CC::NE;
|
|
break;
|
|
case ISD::SETUEQ:
|
|
// (a ueq b)
|
|
// == ((a uno b) || (a oeq b))
|
|
// == ((a ule b) && (a uge b))
|
|
CondCode = AArch64CC::PL;
|
|
CondCode2 = AArch64CC::LE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
|
|
/// CC usable with the vector instructions. Fewer operations are available
|
|
/// without a real NZCV register, so we have to use less efficient combinations
|
|
/// to get the same effect.
|
|
static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
|
|
AArch64CC::CondCode &CondCode,
|
|
AArch64CC::CondCode &CondCode2,
|
|
bool &Invert) {
|
|
Invert = false;
|
|
switch (CC) {
|
|
default:
|
|
// Mostly the scalar mappings work fine.
|
|
changeFPCCToAArch64CC(CC, CondCode, CondCode2);
|
|
break;
|
|
case ISD::SETUO:
|
|
Invert = true;
|
|
LLVM_FALLTHROUGH;
|
|
case ISD::SETO:
|
|
CondCode = AArch64CC::MI;
|
|
CondCode2 = AArch64CC::GE;
|
|
break;
|
|
case ISD::SETUEQ:
|
|
case ISD::SETULT:
|
|
case ISD::SETULE:
|
|
case ISD::SETUGT:
|
|
case ISD::SETUGE:
|
|
// All of the compare-mask comparisons are ordered, but we can switch
|
|
// between the two by a double inversion. E.g. ULE == !OGT.
|
|
Invert = true;
|
|
changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static bool isLegalArithImmed(uint64_t C) {
|
|
// Matches AArch64DAGToDAGISel::SelectArithImmed().
|
|
bool IsLegal = (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
|
|
LLVM_DEBUG(dbgs() << "Is imm " << C
|
|
<< " legal: " << (IsLegal ? "yes\n" : "no\n"));
|
|
return IsLegal;
|
|
}
|
|
|
|
// Can a (CMP op1, (sub 0, op2) be turned into a CMN instruction on
|
|
// the grounds that "op1 - (-op2) == op1 + op2" ? Not always, the C and V flags
|
|
// can be set differently by this operation. It comes down to whether
|
|
// "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
|
|
// everything is fine. If not then the optimization is wrong. Thus general
|
|
// comparisons are only valid if op2 != 0.
|
|
//
|
|
// So, finally, the only LLVM-native comparisons that don't mention C and V
|
|
// are SETEQ and SETNE. They're the only ones we can safely use CMN for in
|
|
// the absence of information about op2.
|
|
static bool isCMN(SDValue Op, ISD::CondCode CC) {
|
|
return Op.getOpcode() == ISD::SUB && isNullConstant(Op.getOperand(0)) &&
|
|
(CC == ISD::SETEQ || CC == ISD::SETNE);
|
|
}
|
|
|
|
static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
|
|
const SDLoc &dl, SelectionDAG &DAG) {
|
|
EVT VT = LHS.getValueType();
|
|
const bool FullFP16 =
|
|
static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();
|
|
|
|
if (VT.isFloatingPoint()) {
|
|
assert(VT != MVT::f128);
|
|
if (VT == MVT::f16 && !FullFP16) {
|
|
LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
|
|
RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
|
|
VT = MVT::f32;
|
|
}
|
|
return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
|
|
}
|
|
|
|
// The CMP instruction is just an alias for SUBS, and representing it as
|
|
// SUBS means that it's possible to get CSE with subtract operations.
|
|
// A later phase can perform the optimization of setting the destination
|
|
// register to WZR/XZR if it ends up being unused.
|
|
unsigned Opcode = AArch64ISD::SUBS;
|
|
|
|
if (isCMN(RHS, CC)) {
|
|
// Can we combine a (CMP op1, (sub 0, op2) into a CMN instruction ?
|
|
Opcode = AArch64ISD::ADDS;
|
|
RHS = RHS.getOperand(1);
|
|
} else if (isCMN(LHS, CC)) {
|
|
// As we are looking for EQ/NE compares, the operands can be commuted ; can
|
|
// we combine a (CMP (sub 0, op1), op2) into a CMN instruction ?
|
|
Opcode = AArch64ISD::ADDS;
|
|
LHS = LHS.getOperand(1);
|
|
} else if (LHS.getOpcode() == ISD::AND && isNullConstant(RHS) &&
|
|
!isUnsignedIntSetCC(CC)) {
|
|
// Similarly, (CMP (and X, Y), 0) can be implemented with a TST
|
|
// (a.k.a. ANDS) except that the flags are only guaranteed to work for one
|
|
// of the signed comparisons.
|
|
Opcode = AArch64ISD::ANDS;
|
|
RHS = LHS.getOperand(1);
|
|
LHS = LHS.getOperand(0);
|
|
}
|
|
|
|
return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT_CC), LHS, RHS)
|
|
.getValue(1);
|
|
}
|
|
|
|
/// \defgroup AArch64CCMP CMP;CCMP matching
|
|
///
|
|
/// These functions deal with the formation of CMP;CCMP;... sequences.
|
|
/// The CCMP/CCMN/FCCMP/FCCMPE instructions allow the conditional execution of
|
|
/// a comparison. They set the NZCV flags to a predefined value if their
|
|
/// predicate is false. This allows to express arbitrary conjunctions, for
|
|
/// example "cmp 0 (and (setCA (cmp A)) (setCB (cmp B)))"
|
|
/// expressed as:
|
|
/// cmp A
|
|
/// ccmp B, inv(CB), CA
|
|
/// check for CB flags
|
|
///
|
|
/// This naturally lets us implement chains of AND operations with SETCC
|
|
/// operands. And we can even implement some other situations by transforming
|
|
/// them:
|
|
/// - We can implement (NEG SETCC) i.e. negating a single comparison by
|
|
/// negating the flags used in a CCMP/FCCMP operations.
|
|
/// - We can negate the result of a whole chain of CMP/CCMP/FCCMP operations
|
|
/// by negating the flags we test for afterwards. i.e.
|
|
/// NEG (CMP CCMP CCCMP ...) can be implemented.
|
|
/// - Note that we can only ever negate all previously processed results.
|
|
/// What we can not implement by flipping the flags to test is a negation
|
|
/// of two sub-trees (because the negation affects all sub-trees emitted so
|
|
/// far, so the 2nd sub-tree we emit would also affect the first).
|
|
/// With those tools we can implement some OR operations:
|
|
/// - (OR (SETCC A) (SETCC B)) can be implemented via:
|
|
/// NEG (AND (NEG (SETCC A)) (NEG (SETCC B)))
|
|
/// - After transforming OR to NEG/AND combinations we may be able to use NEG
|
|
/// elimination rules from earlier to implement the whole thing as a
|
|
/// CCMP/FCCMP chain.
|
|
///
|
|
/// As complete example:
|
|
/// or (or (setCA (cmp A)) (setCB (cmp B)))
|
|
/// (and (setCC (cmp C)) (setCD (cmp D)))"
|
|
/// can be reassociated to:
|
|
/// or (and (setCC (cmp C)) setCD (cmp D))
|
|
// (or (setCA (cmp A)) (setCB (cmp B)))
|
|
/// can be transformed to:
|
|
/// not (and (not (and (setCC (cmp C)) (setCD (cmp D))))
|
|
/// (and (not (setCA (cmp A)) (not (setCB (cmp B))))))"
|
|
/// which can be implemented as:
|
|
/// cmp C
|
|
/// ccmp D, inv(CD), CC
|
|
/// ccmp A, CA, inv(CD)
|
|
/// ccmp B, CB, inv(CA)
|
|
/// check for CB flags
|
|
///
|
|
/// A counterexample is "or (and A B) (and C D)" which translates to
|
|
/// not (and (not (and (not A) (not B))) (not (and (not C) (not D)))), we
|
|
/// can only implement 1 of the inner (not) operations, but not both!
|
|
/// @{
|
|
|
|
/// Create a conditional comparison; Use CCMP, CCMN or FCCMP as appropriate.
|
|
static SDValue emitConditionalComparison(SDValue LHS, SDValue RHS,
|
|
ISD::CondCode CC, SDValue CCOp,
|
|
AArch64CC::CondCode Predicate,
|
|
AArch64CC::CondCode OutCC,
|
|
const SDLoc &DL, SelectionDAG &DAG) {
|
|
unsigned Opcode = 0;
|
|
const bool FullFP16 =
|
|
static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();
|
|
|
|
if (LHS.getValueType().isFloatingPoint()) {
|
|
assert(LHS.getValueType() != MVT::f128);
|
|
if (LHS.getValueType() == MVT::f16 && !FullFP16) {
|
|
LHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, LHS);
|
|
RHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, RHS);
|
|
}
|
|
Opcode = AArch64ISD::FCCMP;
|
|
} else if (RHS.getOpcode() == ISD::SUB) {
|
|
SDValue SubOp0 = RHS.getOperand(0);
|
|
if (isNullConstant(SubOp0) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
|
|
// See emitComparison() on why we can only do this for SETEQ and SETNE.
|
|
Opcode = AArch64ISD::CCMN;
|
|
RHS = RHS.getOperand(1);
|
|
}
|
|
}
|
|
if (Opcode == 0)
|
|
Opcode = AArch64ISD::CCMP;
|
|
|
|
SDValue Condition = DAG.getConstant(Predicate, DL, MVT_CC);
|
|
AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC);
|
|
unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC);
|
|
SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32);
|
|
return DAG.getNode(Opcode, DL, MVT_CC, LHS, RHS, NZCVOp, Condition, CCOp);
|
|
}
|
|
|
|
/// Returns true if @p Val is a tree of AND/OR/SETCC operations that can be
|
|
/// expressed as a conjunction. See \ref AArch64CCMP.
|
|
/// \param CanNegate Set to true if we can negate the whole sub-tree just by
|
|
/// changing the conditions on the SETCC tests.
|
|
/// (this means we can call emitConjunctionRec() with
|
|
/// Negate==true on this sub-tree)
|
|
/// \param MustBeFirst Set to true if this subtree needs to be negated and we
|
|
/// cannot do the negation naturally. We are required to
|
|
/// emit the subtree first in this case.
|
|
/// \param WillNegate Is true if are called when the result of this
|
|
/// subexpression must be negated. This happens when the
|
|
/// outer expression is an OR. We can use this fact to know
|
|
/// that we have a double negation (or (or ...) ...) that
|
|
/// can be implemented for free.
|
|
static bool canEmitConjunction(const SDValue Val, bool &CanNegate,
|
|
bool &MustBeFirst, bool WillNegate,
|
|
unsigned Depth = 0) {
|
|
if (!Val.hasOneUse())
|
|
return false;
|
|
unsigned Opcode = Val->getOpcode();
|
|
if (Opcode == ISD::SETCC) {
|
|
if (Val->getOperand(0).getValueType() == MVT::f128)
|
|
return false;
|
|
CanNegate = true;
|
|
MustBeFirst = false;
|
|
return true;
|
|
}
|
|
// Protect against exponential runtime and stack overflow.
|
|
if (Depth > 6)
|
|
return false;
|
|
if (Opcode == ISD::AND || Opcode == ISD::OR) {
|
|
bool IsOR = Opcode == ISD::OR;
|
|
SDValue O0 = Val->getOperand(0);
|
|
SDValue O1 = Val->getOperand(1);
|
|
bool CanNegateL;
|
|
bool MustBeFirstL;
|
|
if (!canEmitConjunction(O0, CanNegateL, MustBeFirstL, IsOR, Depth+1))
|
|
return false;
|
|
bool CanNegateR;
|
|
bool MustBeFirstR;
|
|
if (!canEmitConjunction(O1, CanNegateR, MustBeFirstR, IsOR, Depth+1))
|
|
return false;
|
|
|
|
if (MustBeFirstL && MustBeFirstR)
|
|
return false;
|
|
|
|
if (IsOR) {
|
|
// For an OR expression we need to be able to naturally negate at least
|
|
// one side or we cannot do the transformation at all.
|
|
if (!CanNegateL && !CanNegateR)
|
|
return false;
|
|
// If we the result of the OR will be negated and we can naturally negate
|
|
// the leafs, then this sub-tree as a whole negates naturally.
|
|
CanNegate = WillNegate && CanNegateL && CanNegateR;
|
|
// If we cannot naturally negate the whole sub-tree, then this must be
|
|
// emitted first.
|
|
MustBeFirst = !CanNegate;
|
|
} else {
|
|
assert(Opcode == ISD::AND && "Must be OR or AND");
|
|
// We cannot naturally negate an AND operation.
|
|
CanNegate = false;
|
|
MustBeFirst = MustBeFirstL || MustBeFirstR;
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain
|
|
/// of CCMP/CFCMP ops. See @ref AArch64CCMP.
|
|
/// Tries to transform the given i1 producing node @p Val to a series compare
|
|
/// and conditional compare operations. @returns an NZCV flags producing node
|
|
/// and sets @p OutCC to the flags that should be tested or returns SDValue() if
|
|
/// transformation was not possible.
|
|
/// \p Negate is true if we want this sub-tree being negated just by changing
|
|
/// SETCC conditions.
|
|
static SDValue emitConjunctionRec(SelectionDAG &DAG, SDValue Val,
|
|
AArch64CC::CondCode &OutCC, bool Negate, SDValue CCOp,
|
|
AArch64CC::CondCode Predicate) {
|
|
// We're at a tree leaf, produce a conditional comparison operation.
|
|
unsigned Opcode = Val->getOpcode();
|
|
if (Opcode == ISD::SETCC) {
|
|
SDValue LHS = Val->getOperand(0);
|
|
SDValue RHS = Val->getOperand(1);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Val->getOperand(2))->get();
|
|
bool isInteger = LHS.getValueType().isInteger();
|
|
if (Negate)
|
|
CC = getSetCCInverse(CC, isInteger);
|
|
SDLoc DL(Val);
|
|
// Determine OutCC and handle FP special case.
|
|
if (isInteger) {
|
|
OutCC = changeIntCCToAArch64CC(CC);
|
|
} else {
|
|
assert(LHS.getValueType().isFloatingPoint());
|
|
AArch64CC::CondCode ExtraCC;
|
|
changeFPCCToANDAArch64CC(CC, OutCC, ExtraCC);
|
|
// Some floating point conditions can't be tested with a single condition
|
|
// code. Construct an additional comparison in this case.
|
|
if (ExtraCC != AArch64CC::AL) {
|
|
SDValue ExtraCmp;
|
|
if (!CCOp.getNode())
|
|
ExtraCmp = emitComparison(LHS, RHS, CC, DL, DAG);
|
|
else
|
|
ExtraCmp = emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate,
|
|
ExtraCC, DL, DAG);
|
|
CCOp = ExtraCmp;
|
|
Predicate = ExtraCC;
|
|
}
|
|
}
|
|
|
|
// Produce a normal comparison if we are first in the chain
|
|
if (!CCOp)
|
|
return emitComparison(LHS, RHS, CC, DL, DAG);
|
|
// Otherwise produce a ccmp.
|
|
return emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate, OutCC, DL,
|
|
DAG);
|
|
}
|
|
assert(Val->hasOneUse() && "Valid conjunction/disjunction tree");
|
|
|
|
bool IsOR = Opcode == ISD::OR;
|
|
|
|
SDValue LHS = Val->getOperand(0);
|
|
bool CanNegateL;
|
|
bool MustBeFirstL;
|
|
bool ValidL = canEmitConjunction(LHS, CanNegateL, MustBeFirstL, IsOR);
|
|
assert(ValidL && "Valid conjunction/disjunction tree");
|
|
(void)ValidL;
|
|
|
|
SDValue RHS = Val->getOperand(1);
|
|
bool CanNegateR;
|
|
bool MustBeFirstR;
|
|
bool ValidR = canEmitConjunction(RHS, CanNegateR, MustBeFirstR, IsOR);
|
|
assert(ValidR && "Valid conjunction/disjunction tree");
|
|
(void)ValidR;
|
|
|
|
// Swap sub-tree that must come first to the right side.
|
|
if (MustBeFirstL) {
|
|
assert(!MustBeFirstR && "Valid conjunction/disjunction tree");
|
|
std::swap(LHS, RHS);
|
|
std::swap(CanNegateL, CanNegateR);
|
|
std::swap(MustBeFirstL, MustBeFirstR);
|
|
}
|
|
|
|
bool NegateR;
|
|
bool NegateAfterR;
|
|
bool NegateL;
|
|
bool NegateAfterAll;
|
|
if (Opcode == ISD::OR) {
|
|
// Swap the sub-tree that we can negate naturally to the left.
|
|
if (!CanNegateL) {
|
|
assert(CanNegateR && "at least one side must be negatable");
|
|
assert(!MustBeFirstR && "invalid conjunction/disjunction tree");
|
|
assert(!Negate);
|
|
std::swap(LHS, RHS);
|
|
NegateR = false;
|
|
NegateAfterR = true;
|
|
} else {
|
|
// Negate the left sub-tree if possible, otherwise negate the result.
|
|
NegateR = CanNegateR;
|
|
NegateAfterR = !CanNegateR;
|
|
}
|
|
NegateL = true;
|
|
NegateAfterAll = !Negate;
|
|
} else {
|
|
assert(Opcode == ISD::AND && "Valid conjunction/disjunction tree");
|
|
assert(!Negate && "Valid conjunction/disjunction tree");
|
|
|
|
NegateL = false;
|
|
NegateR = false;
|
|
NegateAfterR = false;
|
|
NegateAfterAll = false;
|
|
}
|
|
|
|
// Emit sub-trees.
|
|
AArch64CC::CondCode RHSCC;
|
|
SDValue CmpR = emitConjunctionRec(DAG, RHS, RHSCC, NegateR, CCOp, Predicate);
|
|
if (NegateAfterR)
|
|
RHSCC = AArch64CC::getInvertedCondCode(RHSCC);
|
|
SDValue CmpL = emitConjunctionRec(DAG, LHS, OutCC, NegateL, CmpR, RHSCC);
|
|
if (NegateAfterAll)
|
|
OutCC = AArch64CC::getInvertedCondCode(OutCC);
|
|
return CmpL;
|
|
}
|
|
|
|
/// Emit expression as a conjunction (a series of CCMP/CFCMP ops).
|
|
/// In some cases this is even possible with OR operations in the expression.
|
|
/// See \ref AArch64CCMP.
|
|
/// \see emitConjunctionRec().
|
|
static SDValue emitConjunction(SelectionDAG &DAG, SDValue Val,
|
|
AArch64CC::CondCode &OutCC) {
|
|
bool DummyCanNegate;
|
|
bool DummyMustBeFirst;
|
|
if (!canEmitConjunction(Val, DummyCanNegate, DummyMustBeFirst, false))
|
|
return SDValue();
|
|
|
|
return emitConjunctionRec(DAG, Val, OutCC, false, SDValue(), AArch64CC::AL);
|
|
}
|
|
|
|
/// @}
|
|
|
|
/// Returns how profitable it is to fold a comparison's operand's shift and/or
|
|
/// extension operations.
|
|
static unsigned getCmpOperandFoldingProfit(SDValue Op) {
|
|
auto isSupportedExtend = [&](SDValue V) {
|
|
if (V.getOpcode() == ISD::SIGN_EXTEND_INREG)
|
|
return true;
|
|
|
|
if (V.getOpcode() == ISD::AND)
|
|
if (ConstantSDNode *MaskCst = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
|
|
uint64_t Mask = MaskCst->getZExtValue();
|
|
return (Mask == 0xFF || Mask == 0xFFFF || Mask == 0xFFFFFFFF);
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
if (!Op.hasOneUse())
|
|
return 0;
|
|
|
|
if (isSupportedExtend(Op))
|
|
return 1;
|
|
|
|
unsigned Opc = Op.getOpcode();
|
|
if (Opc == ISD::SHL || Opc == ISD::SRL || Opc == ISD::SRA)
|
|
if (ConstantSDNode *ShiftCst = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
uint64_t Shift = ShiftCst->getZExtValue();
|
|
if (isSupportedExtend(Op.getOperand(0)))
|
|
return (Shift <= 4) ? 2 : 1;
|
|
EVT VT = Op.getValueType();
|
|
if ((VT == MVT::i32 && Shift <= 31) || (VT == MVT::i64 && Shift <= 63))
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
|
|
SDValue &AArch64cc, SelectionDAG &DAG,
|
|
const SDLoc &dl) {
|
|
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
|
|
EVT VT = RHS.getValueType();
|
|
uint64_t C = RHSC->getZExtValue();
|
|
if (!isLegalArithImmed(C)) {
|
|
// Constant does not fit, try adjusting it by one?
|
|
switch (CC) {
|
|
default:
|
|
break;
|
|
case ISD::SETLT:
|
|
case ISD::SETGE:
|
|
if ((VT == MVT::i32 && C != 0x80000000 &&
|
|
isLegalArithImmed((uint32_t)(C - 1))) ||
|
|
(VT == MVT::i64 && C != 0x80000000ULL &&
|
|
isLegalArithImmed(C - 1ULL))) {
|
|
CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
|
|
C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
|
|
RHS = DAG.getConstant(C, dl, VT);
|
|
}
|
|
break;
|
|
case ISD::SETULT:
|
|
case ISD::SETUGE:
|
|
if ((VT == MVT::i32 && C != 0 &&
|
|
isLegalArithImmed((uint32_t)(C - 1))) ||
|
|
(VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
|
|
CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
|
|
C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
|
|
RHS = DAG.getConstant(C, dl, VT);
|
|
}
|
|
break;
|
|
case ISD::SETLE:
|
|
case ISD::SETGT:
|
|
if ((VT == MVT::i32 && C != INT32_MAX &&
|
|
isLegalArithImmed((uint32_t)(C + 1))) ||
|
|
(VT == MVT::i64 && C != INT64_MAX &&
|
|
isLegalArithImmed(C + 1ULL))) {
|
|
CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
|
|
C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
|
|
RHS = DAG.getConstant(C, dl, VT);
|
|
}
|
|
break;
|
|
case ISD::SETULE:
|
|
case ISD::SETUGT:
|
|
if ((VT == MVT::i32 && C != UINT32_MAX &&
|
|
isLegalArithImmed((uint32_t)(C + 1))) ||
|
|
(VT == MVT::i64 && C != UINT64_MAX &&
|
|
isLegalArithImmed(C + 1ULL))) {
|
|
CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
|
|
C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
|
|
RHS = DAG.getConstant(C, dl, VT);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Comparisons are canonicalized so that the RHS operand is simpler than the
|
|
// LHS one, the extreme case being when RHS is an immediate. However, AArch64
|
|
// can fold some shift+extend operations on the RHS operand, so swap the
|
|
// operands if that can be done.
|
|
//
|
|
// For example:
|
|
// lsl w13, w11, #1
|
|
// cmp w13, w12
|
|
// can be turned into:
|
|
// cmp w12, w11, lsl #1
|
|
if (!isa<ConstantSDNode>(RHS) ||
|
|
!isLegalArithImmed(cast<ConstantSDNode>(RHS)->getZExtValue())) {
|
|
SDValue TheLHS = isCMN(LHS, CC) ? LHS.getOperand(1) : LHS;
|
|
|
|
if (getCmpOperandFoldingProfit(TheLHS) > getCmpOperandFoldingProfit(RHS)) {
|
|
std::swap(LHS, RHS);
|
|
CC = ISD::getSetCCSwappedOperands(CC);
|
|
}
|
|
}
|
|
|
|
SDValue Cmp;
|
|
AArch64CC::CondCode AArch64CC;
|
|
if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
|
|
const ConstantSDNode *RHSC = cast<ConstantSDNode>(RHS);
|
|
|
|
// The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
|
|
// For the i8 operand, the largest immediate is 255, so this can be easily
|
|
// encoded in the compare instruction. For the i16 operand, however, the
|
|
// largest immediate cannot be encoded in the compare.
|
|
// Therefore, use a sign extending load and cmn to avoid materializing the
|
|
// -1 constant. For example,
|
|
// movz w1, #65535
|
|
// ldrh w0, [x0, #0]
|
|
// cmp w0, w1
|
|
// >
|
|
// ldrsh w0, [x0, #0]
|
|
// cmn w0, #1
|
|
// Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
|
|
// if and only if (sext LHS) == (sext RHS). The checks are in place to
|
|
// ensure both the LHS and RHS are truly zero extended and to make sure the
|
|
// transformation is profitable.
|
|
if ((RHSC->getZExtValue() >> 16 == 0) && isa<LoadSDNode>(LHS) &&
|
|
cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
|
|
cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
|
|
LHS.getNode()->hasNUsesOfValue(1, 0)) {
|
|
int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
|
|
if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
|
|
SDValue SExt =
|
|
DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
|
|
DAG.getValueType(MVT::i16));
|
|
Cmp = emitComparison(SExt, DAG.getConstant(ValueofRHS, dl,
|
|
RHS.getValueType()),
|
|
CC, dl, DAG);
|
|
AArch64CC = changeIntCCToAArch64CC(CC);
|
|
}
|
|
}
|
|
|
|
if (!Cmp && (RHSC->isNullValue() || RHSC->isOne())) {
|
|
if ((Cmp = emitConjunction(DAG, LHS, AArch64CC))) {
|
|
if ((CC == ISD::SETNE) ^ RHSC->isNullValue())
|
|
AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!Cmp) {
|
|
Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
|
|
AArch64CC = changeIntCCToAArch64CC(CC);
|
|
}
|
|
AArch64cc = DAG.getConstant(AArch64CC, dl, MVT_CC);
|
|
return Cmp;
|
|
}
|
|
|
|
static std::pair<SDValue, SDValue>
|
|
getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
|
|
assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
|
|
"Unsupported value type");
|
|
SDValue Value, Overflow;
|
|
SDLoc DL(Op);
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue RHS = Op.getOperand(1);
|
|
unsigned Opc = 0;
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unknown overflow instruction!");
|
|
case ISD::SADDO:
|
|
Opc = AArch64ISD::ADDS;
|
|
CC = AArch64CC::VS;
|
|
break;
|
|
case ISD::UADDO:
|
|
Opc = AArch64ISD::ADDS;
|
|
CC = AArch64CC::HS;
|
|
break;
|
|
case ISD::SSUBO:
|
|
Opc = AArch64ISD::SUBS;
|
|
CC = AArch64CC::VS;
|
|
break;
|
|
case ISD::USUBO:
|
|
Opc = AArch64ISD::SUBS;
|
|
CC = AArch64CC::LO;
|
|
break;
|
|
// Multiply needs a little bit extra work.
|
|
case ISD::SMULO:
|
|
case ISD::UMULO: {
|
|
CC = AArch64CC::NE;
|
|
bool IsSigned = Op.getOpcode() == ISD::SMULO;
|
|
if (Op.getValueType() == MVT::i32) {
|
|
unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
|
|
// For a 32 bit multiply with overflow check we want the instruction
|
|
// selector to generate a widening multiply (SMADDL/UMADDL). For that we
|
|
// need to generate the following pattern:
|
|
// (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
|
|
LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
|
|
RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
|
|
SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
|
|
SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
|
|
DAG.getConstant(0, DL, MVT::i64));
|
|
// On AArch64 the upper 32 bits are always zero extended for a 32 bit
|
|
// operation. We need to clear out the upper 32 bits, because we used a
|
|
// widening multiply that wrote all 64 bits. In the end this should be a
|
|
// noop.
|
|
Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
|
|
if (IsSigned) {
|
|
// The signed overflow check requires more than just a simple check for
|
|
// any bit set in the upper 32 bits of the result. These bits could be
|
|
// just the sign bits of a negative number. To perform the overflow
|
|
// check we have to arithmetic shift right the 32nd bit of the result by
|
|
// 31 bits. Then we compare the result to the upper 32 bits.
|
|
SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
|
|
DAG.getConstant(32, DL, MVT::i64));
|
|
UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
|
|
SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
|
|
DAG.getConstant(31, DL, MVT::i64));
|
|
// It is important that LowerBits is last, otherwise the arithmetic
|
|
// shift will not be folded into the compare (SUBS).
|
|
SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
|
|
Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
|
|
.getValue(1);
|
|
} else {
|
|
// The overflow check for unsigned multiply is easy. We only need to
|
|
// check if any of the upper 32 bits are set. This can be done with a
|
|
// CMP (shifted register). For that we need to generate the following
|
|
// pattern:
|
|
// (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
|
|
SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
|
|
DAG.getConstant(32, DL, MVT::i64));
|
|
SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
|
|
Overflow =
|
|
DAG.getNode(AArch64ISD::SUBS, DL, VTs,
|
|
DAG.getConstant(0, DL, MVT::i64),
|
|
UpperBits).getValue(1);
|
|
}
|
|
break;
|
|
}
|
|
assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
|
|
// For the 64 bit multiply
|
|
Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
|
|
if (IsSigned) {
|
|
SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
|
|
SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
|
|
DAG.getConstant(63, DL, MVT::i64));
|
|
// It is important that LowerBits is last, otherwise the arithmetic
|
|
// shift will not be folded into the compare (SUBS).
|
|
SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
|
|
Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
|
|
.getValue(1);
|
|
} else {
|
|
SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
|
|
SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
|
|
Overflow =
|
|
DAG.getNode(AArch64ISD::SUBS, DL, VTs,
|
|
DAG.getConstant(0, DL, MVT::i64),
|
|
UpperBits).getValue(1);
|
|
}
|
|
break;
|
|
}
|
|
} // switch (...)
|
|
|
|
if (Opc) {
|
|
SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
|
|
|
|
// Emit the AArch64 operation with overflow check.
|
|
Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
|
|
Overflow = Value.getValue(1);
|
|
}
|
|
return std::make_pair(Value, Overflow);
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
|
|
RTLIB::Libcall Call) const {
|
|
SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
|
|
return makeLibCall(DAG, Call, MVT::f128, Ops, false, SDLoc(Op)).first;
|
|
}
|
|
|
|
// Returns true if the given Op is the overflow flag result of an overflow
|
|
// intrinsic operation.
|
|
static bool isOverflowIntrOpRes(SDValue Op) {
|
|
unsigned Opc = Op.getOpcode();
|
|
return (Op.getResNo() == 1 &&
|
|
(Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
|
|
Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO));
|
|
}
|
|
|
|
static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
|
|
SDValue Sel = Op.getOperand(0);
|
|
SDValue Other = Op.getOperand(1);
|
|
SDLoc dl(Sel);
|
|
|
|
// If the operand is an overflow checking operation, invert the condition
|
|
// code and kill the Not operation. I.e., transform:
|
|
// (xor (overflow_op_bool, 1))
|
|
// -->
|
|
// (csel 1, 0, invert(cc), overflow_op_bool)
|
|
// ... which later gets transformed to just a cset instruction with an
|
|
// inverted condition code, rather than a cset + eor sequence.
|
|
if (isOneConstant(Other) && isOverflowIntrOpRes(Sel)) {
|
|
// Only lower legal XALUO ops.
|
|
if (!DAG.getTargetLoweringInfo().isTypeLegal(Sel->getValueType(0)))
|
|
return SDValue();
|
|
|
|
SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
|
|
SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
|
|
AArch64CC::CondCode CC;
|
|
SDValue Value, Overflow;
|
|
std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Sel.getValue(0), DAG);
|
|
SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
|
|
return DAG.getNode(AArch64ISD::CSEL, dl, Op.getValueType(), TVal, FVal,
|
|
CCVal, Overflow);
|
|
}
|
|
// If neither operand is a SELECT_CC, give up.
|
|
if (Sel.getOpcode() != ISD::SELECT_CC)
|
|
std::swap(Sel, Other);
|
|
if (Sel.getOpcode() != ISD::SELECT_CC)
|
|
return Op;
|
|
|
|
// The folding we want to perform is:
|
|
// (xor x, (select_cc a, b, cc, 0, -1) )
|
|
// -->
|
|
// (csel x, (xor x, -1), cc ...)
|
|
//
|
|
// The latter will get matched to a CSINV instruction.
|
|
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
|
|
SDValue LHS = Sel.getOperand(0);
|
|
SDValue RHS = Sel.getOperand(1);
|
|
SDValue TVal = Sel.getOperand(2);
|
|
SDValue FVal = Sel.getOperand(3);
|
|
|
|
// FIXME: This could be generalized to non-integer comparisons.
|
|
if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
|
|
return Op;
|
|
|
|
ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
|
|
ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
|
|
|
|
// The values aren't constants, this isn't the pattern we're looking for.
|
|
if (!CFVal || !CTVal)
|
|
return Op;
|
|
|
|
// We can commute the SELECT_CC by inverting the condition. This
|
|
// might be needed to make this fit into a CSINV pattern.
|
|
if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
|
|
std::swap(TVal, FVal);
|
|
std::swap(CTVal, CFVal);
|
|
CC = ISD::getSetCCInverse(CC, true);
|
|
}
|
|
|
|
// If the constants line up, perform the transform!
|
|
if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
|
|
SDValue CCVal;
|
|
SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
|
|
|
|
FVal = Other;
|
|
TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
|
|
DAG.getConstant(-1ULL, dl, Other.getValueType()));
|
|
|
|
return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
|
|
CCVal, Cmp);
|
|
}
|
|
|
|
return Op;
|
|
}
|
|
|
|
static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
|
|
EVT VT = Op.getValueType();
|
|
|
|
// Let legalize expand this if it isn't a legal type yet.
|
|
if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
|
|
return SDValue();
|
|
|
|
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
|
|
|
|
unsigned Opc;
|
|
bool ExtraOp = false;
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Invalid code");
|
|
case ISD::ADDC:
|
|
Opc = AArch64ISD::ADDS;
|
|
break;
|
|
case ISD::SUBC:
|
|
Opc = AArch64ISD::SUBS;
|
|
break;
|
|
case ISD::ADDE:
|
|
Opc = AArch64ISD::ADCS;
|
|
ExtraOp = true;
|
|
break;
|
|
case ISD::SUBE:
|
|
Opc = AArch64ISD::SBCS;
|
|
ExtraOp = true;
|
|
break;
|
|
}
|
|
|
|
if (!ExtraOp)
|
|
return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
|
|
return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
|
|
Op.getOperand(2));
|
|
}
|
|
|
|
static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
|
|
// Let legalize expand this if it isn't a legal type yet.
|
|
if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
|
|
return SDValue();
|
|
|
|
SDLoc dl(Op);
|
|
AArch64CC::CondCode CC;
|
|
// The actual operation that sets the overflow or carry flag.
|
|
SDValue Value, Overflow;
|
|
std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
|
|
|
|
// We use 0 and 1 as false and true values.
|
|
SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
|
|
SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
|
|
|
|
// We use an inverted condition, because the conditional select is inverted
|
|
// too. This will allow it to be selected to a single instruction:
|
|
// CSINC Wd, WZR, WZR, invert(cond).
|
|
SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
|
|
Overflow = DAG.getNode(AArch64ISD::CSEL, dl, MVT::i32, FVal, TVal,
|
|
CCVal, Overflow);
|
|
|
|
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
|
|
return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
|
|
}
|
|
|
|
// Prefetch operands are:
|
|
// 1: Address to prefetch
|
|
// 2: bool isWrite
|
|
// 3: int locality (0 = no locality ... 3 = extreme locality)
|
|
// 4: bool isDataCache
|
|
static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
|
|
SDLoc DL(Op);
|
|
unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
|
|
unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
|
|
unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
|
|
|
|
bool IsStream = !Locality;
|
|
// When the locality number is set
|
|
if (Locality) {
|
|
// The front-end should have filtered out the out-of-range values
|
|
assert(Locality <= 3 && "Prefetch locality out-of-range");
|
|
// The locality degree is the opposite of the cache speed.
|
|
// Put the number the other way around.
|
|
// The encoding starts at 0 for level 1
|
|
Locality = 3 - Locality;
|
|
}
|
|
|
|
// built the mask value encoding the expected behavior.
|
|
unsigned PrfOp = (IsWrite << 4) | // Load/Store bit
|
|
(!IsData << 3) | // IsDataCache bit
|
|
(Locality << 1) | // Cache level bits
|
|
(unsigned)IsStream; // Stream bit
|
|
return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
|
|
DAG.getConstant(PrfOp, DL, MVT::i32), Op.getOperand(1));
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
|
|
|
|
RTLIB::Libcall LC;
|
|
LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
|
|
|
|
return LowerF128Call(Op, DAG, LC);
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
if (Op.getOperand(0).getValueType() != MVT::f128) {
|
|
// It's legal except when f128 is involved
|
|
return Op;
|
|
}
|
|
|
|
RTLIB::Libcall LC;
|
|
LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
|
|
|
|
// FP_ROUND node has a second operand indicating whether it is known to be
|
|
// precise. That doesn't take part in the LibCall so we can't directly use
|
|
// LowerF128Call.
|
|
SDValue SrcVal = Op.getOperand(0);
|
|
return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
|
|
SDLoc(Op)).first;
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerVectorFP_TO_INT(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
// Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
|
|
// Any additional optimization in this function should be recorded
|
|
// in the cost tables.
|
|
EVT InVT = Op.getOperand(0).getValueType();
|
|
EVT VT = Op.getValueType();
|
|
unsigned NumElts = InVT.getVectorNumElements();
|
|
|
|
// f16 conversions are promoted to f32 when full fp16 is not supported.
|
|
if (InVT.getVectorElementType() == MVT::f16 &&
|
|
!Subtarget->hasFullFP16()) {
|
|
MVT NewVT = MVT::getVectorVT(MVT::f32, NumElts);
|
|
SDLoc dl(Op);
|
|
return DAG.getNode(
|
|
Op.getOpcode(), dl, Op.getValueType(),
|
|
DAG.getNode(ISD::FP_EXTEND, dl, NewVT, Op.getOperand(0)));
|
|
}
|
|
|
|
if (VT.getSizeInBits() < InVT.getSizeInBits()) {
|
|
SDLoc dl(Op);
|
|
SDValue Cv =
|
|
DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
|
|
Op.getOperand(0));
|
|
return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
|
|
}
|
|
|
|
if (VT.getSizeInBits() > InVT.getSizeInBits()) {
|
|
SDLoc dl(Op);
|
|
MVT ExtVT =
|
|
MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()),
|
|
VT.getVectorNumElements());
|
|
SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0));
|
|
return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
|
|
}
|
|
|
|
// Type changing conversions are illegal.
|
|
return Op;
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
if (Op.getOperand(0).getValueType().isVector())
|
|
return LowerVectorFP_TO_INT(Op, DAG);
|
|
|
|
// f16 conversions are promoted to f32 when full fp16 is not supported.
|
|
if (Op.getOperand(0).getValueType() == MVT::f16 &&
|
|
!Subtarget->hasFullFP16()) {
|
|
SDLoc dl(Op);
|
|
return DAG.getNode(
|
|
Op.getOpcode(), dl, Op.getValueType(),
|
|
DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Op.getOperand(0)));
|
|
}
|
|
|
|
if (Op.getOperand(0).getValueType() != MVT::f128) {
|
|
// It's legal except when f128 is involved
|
|
return Op;
|
|
}
|
|
|
|
RTLIB::Libcall LC;
|
|
if (Op.getOpcode() == ISD::FP_TO_SINT)
|
|
LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
|
|
else
|
|
LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
|
|
|
|
SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
|
|
return makeLibCall(DAG, LC, Op.getValueType(), Ops, false, SDLoc(Op)).first;
|
|
}
|
|
|
|
static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
|
|
// Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
|
|
// Any additional optimization in this function should be recorded
|
|
// in the cost tables.
|
|
EVT VT = Op.getValueType();
|
|
SDLoc dl(Op);
|
|
SDValue In = Op.getOperand(0);
|
|
EVT InVT = In.getValueType();
|
|
|
|
if (VT.getSizeInBits() < InVT.getSizeInBits()) {
|
|
MVT CastVT =
|
|
MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
|
|
InVT.getVectorNumElements());
|
|
In = DAG.getNode(Op.getOpcode(), dl, CastVT, In);
|
|
return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0, dl));
|
|
}
|
|
|
|
if (VT.getSizeInBits() > InVT.getSizeInBits()) {
|
|
unsigned CastOpc =
|
|
Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
|
|
EVT CastVT = VT.changeVectorElementTypeToInteger();
|
|
In = DAG.getNode(CastOpc, dl, CastVT, In);
|
|
return DAG.getNode(Op.getOpcode(), dl, VT, In);
|
|
}
|
|
|
|
return Op;
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
if (Op.getValueType().isVector())
|
|
return LowerVectorINT_TO_FP(Op, DAG);
|
|
|
|
// f16 conversions are promoted to f32 when full fp16 is not supported.
|
|
if (Op.getValueType() == MVT::f16 &&
|
|
!Subtarget->hasFullFP16()) {
|
|
SDLoc dl(Op);
|
|
return DAG.getNode(
|
|
ISD::FP_ROUND, dl, MVT::f16,
|
|
DAG.getNode(Op.getOpcode(), dl, MVT::f32, Op.getOperand(0)),
|
|
DAG.getIntPtrConstant(0, dl));
|
|
}
|
|
|
|
// i128 conversions are libcalls.
|
|
if (Op.getOperand(0).getValueType() == MVT::i128)
|
|
return SDValue();
|
|
|
|
// Other conversions are legal, unless it's to the completely software-based
|
|
// fp128.
|
|
if (Op.getValueType() != MVT::f128)
|
|
return Op;
|
|
|
|
RTLIB::Libcall LC;
|
|
if (Op.getOpcode() == ISD::SINT_TO_FP)
|
|
LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
|
|
else
|
|
LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
|
|
|
|
return LowerF128Call(Op, DAG, LC);
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
// For iOS, we want to call an alternative entry point: __sincos_stret,
|
|
// which returns the values in two S / D registers.
|
|
SDLoc dl(Op);
|
|
SDValue Arg = Op.getOperand(0);
|
|
EVT ArgVT = Arg.getValueType();
|
|
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
|
|
|
|
ArgListTy Args;
|
|
ArgListEntry Entry;
|
|
|
|
Entry.Node = Arg;
|
|
Entry.Ty = ArgTy;
|
|
Entry.IsSExt = false;
|
|
Entry.IsZExt = false;
|
|
Args.push_back(Entry);
|
|
|
|
RTLIB::Libcall LC = ArgVT == MVT::f64 ? RTLIB::SINCOS_STRET_F64
|
|
: RTLIB::SINCOS_STRET_F32;
|
|
const char *LibcallName = getLibcallName(LC);
|
|
SDValue Callee =
|
|
DAG.getExternalSymbol(LibcallName, getPointerTy(DAG.getDataLayout()));
|
|
|
|
StructType *RetTy = StructType::get(ArgTy, ArgTy);
|
|
TargetLowering::CallLoweringInfo CLI(DAG);
|
|
CLI.setDebugLoc(dl)
|
|
.setChain(DAG.getEntryNode())
|
|
.setLibCallee(CallingConv::Fast, RetTy, Callee, std::move(Args));
|
|
|
|
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
|
|
return CallResult.first;
|
|
}
|
|
|
|
static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) {
|
|
if (Op.getValueType() != MVT::f16)
|
|
return SDValue();
|
|
|
|
assert(Op.getOperand(0).getValueType() == MVT::i16);
|
|
SDLoc DL(Op);
|
|
|
|
Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0));
|
|
Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op);
|
|
return SDValue(
|
|
DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op,
|
|
DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
|
|
0);
|
|
}
|
|
|
|
static EVT getExtensionTo64Bits(const EVT &OrigVT) {
|
|
if (OrigVT.getSizeInBits() >= 64)
|
|
return OrigVT;
|
|
|
|
assert(OrigVT.isSimple() && "Expecting a simple value type");
|
|
|
|
MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
|
|
switch (OrigSimpleTy) {
|
|
default: llvm_unreachable("Unexpected Vector Type");
|
|
case MVT::v2i8:
|
|
case MVT::v2i16:
|
|
return MVT::v2i32;
|
|
case MVT::v4i8:
|
|
return MVT::v4i16;
|
|
}
|
|
}
|
|
|
|
static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG,
|
|
const EVT &OrigTy,
|
|
const EVT &ExtTy,
|
|
unsigned ExtOpcode) {
|
|
// The vector originally had a size of OrigTy. It was then extended to ExtTy.
|
|
// We expect the ExtTy to be 128-bits total. If the OrigTy is less than
|
|
// 64-bits we need to insert a new extension so that it will be 64-bits.
|
|
assert(ExtTy.is128BitVector() && "Unexpected extension size");
|
|
if (OrigTy.getSizeInBits() >= 64)
|
|
return N;
|
|
|
|
// Must extend size to at least 64 bits to be used as an operand for VMULL.
|
|
EVT NewVT = getExtensionTo64Bits(OrigTy);
|
|
|
|
return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
|
|
}
|
|
|
|
static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
|
|
bool isSigned) {
|
|
EVT VT = N->getValueType(0);
|
|
|
|
if (N->getOpcode() != ISD::BUILD_VECTOR)
|
|
return false;
|
|
|
|
for (const SDValue &Elt : N->op_values()) {
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
|
|
unsigned EltSize = VT.getScalarSizeInBits();
|
|
unsigned HalfSize = EltSize / 2;
|
|
if (isSigned) {
|
|
if (!isIntN(HalfSize, C->getSExtValue()))
|
|
return false;
|
|
} else {
|
|
if (!isUIntN(HalfSize, C->getZExtValue()))
|
|
return false;
|
|
}
|
|
continue;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) {
|
|
if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
|
|
return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG,
|
|
N->getOperand(0)->getValueType(0),
|
|
N->getValueType(0),
|
|
N->getOpcode());
|
|
|
|
assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc dl(N);
|
|
unsigned EltSize = VT.getScalarSizeInBits() / 2;
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
MVT TruncVT = MVT::getIntegerVT(EltSize);
|
|
SmallVector<SDValue, 8> Ops;
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
|
|
const APInt &CInt = C->getAPIntValue();
|
|
// Element types smaller than 32 bits are not legal, so use i32 elements.
|
|
// The values are implicitly truncated so sext vs. zext doesn't matter.
|
|
Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
|
|
}
|
|
return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
|
|
}
|
|
|
|
static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
|
|
return N->getOpcode() == ISD::SIGN_EXTEND ||
|
|
isExtendedBUILD_VECTOR(N, DAG, true);
|
|
}
|
|
|
|
static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
|
|
return N->getOpcode() == ISD::ZERO_EXTEND ||
|
|
isExtendedBUILD_VECTOR(N, DAG, false);
|
|
}
|
|
|
|
static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
|
|
unsigned Opcode = N->getOpcode();
|
|
if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
|
|
SDNode *N0 = N->getOperand(0).getNode();
|
|
SDNode *N1 = N->getOperand(1).getNode();
|
|
return N0->hasOneUse() && N1->hasOneUse() &&
|
|
isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
|
|
unsigned Opcode = N->getOpcode();
|
|
if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
|
|
SDNode *N0 = N->getOperand(0).getNode();
|
|
SDNode *N1 = N->getOperand(1).getNode();
|
|
return N0->hasOneUse() && N1->hasOneUse() &&
|
|
isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
// The rounding mode is in bits 23:22 of the FPSCR.
|
|
// The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
|
|
// The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
|
|
// so that the shift + and get folded into a bitfield extract.
|
|
SDLoc dl(Op);
|
|
|
|
SDValue FPCR_64 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i64,
|
|
DAG.getConstant(Intrinsic::aarch64_get_fpcr, dl,
|
|
MVT::i64));
|
|
SDValue FPCR_32 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, FPCR_64);
|
|
SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPCR_32,
|
|
DAG.getConstant(1U << 22, dl, MVT::i32));
|
|
SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
|
|
DAG.getConstant(22, dl, MVT::i32));
|
|
return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
|
|
DAG.getConstant(3, dl, MVT::i32));
|
|
}
|
|
|
|
static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
|
|
// Multiplications are only custom-lowered for 128-bit vectors so that
|
|
// VMULL can be detected. Otherwise v2i64 multiplications are not legal.
|
|
EVT VT = Op.getValueType();
|
|
assert(VT.is128BitVector() && VT.isInteger() &&
|
|
"unexpected type for custom-lowering ISD::MUL");
|
|
SDNode *N0 = Op.getOperand(0).getNode();
|
|
SDNode *N1 = Op.getOperand(1).getNode();
|
|
unsigned NewOpc = 0;
|
|
bool isMLA = false;
|
|
bool isN0SExt = isSignExtended(N0, DAG);
|
|
bool isN1SExt = isSignExtended(N1, DAG);
|
|
if (isN0SExt && isN1SExt)
|
|
NewOpc = AArch64ISD::SMULL;
|
|
else {
|
|
bool isN0ZExt = isZeroExtended(N0, DAG);
|
|
bool isN1ZExt = isZeroExtended(N1, DAG);
|
|
if (isN0ZExt && isN1ZExt)
|
|
NewOpc = AArch64ISD::UMULL;
|
|
else if (isN1SExt || isN1ZExt) {
|
|
// Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
|
|
// into (s/zext A * s/zext C) + (s/zext B * s/zext C)
|
|
if (isN1SExt && isAddSubSExt(N0, DAG)) {
|
|
NewOpc = AArch64ISD::SMULL;
|
|
isMLA = true;
|
|
} else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
|
|
NewOpc = AArch64ISD::UMULL;
|
|
isMLA = true;
|
|
} else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
|
|
std::swap(N0, N1);
|
|
NewOpc = AArch64ISD::UMULL;
|
|
isMLA = true;
|
|
}
|
|
}
|
|
|
|
if (!NewOpc) {
|
|
if (VT == MVT::v2i64)
|
|
// Fall through to expand this. It is not legal.
|
|
return SDValue();
|
|
else
|
|
// Other vector multiplications are legal.
|
|
return Op;
|
|
}
|
|
}
|
|
|
|
// Legalize to a S/UMULL instruction
|
|
SDLoc DL(Op);
|
|
SDValue Op0;
|
|
SDValue Op1 = skipExtensionForVectorMULL(N1, DAG);
|
|
if (!isMLA) {
|
|
Op0 = skipExtensionForVectorMULL(N0, DAG);
|
|
assert(Op0.getValueType().is64BitVector() &&
|
|
Op1.getValueType().is64BitVector() &&
|
|
"unexpected types for extended operands to VMULL");
|
|
return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
|
|
}
|
|
// Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
|
|
// isel lowering to take advantage of no-stall back to back s/umul + s/umla.
|
|
// This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
|
|
SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG);
|
|
SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG);
|
|
EVT Op1VT = Op1.getValueType();
|
|
return DAG.getNode(N0->getOpcode(), DL, VT,
|
|
DAG.getNode(NewOpc, DL, VT,
|
|
DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
|
|
DAG.getNode(NewOpc, DL, VT,
|
|
DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
SDLoc dl(Op);
|
|
switch (IntNo) {
|
|
default: return SDValue(); // Don't custom lower most intrinsics.
|
|
case Intrinsic::thread_pointer: {
|
|
EVT PtrVT = getPointerTy(DAG.getDataLayout());
|
|
return DAG.getNode(AArch64ISD::THREAD_POINTER, dl, PtrVT);
|
|
}
|
|
case Intrinsic::aarch64_neon_abs: {
|
|
EVT Ty = Op.getValueType();
|
|
if (Ty == MVT::i64) {
|
|
SDValue Result = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64,
|
|
Op.getOperand(1));
|
|
Result = DAG.getNode(ISD::ABS, dl, MVT::v1i64, Result);
|
|
return DAG.getNode(ISD::BITCAST, dl, MVT::i64, Result);
|
|
} else if (Ty.isVector() && Ty.isInteger() && isTypeLegal(Ty)) {
|
|
return DAG.getNode(ISD::ABS, dl, Ty, Op.getOperand(1));
|
|
} else {
|
|
report_fatal_error("Unexpected type for AArch64 NEON intrinic");
|
|
}
|
|
}
|
|
case Intrinsic::aarch64_neon_smax:
|
|
return DAG.getNode(ISD::SMAX, dl, Op.getValueType(),
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
case Intrinsic::aarch64_neon_umax:
|
|
return DAG.getNode(ISD::UMAX, dl, Op.getValueType(),
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
case Intrinsic::aarch64_neon_smin:
|
|
return DAG.getNode(ISD::SMIN, dl, Op.getValueType(),
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
case Intrinsic::aarch64_neon_umin:
|
|
return DAG.getNode(ISD::UMIN, dl, Op.getValueType(),
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
|
|
case Intrinsic::localaddress: {
|
|
const auto &MF = DAG.getMachineFunction();
|
|
const auto *RegInfo = Subtarget->getRegisterInfo();
|
|
unsigned Reg = RegInfo->getLocalAddressRegister(MF);
|
|
return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg,
|
|
Op.getSimpleValueType());
|
|
}
|
|
|
|
case Intrinsic::eh_recoverfp: {
|
|
// FIXME: This needs to be implemented to correctly handle highly aligned
|
|
// stack objects. For now we simply return the incoming FP. Refer D53541
|
|
// for more details.
|
|
SDValue FnOp = Op.getOperand(1);
|
|
SDValue IncomingFPOp = Op.getOperand(2);
|
|
GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(FnOp);
|
|
auto *Fn = dyn_cast_or_null<Function>(GSD ? GSD->getGlobal() : nullptr);
|
|
if (!Fn)
|
|
report_fatal_error(
|
|
"llvm.eh.recoverfp must take a function as the first argument");
|
|
return IncomingFPOp;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Custom lower trunc store for v4i8 vectors, since it is promoted to v4i16.
|
|
static SDValue LowerTruncateVectorStore(SDLoc DL, StoreSDNode *ST,
|
|
EVT VT, EVT MemVT,
|
|
SelectionDAG &DAG) {
|
|
assert(VT.isVector() && "VT should be a vector type");
|
|
assert(MemVT == MVT::v4i8 && VT == MVT::v4i16);
|
|
|
|
SDValue Value = ST->getValue();
|
|
|
|
// It first extend the promoted v4i16 to v8i16, truncate to v8i8, and extract
|
|
// the word lane which represent the v4i8 subvector. It optimizes the store
|
|
// to:
|
|
//
|
|
// xtn v0.8b, v0.8h
|
|
// str s0, [x0]
|
|
|
|
SDValue Undef = DAG.getUNDEF(MVT::i16);
|
|
SDValue UndefVec = DAG.getBuildVector(MVT::v4i16, DL,
|
|
{Undef, Undef, Undef, Undef});
|
|
|
|
SDValue TruncExt = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i16,
|
|
Value, UndefVec);
|
|
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::v8i8, TruncExt);
|
|
|
|
Trunc = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Trunc);
|
|
SDValue ExtractTrunc = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32,
|
|
Trunc, DAG.getConstant(0, DL, MVT::i64));
|
|
|
|
return DAG.getStore(ST->getChain(), DL, ExtractTrunc,
|
|
ST->getBasePtr(), ST->getMemOperand());
|
|
}
|
|
|
|
// Custom lowering for any store, vector or scalar and/or default or with
|
|
// a truncate operations. Currently only custom lower truncate operation
|
|
// from vector v4i16 to v4i8.
|
|
SDValue AArch64TargetLowering::LowerSTORE(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc Dl(Op);
|
|
StoreSDNode *StoreNode = cast<StoreSDNode>(Op);
|
|
assert (StoreNode && "Can only custom lower store nodes");
|
|
|
|
SDValue Value = StoreNode->getValue();
|
|
|
|
EVT VT = Value.getValueType();
|
|
EVT MemVT = StoreNode->getMemoryVT();
|
|
|
|
assert (VT.isVector() && "Can only custom lower vector store types");
|
|
|
|
unsigned AS = StoreNode->getAddressSpace();
|
|
unsigned Align = StoreNode->getAlignment();
|
|
if (Align < MemVT.getStoreSize() &&
|
|
!allowsMisalignedMemoryAccesses(MemVT, AS, Align, nullptr)) {
|
|
return scalarizeVectorStore(StoreNode, DAG);
|
|
}
|
|
|
|
if (StoreNode->isTruncatingStore()) {
|
|
return LowerTruncateVectorStore(Dl, StoreNode, VT, MemVT, DAG);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
LLVM_DEBUG(dbgs() << "Custom lowering: ");
|
|
LLVM_DEBUG(Op.dump());
|
|
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("unimplemented operand");
|
|
return SDValue();
|
|
case ISD::BITCAST:
|
|
return LowerBITCAST(Op, DAG);
|
|
case ISD::GlobalAddress:
|
|
return LowerGlobalAddress(Op, DAG);
|
|
case ISD::GlobalTLSAddress:
|
|
return LowerGlobalTLSAddress(Op, DAG);
|
|
case ISD::SETCC:
|
|
return LowerSETCC(Op, DAG);
|
|
case ISD::BR_CC:
|
|
return LowerBR_CC(Op, DAG);
|
|
case ISD::SELECT:
|
|
return LowerSELECT(Op, DAG);
|
|
case ISD::SELECT_CC:
|
|
return LowerSELECT_CC(Op, DAG);
|
|
case ISD::JumpTable:
|
|
return LowerJumpTable(Op, DAG);
|
|
case ISD::BR_JT:
|
|
return LowerBR_JT(Op, DAG);
|
|
case ISD::ConstantPool:
|
|
return LowerConstantPool(Op, DAG);
|
|
case ISD::BlockAddress:
|
|
return LowerBlockAddress(Op, DAG);
|
|
case ISD::VASTART:
|
|
return LowerVASTART(Op, DAG);
|
|
case ISD::VACOPY:
|
|
return LowerVACOPY(Op, DAG);
|
|
case ISD::VAARG:
|
|
return LowerVAARG(Op, DAG);
|
|
case ISD::ADDC:
|
|
case ISD::ADDE:
|
|
case ISD::SUBC:
|
|
case ISD::SUBE:
|
|
return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
|
|
case ISD::SADDO:
|
|
case ISD::UADDO:
|
|
case ISD::SSUBO:
|
|
case ISD::USUBO:
|
|
case ISD::SMULO:
|
|
case ISD::UMULO:
|
|
return LowerXALUO(Op, DAG);
|
|
case ISD::FADD:
|
|
return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
|
|
case ISD::FSUB:
|
|
return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
|
|
case ISD::FMUL:
|
|
return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
|
|
case ISD::FDIV:
|
|
return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
|
|
case ISD::FP_ROUND:
|
|
return LowerFP_ROUND(Op, DAG);
|
|
case ISD::FP_EXTEND:
|
|
return LowerFP_EXTEND(Op, DAG);
|
|
case ISD::FRAMEADDR:
|
|
return LowerFRAMEADDR(Op, DAG);
|
|
case ISD::SPONENTRY:
|
|
return LowerSPONENTRY(Op, DAG);
|
|
case ISD::RETURNADDR:
|
|
return LowerRETURNADDR(Op, DAG);
|
|
case ISD::ADDROFRETURNADDR:
|
|
return LowerADDROFRETURNADDR(Op, DAG);
|
|
case ISD::INSERT_VECTOR_ELT:
|
|
return LowerINSERT_VECTOR_ELT(Op, DAG);
|
|
case ISD::EXTRACT_VECTOR_ELT:
|
|
return LowerEXTRACT_VECTOR_ELT(Op, DAG);
|
|
case ISD::BUILD_VECTOR:
|
|
return LowerBUILD_VECTOR(Op, DAG);
|
|
case ISD::VECTOR_SHUFFLE:
|
|
return LowerVECTOR_SHUFFLE(Op, DAG);
|
|
case ISD::EXTRACT_SUBVECTOR:
|
|
return LowerEXTRACT_SUBVECTOR(Op, DAG);
|
|
case ISD::SRA:
|
|
case ISD::SRL:
|
|
case ISD::SHL:
|
|
return LowerVectorSRA_SRL_SHL(Op, DAG);
|
|
case ISD::SHL_PARTS:
|
|
return LowerShiftLeftParts(Op, DAG);
|
|
case ISD::SRL_PARTS:
|
|
case ISD::SRA_PARTS:
|
|
return LowerShiftRightParts(Op, DAG);
|
|
case ISD::CTPOP:
|
|
return LowerCTPOP(Op, DAG);
|
|
case ISD::FCOPYSIGN:
|
|
return LowerFCOPYSIGN(Op, DAG);
|
|
case ISD::OR:
|
|
return LowerVectorOR(Op, DAG);
|
|
case ISD::XOR:
|
|
return LowerXOR(Op, DAG);
|
|
case ISD::PREFETCH:
|
|
return LowerPREFETCH(Op, DAG);
|
|
case ISD::SINT_TO_FP:
|
|
case ISD::UINT_TO_FP:
|
|
return LowerINT_TO_FP(Op, DAG);
|
|
case ISD::FP_TO_SINT:
|
|
case ISD::FP_TO_UINT:
|
|
return LowerFP_TO_INT(Op, DAG);
|
|
case ISD::FSINCOS:
|
|
return LowerFSINCOS(Op, DAG);
|
|
case ISD::FLT_ROUNDS_:
|
|
return LowerFLT_ROUNDS_(Op, DAG);
|
|
case ISD::MUL:
|
|
return LowerMUL(Op, DAG);
|
|
case ISD::INTRINSIC_WO_CHAIN:
|
|
return LowerINTRINSIC_WO_CHAIN(Op, DAG);
|
|
case ISD::STORE:
|
|
return LowerSTORE(Op, DAG);
|
|
case ISD::VECREDUCE_ADD:
|
|
case ISD::VECREDUCE_SMAX:
|
|
case ISD::VECREDUCE_SMIN:
|
|
case ISD::VECREDUCE_UMAX:
|
|
case ISD::VECREDUCE_UMIN:
|
|
case ISD::VECREDUCE_FMAX:
|
|
case ISD::VECREDUCE_FMIN:
|
|
return LowerVECREDUCE(Op, DAG);
|
|
case ISD::ATOMIC_LOAD_SUB:
|
|
return LowerATOMIC_LOAD_SUB(Op, DAG);
|
|
case ISD::ATOMIC_LOAD_AND:
|
|
return LowerATOMIC_LOAD_AND(Op, DAG);
|
|
case ISD::DYNAMIC_STACKALLOC:
|
|
return LowerDYNAMIC_STACKALLOC(Op, DAG);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Calling Convention Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Selects the correct CCAssignFn for a given CallingConvention value.
|
|
CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
|
|
bool IsVarArg) const {
|
|
switch (CC) {
|
|
default:
|
|
report_fatal_error("Unsupported calling convention.");
|
|
case CallingConv::WebKit_JS:
|
|
return CC_AArch64_WebKit_JS;
|
|
case CallingConv::GHC:
|
|
return CC_AArch64_GHC;
|
|
case CallingConv::C:
|
|
case CallingConv::Fast:
|
|
case CallingConv::PreserveMost:
|
|
case CallingConv::CXX_FAST_TLS:
|
|
case CallingConv::Swift:
|
|
if (Subtarget->isTargetWindows() && IsVarArg)
|
|
return CC_AArch64_Win64_VarArg;
|
|
if (!Subtarget->isTargetDarwin())
|
|
return CC_AArch64_AAPCS;
|
|
return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS;
|
|
case CallingConv::Win64:
|
|
return IsVarArg ? CC_AArch64_Win64_VarArg : CC_AArch64_AAPCS;
|
|
case CallingConv::AArch64_VectorCall:
|
|
return CC_AArch64_AAPCS;
|
|
}
|
|
}
|
|
|
|
CCAssignFn *
|
|
AArch64TargetLowering::CCAssignFnForReturn(CallingConv::ID CC) const {
|
|
return CC == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS
|
|
: RetCC_AArch64_AAPCS;
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerFormalArguments(
|
|
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
|
|
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv());
|
|
|
|
// Assign locations to all of the incoming arguments.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
|
|
*DAG.getContext());
|
|
|
|
// At this point, Ins[].VT may already be promoted to i32. To correctly
|
|
// handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
|
|
// i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
|
|
// Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
|
|
// we use a special version of AnalyzeFormalArguments to pass in ValVT and
|
|
// LocVT.
|
|
unsigned NumArgs = Ins.size();
|
|
Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
|
|
unsigned CurArgIdx = 0;
|
|
for (unsigned i = 0; i != NumArgs; ++i) {
|
|
MVT ValVT = Ins[i].VT;
|
|
if (Ins[i].isOrigArg()) {
|
|
std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx);
|
|
CurArgIdx = Ins[i].getOrigArgIndex();
|
|
|
|
// Get type of the original argument.
|
|
EVT ActualVT = getValueType(DAG.getDataLayout(), CurOrigArg->getType(),
|
|
/*AllowUnknown*/ true);
|
|
MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
|
|
// If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
|
|
if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
|
|
ValVT = MVT::i8;
|
|
else if (ActualMVT == MVT::i16)
|
|
ValVT = MVT::i16;
|
|
}
|
|
CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
|
|
bool Res =
|
|
AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
|
|
assert(!Res && "Call operand has unhandled type");
|
|
(void)Res;
|
|
}
|
|
assert(ArgLocs.size() == Ins.size());
|
|
SmallVector<SDValue, 16> ArgValues;
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
|
|
if (Ins[i].Flags.isByVal()) {
|
|
// Byval is used for HFAs in the PCS, but the system should work in a
|
|
// non-compliant manner for larger structs.
|
|
EVT PtrVT = getPointerTy(DAG.getDataLayout());
|
|
int Size = Ins[i].Flags.getByValSize();
|
|
unsigned NumRegs = (Size + 7) / 8;
|
|
|
|
// FIXME: This works on big-endian for composite byvals, which are the common
|
|
// case. It should also work for fundamental types too.
|
|
unsigned FrameIdx =
|
|
MFI.CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
|
|
SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrVT);
|
|
InVals.push_back(FrameIdxN);
|
|
|
|
continue;
|
|
}
|
|
|
|
if (VA.isRegLoc()) {
|
|
// Arguments stored in registers.
|
|
EVT RegVT = VA.getLocVT();
|
|
|
|
SDValue ArgValue;
|
|
const TargetRegisterClass *RC;
|
|
|
|
if (RegVT == MVT::i32)
|
|
RC = &AArch64::GPR32RegClass;
|
|
else if (RegVT == MVT::i64)
|
|
RC = &AArch64::GPR64RegClass;
|
|
else if (RegVT == MVT::f16)
|
|
RC = &AArch64::FPR16RegClass;
|
|
else if (RegVT == MVT::f32)
|
|
RC = &AArch64::FPR32RegClass;
|
|
else if (RegVT == MVT::f64 || RegVT.is64BitVector())
|
|
RC = &AArch64::FPR64RegClass;
|
|
else if (RegVT == MVT::f128 || RegVT.is128BitVector())
|
|
RC = &AArch64::FPR128RegClass;
|
|
else
|
|
llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
|
|
|
|
// Transform the arguments in physical registers into virtual ones.
|
|
unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
|
|
ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
|
|
|
|
// If this is an 8, 16 or 32-bit value, it is really passed promoted
|
|
// to 64 bits. Insert an assert[sz]ext to capture this, then
|
|
// truncate to the right size.
|
|
switch (VA.getLocInfo()) {
|
|
default:
|
|
llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full:
|
|
break;
|
|
case CCValAssign::BCvt:
|
|
ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
|
|
break;
|
|
case CCValAssign::AExt:
|
|
case CCValAssign::SExt:
|
|
case CCValAssign::ZExt:
|
|
// SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt
|
|
// nodes after our lowering.
|
|
assert(RegVT == Ins[i].VT && "incorrect register location selected");
|
|
break;
|
|
}
|
|
|
|
InVals.push_back(ArgValue);
|
|
|
|
} else { // VA.isRegLoc()
|
|
assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
|
|
unsigned ArgOffset = VA.getLocMemOffset();
|
|
unsigned ArgSize = VA.getValVT().getSizeInBits() / 8;
|
|
|
|
uint32_t BEAlign = 0;
|
|
if (!Subtarget->isLittleEndian() && ArgSize < 8 &&
|
|
!Ins[i].Flags.isInConsecutiveRegs())
|
|
BEAlign = 8 - ArgSize;
|
|
|
|
int FI = MFI.CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
|
|
|
|
// Create load nodes to retrieve arguments from the stack.
|
|
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
|
|
SDValue ArgValue;
|
|
|
|
// For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
|
|
ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
|
|
MVT MemVT = VA.getValVT();
|
|
|
|
switch (VA.getLocInfo()) {
|
|
default:
|
|
break;
|
|
case CCValAssign::BCvt:
|
|
MemVT = VA.getLocVT();
|
|
break;
|
|
case CCValAssign::SExt:
|
|
ExtType = ISD::SEXTLOAD;
|
|
break;
|
|
case CCValAssign::ZExt:
|
|
ExtType = ISD::ZEXTLOAD;
|
|
break;
|
|
case CCValAssign::AExt:
|
|
ExtType = ISD::EXTLOAD;
|
|
break;
|
|
}
|
|
|
|
ArgValue = DAG.getExtLoad(
|
|
ExtType, DL, VA.getLocVT(), Chain, FIN,
|
|
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
|
|
MemVT);
|
|
|
|
InVals.push_back(ArgValue);
|
|
}
|
|
}
|
|
|
|
// varargs
|
|
AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
|
|
if (isVarArg) {
|
|
if (!Subtarget->isTargetDarwin() || IsWin64) {
|
|
// The AAPCS variadic function ABI is identical to the non-variadic
|
|
// one. As a result there may be more arguments in registers and we should
|
|
// save them for future reference.
|
|
// Win64 variadic functions also pass arguments in registers, but all float
|
|
// arguments are passed in integer registers.
|
|
saveVarArgRegisters(CCInfo, DAG, DL, Chain);
|
|
}
|
|
|
|
// This will point to the next argument passed via stack.
|
|
unsigned StackOffset = CCInfo.getNextStackOffset();
|
|
// We currently pass all varargs at 8-byte alignment.
|
|
StackOffset = ((StackOffset + 7) & ~7);
|
|
FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackOffset, true));
|
|
|
|
if (MFI.hasMustTailInVarArgFunc()) {
|
|
SmallVector<MVT, 2> RegParmTypes;
|
|
RegParmTypes.push_back(MVT::i64);
|
|
RegParmTypes.push_back(MVT::f128);
|
|
// Compute the set of forwarded registers. The rest are scratch.
|
|
SmallVectorImpl<ForwardedRegister> &Forwards =
|
|
FuncInfo->getForwardedMustTailRegParms();
|
|
CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes,
|
|
CC_AArch64_AAPCS);
|
|
}
|
|
}
|
|
|
|
// On Windows, InReg pointers must be returned, so record the pointer in a
|
|
// virtual register at the start of the function so it can be returned in the
|
|
// epilogue.
|
|
if (IsWin64) {
|
|
for (unsigned I = 0, E = Ins.size(); I != E; ++I) {
|
|
if (Ins[I].Flags.isInReg()) {
|
|
assert(!FuncInfo->getSRetReturnReg());
|
|
|
|
MVT PtrTy = getPointerTy(DAG.getDataLayout());
|
|
unsigned Reg =
|
|
MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
|
|
FuncInfo->setSRetReturnReg(Reg);
|
|
|
|
SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[I]);
|
|
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned StackArgSize = CCInfo.getNextStackOffset();
|
|
bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
|
|
if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
|
|
// This is a non-standard ABI so by fiat I say we're allowed to make full
|
|
// use of the stack area to be popped, which must be aligned to 16 bytes in
|
|
// any case:
|
|
StackArgSize = alignTo(StackArgSize, 16);
|
|
|
|
// If we're expected to restore the stack (e.g. fastcc) then we'll be adding
|
|
// a multiple of 16.
|
|
FuncInfo->setArgumentStackToRestore(StackArgSize);
|
|
|
|
// This realignment carries over to the available bytes below. Our own
|
|
// callers will guarantee the space is free by giving an aligned value to
|
|
// CALLSEQ_START.
|
|
}
|
|
// Even if we're not expected to free up the space, it's useful to know how
|
|
// much is there while considering tail calls (because we can reuse it).
|
|
FuncInfo->setBytesInStackArgArea(StackArgSize);
|
|
|
|
if (Subtarget->hasCustomCallingConv())
|
|
Subtarget->getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF);
|
|
|
|
return Chain;
|
|
}
|
|
|
|
void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
|
|
SelectionDAG &DAG,
|
|
const SDLoc &DL,
|
|
SDValue &Chain) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
|
|
auto PtrVT = getPointerTy(DAG.getDataLayout());
|
|
bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv());
|
|
|
|
SmallVector<SDValue, 8> MemOps;
|
|
|
|
static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
|
|
AArch64::X3, AArch64::X4, AArch64::X5,
|
|
AArch64::X6, AArch64::X7 };
|
|
static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
|
|
unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs);
|
|
|
|
unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
|
|
int GPRIdx = 0;
|
|
if (GPRSaveSize != 0) {
|
|
if (IsWin64) {
|
|
GPRIdx = MFI.CreateFixedObject(GPRSaveSize, -(int)GPRSaveSize, false);
|
|
if (GPRSaveSize & 15)
|
|
// The extra size here, if triggered, will always be 8.
|
|
MFI.CreateFixedObject(16 - (GPRSaveSize & 15), -(int)alignTo(GPRSaveSize, 16), false);
|
|
} else
|
|
GPRIdx = MFI.CreateStackObject(GPRSaveSize, 8, false);
|
|
|
|
SDValue FIN = DAG.getFrameIndex(GPRIdx, PtrVT);
|
|
|
|
for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
|
|
unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
|
|
SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
|
|
SDValue Store = DAG.getStore(
|
|
Val.getValue(1), DL, Val, FIN,
|
|
IsWin64
|
|
? MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
|
|
GPRIdx,
|
|
(i - FirstVariadicGPR) * 8)
|
|
: MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 8));
|
|
MemOps.push_back(Store);
|
|
FIN =
|
|
DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getConstant(8, DL, PtrVT));
|
|
}
|
|
}
|
|
FuncInfo->setVarArgsGPRIndex(GPRIdx);
|
|
FuncInfo->setVarArgsGPRSize(GPRSaveSize);
|
|
|
|
if (Subtarget->hasFPARMv8() && !IsWin64) {
|
|
static const MCPhysReg FPRArgRegs[] = {
|
|
AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
|
|
AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
|
|
static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
|
|
unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs);
|
|
|
|
unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
|
|
int FPRIdx = 0;
|
|
if (FPRSaveSize != 0) {
|
|
FPRIdx = MFI.CreateStackObject(FPRSaveSize, 16, false);
|
|
|
|
SDValue FIN = DAG.getFrameIndex(FPRIdx, PtrVT);
|
|
|
|
for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
|
|
unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
|
|
SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
|
|
|
|
SDValue Store = DAG.getStore(
|
|
Val.getValue(1), DL, Val, FIN,
|
|
MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 16));
|
|
MemOps.push_back(Store);
|
|
FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
|
|
DAG.getConstant(16, DL, PtrVT));
|
|
}
|
|
}
|
|
FuncInfo->setVarArgsFPRIndex(FPRIdx);
|
|
FuncInfo->setVarArgsFPRSize(FPRSaveSize);
|
|
}
|
|
|
|
if (!MemOps.empty()) {
|
|
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
|
|
}
|
|
}
|
|
|
|
/// LowerCallResult - Lower the result values of a call into the
|
|
/// appropriate copies out of appropriate physical registers.
|
|
SDValue AArch64TargetLowering::LowerCallResult(
|
|
SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
|
|
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
|
|
SDValue ThisVal) const {
|
|
CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
|
|
? RetCC_AArch64_WebKit_JS
|
|
: RetCC_AArch64_AAPCS;
|
|
// Assign locations to each value returned by this call.
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
|
|
*DAG.getContext());
|
|
CCInfo.AnalyzeCallResult(Ins, RetCC);
|
|
|
|
// Copy all of the result registers out of their specified physreg.
|
|
for (unsigned i = 0; i != RVLocs.size(); ++i) {
|
|
CCValAssign VA = RVLocs[i];
|
|
|
|
// Pass 'this' value directly from the argument to return value, to avoid
|
|
// reg unit interference
|
|
if (i == 0 && isThisReturn) {
|
|
assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
|
|
"unexpected return calling convention register assignment");
|
|
InVals.push_back(ThisVal);
|
|
continue;
|
|
}
|
|
|
|
SDValue Val =
|
|
DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
|
|
Chain = Val.getValue(1);
|
|
InFlag = Val.getValue(2);
|
|
|
|
switch (VA.getLocInfo()) {
|
|
default:
|
|
llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full:
|
|
break;
|
|
case CCValAssign::BCvt:
|
|
Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
|
|
break;
|
|
}
|
|
|
|
InVals.push_back(Val);
|
|
}
|
|
|
|
return Chain;
|
|
}
|
|
|
|
/// Return true if the calling convention is one that we can guarantee TCO for.
|
|
static bool canGuaranteeTCO(CallingConv::ID CC) {
|
|
return CC == CallingConv::Fast;
|
|
}
|
|
|
|
/// Return true if we might ever do TCO for calls with this calling convention.
|
|
static bool mayTailCallThisCC(CallingConv::ID CC) {
|
|
switch (CC) {
|
|
case CallingConv::C:
|
|
case CallingConv::PreserveMost:
|
|
case CallingConv::Swift:
|
|
return true;
|
|
default:
|
|
return canGuaranteeTCO(CC);
|
|
}
|
|
}
|
|
|
|
bool AArch64TargetLowering::isEligibleForTailCallOptimization(
|
|
SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
|
|
if (!mayTailCallThisCC(CalleeCC))
|
|
return false;
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
const Function &CallerF = MF.getFunction();
|
|
CallingConv::ID CallerCC = CallerF.getCallingConv();
|
|
bool CCMatch = CallerCC == CalleeCC;
|
|
|
|
// Byval parameters hand the function a pointer directly into the stack area
|
|
// we want to reuse during a tail call. Working around this *is* possible (see
|
|
// X86) but less efficient and uglier in LowerCall.
|
|
for (Function::const_arg_iterator i = CallerF.arg_begin(),
|
|
e = CallerF.arg_end();
|
|
i != e; ++i) {
|
|
if (i->hasByValAttr())
|
|
return false;
|
|
|
|
// On Windows, "inreg" attributes signify non-aggregate indirect returns.
|
|
// In this case, it is necessary to save/restore X0 in the callee. Tail
|
|
// call opt interferes with this. So we disable tail call opt when the
|
|
// caller has an argument with "inreg" attribute.
|
|
|
|
// FIXME: Check whether the callee also has an "inreg" argument.
|
|
if (i->hasInRegAttr())
|
|
return false;
|
|
}
|
|
|
|
if (getTargetMachine().Options.GuaranteedTailCallOpt)
|
|
return canGuaranteeTCO(CalleeCC) && CCMatch;
|
|
|
|
// Externally-defined functions with weak linkage should not be
|
|
// tail-called on AArch64 when the OS does not support dynamic
|
|
// pre-emption of symbols, as the AAELF spec requires normal calls
|
|
// to undefined weak functions to be replaced with a NOP or jump to the
|
|
// next instruction. The behaviour of branch instructions in this
|
|
// situation (as used for tail calls) is implementation-defined, so we
|
|
// cannot rely on the linker replacing the tail call with a return.
|
|
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
|
|
const GlobalValue *GV = G->getGlobal();
|
|
const Triple &TT = getTargetMachine().getTargetTriple();
|
|
if (GV->hasExternalWeakLinkage() &&
|
|
(!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
|
|
return false;
|
|
}
|
|
|
|
// Now we search for cases where we can use a tail call without changing the
|
|
// ABI. Sibcall is used in some places (particularly gcc) to refer to this
|
|
// concept.
|
|
|
|
// I want anyone implementing a new calling convention to think long and hard
|
|
// about this assert.
|
|
assert((!isVarArg || CalleeCC == CallingConv::C) &&
|
|
"Unexpected variadic calling convention");
|
|
|
|
LLVMContext &C = *DAG.getContext();
|
|
if (isVarArg && !Outs.empty()) {
|
|
// At least two cases here: if caller is fastcc then we can't have any
|
|
// memory arguments (we'd be expected to clean up the stack afterwards). If
|
|
// caller is C then we could potentially use its argument area.
|
|
|
|
// FIXME: for now we take the most conservative of these in both cases:
|
|
// disallow all variadic memory operands.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
|
|
|
|
CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
|
|
for (const CCValAssign &ArgLoc : ArgLocs)
|
|
if (!ArgLoc.isRegLoc())
|
|
return false;
|
|
}
|
|
|
|
// Check that the call results are passed in the same way.
|
|
if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
|
|
CCAssignFnForCall(CalleeCC, isVarArg),
|
|
CCAssignFnForCall(CallerCC, isVarArg)))
|
|
return false;
|
|
// The callee has to preserve all registers the caller needs to preserve.
|
|
const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
|
|
const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
|
|
if (!CCMatch) {
|
|
const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
|
|
if (Subtarget->hasCustomCallingConv()) {
|
|
TRI->UpdateCustomCallPreservedMask(MF, &CallerPreserved);
|
|
TRI->UpdateCustomCallPreservedMask(MF, &CalleePreserved);
|
|
}
|
|
if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
|
|
return false;
|
|
}
|
|
|
|
// Nothing more to check if the callee is taking no arguments
|
|
if (Outs.empty())
|
|
return true;
|
|
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
|
|
|
|
CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
|
|
|
|
const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
|
|
|
|
// If the stack arguments for this call do not fit into our own save area then
|
|
// the call cannot be made tail.
|
|
if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
|
|
return false;
|
|
|
|
const MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
|
|
SelectionDAG &DAG,
|
|
MachineFrameInfo &MFI,
|
|
int ClobberedFI) const {
|
|
SmallVector<SDValue, 8> ArgChains;
|
|
int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
|
|
int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
|
|
|
|
// Include the original chain at the beginning of the list. When this is
|
|
// used by target LowerCall hooks, this helps legalize find the
|
|
// CALLSEQ_BEGIN node.
|
|
ArgChains.push_back(Chain);
|
|
|
|
// Add a chain value for each stack argument corresponding
|
|
for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
|
|
UE = DAG.getEntryNode().getNode()->use_end();
|
|
U != UE; ++U)
|
|
if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
|
|
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
|
|
if (FI->getIndex() < 0) {
|
|
int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
|
|
int64_t InLastByte = InFirstByte;
|
|
InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
|
|
|
|
if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
|
|
(FirstByte <= InFirstByte && InFirstByte <= LastByte))
|
|
ArgChains.push_back(SDValue(L, 1));
|
|
}
|
|
|
|
// Build a tokenfactor for all the chains.
|
|
return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
|
|
}
|
|
|
|
bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
|
|
bool TailCallOpt) const {
|
|
return CallCC == CallingConv::Fast && TailCallOpt;
|
|
}
|
|
|
|
/// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
|
|
/// and add input and output parameter nodes.
|
|
SDValue
|
|
AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
SelectionDAG &DAG = CLI.DAG;
|
|
SDLoc &DL = CLI.DL;
|
|
SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
|
|
SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
|
|
SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
|
|
SDValue Chain = CLI.Chain;
|
|
SDValue Callee = CLI.Callee;
|
|
bool &IsTailCall = CLI.IsTailCall;
|
|
CallingConv::ID CallConv = CLI.CallConv;
|
|
bool IsVarArg = CLI.IsVarArg;
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
bool IsThisReturn = false;
|
|
|
|
AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
|
|
bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
|
|
bool IsSibCall = false;
|
|
|
|
if (IsTailCall) {
|
|
// Check if it's really possible to do a tail call.
|
|
IsTailCall = isEligibleForTailCallOptimization(
|
|
Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
|
|
if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall())
|
|
report_fatal_error("failed to perform tail call elimination on a call "
|
|
"site marked musttail");
|
|
|
|
// A sibling call is one where we're under the usual C ABI and not planning
|
|
// to change that but can still do a tail call:
|
|
if (!TailCallOpt && IsTailCall)
|
|
IsSibCall = true;
|
|
|
|
if (IsTailCall)
|
|
++NumTailCalls;
|
|
}
|
|
|
|
// Analyze operands of the call, assigning locations to each operand.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
|
|
*DAG.getContext());
|
|
|
|
if (IsVarArg) {
|
|
// Handle fixed and variable vector arguments differently.
|
|
// Variable vector arguments always go into memory.
|
|
unsigned NumArgs = Outs.size();
|
|
|
|
for (unsigned i = 0; i != NumArgs; ++i) {
|
|
MVT ArgVT = Outs[i].VT;
|
|
ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
|
|
CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
|
|
/*IsVarArg=*/ !Outs[i].IsFixed);
|
|
bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
|
|
assert(!Res && "Call operand has unhandled type");
|
|
(void)Res;
|
|
}
|
|
} else {
|
|
// At this point, Outs[].VT may already be promoted to i32. To correctly
|
|
// handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
|
|
// i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
|
|
// Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
|
|
// we use a special version of AnalyzeCallOperands to pass in ValVT and
|
|
// LocVT.
|
|
unsigned NumArgs = Outs.size();
|
|
for (unsigned i = 0; i != NumArgs; ++i) {
|
|
MVT ValVT = Outs[i].VT;
|
|
// Get type of the original argument.
|
|
EVT ActualVT = getValueType(DAG.getDataLayout(),
|
|
CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
|
|
/*AllowUnknown*/ true);
|
|
MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
|
|
ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
|
|
// If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
|
|
if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
|
|
ValVT = MVT::i8;
|
|
else if (ActualMVT == MVT::i16)
|
|
ValVT = MVT::i16;
|
|
|
|
CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
|
|
bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
|
|
assert(!Res && "Call operand has unhandled type");
|
|
(void)Res;
|
|
}
|
|
}
|
|
|
|
// Get a count of how many bytes are to be pushed on the stack.
|
|
unsigned NumBytes = CCInfo.getNextStackOffset();
|
|
|
|
if (IsSibCall) {
|
|
// Since we're not changing the ABI to make this a tail call, the memory
|
|
// operands are already available in the caller's incoming argument space.
|
|
NumBytes = 0;
|
|
}
|
|
|
|
// FPDiff is the byte offset of the call's argument area from the callee's.
|
|
// Stores to callee stack arguments will be placed in FixedStackSlots offset
|
|
// by this amount for a tail call. In a sibling call it must be 0 because the
|
|
// caller will deallocate the entire stack and the callee still expects its
|
|
// arguments to begin at SP+0. Completely unused for non-tail calls.
|
|
int FPDiff = 0;
|
|
|
|
if (IsTailCall && !IsSibCall) {
|
|
unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
|
|
|
|
// Since callee will pop argument stack as a tail call, we must keep the
|
|
// popped size 16-byte aligned.
|
|
NumBytes = alignTo(NumBytes, 16);
|
|
|
|
// FPDiff will be negative if this tail call requires more space than we
|
|
// would automatically have in our incoming argument space. Positive if we
|
|
// can actually shrink the stack.
|
|
FPDiff = NumReusableBytes - NumBytes;
|
|
|
|
// The stack pointer must be 16-byte aligned at all times it's used for a
|
|
// memory operation, which in practice means at *all* times and in
|
|
// particular across call boundaries. Therefore our own arguments started at
|
|
// a 16-byte aligned SP and the delta applied for the tail call should
|
|
// satisfy the same constraint.
|
|
assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
|
|
}
|
|
|
|
// Adjust the stack pointer for the new arguments...
|
|
// These operations are automatically eliminated by the prolog/epilog pass
|
|
if (!IsSibCall)
|
|
Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
|
|
|
|
SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP,
|
|
getPointerTy(DAG.getDataLayout()));
|
|
|
|
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
|
|
SmallVector<SDValue, 8> MemOpChains;
|
|
auto PtrVT = getPointerTy(DAG.getDataLayout());
|
|
|
|
if (IsVarArg && CLI.CS && CLI.CS.isMustTailCall()) {
|
|
const auto &Forwards = FuncInfo->getForwardedMustTailRegParms();
|
|
for (const auto &F : Forwards) {
|
|
SDValue Val = DAG.getCopyFromReg(Chain, DL, F.VReg, F.VT);
|
|
RegsToPass.push_back(std::make_pair(unsigned(F.PReg), Val));
|
|
}
|
|
}
|
|
|
|
// Walk the register/memloc assignments, inserting copies/loads.
|
|
for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
|
|
++i, ++realArgIdx) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
SDValue Arg = OutVals[realArgIdx];
|
|
ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
|
|
|
|
// Promote the value if needed.
|
|
switch (VA.getLocInfo()) {
|
|
default:
|
|
llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full:
|
|
break;
|
|
case CCValAssign::SExt:
|
|
Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
|
|
break;
|
|
case CCValAssign::ZExt:
|
|
Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
|
|
break;
|
|
case CCValAssign::AExt:
|
|
if (Outs[realArgIdx].ArgVT == MVT::i1) {
|
|
// AAPCS requires i1 to be zero-extended to 8-bits by the caller.
|
|
Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
|
|
Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
|
|
}
|
|
Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
|
|
break;
|
|
case CCValAssign::BCvt:
|
|
Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
|
|
break;
|
|
case CCValAssign::FPExt:
|
|
Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
|
|
break;
|
|
}
|
|
|
|
if (VA.isRegLoc()) {
|
|
if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
|
|
Outs[0].VT == MVT::i64) {
|
|
assert(VA.getLocVT() == MVT::i64 &&
|
|
"unexpected calling convention register assignment");
|
|
assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
|
|
"unexpected use of 'returned'");
|
|
IsThisReturn = true;
|
|
}
|
|
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
|
|
} else {
|
|
assert(VA.isMemLoc());
|
|
|
|
SDValue DstAddr;
|
|
MachinePointerInfo DstInfo;
|
|
|
|
// FIXME: This works on big-endian for composite byvals, which are the
|
|
// common case. It should also work for fundamental types too.
|
|
uint32_t BEAlign = 0;
|
|
unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
|
|
: VA.getValVT().getSizeInBits();
|
|
OpSize = (OpSize + 7) / 8;
|
|
if (!Subtarget->isLittleEndian() && !Flags.isByVal() &&
|
|
!Flags.isInConsecutiveRegs()) {
|
|
if (OpSize < 8)
|
|
BEAlign = 8 - OpSize;
|
|
}
|
|
unsigned LocMemOffset = VA.getLocMemOffset();
|
|
int32_t Offset = LocMemOffset + BEAlign;
|
|
SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
|
|
PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
|
|
|
|
if (IsTailCall) {
|
|
Offset = Offset + FPDiff;
|
|
int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
|
|
|
|
DstAddr = DAG.getFrameIndex(FI, PtrVT);
|
|
DstInfo =
|
|
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
|
|
|
|
// Make sure any stack arguments overlapping with where we're storing
|
|
// are loaded before this eventual operation. Otherwise they'll be
|
|
// clobbered.
|
|
Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
|
|
} else {
|
|
SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
|
|
|
|
DstAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
|
|
DstInfo = MachinePointerInfo::getStack(DAG.getMachineFunction(),
|
|
LocMemOffset);
|
|
}
|
|
|
|
if (Outs[i].Flags.isByVal()) {
|
|
SDValue SizeNode =
|
|
DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i64);
|
|
SDValue Cpy = DAG.getMemcpy(
|
|
Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
|
|
/*isVol = */ false, /*AlwaysInline = */ false,
|
|
/*isTailCall = */ false,
|
|
DstInfo, MachinePointerInfo());
|
|
|
|
MemOpChains.push_back(Cpy);
|
|
} else {
|
|
// Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
|
|
// promoted to a legal register type i32, we should truncate Arg back to
|
|
// i1/i8/i16.
|
|
if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
|
|
VA.getValVT() == MVT::i16)
|
|
Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
|
|
|
|
SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo);
|
|
MemOpChains.push_back(Store);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!MemOpChains.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
|
|
|
|
// Build a sequence of copy-to-reg nodes chained together with token chain
|
|
// and flag operands which copy the outgoing args into the appropriate regs.
|
|
SDValue InFlag;
|
|
for (auto &RegToPass : RegsToPass) {
|
|
Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
|
|
RegToPass.second, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
// If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
|
|
// direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
|
|
// node so that legalize doesn't hack it.
|
|
if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
|
|
auto GV = G->getGlobal();
|
|
if (Subtarget->classifyGlobalFunctionReference(GV, getTargetMachine()) ==
|
|
AArch64II::MO_GOT) {
|
|
Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_GOT);
|
|
Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
|
|
} else if (Subtarget->isTargetCOFF() && GV->hasDLLImportStorageClass()) {
|
|
assert(Subtarget->isTargetWindows() &&
|
|
"Windows is the only supported COFF target");
|
|
Callee = getGOT(G, DAG, AArch64II::MO_DLLIMPORT);
|
|
} else {
|
|
const GlobalValue *GV = G->getGlobal();
|
|
Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0);
|
|
}
|
|
} else if (auto *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
|
|
if (getTargetMachine().getCodeModel() == CodeModel::Large &&
|
|
Subtarget->isTargetMachO()) {
|
|
const char *Sym = S->getSymbol();
|
|
Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, AArch64II::MO_GOT);
|
|
Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
|
|
} else {
|
|
const char *Sym = S->getSymbol();
|
|
Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, 0);
|
|
}
|
|
}
|
|
|
|
// We don't usually want to end the call-sequence here because we would tidy
|
|
// the frame up *after* the call, however in the ABI-changing tail-call case
|
|
// we've carefully laid out the parameters so that when sp is reset they'll be
|
|
// in the correct location.
|
|
if (IsTailCall && !IsSibCall) {
|
|
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
|
|
DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
std::vector<SDValue> Ops;
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(Callee);
|
|
|
|
if (IsTailCall) {
|
|
// Each tail call may have to adjust the stack by a different amount, so
|
|
// this information must travel along with the operation for eventual
|
|
// consumption by emitEpilogue.
|
|
Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
|
|
}
|
|
|
|
// Add argument registers to the end of the list so that they are known live
|
|
// into the call.
|
|
for (auto &RegToPass : RegsToPass)
|
|
Ops.push_back(DAG.getRegister(RegToPass.first,
|
|
RegToPass.second.getValueType()));
|
|
|
|
// Add a register mask operand representing the call-preserved registers.
|
|
const uint32_t *Mask;
|
|
const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
|
|
if (IsThisReturn) {
|
|
// For 'this' returns, use the X0-preserving mask if applicable
|
|
Mask = TRI->getThisReturnPreservedMask(MF, CallConv);
|
|
if (!Mask) {
|
|
IsThisReturn = false;
|
|
Mask = TRI->getCallPreservedMask(MF, CallConv);
|
|
}
|
|
} else
|
|
Mask = TRI->getCallPreservedMask(MF, CallConv);
|
|
|
|
if (Subtarget->hasCustomCallingConv())
|
|
TRI->UpdateCustomCallPreservedMask(MF, &Mask);
|
|
|
|
if (TRI->isAnyArgRegReserved(MF))
|
|
TRI->emitReservedArgRegCallError(MF);
|
|
|
|
assert(Mask && "Missing call preserved mask for calling convention");
|
|
Ops.push_back(DAG.getRegisterMask(Mask));
|
|
|
|
if (InFlag.getNode())
|
|
Ops.push_back(InFlag);
|
|
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
|
|
// If we're doing a tall call, use a TC_RETURN here rather than an
|
|
// actual call instruction.
|
|
if (IsTailCall) {
|
|
MF.getFrameInfo().setHasTailCall();
|
|
return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
|
|
}
|
|
|
|
// Returns a chain and a flag for retval copy to use.
|
|
Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
|
|
InFlag = Chain.getValue(1);
|
|
|
|
uint64_t CalleePopBytes =
|
|
DoesCalleeRestoreStack(CallConv, TailCallOpt) ? alignTo(NumBytes, 16) : 0;
|
|
|
|
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
|
|
DAG.getIntPtrConstant(CalleePopBytes, DL, true),
|
|
InFlag, DL);
|
|
if (!Ins.empty())
|
|
InFlag = Chain.getValue(1);
|
|
|
|
// Handle result values, copying them out of physregs into vregs that we
|
|
// return.
|
|
return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
|
|
InVals, IsThisReturn,
|
|
IsThisReturn ? OutVals[0] : SDValue());
|
|
}
|
|
|
|
bool AArch64TargetLowering::CanLowerReturn(
|
|
CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
|
|
CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
|
|
? RetCC_AArch64_WebKit_JS
|
|
: RetCC_AArch64_AAPCS;
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
|
|
return CCInfo.CheckReturn(Outs, RetCC);
|
|
}
|
|
|
|
SDValue
|
|
AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
|
|
bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SDLoc &DL, SelectionDAG &DAG) const {
|
|
auto &MF = DAG.getMachineFunction();
|
|
auto *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
|
|
|
|
CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
|
|
? RetCC_AArch64_WebKit_JS
|
|
: RetCC_AArch64_AAPCS;
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
|
|
*DAG.getContext());
|
|
CCInfo.AnalyzeReturn(Outs, RetCC);
|
|
|
|
// Copy the result values into the output registers.
|
|
SDValue Flag;
|
|
SmallVector<SDValue, 4> RetOps(1, Chain);
|
|
for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
|
|
++i, ++realRVLocIdx) {
|
|
CCValAssign &VA = RVLocs[i];
|
|
assert(VA.isRegLoc() && "Can only return in registers!");
|
|
SDValue Arg = OutVals[realRVLocIdx];
|
|
|
|
switch (VA.getLocInfo()) {
|
|
default:
|
|
llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full:
|
|
if (Outs[i].ArgVT == MVT::i1) {
|
|
// AAPCS requires i1 to be zero-extended to i8 by the producer of the
|
|
// value. This is strictly redundant on Darwin (which uses "zeroext
|
|
// i1"), but will be optimised out before ISel.
|
|
Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
|
|
Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
|
|
}
|
|
break;
|
|
case CCValAssign::BCvt:
|
|
Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
|
|
break;
|
|
}
|
|
|
|
Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
|
|
Flag = Chain.getValue(1);
|
|
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
|
|
}
|
|
|
|
// Windows AArch64 ABIs require that for returning structs by value we copy
|
|
// the sret argument into X0 for the return.
|
|
// We saved the argument into a virtual register in the entry block,
|
|
// so now we copy the value out and into X0.
|
|
if (unsigned SRetReg = FuncInfo->getSRetReturnReg()) {
|
|
SDValue Val = DAG.getCopyFromReg(RetOps[0], DL, SRetReg,
|
|
getPointerTy(MF.getDataLayout()));
|
|
|
|
unsigned RetValReg = AArch64::X0;
|
|
Chain = DAG.getCopyToReg(Chain, DL, RetValReg, Val, Flag);
|
|
Flag = Chain.getValue(1);
|
|
|
|
RetOps.push_back(
|
|
DAG.getRegister(RetValReg, getPointerTy(DAG.getDataLayout())));
|
|
}
|
|
|
|
const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
|
|
const MCPhysReg *I =
|
|
TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
|
|
if (I) {
|
|
for (; *I; ++I) {
|
|
if (AArch64::GPR64RegClass.contains(*I))
|
|
RetOps.push_back(DAG.getRegister(*I, MVT::i64));
|
|
else if (AArch64::FPR64RegClass.contains(*I))
|
|
RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
|
|
else
|
|
llvm_unreachable("Unexpected register class in CSRsViaCopy!");
|
|
}
|
|
}
|
|
|
|
RetOps[0] = Chain; // Update chain.
|
|
|
|
// Add the flag if we have it.
|
|
if (Flag.getNode())
|
|
RetOps.push_back(Flag);
|
|
|
|
return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Other Lowering Code
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SDValue AArch64TargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
|
|
SelectionDAG &DAG,
|
|
unsigned Flag) const {
|
|
return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty,
|
|
N->getOffset(), Flag);
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
|
|
SelectionDAG &DAG,
|
|
unsigned Flag) const {
|
|
return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
|
|
SelectionDAG &DAG,
|
|
unsigned Flag) const {
|
|
return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
|
|
N->getOffset(), Flag);
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::getTargetNode(BlockAddressSDNode* N, EVT Ty,
|
|
SelectionDAG &DAG,
|
|
unsigned Flag) const {
|
|
return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
|
|
}
|
|
|
|
// (loadGOT sym)
|
|
template <class NodeTy>
|
|
SDValue AArch64TargetLowering::getGOT(NodeTy *N, SelectionDAG &DAG,
|
|
unsigned Flags) const {
|
|
LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getGOT\n");
|
|
SDLoc DL(N);
|
|
EVT Ty = getPointerTy(DAG.getDataLayout());
|
|
SDValue GotAddr = getTargetNode(N, Ty, DAG, AArch64II::MO_GOT | Flags);
|
|
// FIXME: Once remat is capable of dealing with instructions with register
|
|
// operands, expand this into two nodes instead of using a wrapper node.
|
|
return DAG.getNode(AArch64ISD::LOADgot, DL, Ty, GotAddr);
|
|
}
|
|
|
|
// (wrapper %highest(sym), %higher(sym), %hi(sym), %lo(sym))
|
|
template <class NodeTy>
|
|
SDValue AArch64TargetLowering::getAddrLarge(NodeTy *N, SelectionDAG &DAG,
|
|
unsigned Flags) const {
|
|
LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrLarge\n");
|
|
SDLoc DL(N);
|
|
EVT Ty = getPointerTy(DAG.getDataLayout());
|
|
const unsigned char MO_NC = AArch64II::MO_NC;
|
|
return DAG.getNode(
|
|
AArch64ISD::WrapperLarge, DL, Ty,
|
|
getTargetNode(N, Ty, DAG, AArch64II::MO_G3 | Flags),
|
|
getTargetNode(N, Ty, DAG, AArch64II::MO_G2 | MO_NC | Flags),
|
|
getTargetNode(N, Ty, DAG, AArch64II::MO_G1 | MO_NC | Flags),
|
|
getTargetNode(N, Ty, DAG, AArch64II::MO_G0 | MO_NC | Flags));
|
|
}
|
|
|
|
// (addlow (adrp %hi(sym)) %lo(sym))
|
|
template <class NodeTy>
|
|
SDValue AArch64TargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
|
|
unsigned Flags) const {
|
|
LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddr\n");
|
|
SDLoc DL(N);
|
|
EVT Ty = getPointerTy(DAG.getDataLayout());
|
|
SDValue Hi = getTargetNode(N, Ty, DAG, AArch64II::MO_PAGE | Flags);
|
|
SDValue Lo = getTargetNode(N, Ty, DAG,
|
|
AArch64II::MO_PAGEOFF | AArch64II::MO_NC | Flags);
|
|
SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, Ty, Hi);
|
|
return DAG.getNode(AArch64ISD::ADDlow, DL, Ty, ADRP, Lo);
|
|
}
|
|
|
|
// (adr sym)
|
|
template <class NodeTy>
|
|
SDValue AArch64TargetLowering::getAddrTiny(NodeTy *N, SelectionDAG &DAG,
|
|
unsigned Flags) const {
|
|
LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrTiny\n");
|
|
SDLoc DL(N);
|
|
EVT Ty = getPointerTy(DAG.getDataLayout());
|
|
SDValue Sym = getTargetNode(N, Ty, DAG, Flags);
|
|
return DAG.getNode(AArch64ISD::ADR, DL, Ty, Sym);
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
|
|
const GlobalValue *GV = GN->getGlobal();
|
|
unsigned char OpFlags =
|
|
Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
|
|
|
|
if (OpFlags != AArch64II::MO_NO_FLAG)
|
|
assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
|
|
"unexpected offset in global node");
|
|
|
|
// This also catches the large code model case for Darwin, and tiny code
|
|
// model with got relocations.
|
|
if ((OpFlags & AArch64II::MO_GOT) != 0) {
|
|
return getGOT(GN, DAG, OpFlags);
|
|
}
|
|
|
|
SDValue Result;
|
|
if (getTargetMachine().getCodeModel() == CodeModel::Large) {
|
|
Result = getAddrLarge(GN, DAG, OpFlags);
|
|
} else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
|
|
Result = getAddrTiny(GN, DAG, OpFlags);
|
|
} else {
|
|
Result = getAddr(GN, DAG, OpFlags);
|
|
}
|
|
EVT PtrVT = getPointerTy(DAG.getDataLayout());
|
|
SDLoc DL(GN);
|
|
if (OpFlags & (AArch64II::MO_DLLIMPORT | AArch64II::MO_COFFSTUB))
|
|
Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
|
|
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
|
|
return Result;
|
|
}
|
|
|
|
/// Convert a TLS address reference into the correct sequence of loads
|
|
/// and calls to compute the variable's address (for Darwin, currently) and
|
|
/// return an SDValue containing the final node.
|
|
|
|
/// Darwin only has one TLS scheme which must be capable of dealing with the
|
|
/// fully general situation, in the worst case. This means:
|
|
/// + "extern __thread" declaration.
|
|
/// + Defined in a possibly unknown dynamic library.
|
|
///
|
|
/// The general system is that each __thread variable has a [3 x i64] descriptor
|
|
/// which contains information used by the runtime to calculate the address. The
|
|
/// only part of this the compiler needs to know about is the first xword, which
|
|
/// contains a function pointer that must be called with the address of the
|
|
/// entire descriptor in "x0".
|
|
///
|
|
/// Since this descriptor may be in a different unit, in general even the
|
|
/// descriptor must be accessed via an indirect load. The "ideal" code sequence
|
|
/// is:
|
|
/// adrp x0, _var@TLVPPAGE
|
|
/// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor
|
|
/// ldr x1, [x0] ; x1 contains 1st entry of descriptor,
|
|
/// ; the function pointer
|
|
/// blr x1 ; Uses descriptor address in x0
|
|
/// ; Address of _var is now in x0.
|
|
///
|
|
/// If the address of _var's descriptor *is* known to the linker, then it can
|
|
/// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
|
|
/// a slight efficiency gain.
|
|
SDValue
|
|
AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(Subtarget->isTargetDarwin() &&
|
|
"This function expects a Darwin target");
|
|
|
|
SDLoc DL(Op);
|
|
MVT PtrVT = getPointerTy(DAG.getDataLayout());
|
|
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
|
|
|
|
SDValue TLVPAddr =
|
|
DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
|
|
SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
|
|
|
|
// The first entry in the descriptor is a function pointer that we must call
|
|
// to obtain the address of the variable.
|
|
SDValue Chain = DAG.getEntryNode();
|
|
SDValue FuncTLVGet = DAG.getLoad(
|
|
MVT::i64, DL, Chain, DescAddr,
|
|
MachinePointerInfo::getGOT(DAG.getMachineFunction()),
|
|
/* Alignment = */ 8,
|
|
MachineMemOperand::MONonTemporal | MachineMemOperand::MOInvariant |
|
|
MachineMemOperand::MODereferenceable);
|
|
Chain = FuncTLVGet.getValue(1);
|
|
|
|
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
|
|
MFI.setAdjustsStack(true);
|
|
|
|
// TLS calls preserve all registers except those that absolutely must be
|
|
// trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
|
|
// silly).
|
|
const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
|
|
const uint32_t *Mask = TRI->getTLSCallPreservedMask();
|
|
if (Subtarget->hasCustomCallingConv())
|
|
TRI->UpdateCustomCallPreservedMask(DAG.getMachineFunction(), &Mask);
|
|
|
|
// Finally, we can make the call. This is just a degenerate version of a
|
|
// normal AArch64 call node: x0 takes the address of the descriptor, and
|
|
// returns the address of the variable in this thread.
|
|
Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
|
|
Chain =
|
|
DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
|
|
Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
|
|
DAG.getRegisterMask(Mask), Chain.getValue(1));
|
|
return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
|
|
}
|
|
|
|
/// When accessing thread-local variables under either the general-dynamic or
|
|
/// local-dynamic system, we make a "TLS-descriptor" call. The variable will
|
|
/// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
|
|
/// is a function pointer to carry out the resolution.
|
|
///
|
|
/// The sequence is:
|
|
/// adrp x0, :tlsdesc:var
|
|
/// ldr x1, [x0, #:tlsdesc_lo12:var]
|
|
/// add x0, x0, #:tlsdesc_lo12:var
|
|
/// .tlsdesccall var
|
|
/// blr x1
|
|
/// (TPIDR_EL0 offset now in x0)
|
|
///
|
|
/// The above sequence must be produced unscheduled, to enable the linker to
|
|
/// optimize/relax this sequence.
|
|
/// Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the
|
|
/// above sequence, and expanded really late in the compilation flow, to ensure
|
|
/// the sequence is produced as per above.
|
|
SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr,
|
|
const SDLoc &DL,
|
|
SelectionDAG &DAG) const {
|
|
EVT PtrVT = getPointerTy(DAG.getDataLayout());
|
|
|
|
SDValue Chain = DAG.getEntryNode();
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
|
|
Chain =
|
|
DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, {Chain, SymAddr});
|
|
SDValue Glue = Chain.getValue(1);
|
|
|
|
return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
|
|
}
|
|
|
|
SDValue
|
|
AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(Subtarget->isTargetELF() && "This function expects an ELF target");
|
|
if (getTargetMachine().getCodeModel() == CodeModel::Large)
|
|
report_fatal_error("ELF TLS only supported in small memory model");
|
|
// Different choices can be made for the maximum size of the TLS area for a
|
|
// module. For the small address model, the default TLS size is 16MiB and the
|
|
// maximum TLS size is 4GiB.
|
|
// FIXME: add -mtls-size command line option and make it control the 16MiB
|
|
// vs. 4GiB code sequence generation.
|
|
// FIXME: add tiny codemodel support. We currently generate the same code as
|
|
// small, which may be larger than needed.
|
|
const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
|
|
|
|
TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
|
|
|
|
if (!EnableAArch64ELFLocalDynamicTLSGeneration) {
|
|
if (Model == TLSModel::LocalDynamic)
|
|
Model = TLSModel::GeneralDynamic;
|
|
}
|
|
|
|
SDValue TPOff;
|
|
EVT PtrVT = getPointerTy(DAG.getDataLayout());
|
|
SDLoc DL(Op);
|
|
const GlobalValue *GV = GA->getGlobal();
|
|
|
|
SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
|
|
|
|
if (Model == TLSModel::LocalExec) {
|
|
SDValue HiVar = DAG.getTargetGlobalAddress(
|
|
GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
|
|
SDValue LoVar = DAG.getTargetGlobalAddress(
|
|
GV, DL, PtrVT, 0,
|
|
AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
|
|
|
|
SDValue TPWithOff_lo =
|
|
SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase,
|
|
HiVar,
|
|
DAG.getTargetConstant(0, DL, MVT::i32)),
|
|
0);
|
|
SDValue TPWithOff =
|
|
SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPWithOff_lo,
|
|
LoVar,
|
|
DAG.getTargetConstant(0, DL, MVT::i32)),
|
|
0);
|
|
return TPWithOff;
|
|
} else if (Model == TLSModel::InitialExec) {
|
|
TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
|
|
TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
|
|
} else if (Model == TLSModel::LocalDynamic) {
|
|
// Local-dynamic accesses proceed in two phases. A general-dynamic TLS
|
|
// descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
|
|
// the beginning of the module's TLS region, followed by a DTPREL offset
|
|
// calculation.
|
|
|
|
// These accesses will need deduplicating if there's more than one.
|
|
AArch64FunctionInfo *MFI =
|
|
DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
|
|
MFI->incNumLocalDynamicTLSAccesses();
|
|
|
|
// The call needs a relocation too for linker relaxation. It doesn't make
|
|
// sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
|
|
// the address.
|
|
SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
|
|
AArch64II::MO_TLS);
|
|
|
|
// Now we can calculate the offset from TPIDR_EL0 to this module's
|
|
// thread-local area.
|
|
TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
|
|
|
|
// Now use :dtprel_whatever: operations to calculate this variable's offset
|
|
// in its thread-storage area.
|
|
SDValue HiVar = DAG.getTargetGlobalAddress(
|
|
GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
|
|
SDValue LoVar = DAG.getTargetGlobalAddress(
|
|
GV, DL, MVT::i64, 0,
|
|
AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
|
|
|
|
TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar,
|
|
DAG.getTargetConstant(0, DL, MVT::i32)),
|
|
0);
|
|
TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar,
|
|
DAG.getTargetConstant(0, DL, MVT::i32)),
|
|
0);
|
|
} else if (Model == TLSModel::GeneralDynamic) {
|
|
// The call needs a relocation too for linker relaxation. It doesn't make
|
|
// sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
|
|
// the address.
|
|
SDValue SymAddr =
|
|
DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
|
|
|
|
// Finally we can make a call to calculate the offset from tpidr_el0.
|
|
TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
|
|
} else
|
|
llvm_unreachable("Unsupported ELF TLS access model");
|
|
|
|
return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
|
|
}
|
|
|
|
SDValue
|
|
AArch64TargetLowering::LowerWindowsGlobalTLSAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
|
|
|
|
SDValue Chain = DAG.getEntryNode();
|
|
EVT PtrVT = getPointerTy(DAG.getDataLayout());
|
|
SDLoc DL(Op);
|
|
|
|
SDValue TEB = DAG.getRegister(AArch64::X18, MVT::i64);
|
|
|
|
// Load the ThreadLocalStoragePointer from the TEB
|
|
// A pointer to the TLS array is located at offset 0x58 from the TEB.
|
|
SDValue TLSArray =
|
|
DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x58, DL));
|
|
TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
|
|
Chain = TLSArray.getValue(1);
|
|
|
|
// Load the TLS index from the C runtime;
|
|
// This does the same as getAddr(), but without having a GlobalAddressSDNode.
|
|
// This also does the same as LOADgot, but using a generic i32 load,
|
|
// while LOADgot only loads i64.
|
|
SDValue TLSIndexHi =
|
|
DAG.getTargetExternalSymbol("_tls_index", PtrVT, AArch64II::MO_PAGE);
|
|
SDValue TLSIndexLo = DAG.getTargetExternalSymbol(
|
|
"_tls_index", PtrVT, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
|
|
SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, TLSIndexHi);
|
|
SDValue TLSIndex =
|
|
DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, TLSIndexLo);
|
|
TLSIndex = DAG.getLoad(MVT::i32, DL, Chain, TLSIndex, MachinePointerInfo());
|
|
Chain = TLSIndex.getValue(1);
|
|
|
|
// The pointer to the thread's TLS data area is at the TLS Index scaled by 8
|
|
// offset into the TLSArray.
|
|
TLSIndex = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TLSIndex);
|
|
SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
|
|
DAG.getConstant(3, DL, PtrVT));
|
|
SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
|
|
DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
|
|
MachinePointerInfo());
|
|
Chain = TLS.getValue(1);
|
|
|
|
const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
|
|
const GlobalValue *GV = GA->getGlobal();
|
|
SDValue TGAHi = DAG.getTargetGlobalAddress(
|
|
GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
|
|
SDValue TGALo = DAG.getTargetGlobalAddress(
|
|
GV, DL, PtrVT, 0,
|
|
AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
|
|
|
|
// Add the offset from the start of the .tls section (section base).
|
|
SDValue Addr =
|
|
SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TLS, TGAHi,
|
|
DAG.getTargetConstant(0, DL, MVT::i32)),
|
|
0);
|
|
Addr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, Addr, TGALo);
|
|
return Addr;
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
|
|
if (DAG.getTarget().useEmulatedTLS())
|
|
return LowerToTLSEmulatedModel(GA, DAG);
|
|
|
|
if (Subtarget->isTargetDarwin())
|
|
return LowerDarwinGlobalTLSAddress(Op, DAG);
|
|
if (Subtarget->isTargetELF())
|
|
return LowerELFGlobalTLSAddress(Op, DAG);
|
|
if (Subtarget->isTargetWindows())
|
|
return LowerWindowsGlobalTLSAddress(Op, DAG);
|
|
|
|
llvm_unreachable("Unexpected platform trying to use TLS");
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
|
|
SDValue Chain = Op.getOperand(0);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
|
|
SDValue LHS = Op.getOperand(2);
|
|
SDValue RHS = Op.getOperand(3);
|
|
SDValue Dest = Op.getOperand(4);
|
|
SDLoc dl(Op);
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
// Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions
|
|
// will not be produced, as they are conditional branch instructions that do
|
|
// not set flags.
|
|
bool ProduceNonFlagSettingCondBr =
|
|
!MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening);
|
|
|
|
// Handle f128 first, since lowering it will result in comparing the return
|
|
// value of a libcall against zero, which is just what the rest of LowerBR_CC
|
|
// is expecting to deal with.
|
|
if (LHS.getValueType() == MVT::f128) {
|
|
softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
|
|
|
|
// If softenSetCCOperands returned a scalar, we need to compare the result
|
|
// against zero to select between true and false values.
|
|
if (!RHS.getNode()) {
|
|
RHS = DAG.getConstant(0, dl, LHS.getValueType());
|
|
CC = ISD::SETNE;
|
|
}
|
|
}
|
|
|
|
// Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
|
|
// instruction.
|
|
if (isOverflowIntrOpRes(LHS) && isOneConstant(RHS) &&
|
|
(CC == ISD::SETEQ || CC == ISD::SETNE)) {
|
|
// Only lower legal XALUO ops.
|
|
if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
|
|
return SDValue();
|
|
|
|
// The actual operation with overflow check.
|
|
AArch64CC::CondCode OFCC;
|
|
SDValue Value, Overflow;
|
|
std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
|
|
|
|
if (CC == ISD::SETNE)
|
|
OFCC = getInvertedCondCode(OFCC);
|
|
SDValue CCVal = DAG.getConstant(OFCC, dl, MVT::i32);
|
|
|
|
return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
|
|
Overflow);
|
|
}
|
|
|
|
if (LHS.getValueType().isInteger()) {
|
|
assert((LHS.getValueType() == RHS.getValueType()) &&
|
|
(LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
|
|
|
|
// If the RHS of the comparison is zero, we can potentially fold this
|
|
// to a specialized branch.
|
|
const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
|
|
if (RHSC && RHSC->getZExtValue() == 0 && ProduceNonFlagSettingCondBr) {
|
|
if (CC == ISD::SETEQ) {
|
|
// See if we can use a TBZ to fold in an AND as well.
|
|
// TBZ has a smaller branch displacement than CBZ. If the offset is
|
|
// out of bounds, a late MI-layer pass rewrites branches.
|
|
// 403.gcc is an example that hits this case.
|
|
if (LHS.getOpcode() == ISD::AND &&
|
|
isa<ConstantSDNode>(LHS.getOperand(1)) &&
|
|
isPowerOf2_64(LHS.getConstantOperandVal(1))) {
|
|
SDValue Test = LHS.getOperand(0);
|
|
uint64_t Mask = LHS.getConstantOperandVal(1);
|
|
return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
|
|
DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
|
|
Dest);
|
|
}
|
|
|
|
return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
|
|
} else if (CC == ISD::SETNE) {
|
|
// See if we can use a TBZ to fold in an AND as well.
|
|
// TBZ has a smaller branch displacement than CBZ. If the offset is
|
|
// out of bounds, a late MI-layer pass rewrites branches.
|
|
// 403.gcc is an example that hits this case.
|
|
if (LHS.getOpcode() == ISD::AND &&
|
|
isa<ConstantSDNode>(LHS.getOperand(1)) &&
|
|
isPowerOf2_64(LHS.getConstantOperandVal(1))) {
|
|
SDValue Test = LHS.getOperand(0);
|
|
uint64_t Mask = LHS.getConstantOperandVal(1);
|
|
return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
|
|
DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
|
|
Dest);
|
|
}
|
|
|
|
return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
|
|
} else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) {
|
|
// Don't combine AND since emitComparison converts the AND to an ANDS
|
|
// (a.k.a. TST) and the test in the test bit and branch instruction
|
|
// becomes redundant. This would also increase register pressure.
|
|
uint64_t Mask = LHS.getValueSizeInBits() - 1;
|
|
return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS,
|
|
DAG.getConstant(Mask, dl, MVT::i64), Dest);
|
|
}
|
|
}
|
|
if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
|
|
LHS.getOpcode() != ISD::AND && ProduceNonFlagSettingCondBr) {
|
|
// Don't combine AND since emitComparison converts the AND to an ANDS
|
|
// (a.k.a. TST) and the test in the test bit and branch instruction
|
|
// becomes redundant. This would also increase register pressure.
|
|
uint64_t Mask = LHS.getValueSizeInBits() - 1;
|
|
return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS,
|
|
DAG.getConstant(Mask, dl, MVT::i64), Dest);
|
|
}
|
|
|
|
SDValue CCVal;
|
|
SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
|
|
return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
|
|
Cmp);
|
|
}
|
|
|
|
assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
|
|
LHS.getValueType() == MVT::f64);
|
|
|
|
// Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
|
|
// clean. Some of them require two branches to implement.
|
|
SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
|
|
AArch64CC::CondCode CC1, CC2;
|
|
changeFPCCToAArch64CC(CC, CC1, CC2);
|
|
SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
|
|
SDValue BR1 =
|
|
DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
|
|
if (CC2 != AArch64CC::AL) {
|
|
SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
|
|
return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
|
|
Cmp);
|
|
}
|
|
|
|
return BR1;
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
EVT VT = Op.getValueType();
|
|
SDLoc DL(Op);
|
|
|
|
SDValue In1 = Op.getOperand(0);
|
|
SDValue In2 = Op.getOperand(1);
|
|
EVT SrcVT = In2.getValueType();
|
|
|
|
if (SrcVT.bitsLT(VT))
|
|
In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
|
|
else if (SrcVT.bitsGT(VT))
|
|
In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0, DL));
|
|
|
|
EVT VecVT;
|
|
uint64_t EltMask;
|
|
SDValue VecVal1, VecVal2;
|
|
|
|
auto setVecVal = [&] (int Idx) {
|
|
if (!VT.isVector()) {
|
|
VecVal1 = DAG.getTargetInsertSubreg(Idx, DL, VecVT,
|
|
DAG.getUNDEF(VecVT), In1);
|
|
VecVal2 = DAG.getTargetInsertSubreg(Idx, DL, VecVT,
|
|
DAG.getUNDEF(VecVT), In2);
|
|
} else {
|
|
VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
|
|
VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
|
|
}
|
|
};
|
|
|
|
if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
|
|
VecVT = (VT == MVT::v2f32 ? MVT::v2i32 : MVT::v4i32);
|
|
EltMask = 0x80000000ULL;
|
|
setVecVal(AArch64::ssub);
|
|
} else if (VT == MVT::f64 || VT == MVT::v2f64) {
|
|
VecVT = MVT::v2i64;
|
|
|
|
// We want to materialize a mask with the high bit set, but the AdvSIMD
|
|
// immediate moves cannot materialize that in a single instruction for
|
|
// 64-bit elements. Instead, materialize zero and then negate it.
|
|
EltMask = 0;
|
|
|
|
setVecVal(AArch64::dsub);
|
|
} else if (VT == MVT::f16 || VT == MVT::v4f16 || VT == MVT::v8f16) {
|
|
VecVT = (VT == MVT::v4f16 ? MVT::v4i16 : MVT::v8i16);
|
|
EltMask = 0x8000ULL;
|
|
setVecVal(AArch64::hsub);
|
|
} else {
|
|
llvm_unreachable("Invalid type for copysign!");
|
|
}
|
|
|
|
SDValue BuildVec = DAG.getConstant(EltMask, DL, VecVT);
|
|
|
|
// If we couldn't materialize the mask above, then the mask vector will be
|
|
// the zero vector, and we need to negate it here.
|
|
if (VT == MVT::f64 || VT == MVT::v2f64) {
|
|
BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
|
|
BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
|
|
BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
|
|
}
|
|
|
|
SDValue Sel =
|
|
DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
|
|
|
|
if (VT == MVT::f16)
|
|
return DAG.getTargetExtractSubreg(AArch64::hsub, DL, VT, Sel);
|
|
if (VT == MVT::f32)
|
|
return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
|
|
else if (VT == MVT::f64)
|
|
return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
|
|
else
|
|
return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
|
|
if (DAG.getMachineFunction().getFunction().hasFnAttribute(
|
|
Attribute::NoImplicitFloat))
|
|
return SDValue();
|
|
|
|
if (!Subtarget->hasNEON())
|
|
return SDValue();
|
|
|
|
// While there is no integer popcount instruction, it can
|
|
// be more efficiently lowered to the following sequence that uses
|
|
// AdvSIMD registers/instructions as long as the copies to/from
|
|
// the AdvSIMD registers are cheap.
|
|
// FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd
|
|
// CNT V0.8B, V0.8B // 8xbyte pop-counts
|
|
// ADDV B0, V0.8B // sum 8xbyte pop-counts
|
|
// UMOV X0, V0.B[0] // copy byte result back to integer reg
|
|
SDValue Val = Op.getOperand(0);
|
|
SDLoc DL(Op);
|
|
EVT VT = Op.getValueType();
|
|
|
|
if (VT == MVT::i32 || VT == MVT::i64) {
|
|
if (VT == MVT::i32)
|
|
Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
|
|
Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
|
|
|
|
SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val);
|
|
SDValue UaddLV = DAG.getNode(
|
|
ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
|
|
DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop);
|
|
|
|
if (VT == MVT::i64)
|
|
UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
|
|
return UaddLV;
|
|
}
|
|
|
|
assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 ||
|
|
VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) &&
|
|
"Unexpected type for custom ctpop lowering");
|
|
|
|
EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
|
|
Val = DAG.getBitcast(VT8Bit, Val);
|
|
Val = DAG.getNode(ISD::CTPOP, DL, VT8Bit, Val);
|
|
|
|
// Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
|
|
unsigned EltSize = 8;
|
|
unsigned NumElts = VT.is64BitVector() ? 8 : 16;
|
|
while (EltSize != VT.getScalarSizeInBits()) {
|
|
EltSize *= 2;
|
|
NumElts /= 2;
|
|
MVT WidenVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts);
|
|
Val = DAG.getNode(
|
|
ISD::INTRINSIC_WO_CHAIN, DL, WidenVT,
|
|
DAG.getConstant(Intrinsic::aarch64_neon_uaddlp, DL, MVT::i32), Val);
|
|
}
|
|
|
|
return Val;
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
|
|
|
|
if (Op.getValueType().isVector())
|
|
return LowerVSETCC(Op, DAG);
|
|
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue RHS = Op.getOperand(1);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
|
|
SDLoc dl(Op);
|
|
|
|
// We chose ZeroOrOneBooleanContents, so use zero and one.
|
|
EVT VT = Op.getValueType();
|
|
SDValue TVal = DAG.getConstant(1, dl, VT);
|
|
SDValue FVal = DAG.getConstant(0, dl, VT);
|
|
|
|
// Handle f128 first, since one possible outcome is a normal integer
|
|
// comparison which gets picked up by the next if statement.
|
|
if (LHS.getValueType() == MVT::f128) {
|
|
softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
|
|
|
|
// If softenSetCCOperands returned a scalar, use it.
|
|
if (!RHS.getNode()) {
|
|
assert(LHS.getValueType() == Op.getValueType() &&
|
|
"Unexpected setcc expansion!");
|
|
return LHS;
|
|
}
|
|
}
|
|
|
|
if (LHS.getValueType().isInteger()) {
|
|
SDValue CCVal;
|
|
SDValue Cmp =
|
|
getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl);
|
|
|
|
// Note that we inverted the condition above, so we reverse the order of
|
|
// the true and false operands here. This will allow the setcc to be
|
|
// matched to a single CSINC instruction.
|
|
return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
|
|
}
|
|
|
|
// Now we know we're dealing with FP values.
|
|
assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
|
|
LHS.getValueType() == MVT::f64);
|
|
|
|
// If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
|
|
// and do the comparison.
|
|
SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
|
|
|
|
AArch64CC::CondCode CC1, CC2;
|
|
changeFPCCToAArch64CC(CC, CC1, CC2);
|
|
if (CC2 == AArch64CC::AL) {
|
|
changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2);
|
|
SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
|
|
|
|
// Note that we inverted the condition above, so we reverse the order of
|
|
// the true and false operands here. This will allow the setcc to be
|
|
// matched to a single CSINC instruction.
|
|
return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
|
|
} else {
|
|
// Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
|
|
// totally clean. Some of them require two CSELs to implement. As is in
|
|
// this case, we emit the first CSEL and then emit a second using the output
|
|
// of the first as the RHS. We're effectively OR'ing the two CC's together.
|
|
|
|
// FIXME: It would be nice if we could match the two CSELs to two CSINCs.
|
|
SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
|
|
SDValue CS1 =
|
|
DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
|
|
|
|
SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
|
|
return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
|
|
}
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC, SDValue LHS,
|
|
SDValue RHS, SDValue TVal,
|
|
SDValue FVal, const SDLoc &dl,
|
|
SelectionDAG &DAG) const {
|
|
// Handle f128 first, because it will result in a comparison of some RTLIB
|
|
// call result against zero.
|
|
if (LHS.getValueType() == MVT::f128) {
|
|
softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
|
|
|
|
// If softenSetCCOperands returned a scalar, we need to compare the result
|
|
// against zero to select between true and false values.
|
|
if (!RHS.getNode()) {
|
|
RHS = DAG.getConstant(0, dl, LHS.getValueType());
|
|
CC = ISD::SETNE;
|
|
}
|
|
}
|
|
|
|
// Also handle f16, for which we need to do a f32 comparison.
|
|
if (LHS.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) {
|
|
LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
|
|
RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
|
|
}
|
|
|
|
// Next, handle integers.
|
|
if (LHS.getValueType().isInteger()) {
|
|
assert((LHS.getValueType() == RHS.getValueType()) &&
|
|
(LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
|
|
|
|
unsigned Opcode = AArch64ISD::CSEL;
|
|
|
|
// If both the TVal and the FVal are constants, see if we can swap them in
|
|
// order to for a CSINV or CSINC out of them.
|
|
ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
|
|
ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
|
|
|
|
if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
|
|
std::swap(TVal, FVal);
|
|
std::swap(CTVal, CFVal);
|
|
CC = ISD::getSetCCInverse(CC, true);
|
|
} else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
|
|
std::swap(TVal, FVal);
|
|
std::swap(CTVal, CFVal);
|
|
CC = ISD::getSetCCInverse(CC, true);
|
|
} else if (TVal.getOpcode() == ISD::XOR) {
|
|
// If TVal is a NOT we want to swap TVal and FVal so that we can match
|
|
// with a CSINV rather than a CSEL.
|
|
if (isAllOnesConstant(TVal.getOperand(1))) {
|
|
std::swap(TVal, FVal);
|
|
std::swap(CTVal, CFVal);
|
|
CC = ISD::getSetCCInverse(CC, true);
|
|
}
|
|
} else if (TVal.getOpcode() == ISD::SUB) {
|
|
// If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
|
|
// that we can match with a CSNEG rather than a CSEL.
|
|
if (isNullConstant(TVal.getOperand(0))) {
|
|
std::swap(TVal, FVal);
|
|
std::swap(CTVal, CFVal);
|
|
CC = ISD::getSetCCInverse(CC, true);
|
|
}
|
|
} else if (CTVal && CFVal) {
|
|
const int64_t TrueVal = CTVal->getSExtValue();
|
|
const int64_t FalseVal = CFVal->getSExtValue();
|
|
bool Swap = false;
|
|
|
|
// If both TVal and FVal are constants, see if FVal is the
|
|
// inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
|
|
// instead of a CSEL in that case.
|
|
if (TrueVal == ~FalseVal) {
|
|
Opcode = AArch64ISD::CSINV;
|
|
} else if (TrueVal == -FalseVal) {
|
|
Opcode = AArch64ISD::CSNEG;
|
|
} else if (TVal.getValueType() == MVT::i32) {
|
|
// If our operands are only 32-bit wide, make sure we use 32-bit
|
|
// arithmetic for the check whether we can use CSINC. This ensures that
|
|
// the addition in the check will wrap around properly in case there is
|
|
// an overflow (which would not be the case if we do the check with
|
|
// 64-bit arithmetic).
|
|
const uint32_t TrueVal32 = CTVal->getZExtValue();
|
|
const uint32_t FalseVal32 = CFVal->getZExtValue();
|
|
|
|
if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
|
|
Opcode = AArch64ISD::CSINC;
|
|
|
|
if (TrueVal32 > FalseVal32) {
|
|
Swap = true;
|
|
}
|
|
}
|
|
// 64-bit check whether we can use CSINC.
|
|
} else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
|
|
Opcode = AArch64ISD::CSINC;
|
|
|
|
if (TrueVal > FalseVal) {
|
|
Swap = true;
|
|
}
|
|
}
|
|
|
|
// Swap TVal and FVal if necessary.
|
|
if (Swap) {
|
|
std::swap(TVal, FVal);
|
|
std::swap(CTVal, CFVal);
|
|
CC = ISD::getSetCCInverse(CC, true);
|
|
}
|
|
|
|
if (Opcode != AArch64ISD::CSEL) {
|
|
// Drop FVal since we can get its value by simply inverting/negating
|
|
// TVal.
|
|
FVal = TVal;
|
|
}
|
|
}
|
|
|
|
// Avoid materializing a constant when possible by reusing a known value in
|
|
// a register. However, don't perform this optimization if the known value
|
|
// is one, zero or negative one in the case of a CSEL. We can always
|
|
// materialize these values using CSINC, CSEL and CSINV with wzr/xzr as the
|
|
// FVal, respectively.
|
|
ConstantSDNode *RHSVal = dyn_cast<ConstantSDNode>(RHS);
|
|
if (Opcode == AArch64ISD::CSEL && RHSVal && !RHSVal->isOne() &&
|
|
!RHSVal->isNullValue() && !RHSVal->isAllOnesValue()) {
|
|
AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
|
|
// Transform "a == C ? C : x" to "a == C ? a : x" and "a != C ? x : C" to
|
|
// "a != C ? x : a" to avoid materializing C.
|
|
if (CTVal && CTVal == RHSVal && AArch64CC == AArch64CC::EQ)
|
|
TVal = LHS;
|
|
else if (CFVal && CFVal == RHSVal && AArch64CC == AArch64CC::NE)
|
|
FVal = LHS;
|
|
} else if (Opcode == AArch64ISD::CSNEG && RHSVal && RHSVal->isOne()) {
|
|
assert (CTVal && CFVal && "Expected constant operands for CSNEG.");
|
|
// Use a CSINV to transform "a == C ? 1 : -1" to "a == C ? a : -1" to
|
|
// avoid materializing C.
|
|
AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
|
|
if (CTVal == RHSVal && AArch64CC == AArch64CC::EQ) {
|
|
Opcode = AArch64ISD::CSINV;
|
|
TVal = LHS;
|
|
FVal = DAG.getConstant(0, dl, FVal.getValueType());
|
|
}
|
|
}
|
|
|
|
SDValue CCVal;
|
|
SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
|
|
EVT VT = TVal.getValueType();
|
|
return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
|
|
}
|
|
|
|
// Now we know we're dealing with FP values.
|
|
assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||
|
|
LHS.getValueType() == MVT::f64);
|
|
assert(LHS.getValueType() == RHS.getValueType());
|
|
EVT VT = TVal.getValueType();
|
|
SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
|
|
|
|
// Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
|
|
// clean. Some of them require two CSELs to implement.
|
|
AArch64CC::CondCode CC1, CC2;
|
|
changeFPCCToAArch64CC(CC, CC1, CC2);
|
|
|
|
if (DAG.getTarget().Options.UnsafeFPMath) {
|
|
// Transform "a == 0.0 ? 0.0 : x" to "a == 0.0 ? a : x" and
|
|
// "a != 0.0 ? x : 0.0" to "a != 0.0 ? x : a" to avoid materializing 0.0.
|
|
ConstantFPSDNode *RHSVal = dyn_cast<ConstantFPSDNode>(RHS);
|
|
if (RHSVal && RHSVal->isZero()) {
|
|
ConstantFPSDNode *CFVal = dyn_cast<ConstantFPSDNode>(FVal);
|
|
ConstantFPSDNode *CTVal = dyn_cast<ConstantFPSDNode>(TVal);
|
|
|
|
if ((CC == ISD::SETEQ || CC == ISD::SETOEQ || CC == ISD::SETUEQ) &&
|
|
CTVal && CTVal->isZero() && TVal.getValueType() == LHS.getValueType())
|
|
TVal = LHS;
|
|
else if ((CC == ISD::SETNE || CC == ISD::SETONE || CC == ISD::SETUNE) &&
|
|
CFVal && CFVal->isZero() &&
|
|
FVal.getValueType() == LHS.getValueType())
|
|
FVal = LHS;
|
|
}
|
|
}
|
|
|
|
// Emit first, and possibly only, CSEL.
|
|
SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
|
|
SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
|
|
|
|
// If we need a second CSEL, emit it, using the output of the first as the
|
|
// RHS. We're effectively OR'ing the two CC's together.
|
|
if (CC2 != AArch64CC::AL) {
|
|
SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
|
|
return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
|
|
}
|
|
|
|
// Otherwise, return the output of the first CSEL.
|
|
return CS1;
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue RHS = Op.getOperand(1);
|
|
SDValue TVal = Op.getOperand(2);
|
|
SDValue FVal = Op.getOperand(3);
|
|
SDLoc DL(Op);
|
|
return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDValue CCVal = Op->getOperand(0);
|
|
SDValue TVal = Op->getOperand(1);
|
|
SDValue FVal = Op->getOperand(2);
|
|
SDLoc DL(Op);
|
|
|
|
// Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
|
|
// instruction.
|
|
if (isOverflowIntrOpRes(CCVal)) {
|
|
// Only lower legal XALUO ops.
|
|
if (!DAG.getTargetLoweringInfo().isTypeLegal(CCVal->getValueType(0)))
|
|
return SDValue();
|
|
|
|
AArch64CC::CondCode OFCC;
|
|
SDValue Value, Overflow;
|
|
std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CCVal.getValue(0), DAG);
|
|
SDValue CCVal = DAG.getConstant(OFCC, DL, MVT::i32);
|
|
|
|
return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
|
|
CCVal, Overflow);
|
|
}
|
|
|
|
// Lower it the same way as we would lower a SELECT_CC node.
|
|
ISD::CondCode CC;
|
|
SDValue LHS, RHS;
|
|
if (CCVal.getOpcode() == ISD::SETCC) {
|
|
LHS = CCVal.getOperand(0);
|
|
RHS = CCVal.getOperand(1);
|
|
CC = cast<CondCodeSDNode>(CCVal->getOperand(2))->get();
|
|
} else {
|
|
LHS = CCVal;
|
|
RHS = DAG.getConstant(0, DL, CCVal.getValueType());
|
|
CC = ISD::SETNE;
|
|
}
|
|
return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
// Jump table entries as PC relative offsets. No additional tweaking
|
|
// is necessary here. Just get the address of the jump table.
|
|
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
|
|
|
|
if (getTargetMachine().getCodeModel() == CodeModel::Large &&
|
|
!Subtarget->isTargetMachO()) {
|
|
return getAddrLarge(JT, DAG);
|
|
} else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
|
|
return getAddrTiny(JT, DAG);
|
|
}
|
|
return getAddr(JT, DAG);
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerBR_JT(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
// Jump table entries as PC relative offsets. No additional tweaking
|
|
// is necessary here. Just get the address of the jump table.
|
|
SDLoc DL(Op);
|
|
SDValue JT = Op.getOperand(1);
|
|
SDValue Entry = Op.getOperand(2);
|
|
int JTI = cast<JumpTableSDNode>(JT.getNode())->getIndex();
|
|
|
|
SDNode *Dest =
|
|
DAG.getMachineNode(AArch64::JumpTableDest32, DL, MVT::i64, MVT::i64, JT,
|
|
Entry, DAG.getTargetJumpTable(JTI, MVT::i32));
|
|
return DAG.getNode(ISD::BRIND, DL, MVT::Other, Op.getOperand(0),
|
|
SDValue(Dest, 0));
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
|
|
|
|
if (getTargetMachine().getCodeModel() == CodeModel::Large) {
|
|
// Use the GOT for the large code model on iOS.
|
|
if (Subtarget->isTargetMachO()) {
|
|
return getGOT(CP, DAG);
|
|
}
|
|
return getAddrLarge(CP, DAG);
|
|
} else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
|
|
return getAddrTiny(CP, DAG);
|
|
} else {
|
|
return getAddr(CP, DAG);
|
|
}
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
BlockAddressSDNode *BA = cast<BlockAddressSDNode>(Op);
|
|
if (getTargetMachine().getCodeModel() == CodeModel::Large &&
|
|
!Subtarget->isTargetMachO()) {
|
|
return getAddrLarge(BA, DAG);
|
|
} else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) {
|
|
return getAddrTiny(BA, DAG);
|
|
}
|
|
return getAddr(BA, DAG);
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
AArch64FunctionInfo *FuncInfo =
|
|
DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
|
|
|
|
SDLoc DL(Op);
|
|
SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(),
|
|
getPointerTy(DAG.getDataLayout()));
|
|
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
|
|
return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
|
|
MachinePointerInfo(SV));
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerWin64_VASTART(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
AArch64FunctionInfo *FuncInfo =
|
|
DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
|
|
|
|
SDLoc DL(Op);
|
|
SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsGPRSize() > 0
|
|
? FuncInfo->getVarArgsGPRIndex()
|
|
: FuncInfo->getVarArgsStackIndex(),
|
|
getPointerTy(DAG.getDataLayout()));
|
|
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
|
|
return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
|
|
MachinePointerInfo(SV));
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
// The layout of the va_list struct is specified in the AArch64 Procedure Call
|
|
// Standard, section B.3.
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
|
|
auto PtrVT = getPointerTy(DAG.getDataLayout());
|
|
SDLoc DL(Op);
|
|
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue VAList = Op.getOperand(1);
|
|
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
|
|
SmallVector<SDValue, 4> MemOps;
|
|
|
|
// void *__stack at offset 0
|
|
SDValue Stack = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), PtrVT);
|
|
MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
|
|
MachinePointerInfo(SV), /* Alignment = */ 8));
|
|
|
|
// void *__gr_top at offset 8
|
|
int GPRSize = FuncInfo->getVarArgsGPRSize();
|
|
if (GPRSize > 0) {
|
|
SDValue GRTop, GRTopAddr;
|
|
|
|
GRTopAddr =
|
|
DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(8, DL, PtrVT));
|
|
|
|
GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), PtrVT);
|
|
GRTop = DAG.getNode(ISD::ADD, DL, PtrVT, GRTop,
|
|
DAG.getConstant(GPRSize, DL, PtrVT));
|
|
|
|
MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
|
|
MachinePointerInfo(SV, 8),
|
|
/* Alignment = */ 8));
|
|
}
|
|
|
|
// void *__vr_top at offset 16
|
|
int FPRSize = FuncInfo->getVarArgsFPRSize();
|
|
if (FPRSize > 0) {
|
|
SDValue VRTop, VRTopAddr;
|
|
VRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
|
|
DAG.getConstant(16, DL, PtrVT));
|
|
|
|
VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), PtrVT);
|
|
VRTop = DAG.getNode(ISD::ADD, DL, PtrVT, VRTop,
|
|
DAG.getConstant(FPRSize, DL, PtrVT));
|
|
|
|
MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
|
|
MachinePointerInfo(SV, 16),
|
|
/* Alignment = */ 8));
|
|
}
|
|
|
|
// int __gr_offs at offset 24
|
|
SDValue GROffsAddr =
|
|
DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(24, DL, PtrVT));
|
|
MemOps.push_back(DAG.getStore(
|
|
Chain, DL, DAG.getConstant(-GPRSize, DL, MVT::i32), GROffsAddr,
|
|
MachinePointerInfo(SV, 24), /* Alignment = */ 4));
|
|
|
|
// int __vr_offs at offset 28
|
|
SDValue VROffsAddr =
|
|
DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(28, DL, PtrVT));
|
|
MemOps.push_back(DAG.getStore(
|
|
Chain, DL, DAG.getConstant(-FPRSize, DL, MVT::i32), VROffsAddr,
|
|
MachinePointerInfo(SV, 28), /* Alignment = */ 4));
|
|
|
|
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
|
|
if (Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv()))
|
|
return LowerWin64_VASTART(Op, DAG);
|
|
else if (Subtarget->isTargetDarwin())
|
|
return LowerDarwin_VASTART(Op, DAG);
|
|
else
|
|
return LowerAAPCS_VASTART(Op, DAG);
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
// AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
|
|
// pointer.
|
|
SDLoc DL(Op);
|
|
unsigned VaListSize =
|
|
Subtarget->isTargetDarwin() || Subtarget->isTargetWindows() ? 8 : 32;
|
|
const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
|
|
const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
|
|
|
|
return DAG.getMemcpy(Op.getOperand(0), DL, Op.getOperand(1),
|
|
Op.getOperand(2),
|
|
DAG.getConstant(VaListSize, DL, MVT::i32),
|
|
8, false, false, false, MachinePointerInfo(DestSV),
|
|
MachinePointerInfo(SrcSV));
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
|
|
assert(Subtarget->isTargetDarwin() &&
|
|
"automatic va_arg instruction only works on Darwin");
|
|
|
|
const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
|
|
EVT VT = Op.getValueType();
|
|
SDLoc DL(Op);
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Addr = Op.getOperand(1);
|
|
unsigned Align = Op.getConstantOperandVal(3);
|
|
auto PtrVT = getPointerTy(DAG.getDataLayout());
|
|
|
|
SDValue VAList = DAG.getLoad(PtrVT, DL, Chain, Addr, MachinePointerInfo(V));
|
|
Chain = VAList.getValue(1);
|
|
|
|
if (Align > 8) {
|
|
assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
|
|
VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
|
|
DAG.getConstant(Align - 1, DL, PtrVT));
|
|
VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList,
|
|
DAG.getConstant(-(int64_t)Align, DL, PtrVT));
|
|
}
|
|
|
|
Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
|
|
uint64_t ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy);
|
|
|
|
// Scalar integer and FP values smaller than 64 bits are implicitly extended
|
|
// up to 64 bits. At the very least, we have to increase the striding of the
|
|
// vaargs list to match this, and for FP values we need to introduce
|
|
// FP_ROUND nodes as well.
|
|
if (VT.isInteger() && !VT.isVector())
|
|
ArgSize = 8;
|
|
bool NeedFPTrunc = false;
|
|
if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
|
|
ArgSize = 8;
|
|
NeedFPTrunc = true;
|
|
}
|
|
|
|
// Increment the pointer, VAList, to the next vaarg
|
|
SDValue VANext = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
|
|
DAG.getConstant(ArgSize, DL, PtrVT));
|
|
// Store the incremented VAList to the legalized pointer
|
|
SDValue APStore =
|
|
DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V));
|
|
|
|
// Load the actual argument out of the pointer VAList
|
|
if (NeedFPTrunc) {
|
|
// Load the value as an f64.
|
|
SDValue WideFP =
|
|
DAG.getLoad(MVT::f64, DL, APStore, VAList, MachinePointerInfo());
|
|
// Round the value down to an f32.
|
|
SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
|
|
DAG.getIntPtrConstant(1, DL));
|
|
SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
|
|
// Merge the rounded value with the chain output of the load.
|
|
return DAG.getMergeValues(Ops, DL);
|
|
}
|
|
|
|
return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo());
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
|
|
MFI.setFrameAddressIsTaken(true);
|
|
|
|
EVT VT = Op.getValueType();
|
|
SDLoc DL(Op);
|
|
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
SDValue FrameAddr =
|
|
DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
|
|
while (Depth--)
|
|
FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
|
|
MachinePointerInfo());
|
|
return FrameAddr;
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerSPONENTRY(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
|
|
|
|
EVT VT = getPointerTy(DAG.getDataLayout());
|
|
SDLoc DL(Op);
|
|
int FI = MFI.CreateFixedObject(4, 0, false);
|
|
return DAG.getFrameIndex(FI, VT);
|
|
}
|
|
|
|
#define GET_REGISTER_MATCHER
|
|
#include "AArch64GenAsmMatcher.inc"
|
|
|
|
// FIXME? Maybe this could be a TableGen attribute on some registers and
|
|
// this table could be generated automatically from RegInfo.
|
|
unsigned AArch64TargetLowering::getRegisterByName(const char* RegName, EVT VT,
|
|
SelectionDAG &DAG) const {
|
|
unsigned Reg = MatchRegisterName(RegName);
|
|
if (AArch64::X1 <= Reg && Reg <= AArch64::X28) {
|
|
const MCRegisterInfo *MRI = Subtarget->getRegisterInfo();
|
|
unsigned DwarfRegNum = MRI->getDwarfRegNum(Reg, false);
|
|
if (!Subtarget->isXRegisterReserved(DwarfRegNum))
|
|
Reg = 0;
|
|
}
|
|
if (Reg)
|
|
return Reg;
|
|
report_fatal_error(Twine("Invalid register name \""
|
|
+ StringRef(RegName) + "\"."));
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerADDROFRETURNADDR(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
|
|
|
|
EVT VT = Op.getValueType();
|
|
SDLoc DL(Op);
|
|
|
|
SDValue FrameAddr =
|
|
DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
|
|
SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout()));
|
|
|
|
return DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset);
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
MFI.setReturnAddressIsTaken(true);
|
|
|
|
EVT VT = Op.getValueType();
|
|
SDLoc DL(Op);
|
|
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
if (Depth) {
|
|
SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
|
|
SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout()));
|
|
return DAG.getLoad(VT, DL, DAG.getEntryNode(),
|
|
DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
|
|
MachinePointerInfo());
|
|
}
|
|
|
|
// Return LR, which contains the return address. Mark it an implicit live-in.
|
|
unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
|
|
return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
|
|
}
|
|
|
|
/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
|
|
/// i64 values and take a 2 x i64 value to shift plus a shift amount.
|
|
SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
|
|
EVT VT = Op.getValueType();
|
|
unsigned VTBits = VT.getSizeInBits();
|
|
SDLoc dl(Op);
|
|
SDValue ShOpLo = Op.getOperand(0);
|
|
SDValue ShOpHi = Op.getOperand(1);
|
|
SDValue ShAmt = Op.getOperand(2);
|
|
unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
|
|
|
|
assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
|
|
|
|
SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
|
|
DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
|
|
SDValue HiBitsForLo = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
|
|
|
|
// Unfortunately, if ShAmt == 0, we just calculated "(SHL ShOpHi, 64)" which
|
|
// is "undef". We wanted 0, so CSEL it directly.
|
|
SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
|
|
ISD::SETEQ, dl, DAG);
|
|
SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
|
|
HiBitsForLo =
|
|
DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
|
|
HiBitsForLo, CCVal, Cmp);
|
|
|
|
SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
|
|
DAG.getConstant(VTBits, dl, MVT::i64));
|
|
|
|
SDValue LoBitsForLo = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
|
|
SDValue LoForNormalShift =
|
|
DAG.getNode(ISD::OR, dl, VT, LoBitsForLo, HiBitsForLo);
|
|
|
|
Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
|
|
dl, DAG);
|
|
CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
|
|
SDValue LoForBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
|
|
SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
|
|
LoForNormalShift, CCVal, Cmp);
|
|
|
|
// AArch64 shifts larger than the register width are wrapped rather than
|
|
// clamped, so we can't just emit "hi >> x".
|
|
SDValue HiForNormalShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
|
|
SDValue HiForBigShift =
|
|
Opc == ISD::SRA
|
|
? DAG.getNode(Opc, dl, VT, ShOpHi,
|
|
DAG.getConstant(VTBits - 1, dl, MVT::i64))
|
|
: DAG.getConstant(0, dl, VT);
|
|
SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
|
|
HiForNormalShift, CCVal, Cmp);
|
|
|
|
SDValue Ops[2] = { Lo, Hi };
|
|
return DAG.getMergeValues(Ops, dl);
|
|
}
|
|
|
|
/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
|
|
/// i64 values and take a 2 x i64 value to shift plus a shift amount.
|
|
SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
|
|
EVT VT = Op.getValueType();
|
|
unsigned VTBits = VT.getSizeInBits();
|
|
SDLoc dl(Op);
|
|
SDValue ShOpLo = Op.getOperand(0);
|
|
SDValue ShOpHi = Op.getOperand(1);
|
|
SDValue ShAmt = Op.getOperand(2);
|
|
|
|
assert(Op.getOpcode() == ISD::SHL_PARTS);
|
|
SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
|
|
DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
|
|
SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
|
|
|
|
// Unfortunately, if ShAmt == 0, we just calculated "(SRL ShOpLo, 64)" which
|
|
// is "undef". We wanted 0, so CSEL it directly.
|
|
SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
|
|
ISD::SETEQ, dl, DAG);
|
|
SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
|
|
LoBitsForHi =
|
|
DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
|
|
LoBitsForHi, CCVal, Cmp);
|
|
|
|
SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
|
|
DAG.getConstant(VTBits, dl, MVT::i64));
|
|
SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
|
|
SDValue HiForNormalShift =
|
|
DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi);
|
|
|
|
SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
|
|
|
|
Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
|
|
dl, DAG);
|
|
CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
|
|
SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
|
|
HiForNormalShift, CCVal, Cmp);
|
|
|
|
// AArch64 shifts of larger than register sizes are wrapped rather than
|
|
// clamped, so we can't just emit "lo << a" if a is too big.
|
|
SDValue LoForBigShift = DAG.getConstant(0, dl, VT);
|
|
SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
|
|
SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
|
|
LoForNormalShift, CCVal, Cmp);
|
|
|
|
SDValue Ops[2] = { Lo, Hi };
|
|
return DAG.getMergeValues(Ops, dl);
|
|
}
|
|
|
|
bool AArch64TargetLowering::isOffsetFoldingLegal(
|
|
const GlobalAddressSDNode *GA) const {
|
|
// Offsets are folded in the DAG combine rather than here so that we can
|
|
// intelligently choose an offset based on the uses.
|
|
return false;
|
|
}
|
|
|
|
bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
|
|
bool OptForSize) const {
|
|
bool IsLegal = false;
|
|
// We can materialize #0.0 as fmov $Rd, XZR for 64-bit, 32-bit cases, and
|
|
// 16-bit case when target has full fp16 support.
|
|
// FIXME: We should be able to handle f128 as well with a clever lowering.
|
|
const APInt ImmInt = Imm.bitcastToAPInt();
|
|
if (VT == MVT::f64)
|
|
IsLegal = AArch64_AM::getFP64Imm(ImmInt) != -1 || Imm.isPosZero();
|
|
else if (VT == MVT::f32)
|
|
IsLegal = AArch64_AM::getFP32Imm(ImmInt) != -1 || Imm.isPosZero();
|
|
else if (VT == MVT::f16 && Subtarget->hasFullFP16())
|
|
IsLegal = AArch64_AM::getFP16Imm(ImmInt) != -1 || Imm.isPosZero();
|
|
// TODO: fmov h0, w0 is also legal, however on't have an isel pattern to
|
|
// generate that fmov.
|
|
|
|
// If we can not materialize in immediate field for fmov, check if the
|
|
// value can be encoded as the immediate operand of a logical instruction.
|
|
// The immediate value will be created with either MOVZ, MOVN, or ORR.
|
|
if (!IsLegal && (VT == MVT::f64 || VT == MVT::f32)) {
|
|
// The cost is actually exactly the same for mov+fmov vs. adrp+ldr;
|
|
// however the mov+fmov sequence is always better because of the reduced
|
|
// cache pressure. The timings are still the same if you consider
|
|
// movw+movk+fmov vs. adrp+ldr (it's one instruction longer, but the
|
|
// movw+movk is fused). So we limit up to 2 instrdduction at most.
|
|
SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
|
|
AArch64_IMM::expandMOVImm(ImmInt.getZExtValue(), VT.getSizeInBits(),
|
|
Insn);
|
|
unsigned Limit = (OptForSize ? 1 : (Subtarget->hasFuseLiterals() ? 5 : 2));
|
|
IsLegal = Insn.size() <= Limit;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << (IsLegal ? "Legal " : "Illegal ") << VT.getEVTString()
|
|
<< " imm value: "; Imm.dump(););
|
|
return IsLegal;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AArch64 Optimization Hooks
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static SDValue getEstimate(const AArch64Subtarget *ST, unsigned Opcode,
|
|
SDValue Operand, SelectionDAG &DAG,
|
|
int &ExtraSteps) {
|
|
EVT VT = Operand.getValueType();
|
|
if (ST->hasNEON() &&
|
|
(VT == MVT::f64 || VT == MVT::v1f64 || VT == MVT::v2f64 ||
|
|
VT == MVT::f32 || VT == MVT::v1f32 ||
|
|
VT == MVT::v2f32 || VT == MVT::v4f32)) {
|
|
if (ExtraSteps == TargetLoweringBase::ReciprocalEstimate::Unspecified)
|
|
// For the reciprocal estimates, convergence is quadratic, so the number
|
|
// of digits is doubled after each iteration. In ARMv8, the accuracy of
|
|
// the initial estimate is 2^-8. Thus the number of extra steps to refine
|
|
// the result for float (23 mantissa bits) is 2 and for double (52
|
|
// mantissa bits) is 3.
|
|
ExtraSteps = VT.getScalarType() == MVT::f64 ? 3 : 2;
|
|
|
|
return DAG.getNode(Opcode, SDLoc(Operand), VT, Operand);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::getSqrtEstimate(SDValue Operand,
|
|
SelectionDAG &DAG, int Enabled,
|
|
int &ExtraSteps,
|
|
bool &UseOneConst,
|
|
bool Reciprocal) const {
|
|
if (Enabled == ReciprocalEstimate::Enabled ||
|
|
(Enabled == ReciprocalEstimate::Unspecified && Subtarget->useRSqrt()))
|
|
if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRSQRTE, Operand,
|
|
DAG, ExtraSteps)) {
|
|
SDLoc DL(Operand);
|
|
EVT VT = Operand.getValueType();
|
|
|
|
SDNodeFlags Flags;
|
|
Flags.setAllowReassociation(true);
|
|
|
|
// Newton reciprocal square root iteration: E * 0.5 * (3 - X * E^2)
|
|
// AArch64 reciprocal square root iteration instruction: 0.5 * (3 - M * N)
|
|
for (int i = ExtraSteps; i > 0; --i) {
|
|
SDValue Step = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Estimate,
|
|
Flags);
|
|
Step = DAG.getNode(AArch64ISD::FRSQRTS, DL, VT, Operand, Step, Flags);
|
|
Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags);
|
|
}
|
|
if (!Reciprocal) {
|
|
EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
|
|
VT);
|
|
SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
|
|
SDValue Eq = DAG.getSetCC(DL, CCVT, Operand, FPZero, ISD::SETEQ);
|
|
|
|
Estimate = DAG.getNode(ISD::FMUL, DL, VT, Operand, Estimate, Flags);
|
|
// Correct the result if the operand is 0.0.
|
|
Estimate = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, DL,
|
|
VT, Eq, Operand, Estimate);
|
|
}
|
|
|
|
ExtraSteps = 0;
|
|
return Estimate;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::getRecipEstimate(SDValue Operand,
|
|
SelectionDAG &DAG, int Enabled,
|
|
int &ExtraSteps) const {
|
|
if (Enabled == ReciprocalEstimate::Enabled)
|
|
if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRECPE, Operand,
|
|
DAG, ExtraSteps)) {
|
|
SDLoc DL(Operand);
|
|
EVT VT = Operand.getValueType();
|
|
|
|
SDNodeFlags Flags;
|
|
Flags.setAllowReassociation(true);
|
|
|
|
// Newton reciprocal iteration: E * (2 - X * E)
|
|
// AArch64 reciprocal iteration instruction: (2 - M * N)
|
|
for (int i = ExtraSteps; i > 0; --i) {
|
|
SDValue Step = DAG.getNode(AArch64ISD::FRECPS, DL, VT, Operand,
|
|
Estimate, Flags);
|
|
Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags);
|
|
}
|
|
|
|
ExtraSteps = 0;
|
|
return Estimate;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AArch64 Inline Assembly Support
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Table of Constraints
|
|
// TODO: This is the current set of constraints supported by ARM for the
|
|
// compiler, not all of them may make sense.
|
|
//
|
|
// r - A general register
|
|
// w - An FP/SIMD register of some size in the range v0-v31
|
|
// x - An FP/SIMD register of some size in the range v0-v15
|
|
// I - Constant that can be used with an ADD instruction
|
|
// J - Constant that can be used with a SUB instruction
|
|
// K - Constant that can be used with a 32-bit logical instruction
|
|
// L - Constant that can be used with a 64-bit logical instruction
|
|
// M - Constant that can be used as a 32-bit MOV immediate
|
|
// N - Constant that can be used as a 64-bit MOV immediate
|
|
// Q - A memory reference with base register and no offset
|
|
// S - A symbolic address
|
|
// Y - Floating point constant zero
|
|
// Z - Integer constant zero
|
|
//
|
|
// Note that general register operands will be output using their 64-bit x
|
|
// register name, whatever the size of the variable, unless the asm operand
|
|
// is prefixed by the %w modifier. Floating-point and SIMD register operands
|
|
// will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
|
|
// %q modifier.
|
|
const char *AArch64TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
|
|
// At this point, we have to lower this constraint to something else, so we
|
|
// lower it to an "r" or "w". However, by doing this we will force the result
|
|
// to be in register, while the X constraint is much more permissive.
|
|
//
|
|
// Although we are correct (we are free to emit anything, without
|
|
// constraints), we might break use cases that would expect us to be more
|
|
// efficient and emit something else.
|
|
if (!Subtarget->hasFPARMv8())
|
|
return "r";
|
|
|
|
if (ConstraintVT.isFloatingPoint())
|
|
return "w";
|
|
|
|
if (ConstraintVT.isVector() &&
|
|
(ConstraintVT.getSizeInBits() == 64 ||
|
|
ConstraintVT.getSizeInBits() == 128))
|
|
return "w";
|
|
|
|
return "r";
|
|
}
|
|
|
|
/// getConstraintType - Given a constraint letter, return the type of
|
|
/// constraint it is for this target.
|
|
AArch64TargetLowering::ConstraintType
|
|
AArch64TargetLowering::getConstraintType(StringRef Constraint) const {
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
default:
|
|
break;
|
|
case 'z':
|
|
return C_Other;
|
|
case 'x':
|
|
case 'w':
|
|
return C_RegisterClass;
|
|
// An address with a single base register. Due to the way we
|
|
// currently handle addresses it is the same as 'r'.
|
|
case 'Q':
|
|
return C_Memory;
|
|
case 'S': // A symbolic address
|
|
return C_Other;
|
|
}
|
|
}
|
|
return TargetLowering::getConstraintType(Constraint);
|
|
}
|
|
|
|
/// Examine constraint type and operand type and determine a weight value.
|
|
/// This object must already have been set up with the operand type
|
|
/// and the current alternative constraint selected.
|
|
TargetLowering::ConstraintWeight
|
|
AArch64TargetLowering::getSingleConstraintMatchWeight(
|
|
AsmOperandInfo &info, const char *constraint) const {
|
|
ConstraintWeight weight = CW_Invalid;
|
|
Value *CallOperandVal = info.CallOperandVal;
|
|
// If we don't have a value, we can't do a match,
|
|
// but allow it at the lowest weight.
|
|
if (!CallOperandVal)
|
|
return CW_Default;
|
|
Type *type = CallOperandVal->getType();
|
|
// Look at the constraint type.
|
|
switch (*constraint) {
|
|
default:
|
|
weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
|
|
break;
|
|
case 'x':
|
|
case 'w':
|
|
if (type->isFloatingPointTy() || type->isVectorTy())
|
|
weight = CW_Register;
|
|
break;
|
|
case 'z':
|
|
weight = CW_Constant;
|
|
break;
|
|
}
|
|
return weight;
|
|
}
|
|
|
|
std::pair<unsigned, const TargetRegisterClass *>
|
|
AArch64TargetLowering::getRegForInlineAsmConstraint(
|
|
const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
case 'r':
|
|
if (VT.getSizeInBits() == 64)
|
|
return std::make_pair(0U, &AArch64::GPR64commonRegClass);
|
|
return std::make_pair(0U, &AArch64::GPR32commonRegClass);
|
|
case 'w':
|
|
if (!Subtarget->hasFPARMv8())
|
|
break;
|
|
if (VT.getSizeInBits() == 16)
|
|
return std::make_pair(0U, &AArch64::FPR16RegClass);
|
|
if (VT.getSizeInBits() == 32)
|
|
return std::make_pair(0U, &AArch64::FPR32RegClass);
|
|
if (VT.getSizeInBits() == 64)
|
|
return std::make_pair(0U, &AArch64::FPR64RegClass);
|
|
if (VT.getSizeInBits() == 128)
|
|
return std::make_pair(0U, &AArch64::FPR128RegClass);
|
|
break;
|
|
// The instructions that this constraint is designed for can
|
|
// only take 128-bit registers so just use that regclass.
|
|
case 'x':
|
|
if (!Subtarget->hasFPARMv8())
|
|
break;
|
|
if (VT.getSizeInBits() == 128)
|
|
return std::make_pair(0U, &AArch64::FPR128_loRegClass);
|
|
break;
|
|
}
|
|
}
|
|
if (StringRef("{cc}").equals_lower(Constraint))
|
|
return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
|
|
|
|
// Use the default implementation in TargetLowering to convert the register
|
|
// constraint into a member of a register class.
|
|
std::pair<unsigned, const TargetRegisterClass *> Res;
|
|
Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
|
|
|
|
// Not found as a standard register?
|
|
if (!Res.second) {
|
|
unsigned Size = Constraint.size();
|
|
if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
|
|
tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
|
|
int RegNo;
|
|
bool Failed = Constraint.slice(2, Size - 1).getAsInteger(10, RegNo);
|
|
if (!Failed && RegNo >= 0 && RegNo <= 31) {
|
|
// v0 - v31 are aliases of q0 - q31 or d0 - d31 depending on size.
|
|
// By default we'll emit v0-v31 for this unless there's a modifier where
|
|
// we'll emit the correct register as well.
|
|
if (VT != MVT::Other && VT.getSizeInBits() == 64) {
|
|
Res.first = AArch64::FPR64RegClass.getRegister(RegNo);
|
|
Res.second = &AArch64::FPR64RegClass;
|
|
} else {
|
|
Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
|
|
Res.second = &AArch64::FPR128RegClass;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Res.second && !Subtarget->hasFPARMv8() &&
|
|
!AArch64::GPR32allRegClass.hasSubClassEq(Res.second) &&
|
|
!AArch64::GPR64allRegClass.hasSubClassEq(Res.second))
|
|
return std::make_pair(0U, nullptr);
|
|
|
|
return Res;
|
|
}
|
|
|
|
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
|
|
/// vector. If it is invalid, don't add anything to Ops.
|
|
void AArch64TargetLowering::LowerAsmOperandForConstraint(
|
|
SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
|
|
SelectionDAG &DAG) const {
|
|
SDValue Result;
|
|
|
|
// Currently only support length 1 constraints.
|
|
if (Constraint.length() != 1)
|
|
return;
|
|
|
|
char ConstraintLetter = Constraint[0];
|
|
switch (ConstraintLetter) {
|
|
default:
|
|
break;
|
|
|
|
// This set of constraints deal with valid constants for various instructions.
|
|
// Validate and return a target constant for them if we can.
|
|
case 'z': {
|
|
// 'z' maps to xzr or wzr so it needs an input of 0.
|
|
if (!isNullConstant(Op))
|
|
return;
|
|
|
|
if (Op.getValueType() == MVT::i64)
|
|
Result = DAG.getRegister(AArch64::XZR, MVT::i64);
|
|
else
|
|
Result = DAG.getRegister(AArch64::WZR, MVT::i32);
|
|
break;
|
|
}
|
|
case 'S': {
|
|
// An absolute symbolic address or label reference.
|
|
if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
|
|
Result = DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
|
|
GA->getValueType(0));
|
|
} else if (const BlockAddressSDNode *BA =
|
|
dyn_cast<BlockAddressSDNode>(Op)) {
|
|
Result =
|
|
DAG.getTargetBlockAddress(BA->getBlockAddress(), BA->getValueType(0));
|
|
} else if (const ExternalSymbolSDNode *ES =
|
|
dyn_cast<ExternalSymbolSDNode>(Op)) {
|
|
Result =
|
|
DAG.getTargetExternalSymbol(ES->getSymbol(), ES->getValueType(0));
|
|
} else
|
|
return;
|
|
break;
|
|
}
|
|
|
|
case 'I':
|
|
case 'J':
|
|
case 'K':
|
|
case 'L':
|
|
case 'M':
|
|
case 'N':
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
|
|
if (!C)
|
|
return;
|
|
|
|
// Grab the value and do some validation.
|
|
uint64_t CVal = C->getZExtValue();
|
|
switch (ConstraintLetter) {
|
|
// The I constraint applies only to simple ADD or SUB immediate operands:
|
|
// i.e. 0 to 4095 with optional shift by 12
|
|
// The J constraint applies only to ADD or SUB immediates that would be
|
|
// valid when negated, i.e. if [an add pattern] were to be output as a SUB
|
|
// instruction [or vice versa], in other words -1 to -4095 with optional
|
|
// left shift by 12.
|
|
case 'I':
|
|
if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
|
|
break;
|
|
return;
|
|
case 'J': {
|
|
uint64_t NVal = -C->getSExtValue();
|
|
if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) {
|
|
CVal = C->getSExtValue();
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
// The K and L constraints apply *only* to logical immediates, including
|
|
// what used to be the MOVI alias for ORR (though the MOVI alias has now
|
|
// been removed and MOV should be used). So these constraints have to
|
|
// distinguish between bit patterns that are valid 32-bit or 64-bit
|
|
// "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
|
|
// not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
|
|
// versa.
|
|
case 'K':
|
|
if (AArch64_AM::isLogicalImmediate(CVal, 32))
|
|
break;
|
|
return;
|
|
case 'L':
|
|
if (AArch64_AM::isLogicalImmediate(CVal, 64))
|
|
break;
|
|
return;
|
|
// The M and N constraints are a superset of K and L respectively, for use
|
|
// with the MOV (immediate) alias. As well as the logical immediates they
|
|
// also match 32 or 64-bit immediates that can be loaded either using a
|
|
// *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
|
|
// (M) or 64-bit 0x1234000000000000 (N) etc.
|
|
// As a note some of this code is liberally stolen from the asm parser.
|
|
case 'M': {
|
|
if (!isUInt<32>(CVal))
|
|
return;
|
|
if (AArch64_AM::isLogicalImmediate(CVal, 32))
|
|
break;
|
|
if ((CVal & 0xFFFF) == CVal)
|
|
break;
|
|
if ((CVal & 0xFFFF0000ULL) == CVal)
|
|
break;
|
|
uint64_t NCVal = ~(uint32_t)CVal;
|
|
if ((NCVal & 0xFFFFULL) == NCVal)
|
|
break;
|
|
if ((NCVal & 0xFFFF0000ULL) == NCVal)
|
|
break;
|
|
return;
|
|
}
|
|
case 'N': {
|
|
if (AArch64_AM::isLogicalImmediate(CVal, 64))
|
|
break;
|
|
if ((CVal & 0xFFFFULL) == CVal)
|
|
break;
|
|
if ((CVal & 0xFFFF0000ULL) == CVal)
|
|
break;
|
|
if ((CVal & 0xFFFF00000000ULL) == CVal)
|
|
break;
|
|
if ((CVal & 0xFFFF000000000000ULL) == CVal)
|
|
break;
|
|
uint64_t NCVal = ~CVal;
|
|
if ((NCVal & 0xFFFFULL) == NCVal)
|
|
break;
|
|
if ((NCVal & 0xFFFF0000ULL) == NCVal)
|
|
break;
|
|
if ((NCVal & 0xFFFF00000000ULL) == NCVal)
|
|
break;
|
|
if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
|
|
break;
|
|
return;
|
|
}
|
|
default:
|
|
return;
|
|
}
|
|
|
|
// All assembler immediates are 64-bit integers.
|
|
Result = DAG.getTargetConstant(CVal, SDLoc(Op), MVT::i64);
|
|
break;
|
|
}
|
|
|
|
if (Result.getNode()) {
|
|
Ops.push_back(Result);
|
|
return;
|
|
}
|
|
|
|
return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AArch64 Advanced SIMD Support
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// WidenVector - Given a value in the V64 register class, produce the
|
|
/// equivalent value in the V128 register class.
|
|
static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
|
|
EVT VT = V64Reg.getValueType();
|
|
unsigned NarrowSize = VT.getVectorNumElements();
|
|
MVT EltTy = VT.getVectorElementType().getSimpleVT();
|
|
MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
|
|
SDLoc DL(V64Reg);
|
|
|
|
return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
|
|
V64Reg, DAG.getConstant(0, DL, MVT::i32));
|
|
}
|
|
|
|
/// getExtFactor - Determine the adjustment factor for the position when
|
|
/// generating an "extract from vector registers" instruction.
|
|
static unsigned getExtFactor(SDValue &V) {
|
|
EVT EltType = V.getValueType().getVectorElementType();
|
|
return EltType.getSizeInBits() / 8;
|
|
}
|
|
|
|
/// NarrowVector - Given a value in the V128 register class, produce the
|
|
/// equivalent value in the V64 register class.
|
|
static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
|
|
EVT VT = V128Reg.getValueType();
|
|
unsigned WideSize = VT.getVectorNumElements();
|
|
MVT EltTy = VT.getVectorElementType().getSimpleVT();
|
|
MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
|
|
SDLoc DL(V128Reg);
|
|
|
|
return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
|
|
}
|
|
|
|
// Gather data to see if the operation can be modelled as a
|
|
// shuffle in combination with VEXTs.
|
|
SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
|
|
LLVM_DEBUG(dbgs() << "AArch64TargetLowering::ReconstructShuffle\n");
|
|
SDLoc dl(Op);
|
|
EVT VT = Op.getValueType();
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
|
|
struct ShuffleSourceInfo {
|
|
SDValue Vec;
|
|
unsigned MinElt;
|
|
unsigned MaxElt;
|
|
|
|
// We may insert some combination of BITCASTs and VEXT nodes to force Vec to
|
|
// be compatible with the shuffle we intend to construct. As a result
|
|
// ShuffleVec will be some sliding window into the original Vec.
|
|
SDValue ShuffleVec;
|
|
|
|
// Code should guarantee that element i in Vec starts at element "WindowBase
|
|
// + i * WindowScale in ShuffleVec".
|
|
int WindowBase;
|
|
int WindowScale;
|
|
|
|
ShuffleSourceInfo(SDValue Vec)
|
|
: Vec(Vec), MinElt(std::numeric_limits<unsigned>::max()), MaxElt(0),
|
|
ShuffleVec(Vec), WindowBase(0), WindowScale(1) {}
|
|
|
|
bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
|
|
};
|
|
|
|
// First gather all vectors used as an immediate source for this BUILD_VECTOR
|
|
// node.
|
|
SmallVector<ShuffleSourceInfo, 2> Sources;
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
SDValue V = Op.getOperand(i);
|
|
if (V.isUndef())
|
|
continue;
|
|
else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
|
|
!isa<ConstantSDNode>(V.getOperand(1))) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "Reshuffle failed: "
|
|
"a shuffle can only come from building a vector from "
|
|
"various elements of other vectors, provided their "
|
|
"indices are constant\n");
|
|
return SDValue();
|
|
}
|
|
|
|
// Add this element source to the list if it's not already there.
|
|
SDValue SourceVec = V.getOperand(0);
|
|
auto Source = find(Sources, SourceVec);
|
|
if (Source == Sources.end())
|
|
Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
|
|
|
|
// Update the minimum and maximum lane number seen.
|
|
unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
|
|
Source->MinElt = std::min(Source->MinElt, EltNo);
|
|
Source->MaxElt = std::max(Source->MaxElt, EltNo);
|
|
}
|
|
|
|
if (Sources.size() > 2) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "Reshuffle failed: currently only do something sane when at "
|
|
"most two source vectors are involved\n");
|
|
return SDValue();
|
|
}
|
|
|
|
// Find out the smallest element size among result and two sources, and use
|
|
// it as element size to build the shuffle_vector.
|
|
EVT SmallestEltTy = VT.getVectorElementType();
|
|
for (auto &Source : Sources) {
|
|
EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
|
|
if (SrcEltTy.bitsLT(SmallestEltTy)) {
|
|
SmallestEltTy = SrcEltTy;
|
|
}
|
|
}
|
|
unsigned ResMultiplier =
|
|
VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
|
|
NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
|
|
EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
|
|
|
|
// If the source vector is too wide or too narrow, we may nevertheless be able
|
|
// to construct a compatible shuffle either by concatenating it with UNDEF or
|
|
// extracting a suitable range of elements.
|
|
for (auto &Src : Sources) {
|
|
EVT SrcVT = Src.ShuffleVec.getValueType();
|
|
|
|
if (SrcVT.getSizeInBits() == VT.getSizeInBits())
|
|
continue;
|
|
|
|
// This stage of the search produces a source with the same element type as
|
|
// the original, but with a total width matching the BUILD_VECTOR output.
|
|
EVT EltVT = SrcVT.getVectorElementType();
|
|
unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
|
|
EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
|
|
|
|
if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
|
|
assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits());
|
|
// We can pad out the smaller vector for free, so if it's part of a
|
|
// shuffle...
|
|
Src.ShuffleVec =
|
|
DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
|
|
DAG.getUNDEF(Src.ShuffleVec.getValueType()));
|
|
continue;
|
|
}
|
|
|
|
assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits());
|
|
|
|
if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "Reshuffle failed: span too large for a VEXT to cope\n");
|
|
return SDValue();
|
|
}
|
|
|
|
if (Src.MinElt >= NumSrcElts) {
|
|
// The extraction can just take the second half
|
|
Src.ShuffleVec =
|
|
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
|
|
DAG.getConstant(NumSrcElts, dl, MVT::i64));
|
|
Src.WindowBase = -NumSrcElts;
|
|
} else if (Src.MaxElt < NumSrcElts) {
|
|
// The extraction can just take the first half
|
|
Src.ShuffleVec =
|
|
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
|
|
DAG.getConstant(0, dl, MVT::i64));
|
|
} else {
|
|
// An actual VEXT is needed
|
|
SDValue VEXTSrc1 =
|
|
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
|
|
DAG.getConstant(0, dl, MVT::i64));
|
|
SDValue VEXTSrc2 =
|
|
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
|
|
DAG.getConstant(NumSrcElts, dl, MVT::i64));
|
|
unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1);
|
|
|
|
Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1,
|
|
VEXTSrc2,
|
|
DAG.getConstant(Imm, dl, MVT::i32));
|
|
Src.WindowBase = -Src.MinElt;
|
|
}
|
|
}
|
|
|
|
// Another possible incompatibility occurs from the vector element types. We
|
|
// can fix this by bitcasting the source vectors to the same type we intend
|
|
// for the shuffle.
|
|
for (auto &Src : Sources) {
|
|
EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
|
|
if (SrcEltTy == SmallestEltTy)
|
|
continue;
|
|
assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
|
|
Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
|
|
Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
|
|
Src.WindowBase *= Src.WindowScale;
|
|
}
|
|
|
|
// Final sanity check before we try to actually produce a shuffle.
|
|
LLVM_DEBUG(for (auto Src
|
|
: Sources)
|
|
assert(Src.ShuffleVec.getValueType() == ShuffleVT););
|
|
|
|
// The stars all align, our next step is to produce the mask for the shuffle.
|
|
SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
|
|
int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
|
|
for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
|
|
SDValue Entry = Op.getOperand(i);
|
|
if (Entry.isUndef())
|
|
continue;
|
|
|
|
auto Src = find(Sources, Entry.getOperand(0));
|
|
int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
|
|
|
|
// EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
|
|
// trunc. So only std::min(SrcBits, DestBits) actually get defined in this
|
|
// segment.
|
|
EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
|
|
int BitsDefined =
|
|
std::min(OrigEltTy.getSizeInBits(), VT.getScalarSizeInBits());
|
|
int LanesDefined = BitsDefined / BitsPerShuffleLane;
|
|
|
|
// This source is expected to fill ResMultiplier lanes of the final shuffle,
|
|
// starting at the appropriate offset.
|
|
int *LaneMask = &Mask[i * ResMultiplier];
|
|
|
|
int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
|
|
ExtractBase += NumElts * (Src - Sources.begin());
|
|
for (int j = 0; j < LanesDefined; ++j)
|
|
LaneMask[j] = ExtractBase + j;
|
|
}
|
|
|
|
// Final check before we try to produce nonsense...
|
|
if (!isShuffleMaskLegal(Mask, ShuffleVT)) {
|
|
LLVM_DEBUG(dbgs() << "Reshuffle failed: illegal shuffle mask\n");
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
|
|
for (unsigned i = 0; i < Sources.size(); ++i)
|
|
ShuffleOps[i] = Sources[i].ShuffleVec;
|
|
|
|
SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
|
|
ShuffleOps[1], Mask);
|
|
SDValue V = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
|
|
|
|
LLVM_DEBUG(dbgs() << "Reshuffle, creating node: "; Shuffle.dump();
|
|
dbgs() << "Reshuffle, creating node: "; V.dump(););
|
|
|
|
return V;
|
|
}
|
|
|
|
// check if an EXT instruction can handle the shuffle mask when the
|
|
// vector sources of the shuffle are the same.
|
|
static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
|
|
// Assume that the first shuffle index is not UNDEF. Fail if it is.
|
|
if (M[0] < 0)
|
|
return false;
|
|
|
|
Imm = M[0];
|
|
|
|
// If this is a VEXT shuffle, the immediate value is the index of the first
|
|
// element. The other shuffle indices must be the successive elements after
|
|
// the first one.
|
|
unsigned ExpectedElt = Imm;
|
|
for (unsigned i = 1; i < NumElts; ++i) {
|
|
// Increment the expected index. If it wraps around, just follow it
|
|
// back to index zero and keep going.
|
|
++ExpectedElt;
|
|
if (ExpectedElt == NumElts)
|
|
ExpectedElt = 0;
|
|
|
|
if (M[i] < 0)
|
|
continue; // ignore UNDEF indices
|
|
if (ExpectedElt != static_cast<unsigned>(M[i]))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// check if an EXT instruction can handle the shuffle mask when the
|
|
// vector sources of the shuffle are different.
|
|
static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
|
|
unsigned &Imm) {
|
|
// Look for the first non-undef element.
|
|
const int *FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; });
|
|
|
|
// Benefit form APInt to handle overflow when calculating expected element.
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
|
|
APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
|
|
// The following shuffle indices must be the successive elements after the
|
|
// first real element.
|
|
const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
|
|
[&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
|
|
if (FirstWrongElt != M.end())
|
|
return false;
|
|
|
|
// The index of an EXT is the first element if it is not UNDEF.
|
|
// Watch out for the beginning UNDEFs. The EXT index should be the expected
|
|
// value of the first element. E.g.
|
|
// <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
|
|
// <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
|
|
// ExpectedElt is the last mask index plus 1.
|
|
Imm = ExpectedElt.getZExtValue();
|
|
|
|
// There are two difference cases requiring to reverse input vectors.
|
|
// For example, for vector <4 x i32> we have the following cases,
|
|
// Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
|
|
// Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
|
|
// For both cases, we finally use mask <5, 6, 7, 0>, which requires
|
|
// to reverse two input vectors.
|
|
if (Imm < NumElts)
|
|
ReverseEXT = true;
|
|
else
|
|
Imm -= NumElts;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isREVMask - Check if a vector shuffle corresponds to a REV
|
|
/// instruction with the specified blocksize. (The order of the elements
|
|
/// within each block of the vector is reversed.)
|
|
static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
|
|
assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
|
|
"Only possible block sizes for REV are: 16, 32, 64");
|
|
|
|
unsigned EltSz = VT.getScalarSizeInBits();
|
|
if (EltSz == 64)
|
|
return false;
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
unsigned BlockElts = M[0] + 1;
|
|
// If the first shuffle index is UNDEF, be optimistic.
|
|
if (M[0] < 0)
|
|
BlockElts = BlockSize / EltSz;
|
|
|
|
if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
|
|
return false;
|
|
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
if (M[i] < 0)
|
|
continue; // ignore UNDEF indices
|
|
if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
WhichResult = (M[0] == 0 ? 0 : 1);
|
|
unsigned Idx = WhichResult * NumElts / 2;
|
|
for (unsigned i = 0; i != NumElts; i += 2) {
|
|
if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
|
|
(M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
|
|
return false;
|
|
Idx += 1;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
WhichResult = (M[0] == 0 ? 0 : 1);
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
if (M[i] < 0)
|
|
continue; // ignore UNDEF indices
|
|
if ((unsigned)M[i] != 2 * i + WhichResult)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
WhichResult = (M[0] == 0 ? 0 : 1);
|
|
for (unsigned i = 0; i < NumElts; i += 2) {
|
|
if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
|
|
(M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
|
|
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
|
|
/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
|
|
static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
WhichResult = (M[0] == 0 ? 0 : 1);
|
|
unsigned Idx = WhichResult * NumElts / 2;
|
|
for (unsigned i = 0; i != NumElts; i += 2) {
|
|
if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
|
|
(M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
|
|
return false;
|
|
Idx += 1;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
|
|
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
|
|
/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
|
|
static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
|
|
unsigned Half = VT.getVectorNumElements() / 2;
|
|
WhichResult = (M[0] == 0 ? 0 : 1);
|
|
for (unsigned j = 0; j != 2; ++j) {
|
|
unsigned Idx = WhichResult;
|
|
for (unsigned i = 0; i != Half; ++i) {
|
|
int MIdx = M[i + j * Half];
|
|
if (MIdx >= 0 && (unsigned)MIdx != Idx)
|
|
return false;
|
|
Idx += 2;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
|
|
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
|
|
/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
|
|
static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
WhichResult = (M[0] == 0 ? 0 : 1);
|
|
for (unsigned i = 0; i < NumElts; i += 2) {
|
|
if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
|
|
(M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool isINSMask(ArrayRef<int> M, int NumInputElements,
|
|
bool &DstIsLeft, int &Anomaly) {
|
|
if (M.size() != static_cast<size_t>(NumInputElements))
|
|
return false;
|
|
|
|
int NumLHSMatch = 0, NumRHSMatch = 0;
|
|
int LastLHSMismatch = -1, LastRHSMismatch = -1;
|
|
|
|
for (int i = 0; i < NumInputElements; ++i) {
|
|
if (M[i] == -1) {
|
|
++NumLHSMatch;
|
|
++NumRHSMatch;
|
|
continue;
|
|
}
|
|
|
|
if (M[i] == i)
|
|
++NumLHSMatch;
|
|
else
|
|
LastLHSMismatch = i;
|
|
|
|
if (M[i] == i + NumInputElements)
|
|
++NumRHSMatch;
|
|
else
|
|
LastRHSMismatch = i;
|
|
}
|
|
|
|
if (NumLHSMatch == NumInputElements - 1) {
|
|
DstIsLeft = true;
|
|
Anomaly = LastLHSMismatch;
|
|
return true;
|
|
} else if (NumRHSMatch == NumInputElements - 1) {
|
|
DstIsLeft = false;
|
|
Anomaly = LastRHSMismatch;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
|
|
if (VT.getSizeInBits() != 128)
|
|
return false;
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
|
|
for (int I = 0, E = NumElts / 2; I != E; I++) {
|
|
if (Mask[I] != I)
|
|
return false;
|
|
}
|
|
|
|
int Offset = NumElts / 2;
|
|
for (int I = NumElts / 2, E = NumElts; I != E; I++) {
|
|
if (Mask[I] != I + SplitLHS * Offset)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
|
|
SDLoc DL(Op);
|
|
EVT VT = Op.getValueType();
|
|
SDValue V0 = Op.getOperand(0);
|
|
SDValue V1 = Op.getOperand(1);
|
|
ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
|
|
|
|
if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
|
|
VT.getVectorElementType() != V1.getValueType().getVectorElementType())
|
|
return SDValue();
|
|
|
|
bool SplitV0 = V0.getValueSizeInBits() == 128;
|
|
|
|
if (!isConcatMask(Mask, VT, SplitV0))
|
|
return SDValue();
|
|
|
|
EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
|
|
VT.getVectorNumElements() / 2);
|
|
if (SplitV0) {
|
|
V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
|
|
DAG.getConstant(0, DL, MVT::i64));
|
|
}
|
|
if (V1.getValueSizeInBits() == 128) {
|
|
V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
|
|
DAG.getConstant(0, DL, MVT::i64));
|
|
}
|
|
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
|
|
}
|
|
|
|
/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
|
|
/// the specified operations to build the shuffle.
|
|
static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
|
|
SDValue RHS, SelectionDAG &DAG,
|
|
const SDLoc &dl) {
|
|
unsigned OpNum = (PFEntry >> 26) & 0x0F;
|
|
unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
|
|
unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
|
|
|
|
enum {
|
|
OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
|
|
OP_VREV,
|
|
OP_VDUP0,
|
|
OP_VDUP1,
|
|
OP_VDUP2,
|
|
OP_VDUP3,
|
|
OP_VEXT1,
|
|
OP_VEXT2,
|
|
OP_VEXT3,
|
|
OP_VUZPL, // VUZP, left result
|
|
OP_VUZPR, // VUZP, right result
|
|
OP_VZIPL, // VZIP, left result
|
|
OP_VZIPR, // VZIP, right result
|
|
OP_VTRNL, // VTRN, left result
|
|
OP_VTRNR // VTRN, right result
|
|
};
|
|
|
|
if (OpNum == OP_COPY) {
|
|
if (LHSID == (1 * 9 + 2) * 9 + 3)
|
|
return LHS;
|
|
assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
|
|
return RHS;
|
|
}
|
|
|
|
SDValue OpLHS, OpRHS;
|
|
OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
|
|
OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
|
|
EVT VT = OpLHS.getValueType();
|
|
|
|
switch (OpNum) {
|
|
default:
|
|
llvm_unreachable("Unknown shuffle opcode!");
|
|
case OP_VREV:
|
|
// VREV divides the vector in half and swaps within the half.
|
|
if (VT.getVectorElementType() == MVT::i32 ||
|
|
VT.getVectorElementType() == MVT::f32)
|
|
return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
|
|
// vrev <4 x i16> -> REV32
|
|
if (VT.getVectorElementType() == MVT::i16 ||
|
|
VT.getVectorElementType() == MVT::f16)
|
|
return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
|
|
// vrev <4 x i8> -> REV16
|
|
assert(VT.getVectorElementType() == MVT::i8);
|
|
return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
|
|
case OP_VDUP0:
|
|
case OP_VDUP1:
|
|
case OP_VDUP2:
|
|
case OP_VDUP3: {
|
|
EVT EltTy = VT.getVectorElementType();
|
|
unsigned Opcode;
|
|
if (EltTy == MVT::i8)
|
|
Opcode = AArch64ISD::DUPLANE8;
|
|
else if (EltTy == MVT::i16 || EltTy == MVT::f16)
|
|
Opcode = AArch64ISD::DUPLANE16;
|
|
else if (EltTy == MVT::i32 || EltTy == MVT::f32)
|
|
Opcode = AArch64ISD::DUPLANE32;
|
|
else if (EltTy == MVT::i64 || EltTy == MVT::f64)
|
|
Opcode = AArch64ISD::DUPLANE64;
|
|
else
|
|
llvm_unreachable("Invalid vector element type?");
|
|
|
|
if (VT.getSizeInBits() == 64)
|
|
OpLHS = WidenVector(OpLHS, DAG);
|
|
SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, dl, MVT::i64);
|
|
return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
|
|
}
|
|
case OP_VEXT1:
|
|
case OP_VEXT2:
|
|
case OP_VEXT3: {
|
|
unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
|
|
return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
|
|
DAG.getConstant(Imm, dl, MVT::i32));
|
|
}
|
|
case OP_VUZPL:
|
|
return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
|
|
OpRHS);
|
|
case OP_VUZPR:
|
|
return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
|
|
OpRHS);
|
|
case OP_VZIPL:
|
|
return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
|
|
OpRHS);
|
|
case OP_VZIPR:
|
|
return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
|
|
OpRHS);
|
|
case OP_VTRNL:
|
|
return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
|
|
OpRHS);
|
|
case OP_VTRNR:
|
|
return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
|
|
OpRHS);
|
|
}
|
|
}
|
|
|
|
static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
|
|
SelectionDAG &DAG) {
|
|
// Check to see if we can use the TBL instruction.
|
|
SDValue V1 = Op.getOperand(0);
|
|
SDValue V2 = Op.getOperand(1);
|
|
SDLoc DL(Op);
|
|
|
|
EVT EltVT = Op.getValueType().getVectorElementType();
|
|
unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
|
|
|
|
SmallVector<SDValue, 8> TBLMask;
|
|
for (int Val : ShuffleMask) {
|
|
for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
|
|
unsigned Offset = Byte + Val * BytesPerElt;
|
|
TBLMask.push_back(DAG.getConstant(Offset, DL, MVT::i32));
|
|
}
|
|
}
|
|
|
|
MVT IndexVT = MVT::v8i8;
|
|
unsigned IndexLen = 8;
|
|
if (Op.getValueSizeInBits() == 128) {
|
|
IndexVT = MVT::v16i8;
|
|
IndexLen = 16;
|
|
}
|
|
|
|
SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
|
|
SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
|
|
|
|
SDValue Shuffle;
|
|
if (V2.getNode()->isUndef()) {
|
|
if (IndexLen == 8)
|
|
V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
|
|
Shuffle = DAG.getNode(
|
|
ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
|
|
DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
|
|
DAG.getBuildVector(IndexVT, DL,
|
|
makeArrayRef(TBLMask.data(), IndexLen)));
|
|
} else {
|
|
if (IndexLen == 8) {
|
|
V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
|
|
Shuffle = DAG.getNode(
|
|
ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
|
|
DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
|
|
DAG.getBuildVector(IndexVT, DL,
|
|
makeArrayRef(TBLMask.data(), IndexLen)));
|
|
} else {
|
|
// FIXME: We cannot, for the moment, emit a TBL2 instruction because we
|
|
// cannot currently represent the register constraints on the input
|
|
// table registers.
|
|
// Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
|
|
// DAG.getBuildVector(IndexVT, DL, &TBLMask[0],
|
|
// IndexLen));
|
|
Shuffle = DAG.getNode(
|
|
ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
|
|
DAG.getConstant(Intrinsic::aarch64_neon_tbl2, DL, MVT::i32), V1Cst,
|
|
V2Cst, DAG.getBuildVector(IndexVT, DL,
|
|
makeArrayRef(TBLMask.data(), IndexLen)));
|
|
}
|
|
}
|
|
return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
|
|
}
|
|
|
|
static unsigned getDUPLANEOp(EVT EltType) {
|
|
if (EltType == MVT::i8)
|
|
return AArch64ISD::DUPLANE8;
|
|
if (EltType == MVT::i16 || EltType == MVT::f16)
|
|
return AArch64ISD::DUPLANE16;
|
|
if (EltType == MVT::i32 || EltType == MVT::f32)
|
|
return AArch64ISD::DUPLANE32;
|
|
if (EltType == MVT::i64 || EltType == MVT::f64)
|
|
return AArch64ISD::DUPLANE64;
|
|
|
|
llvm_unreachable("Invalid vector element type?");
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc dl(Op);
|
|
EVT VT = Op.getValueType();
|
|
|
|
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
|
|
|
|
// Convert shuffles that are directly supported on NEON to target-specific
|
|
// DAG nodes, instead of keeping them as shuffles and matching them again
|
|
// during code selection. This is more efficient and avoids the possibility
|
|
// of inconsistencies between legalization and selection.
|
|
ArrayRef<int> ShuffleMask = SVN->getMask();
|
|
|
|
SDValue V1 = Op.getOperand(0);
|
|
SDValue V2 = Op.getOperand(1);
|
|
|
|
if (SVN->isSplat()) {
|
|
int Lane = SVN->getSplatIndex();
|
|
// If this is undef splat, generate it via "just" vdup, if possible.
|
|
if (Lane == -1)
|
|
Lane = 0;
|
|
|
|
if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
|
|
return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
|
|
V1.getOperand(0));
|
|
// Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
|
|
// constant. If so, we can just reference the lane's definition directly.
|
|
if (V1.getOpcode() == ISD::BUILD_VECTOR &&
|
|
!isa<ConstantSDNode>(V1.getOperand(Lane)))
|
|
return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
|
|
|
|
// Otherwise, duplicate from the lane of the input vector.
|
|
unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
|
|
|
|
// SelectionDAGBuilder may have "helpfully" already extracted or conatenated
|
|
// to make a vector of the same size as this SHUFFLE. We can ignore the
|
|
// extract entirely, and canonicalise the concat using WidenVector.
|
|
if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
|
|
Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
|
|
V1 = V1.getOperand(0);
|
|
} else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
|
|
unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
|
|
Lane -= Idx * VT.getVectorNumElements() / 2;
|
|
V1 = WidenVector(V1.getOperand(Idx), DAG);
|
|
} else if (VT.getSizeInBits() == 64)
|
|
V1 = WidenVector(V1, DAG);
|
|
|
|
return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, dl, MVT::i64));
|
|
}
|
|
|
|
if (isREVMask(ShuffleMask, VT, 64))
|
|
return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
|
|
if (isREVMask(ShuffleMask, VT, 32))
|
|
return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
|
|
if (isREVMask(ShuffleMask, VT, 16))
|
|
return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
|
|
|
|
bool ReverseEXT = false;
|
|
unsigned Imm;
|
|
if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
|
|
if (ReverseEXT)
|
|
std::swap(V1, V2);
|
|
Imm *= getExtFactor(V1);
|
|
return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
|
|
DAG.getConstant(Imm, dl, MVT::i32));
|
|
} else if (V2->isUndef() && isSingletonEXTMask(ShuffleMask, VT, Imm)) {
|
|
Imm *= getExtFactor(V1);
|
|
return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
|
|
DAG.getConstant(Imm, dl, MVT::i32));
|
|
}
|
|
|
|
unsigned WhichResult;
|
|
if (isZIPMask(ShuffleMask, VT, WhichResult)) {
|
|
unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
|
|
return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
|
|
}
|
|
if (isUZPMask(ShuffleMask, VT, WhichResult)) {
|
|
unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
|
|
return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
|
|
}
|
|
if (isTRNMask(ShuffleMask, VT, WhichResult)) {
|
|
unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
|
|
return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
|
|
}
|
|
|
|
if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
|
|
unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
|
|
return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
|
|
}
|
|
if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
|
|
unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
|
|
return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
|
|
}
|
|
if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
|
|
unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
|
|
return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
|
|
}
|
|
|
|
if (SDValue Concat = tryFormConcatFromShuffle(Op, DAG))
|
|
return Concat;
|
|
|
|
bool DstIsLeft;
|
|
int Anomaly;
|
|
int NumInputElements = V1.getValueType().getVectorNumElements();
|
|
if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
|
|
SDValue DstVec = DstIsLeft ? V1 : V2;
|
|
SDValue DstLaneV = DAG.getConstant(Anomaly, dl, MVT::i64);
|
|
|
|
SDValue SrcVec = V1;
|
|
int SrcLane = ShuffleMask[Anomaly];
|
|
if (SrcLane >= NumInputElements) {
|
|
SrcVec = V2;
|
|
SrcLane -= VT.getVectorNumElements();
|
|
}
|
|
SDValue SrcLaneV = DAG.getConstant(SrcLane, dl, MVT::i64);
|
|
|
|
EVT ScalarVT = VT.getVectorElementType();
|
|
|
|
if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger())
|
|
ScalarVT = MVT::i32;
|
|
|
|
return DAG.getNode(
|
|
ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
|
|
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
|
|
DstLaneV);
|
|
}
|
|
|
|
// If the shuffle is not directly supported and it has 4 elements, use
|
|
// the PerfectShuffle-generated table to synthesize it from other shuffles.
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
if (NumElts == 4) {
|
|
unsigned PFIndexes[4];
|
|
for (unsigned i = 0; i != 4; ++i) {
|
|
if (ShuffleMask[i] < 0)
|
|
PFIndexes[i] = 8;
|
|
else
|
|
PFIndexes[i] = ShuffleMask[i];
|
|
}
|
|
|
|
// Compute the index in the perfect shuffle table.
|
|
unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
|
|
PFIndexes[2] * 9 + PFIndexes[3];
|
|
unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
|
|
unsigned Cost = (PFEntry >> 30);
|
|
|
|
if (Cost <= 4)
|
|
return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
|
|
}
|
|
|
|
return GenerateTBL(Op, ShuffleMask, DAG);
|
|
}
|
|
|
|
static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
|
|
APInt &UndefBits) {
|
|
EVT VT = BVN->getValueType(0);
|
|
APInt SplatBits, SplatUndef;
|
|
unsigned SplatBitSize;
|
|
bool HasAnyUndefs;
|
|
if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
|
|
unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
|
|
|
|
for (unsigned i = 0; i < NumSplats; ++i) {
|
|
CnstBits <<= SplatBitSize;
|
|
UndefBits <<= SplatBitSize;
|
|
CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
|
|
UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Try 64-bit splatted SIMD immediate.
|
|
static SDValue tryAdvSIMDModImm64(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
|
|
const APInt &Bits) {
|
|
if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
|
|
uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
|
|
EVT VT = Op.getValueType();
|
|
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v2i64 : MVT::f64;
|
|
|
|
if (AArch64_AM::isAdvSIMDModImmType10(Value)) {
|
|
Value = AArch64_AM::encodeAdvSIMDModImmType10(Value);
|
|
|
|
SDLoc dl(Op);
|
|
SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
|
|
DAG.getConstant(Value, dl, MVT::i32));
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Try 32-bit splatted SIMD immediate.
|
|
static SDValue tryAdvSIMDModImm32(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
|
|
const APInt &Bits,
|
|
const SDValue *LHS = nullptr) {
|
|
if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
|
|
uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
|
|
EVT VT = Op.getValueType();
|
|
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
|
|
bool isAdvSIMDModImm = false;
|
|
uint64_t Shift;
|
|
|
|
if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType1(Value))) {
|
|
Value = AArch64_AM::encodeAdvSIMDModImmType1(Value);
|
|
Shift = 0;
|
|
}
|
|
else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType2(Value))) {
|
|
Value = AArch64_AM::encodeAdvSIMDModImmType2(Value);
|
|
Shift = 8;
|
|
}
|
|
else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType3(Value))) {
|
|
Value = AArch64_AM::encodeAdvSIMDModImmType3(Value);
|
|
Shift = 16;
|
|
}
|
|
else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType4(Value))) {
|
|
Value = AArch64_AM::encodeAdvSIMDModImmType4(Value);
|
|
Shift = 24;
|
|
}
|
|
|
|
if (isAdvSIMDModImm) {
|
|
SDLoc dl(Op);
|
|
SDValue Mov;
|
|
|
|
if (LHS)
|
|
Mov = DAG.getNode(NewOp, dl, MovTy, *LHS,
|
|
DAG.getConstant(Value, dl, MVT::i32),
|
|
DAG.getConstant(Shift, dl, MVT::i32));
|
|
else
|
|
Mov = DAG.getNode(NewOp, dl, MovTy,
|
|
DAG.getConstant(Value, dl, MVT::i32),
|
|
DAG.getConstant(Shift, dl, MVT::i32));
|
|
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Try 16-bit splatted SIMD immediate.
|
|
static SDValue tryAdvSIMDModImm16(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
|
|
const APInt &Bits,
|
|
const SDValue *LHS = nullptr) {
|
|
if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
|
|
uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
|
|
EVT VT = Op.getValueType();
|
|
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
|
|
bool isAdvSIMDModImm = false;
|
|
uint64_t Shift;
|
|
|
|
if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType5(Value))) {
|
|
Value = AArch64_AM::encodeAdvSIMDModImmType5(Value);
|
|
Shift = 0;
|
|
}
|
|
else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType6(Value))) {
|
|
Value = AArch64_AM::encodeAdvSIMDModImmType6(Value);
|
|
Shift = 8;
|
|
}
|
|
|
|
if (isAdvSIMDModImm) {
|
|
SDLoc dl(Op);
|
|
SDValue Mov;
|
|
|
|
if (LHS)
|
|
Mov = DAG.getNode(NewOp, dl, MovTy, *LHS,
|
|
DAG.getConstant(Value, dl, MVT::i32),
|
|
DAG.getConstant(Shift, dl, MVT::i32));
|
|
else
|
|
Mov = DAG.getNode(NewOp, dl, MovTy,
|
|
DAG.getConstant(Value, dl, MVT::i32),
|
|
DAG.getConstant(Shift, dl, MVT::i32));
|
|
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Try 32-bit splatted SIMD immediate with shifted ones.
|
|
static SDValue tryAdvSIMDModImm321s(unsigned NewOp, SDValue Op,
|
|
SelectionDAG &DAG, const APInt &Bits) {
|
|
if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
|
|
uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
|
|
EVT VT = Op.getValueType();
|
|
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
|
|
bool isAdvSIMDModImm = false;
|
|
uint64_t Shift;
|
|
|
|
if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType7(Value))) {
|
|
Value = AArch64_AM::encodeAdvSIMDModImmType7(Value);
|
|
Shift = 264;
|
|
}
|
|
else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType8(Value))) {
|
|
Value = AArch64_AM::encodeAdvSIMDModImmType8(Value);
|
|
Shift = 272;
|
|
}
|
|
|
|
if (isAdvSIMDModImm) {
|
|
SDLoc dl(Op);
|
|
SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
|
|
DAG.getConstant(Value, dl, MVT::i32),
|
|
DAG.getConstant(Shift, dl, MVT::i32));
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Try 8-bit splatted SIMD immediate.
|
|
static SDValue tryAdvSIMDModImm8(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
|
|
const APInt &Bits) {
|
|
if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
|
|
uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
|
|
EVT VT = Op.getValueType();
|
|
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
|
|
|
|
if (AArch64_AM::isAdvSIMDModImmType9(Value)) {
|
|
Value = AArch64_AM::encodeAdvSIMDModImmType9(Value);
|
|
|
|
SDLoc dl(Op);
|
|
SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
|
|
DAG.getConstant(Value, dl, MVT::i32));
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Try FP splatted SIMD immediate.
|
|
static SDValue tryAdvSIMDModImmFP(unsigned NewOp, SDValue Op, SelectionDAG &DAG,
|
|
const APInt &Bits) {
|
|
if (Bits.getHiBits(64) == Bits.getLoBits(64)) {
|
|
uint64_t Value = Bits.zextOrTrunc(64).getZExtValue();
|
|
EVT VT = Op.getValueType();
|
|
bool isWide = (VT.getSizeInBits() == 128);
|
|
MVT MovTy;
|
|
bool isAdvSIMDModImm = false;
|
|
|
|
if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType11(Value))) {
|
|
Value = AArch64_AM::encodeAdvSIMDModImmType11(Value);
|
|
MovTy = isWide ? MVT::v4f32 : MVT::v2f32;
|
|
}
|
|
else if (isWide &&
|
|
(isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType12(Value))) {
|
|
Value = AArch64_AM::encodeAdvSIMDModImmType12(Value);
|
|
MovTy = MVT::v2f64;
|
|
}
|
|
|
|
if (isAdvSIMDModImm) {
|
|
SDLoc dl(Op);
|
|
SDValue Mov = DAG.getNode(NewOp, dl, MovTy,
|
|
DAG.getConstant(Value, dl, MVT::i32));
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Specialized code to quickly find if PotentialBVec is a BuildVector that
|
|
// consists of only the same constant int value, returned in reference arg
|
|
// ConstVal
|
|
static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
|
|
uint64_t &ConstVal) {
|
|
BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
|
|
if (!Bvec)
|
|
return false;
|
|
ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
|
|
if (!FirstElt)
|
|
return false;
|
|
EVT VT = Bvec->getValueType(0);
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
for (unsigned i = 1; i < NumElts; ++i)
|
|
if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
|
|
return false;
|
|
ConstVal = FirstElt->getZExtValue();
|
|
return true;
|
|
}
|
|
|
|
static unsigned getIntrinsicID(const SDNode *N) {
|
|
unsigned Opcode = N->getOpcode();
|
|
switch (Opcode) {
|
|
default:
|
|
return Intrinsic::not_intrinsic;
|
|
case ISD::INTRINSIC_WO_CHAIN: {
|
|
unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
|
|
if (IID < Intrinsic::num_intrinsics)
|
|
return IID;
|
|
return Intrinsic::not_intrinsic;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
|
|
// to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
|
|
// BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
|
|
// Also, logical shift right -> sri, with the same structure.
|
|
static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
|
|
EVT VT = N->getValueType(0);
|
|
|
|
if (!VT.isVector())
|
|
return SDValue();
|
|
|
|
SDLoc DL(N);
|
|
|
|
// Is the first op an AND?
|
|
const SDValue And = N->getOperand(0);
|
|
if (And.getOpcode() != ISD::AND)
|
|
return SDValue();
|
|
|
|
// Is the second op an shl or lshr?
|
|
SDValue Shift = N->getOperand(1);
|
|
// This will have been turned into: AArch64ISD::VSHL vector, #shift
|
|
// or AArch64ISD::VLSHR vector, #shift
|
|
unsigned ShiftOpc = Shift.getOpcode();
|
|
if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
|
|
return SDValue();
|
|
bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
|
|
|
|
// Is the shift amount constant?
|
|
ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
|
|
if (!C2node)
|
|
return SDValue();
|
|
|
|
// Is the and mask vector all constant?
|
|
uint64_t C1;
|
|
if (!isAllConstantBuildVector(And.getOperand(1), C1))
|
|
return SDValue();
|
|
|
|
// Is C1 == ~C2, taking into account how much one can shift elements of a
|
|
// particular size?
|
|
uint64_t C2 = C2node->getZExtValue();
|
|
unsigned ElemSizeInBits = VT.getScalarSizeInBits();
|
|
if (C2 > ElemSizeInBits)
|
|
return SDValue();
|
|
unsigned ElemMask = (1 << ElemSizeInBits) - 1;
|
|
if ((C1 & ElemMask) != (~C2 & ElemMask))
|
|
return SDValue();
|
|
|
|
SDValue X = And.getOperand(0);
|
|
SDValue Y = Shift.getOperand(0);
|
|
|
|
unsigned Intrin =
|
|
IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
|
|
SDValue ResultSLI =
|
|
DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
|
|
DAG.getConstant(Intrin, DL, MVT::i32), X, Y,
|
|
Shift.getOperand(1));
|
|
|
|
LLVM_DEBUG(dbgs() << "aarch64-lower: transformed: \n");
|
|
LLVM_DEBUG(N->dump(&DAG));
|
|
LLVM_DEBUG(dbgs() << "into: \n");
|
|
LLVM_DEBUG(ResultSLI->dump(&DAG));
|
|
|
|
++NumShiftInserts;
|
|
return ResultSLI;
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
// Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
|
|
if (EnableAArch64SlrGeneration) {
|
|
if (SDValue Res = tryLowerToSLI(Op.getNode(), DAG))
|
|
return Res;
|
|
}
|
|
|
|
EVT VT = Op.getValueType();
|
|
|
|
SDValue LHS = Op.getOperand(0);
|
|
BuildVectorSDNode *BVN =
|
|
dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
|
|
if (!BVN) {
|
|
// OR commutes, so try swapping the operands.
|
|
LHS = Op.getOperand(1);
|
|
BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
|
|
}
|
|
if (!BVN)
|
|
return Op;
|
|
|
|
APInt DefBits(VT.getSizeInBits(), 0);
|
|
APInt UndefBits(VT.getSizeInBits(), 0);
|
|
if (resolveBuildVector(BVN, DefBits, UndefBits)) {
|
|
SDValue NewOp;
|
|
|
|
if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG,
|
|
DefBits, &LHS)) ||
|
|
(NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG,
|
|
DefBits, &LHS)))
|
|
return NewOp;
|
|
|
|
if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG,
|
|
UndefBits, &LHS)) ||
|
|
(NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG,
|
|
UndefBits, &LHS)))
|
|
return NewOp;
|
|
}
|
|
|
|
// We can always fall back to a non-immediate OR.
|
|
return Op;
|
|
}
|
|
|
|
// Normalize the operands of BUILD_VECTOR. The value of constant operands will
|
|
// be truncated to fit element width.
|
|
static SDValue NormalizeBuildVector(SDValue Op,
|
|
SelectionDAG &DAG) {
|
|
assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
|
|
SDLoc dl(Op);
|
|
EVT VT = Op.getValueType();
|
|
EVT EltTy= VT.getVectorElementType();
|
|
|
|
if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
|
|
return Op;
|
|
|
|
SmallVector<SDValue, 16> Ops;
|
|
for (SDValue Lane : Op->ops()) {
|
|
// For integer vectors, type legalization would have promoted the
|
|
// operands already. Otherwise, if Op is a floating-point splat
|
|
// (with operands cast to integers), then the only possibilities
|
|
// are constants and UNDEFs.
|
|
if (auto *CstLane = dyn_cast<ConstantSDNode>(Lane)) {
|
|
APInt LowBits(EltTy.getSizeInBits(),
|
|
CstLane->getZExtValue());
|
|
Lane = DAG.getConstant(LowBits.getZExtValue(), dl, MVT::i32);
|
|
} else if (Lane.getNode()->isUndef()) {
|
|
Lane = DAG.getUNDEF(MVT::i32);
|
|
} else {
|
|
assert(Lane.getValueType() == MVT::i32 &&
|
|
"Unexpected BUILD_VECTOR operand type");
|
|
}
|
|
Ops.push_back(Lane);
|
|
}
|
|
return DAG.getBuildVector(VT, dl, Ops);
|
|
}
|
|
|
|
static SDValue ConstantBuildVector(SDValue Op, SelectionDAG &DAG) {
|
|
EVT VT = Op.getValueType();
|
|
|
|
APInt DefBits(VT.getSizeInBits(), 0);
|
|
APInt UndefBits(VT.getSizeInBits(), 0);
|
|
BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
|
|
if (resolveBuildVector(BVN, DefBits, UndefBits)) {
|
|
SDValue NewOp;
|
|
if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) ||
|
|
(NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
|
|
(NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) ||
|
|
(NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
|
|
(NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) ||
|
|
(NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits)))
|
|
return NewOp;
|
|
|
|
DefBits = ~DefBits;
|
|
if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) ||
|
|
(NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) ||
|
|
(NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits)))
|
|
return NewOp;
|
|
|
|
DefBits = UndefBits;
|
|
if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) ||
|
|
(NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
|
|
(NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) ||
|
|
(NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) ||
|
|
(NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) ||
|
|
(NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits)))
|
|
return NewOp;
|
|
|
|
DefBits = ~UndefBits;
|
|
if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) ||
|
|
(NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) ||
|
|
(NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits)))
|
|
return NewOp;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
EVT VT = Op.getValueType();
|
|
|
|
// Try to build a simple constant vector.
|
|
Op = NormalizeBuildVector(Op, DAG);
|
|
if (VT.isInteger()) {
|
|
// Certain vector constants, used to express things like logical NOT and
|
|
// arithmetic NEG, are passed through unmodified. This allows special
|
|
// patterns for these operations to match, which will lower these constants
|
|
// to whatever is proven necessary.
|
|
BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
|
|
if (BVN->isConstant())
|
|
if (ConstantSDNode *Const = BVN->getConstantSplatNode()) {
|
|
unsigned BitSize = VT.getVectorElementType().getSizeInBits();
|
|
APInt Val(BitSize,
|
|
Const->getAPIntValue().zextOrTrunc(BitSize).getZExtValue());
|
|
if (Val.isNullValue() || Val.isAllOnesValue())
|
|
return Op;
|
|
}
|
|
}
|
|
|
|
if (SDValue V = ConstantBuildVector(Op, DAG))
|
|
return V;
|
|
|
|
// Scan through the operands to find some interesting properties we can
|
|
// exploit:
|
|
// 1) If only one value is used, we can use a DUP, or
|
|
// 2) if only the low element is not undef, we can just insert that, or
|
|
// 3) if only one constant value is used (w/ some non-constant lanes),
|
|
// we can splat the constant value into the whole vector then fill
|
|
// in the non-constant lanes.
|
|
// 4) FIXME: If different constant values are used, but we can intelligently
|
|
// select the values we'll be overwriting for the non-constant
|
|
// lanes such that we can directly materialize the vector
|
|
// some other way (MOVI, e.g.), we can be sneaky.
|
|
// 5) if all operands are EXTRACT_VECTOR_ELT, check for VUZP.
|
|
SDLoc dl(Op);
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
bool isOnlyLowElement = true;
|
|
bool usesOnlyOneValue = true;
|
|
bool usesOnlyOneConstantValue = true;
|
|
bool isConstant = true;
|
|
bool AllLanesExtractElt = true;
|
|
unsigned NumConstantLanes = 0;
|
|
SDValue Value;
|
|
SDValue ConstantValue;
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
SDValue V = Op.getOperand(i);
|
|
if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
|
|
AllLanesExtractElt = false;
|
|
if (V.isUndef())
|
|
continue;
|
|
if (i > 0)
|
|
isOnlyLowElement = false;
|
|
if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
|
|
isConstant = false;
|
|
|
|
if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
|
|
++NumConstantLanes;
|
|
if (!ConstantValue.getNode())
|
|
ConstantValue = V;
|
|
else if (ConstantValue != V)
|
|
usesOnlyOneConstantValue = false;
|
|
}
|
|
|
|
if (!Value.getNode())
|
|
Value = V;
|
|
else if (V != Value)
|
|
usesOnlyOneValue = false;
|
|
}
|
|
|
|
if (!Value.getNode()) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "LowerBUILD_VECTOR: value undefined, creating undef node\n");
|
|
return DAG.getUNDEF(VT);
|
|
}
|
|
|
|
// Convert BUILD_VECTOR where all elements but the lowest are undef into
|
|
// SCALAR_TO_VECTOR, except for when we have a single-element constant vector
|
|
// as SimplifyDemandedBits will just turn that back into BUILD_VECTOR.
|
|
if (isOnlyLowElement && !(NumElts == 1 && isa<ConstantSDNode>(Value))) {
|
|
LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: only low element used, creating 1 "
|
|
"SCALAR_TO_VECTOR node\n");
|
|
return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
|
|
}
|
|
|
|
if (AllLanesExtractElt) {
|
|
SDNode *Vector = nullptr;
|
|
bool Even = false;
|
|
bool Odd = false;
|
|
// Check whether the extract elements match the Even pattern <0,2,4,...> or
|
|
// the Odd pattern <1,3,5,...>.
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
SDValue V = Op.getOperand(i);
|
|
const SDNode *N = V.getNode();
|
|
if (!isa<ConstantSDNode>(N->getOperand(1)))
|
|
break;
|
|
SDValue N0 = N->getOperand(0);
|
|
|
|
// All elements are extracted from the same vector.
|
|
if (!Vector) {
|
|
Vector = N0.getNode();
|
|
// Check that the type of EXTRACT_VECTOR_ELT matches the type of
|
|
// BUILD_VECTOR.
|
|
if (VT.getVectorElementType() !=
|
|
N0.getValueType().getVectorElementType())
|
|
break;
|
|
} else if (Vector != N0.getNode()) {
|
|
Odd = false;
|
|
Even = false;
|
|
break;
|
|
}
|
|
|
|
// Extracted values are either at Even indices <0,2,4,...> or at Odd
|
|
// indices <1,3,5,...>.
|
|
uint64_t Val = N->getConstantOperandVal(1);
|
|
if (Val == 2 * i) {
|
|
Even = true;
|
|
continue;
|
|
}
|
|
if (Val - 1 == 2 * i) {
|
|
Odd = true;
|
|
continue;
|
|
}
|
|
|
|
// Something does not match: abort.
|
|
Odd = false;
|
|
Even = false;
|
|
break;
|
|
}
|
|
if (Even || Odd) {
|
|
SDValue LHS =
|
|
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0),
|
|
DAG.getConstant(0, dl, MVT::i64));
|
|
SDValue RHS =
|
|
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0),
|
|
DAG.getConstant(NumElts, dl, MVT::i64));
|
|
|
|
if (Even && !Odd)
|
|
return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), LHS,
|
|
RHS);
|
|
if (Odd && !Even)
|
|
return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), LHS,
|
|
RHS);
|
|
}
|
|
}
|
|
|
|
// Use DUP for non-constant splats. For f32 constant splats, reduce to
|
|
// i32 and try again.
|
|
if (usesOnlyOneValue) {
|
|
if (!isConstant) {
|
|
if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
|
|
Value.getValueType() != VT) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "LowerBUILD_VECTOR: use DUP for non-constant splats\n");
|
|
return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
|
|
}
|
|
|
|
// This is actually a DUPLANExx operation, which keeps everything vectory.
|
|
|
|
SDValue Lane = Value.getOperand(1);
|
|
Value = Value.getOperand(0);
|
|
if (Value.getValueSizeInBits() == 64) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "LowerBUILD_VECTOR: DUPLANE works on 128-bit vectors, "
|
|
"widening it\n");
|
|
Value = WidenVector(Value, DAG);
|
|
}
|
|
|
|
unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
|
|
return DAG.getNode(Opcode, dl, VT, Value, Lane);
|
|
}
|
|
|
|
if (VT.getVectorElementType().isFloatingPoint()) {
|
|
SmallVector<SDValue, 8> Ops;
|
|
EVT EltTy = VT.getVectorElementType();
|
|
assert ((EltTy == MVT::f16 || EltTy == MVT::f32 || EltTy == MVT::f64) &&
|
|
"Unsupported floating-point vector type");
|
|
LLVM_DEBUG(
|
|
dbgs() << "LowerBUILD_VECTOR: float constant splats, creating int "
|
|
"BITCASTS, and try again\n");
|
|
MVT NewType = MVT::getIntegerVT(EltTy.getSizeInBits());
|
|
for (unsigned i = 0; i < NumElts; ++i)
|
|
Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
|
|
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
|
|
SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
|
|
LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: trying to lower new vector: ";
|
|
Val.dump(););
|
|
Val = LowerBUILD_VECTOR(Val, DAG);
|
|
if (Val.getNode())
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Val);
|
|
}
|
|
}
|
|
|
|
// If there was only one constant value used and for more than one lane,
|
|
// start by splatting that value, then replace the non-constant lanes. This
|
|
// is better than the default, which will perform a separate initialization
|
|
// for each lane.
|
|
if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
|
|
// Firstly, try to materialize the splat constant.
|
|
SDValue Vec = DAG.getSplatBuildVector(VT, dl, ConstantValue),
|
|
Val = ConstantBuildVector(Vec, DAG);
|
|
if (!Val) {
|
|
// Otherwise, materialize the constant and splat it.
|
|
Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
|
|
DAG.ReplaceAllUsesWith(Vec.getNode(), &Val);
|
|
}
|
|
|
|
// Now insert the non-constant lanes.
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
SDValue V = Op.getOperand(i);
|
|
SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
|
|
if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V))
|
|
// Note that type legalization likely mucked about with the VT of the
|
|
// source operand, so we may have to convert it here before inserting.
|
|
Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
|
|
}
|
|
return Val;
|
|
}
|
|
|
|
// This will generate a load from the constant pool.
|
|
if (isConstant) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "LowerBUILD_VECTOR: all elements are constant, use default "
|
|
"expansion\n");
|
|
return SDValue();
|
|
}
|
|
|
|
// Empirical tests suggest this is rarely worth it for vectors of length <= 2.
|
|
if (NumElts >= 4) {
|
|
if (SDValue shuffle = ReconstructShuffle(Op, DAG))
|
|
return shuffle;
|
|
}
|
|
|
|
// If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
|
|
// know the default expansion would otherwise fall back on something even
|
|
// worse. For a vector with one or two non-undef values, that's
|
|
// scalar_to_vector for the elements followed by a shuffle (provided the
|
|
// shuffle is valid for the target) and materialization element by element
|
|
// on the stack followed by a load for everything else.
|
|
if (!isConstant && !usesOnlyOneValue) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "LowerBUILD_VECTOR: alternatives failed, creating sequence "
|
|
"of INSERT_VECTOR_ELT\n");
|
|
|
|
SDValue Vec = DAG.getUNDEF(VT);
|
|
SDValue Op0 = Op.getOperand(0);
|
|
unsigned i = 0;
|
|
|
|
// Use SCALAR_TO_VECTOR for lane zero to
|
|
// a) Avoid a RMW dependency on the full vector register, and
|
|
// b) Allow the register coalescer to fold away the copy if the
|
|
// value is already in an S or D register, and we're forced to emit an
|
|
// INSERT_SUBREG that we can't fold anywhere.
|
|
//
|
|
// We also allow types like i8 and i16 which are illegal scalar but legal
|
|
// vector element types. After type-legalization the inserted value is
|
|
// extended (i32) and it is safe to cast them to the vector type by ignoring
|
|
// the upper bits of the lowest lane (e.g. v8i8, v4i16).
|
|
if (!Op0.isUndef()) {
|
|
LLVM_DEBUG(dbgs() << "Creating node for op0, it is not undefined:\n");
|
|
Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op0);
|
|
++i;
|
|
}
|
|
LLVM_DEBUG(if (i < NumElts) dbgs()
|
|
<< "Creating nodes for the other vector elements:\n";);
|
|
for (; i < NumElts; ++i) {
|
|
SDValue V = Op.getOperand(i);
|
|
if (V.isUndef())
|
|
continue;
|
|
SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
|
|
Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
|
|
}
|
|
return Vec;
|
|
}
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << "LowerBUILD_VECTOR: use default expansion, failed to find "
|
|
"better alternative\n");
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
|
|
|
|
// Check for non-constant or out of range lane.
|
|
EVT VT = Op.getOperand(0).getValueType();
|
|
ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2));
|
|
if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
|
|
return SDValue();
|
|
|
|
|
|
// Insertion/extraction are legal for V128 types.
|
|
if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
|
|
VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
|
|
VT == MVT::v8f16)
|
|
return Op;
|
|
|
|
if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
|
|
VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
|
|
return SDValue();
|
|
|
|
// For V64 types, we perform insertion by expanding the value
|
|
// to a V128 type and perform the insertion on that.
|
|
SDLoc DL(Op);
|
|
SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
|
|
EVT WideTy = WideVec.getValueType();
|
|
|
|
SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
// Re-narrow the resultant vector.
|
|
return NarrowVector(Node, DAG);
|
|
}
|
|
|
|
SDValue
|
|
AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
|
|
|
|
// Check for non-constant or out of range lane.
|
|
EVT VT = Op.getOperand(0).getValueType();
|
|
ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1));
|
|
if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
|
|
return SDValue();
|
|
|
|
|
|
// Insertion/extraction are legal for V128 types.
|
|
if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
|
|
VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
|
|
VT == MVT::v8f16)
|
|
return Op;
|
|
|
|
if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
|
|
VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
|
|
return SDValue();
|
|
|
|
// For V64 types, we perform extraction by expanding the value
|
|
// to a V128 type and perform the extraction on that.
|
|
SDLoc DL(Op);
|
|
SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
|
|
EVT WideTy = WideVec.getValueType();
|
|
|
|
EVT ExtrTy = WideTy.getVectorElementType();
|
|
if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
|
|
ExtrTy = MVT::i32;
|
|
|
|
// For extractions, we just return the result directly.
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
|
|
Op.getOperand(1));
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
EVT VT = Op.getOperand(0).getValueType();
|
|
SDLoc dl(Op);
|
|
// Just in case...
|
|
if (!VT.isVector())
|
|
return SDValue();
|
|
|
|
ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
|
|
if (!Cst)
|
|
return SDValue();
|
|
unsigned Val = Cst->getZExtValue();
|
|
|
|
unsigned Size = Op.getValueSizeInBits();
|
|
|
|
// This will get lowered to an appropriate EXTRACT_SUBREG in ISel.
|
|
if (Val == 0)
|
|
return Op;
|
|
|
|
// If this is extracting the upper 64-bits of a 128-bit vector, we match
|
|
// that directly.
|
|
if (Size == 64 && Val * VT.getScalarSizeInBits() == 64)
|
|
return Op;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
bool AArch64TargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
|
|
if (VT.getVectorNumElements() == 4 &&
|
|
(VT.is128BitVector() || VT.is64BitVector())) {
|
|
unsigned PFIndexes[4];
|
|
for (unsigned i = 0; i != 4; ++i) {
|
|
if (M[i] < 0)
|
|
PFIndexes[i] = 8;
|
|
else
|
|
PFIndexes[i] = M[i];
|
|
}
|
|
|
|
// Compute the index in the perfect shuffle table.
|
|
unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
|
|
PFIndexes[2] * 9 + PFIndexes[3];
|
|
unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
|
|
unsigned Cost = (PFEntry >> 30);
|
|
|
|
if (Cost <= 4)
|
|
return true;
|
|
}
|
|
|
|
bool DummyBool;
|
|
int DummyInt;
|
|
unsigned DummyUnsigned;
|
|
|
|
return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
|
|
isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
|
|
isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
|
|
// isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
|
|
isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
|
|
isZIPMask(M, VT, DummyUnsigned) ||
|
|
isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
|
|
isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
|
|
isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
|
|
isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
|
|
isConcatMask(M, VT, VT.getSizeInBits() == 128));
|
|
}
|
|
|
|
/// getVShiftImm - Check if this is a valid build_vector for the immediate
|
|
/// operand of a vector shift operation, where all the elements of the
|
|
/// build_vector must have the same constant integer value.
|
|
static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
|
|
// Ignore bit_converts.
|
|
while (Op.getOpcode() == ISD::BITCAST)
|
|
Op = Op.getOperand(0);
|
|
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
|
|
APInt SplatBits, SplatUndef;
|
|
unsigned SplatBitSize;
|
|
bool HasAnyUndefs;
|
|
if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
|
|
HasAnyUndefs, ElementBits) ||
|
|
SplatBitSize > ElementBits)
|
|
return false;
|
|
Cnt = SplatBits.getSExtValue();
|
|
return true;
|
|
}
|
|
|
|
/// isVShiftLImm - Check if this is a valid build_vector for the immediate
|
|
/// operand of a vector shift left operation. That value must be in the range:
|
|
/// 0 <= Value < ElementBits for a left shift; or
|
|
/// 0 <= Value <= ElementBits for a long left shift.
|
|
static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
|
|
assert(VT.isVector() && "vector shift count is not a vector type");
|
|
int64_t ElementBits = VT.getScalarSizeInBits();
|
|
if (!getVShiftImm(Op, ElementBits, Cnt))
|
|
return false;
|
|
return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
|
|
}
|
|
|
|
/// isVShiftRImm - Check if this is a valid build_vector for the immediate
|
|
/// operand of a vector shift right operation. The value must be in the range:
|
|
/// 1 <= Value <= ElementBits for a right shift; or
|
|
static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, int64_t &Cnt) {
|
|
assert(VT.isVector() && "vector shift count is not a vector type");
|
|
int64_t ElementBits = VT.getScalarSizeInBits();
|
|
if (!getVShiftImm(Op, ElementBits, Cnt))
|
|
return false;
|
|
return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
EVT VT = Op.getValueType();
|
|
SDLoc DL(Op);
|
|
int64_t Cnt;
|
|
|
|
if (!Op.getOperand(1).getValueType().isVector())
|
|
return Op;
|
|
unsigned EltSize = VT.getScalarSizeInBits();
|
|
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("unexpected shift opcode");
|
|
|
|
case ISD::SHL:
|
|
if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
|
|
return DAG.getNode(AArch64ISD::VSHL, DL, VT, Op.getOperand(0),
|
|
DAG.getConstant(Cnt, DL, MVT::i32));
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
|
|
DAG.getConstant(Intrinsic::aarch64_neon_ushl, DL,
|
|
MVT::i32),
|
|
Op.getOperand(0), Op.getOperand(1));
|
|
case ISD::SRA:
|
|
case ISD::SRL:
|
|
// Right shift immediate
|
|
if (isVShiftRImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) {
|
|
unsigned Opc =
|
|
(Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
|
|
return DAG.getNode(Opc, DL, VT, Op.getOperand(0),
|
|
DAG.getConstant(Cnt, DL, MVT::i32));
|
|
}
|
|
|
|
// Right shift register. Note, there is not a shift right register
|
|
// instruction, but the shift left register instruction takes a signed
|
|
// value, where negative numbers specify a right shift.
|
|
unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
|
|
: Intrinsic::aarch64_neon_ushl;
|
|
// negate the shift amount
|
|
SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
|
|
SDValue NegShiftLeft =
|
|
DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
|
|
DAG.getConstant(Opc, DL, MVT::i32), Op.getOperand(0),
|
|
NegShift);
|
|
return NegShiftLeft;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
|
|
AArch64CC::CondCode CC, bool NoNans, EVT VT,
|
|
const SDLoc &dl, SelectionDAG &DAG) {
|
|
EVT SrcVT = LHS.getValueType();
|
|
assert(VT.getSizeInBits() == SrcVT.getSizeInBits() &&
|
|
"function only supposed to emit natural comparisons");
|
|
|
|
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
|
|
APInt CnstBits(VT.getSizeInBits(), 0);
|
|
APInt UndefBits(VT.getSizeInBits(), 0);
|
|
bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
|
|
bool IsZero = IsCnst && (CnstBits == 0);
|
|
|
|
if (SrcVT.getVectorElementType().isFloatingPoint()) {
|
|
switch (CC) {
|
|
default:
|
|
return SDValue();
|
|
case AArch64CC::NE: {
|
|
SDValue Fcmeq;
|
|
if (IsZero)
|
|
Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
|
|
else
|
|
Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
|
|
return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
|
|
}
|
|
case AArch64CC::EQ:
|
|
if (IsZero)
|
|
return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
|
|
return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
|
|
case AArch64CC::GE:
|
|
if (IsZero)
|
|
return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
|
|
return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
|
|
case AArch64CC::GT:
|
|
if (IsZero)
|
|
return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
|
|
return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
|
|
case AArch64CC::LS:
|
|
if (IsZero)
|
|
return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
|
|
return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
|
|
case AArch64CC::LT:
|
|
if (!NoNans)
|
|
return SDValue();
|
|
// If we ignore NaNs then we can use to the MI implementation.
|
|
LLVM_FALLTHROUGH;
|
|
case AArch64CC::MI:
|
|
if (IsZero)
|
|
return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
|
|
return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
|
|
}
|
|
}
|
|
|
|
switch (CC) {
|
|
default:
|
|
return SDValue();
|
|
case AArch64CC::NE: {
|
|
SDValue Cmeq;
|
|
if (IsZero)
|
|
Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
|
|
else
|
|
Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
|
|
return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
|
|
}
|
|
case AArch64CC::EQ:
|
|
if (IsZero)
|
|
return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
|
|
return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
|
|
case AArch64CC::GE:
|
|
if (IsZero)
|
|
return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
|
|
return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
|
|
case AArch64CC::GT:
|
|
if (IsZero)
|
|
return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
|
|
return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
|
|
case AArch64CC::LE:
|
|
if (IsZero)
|
|
return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
|
|
return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
|
|
case AArch64CC::LS:
|
|
return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
|
|
case AArch64CC::LO:
|
|
return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
|
|
case AArch64CC::LT:
|
|
if (IsZero)
|
|
return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
|
|
return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
|
|
case AArch64CC::HI:
|
|
return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
|
|
case AArch64CC::HS:
|
|
return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
|
|
}
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue RHS = Op.getOperand(1);
|
|
EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger();
|
|
SDLoc dl(Op);
|
|
|
|
if (LHS.getValueType().getVectorElementType().isInteger()) {
|
|
assert(LHS.getValueType() == RHS.getValueType());
|
|
AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
|
|
SDValue Cmp =
|
|
EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG);
|
|
return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
|
|
}
|
|
|
|
const bool FullFP16 =
|
|
static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16();
|
|
|
|
// Make v4f16 (only) fcmp operations utilise vector instructions
|
|
// v8f16 support will be a litle more complicated
|
|
if (!FullFP16 && LHS.getValueType().getVectorElementType() == MVT::f16) {
|
|
if (LHS.getValueType().getVectorNumElements() == 4) {
|
|
LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, LHS);
|
|
RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, RHS);
|
|
SDValue NewSetcc = DAG.getSetCC(dl, MVT::v4i16, LHS, RHS, CC);
|
|
DAG.ReplaceAllUsesWith(Op, NewSetcc);
|
|
CmpVT = MVT::v4i32;
|
|
} else
|
|
return SDValue();
|
|
}
|
|
|
|
assert((!FullFP16 && LHS.getValueType().getVectorElementType() != MVT::f16) ||
|
|
LHS.getValueType().getVectorElementType() != MVT::f128);
|
|
|
|
// Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
|
|
// clean. Some of them require two branches to implement.
|
|
AArch64CC::CondCode CC1, CC2;
|
|
bool ShouldInvert;
|
|
changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
|
|
|
|
bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
|
|
SDValue Cmp =
|
|
EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG);
|
|
if (!Cmp.getNode())
|
|
return SDValue();
|
|
|
|
if (CC2 != AArch64CC::AL) {
|
|
SDValue Cmp2 =
|
|
EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG);
|
|
if (!Cmp2.getNode())
|
|
return SDValue();
|
|
|
|
Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2);
|
|
}
|
|
|
|
Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
|
|
|
|
if (ShouldInvert)
|
|
Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
|
|
|
|
return Cmp;
|
|
}
|
|
|
|
static SDValue getReductionSDNode(unsigned Op, SDLoc DL, SDValue ScalarOp,
|
|
SelectionDAG &DAG) {
|
|
SDValue VecOp = ScalarOp.getOperand(0);
|
|
auto Rdx = DAG.getNode(Op, DL, VecOp.getSimpleValueType(), VecOp);
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarOp.getValueType(), Rdx,
|
|
DAG.getConstant(0, DL, MVT::i64));
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerVECREDUCE(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc dl(Op);
|
|
switch (Op.getOpcode()) {
|
|
case ISD::VECREDUCE_ADD:
|
|
return getReductionSDNode(AArch64ISD::UADDV, dl, Op, DAG);
|
|
case ISD::VECREDUCE_SMAX:
|
|
return getReductionSDNode(AArch64ISD::SMAXV, dl, Op, DAG);
|
|
case ISD::VECREDUCE_SMIN:
|
|
return getReductionSDNode(AArch64ISD::SMINV, dl, Op, DAG);
|
|
case ISD::VECREDUCE_UMAX:
|
|
return getReductionSDNode(AArch64ISD::UMAXV, dl, Op, DAG);
|
|
case ISD::VECREDUCE_UMIN:
|
|
return getReductionSDNode(AArch64ISD::UMINV, dl, Op, DAG);
|
|
case ISD::VECREDUCE_FMAX: {
|
|
assert(Op->getFlags().hasNoNaNs() && "fmax vector reduction needs NoNaN flag");
|
|
return DAG.getNode(
|
|
ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(),
|
|
DAG.getConstant(Intrinsic::aarch64_neon_fmaxnmv, dl, MVT::i32),
|
|
Op.getOperand(0));
|
|
}
|
|
case ISD::VECREDUCE_FMIN: {
|
|
assert(Op->getFlags().hasNoNaNs() && "fmin vector reduction needs NoNaN flag");
|
|
return DAG.getNode(
|
|
ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(),
|
|
DAG.getConstant(Intrinsic::aarch64_neon_fminnmv, dl, MVT::i32),
|
|
Op.getOperand(0));
|
|
}
|
|
default:
|
|
llvm_unreachable("Unhandled reduction");
|
|
}
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerATOMIC_LOAD_SUB(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
auto &Subtarget = static_cast<const AArch64Subtarget &>(DAG.getSubtarget());
|
|
if (!Subtarget.hasLSE())
|
|
return SDValue();
|
|
|
|
// LSE has an atomic load-add instruction, but not a load-sub.
|
|
SDLoc dl(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
SDValue RHS = Op.getOperand(2);
|
|
AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode());
|
|
RHS = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), RHS);
|
|
return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl, AN->getMemoryVT(),
|
|
Op.getOperand(0), Op.getOperand(1), RHS,
|
|
AN->getMemOperand());
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerATOMIC_LOAD_AND(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
auto &Subtarget = static_cast<const AArch64Subtarget &>(DAG.getSubtarget());
|
|
if (!Subtarget.hasLSE())
|
|
return SDValue();
|
|
|
|
// LSE has an atomic load-clear instruction, but not a load-and.
|
|
SDLoc dl(Op);
|
|
MVT VT = Op.getSimpleValueType();
|
|
SDValue RHS = Op.getOperand(2);
|
|
AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode());
|
|
RHS = DAG.getNode(ISD::XOR, dl, VT, DAG.getConstant(-1ULL, dl, VT), RHS);
|
|
return DAG.getAtomic(ISD::ATOMIC_LOAD_CLR, dl, AN->getMemoryVT(),
|
|
Op.getOperand(0), Op.getOperand(1), RHS,
|
|
AN->getMemOperand());
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerWindowsDYNAMIC_STACKALLOC(
|
|
SDValue Op, SDValue Chain, SDValue &Size, SelectionDAG &DAG) const {
|
|
SDLoc dl(Op);
|
|
EVT PtrVT = getPointerTy(DAG.getDataLayout());
|
|
SDValue Callee = DAG.getTargetExternalSymbol("__chkstk", PtrVT, 0);
|
|
|
|
const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
|
|
const uint32_t *Mask = TRI->getWindowsStackProbePreservedMask();
|
|
if (Subtarget->hasCustomCallingConv())
|
|
TRI->UpdateCustomCallPreservedMask(DAG.getMachineFunction(), &Mask);
|
|
|
|
Size = DAG.getNode(ISD::SRL, dl, MVT::i64, Size,
|
|
DAG.getConstant(4, dl, MVT::i64));
|
|
Chain = DAG.getCopyToReg(Chain, dl, AArch64::X15, Size, SDValue());
|
|
Chain =
|
|
DAG.getNode(AArch64ISD::CALL, dl, DAG.getVTList(MVT::Other, MVT::Glue),
|
|
Chain, Callee, DAG.getRegister(AArch64::X15, MVT::i64),
|
|
DAG.getRegisterMask(Mask), Chain.getValue(1));
|
|
// To match the actual intent better, we should read the output from X15 here
|
|
// again (instead of potentially spilling it to the stack), but rereading Size
|
|
// from X15 here doesn't work at -O0, since it thinks that X15 is undefined
|
|
// here.
|
|
|
|
Size = DAG.getNode(ISD::SHL, dl, MVT::i64, Size,
|
|
DAG.getConstant(4, dl, MVT::i64));
|
|
return Chain;
|
|
}
|
|
|
|
SDValue
|
|
AArch64TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(Subtarget->isTargetWindows() &&
|
|
"Only Windows alloca probing supported");
|
|
SDLoc dl(Op);
|
|
// Get the inputs.
|
|
SDNode *Node = Op.getNode();
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Size = Op.getOperand(1);
|
|
unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
|
|
EVT VT = Node->getValueType(0);
|
|
|
|
if (DAG.getMachineFunction().getFunction().hasFnAttribute(
|
|
"no-stack-arg-probe")) {
|
|
SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64);
|
|
Chain = SP.getValue(1);
|
|
SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size);
|
|
if (Align)
|
|
SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
|
|
DAG.getConstant(-(uint64_t)Align, dl, VT));
|
|
Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP);
|
|
SDValue Ops[2] = {SP, Chain};
|
|
return DAG.getMergeValues(Ops, dl);
|
|
}
|
|
|
|
Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
|
|
|
|
Chain = LowerWindowsDYNAMIC_STACKALLOC(Op, Chain, Size, DAG);
|
|
|
|
SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64);
|
|
Chain = SP.getValue(1);
|
|
SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size);
|
|
if (Align)
|
|
SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
|
|
DAG.getConstant(-(uint64_t)Align, dl, VT));
|
|
Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP);
|
|
|
|
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
|
|
DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
|
|
|
|
SDValue Ops[2] = {SP, Chain};
|
|
return DAG.getMergeValues(Ops, dl);
|
|
}
|
|
|
|
/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
|
|
/// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
|
|
/// specified in the intrinsic calls.
|
|
bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
|
|
const CallInst &I,
|
|
MachineFunction &MF,
|
|
unsigned Intrinsic) const {
|
|
auto &DL = I.getModule()->getDataLayout();
|
|
switch (Intrinsic) {
|
|
case Intrinsic::aarch64_neon_ld2:
|
|
case Intrinsic::aarch64_neon_ld3:
|
|
case Intrinsic::aarch64_neon_ld4:
|
|
case Intrinsic::aarch64_neon_ld1x2:
|
|
case Intrinsic::aarch64_neon_ld1x3:
|
|
case Intrinsic::aarch64_neon_ld1x4:
|
|
case Intrinsic::aarch64_neon_ld2lane:
|
|
case Intrinsic::aarch64_neon_ld3lane:
|
|
case Intrinsic::aarch64_neon_ld4lane:
|
|
case Intrinsic::aarch64_neon_ld2r:
|
|
case Intrinsic::aarch64_neon_ld3r:
|
|
case Intrinsic::aarch64_neon_ld4r: {
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
// Conservatively set memVT to the entire set of vectors loaded.
|
|
uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
|
|
Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
|
|
Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
|
|
Info.offset = 0;
|
|
Info.align = 0;
|
|
// volatile loads with NEON intrinsics not supported
|
|
Info.flags = MachineMemOperand::MOLoad;
|
|
return true;
|
|
}
|
|
case Intrinsic::aarch64_neon_st2:
|
|
case Intrinsic::aarch64_neon_st3:
|
|
case Intrinsic::aarch64_neon_st4:
|
|
case Intrinsic::aarch64_neon_st1x2:
|
|
case Intrinsic::aarch64_neon_st1x3:
|
|
case Intrinsic::aarch64_neon_st1x4:
|
|
case Intrinsic::aarch64_neon_st2lane:
|
|
case Intrinsic::aarch64_neon_st3lane:
|
|
case Intrinsic::aarch64_neon_st4lane: {
|
|
Info.opc = ISD::INTRINSIC_VOID;
|
|
// Conservatively set memVT to the entire set of vectors stored.
|
|
unsigned NumElts = 0;
|
|
for (unsigned ArgI = 0, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
|
|
Type *ArgTy = I.getArgOperand(ArgI)->getType();
|
|
if (!ArgTy->isVectorTy())
|
|
break;
|
|
NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
|
|
}
|
|
Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
|
|
Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
|
|
Info.offset = 0;
|
|
Info.align = 0;
|
|
// volatile stores with NEON intrinsics not supported
|
|
Info.flags = MachineMemOperand::MOStore;
|
|
return true;
|
|
}
|
|
case Intrinsic::aarch64_ldaxr:
|
|
case Intrinsic::aarch64_ldxr: {
|
|
PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.memVT = MVT::getVT(PtrTy->getElementType());
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
|
|
Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
|
|
return true;
|
|
}
|
|
case Intrinsic::aarch64_stlxr:
|
|
case Intrinsic::aarch64_stxr: {
|
|
PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.memVT = MVT::getVT(PtrTy->getElementType());
|
|
Info.ptrVal = I.getArgOperand(1);
|
|
Info.offset = 0;
|
|
Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
|
|
Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
|
|
return true;
|
|
}
|
|
case Intrinsic::aarch64_ldaxp:
|
|
case Intrinsic::aarch64_ldxp:
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.memVT = MVT::i128;
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Info.align = 16;
|
|
Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
|
|
return true;
|
|
case Intrinsic::aarch64_stlxp:
|
|
case Intrinsic::aarch64_stxp:
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.memVT = MVT::i128;
|
|
Info.ptrVal = I.getArgOperand(2);
|
|
Info.offset = 0;
|
|
Info.align = 16;
|
|
Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool AArch64TargetLowering::shouldReduceLoadWidth(SDNode *Load,
|
|
ISD::LoadExtType ExtTy,
|
|
EVT NewVT) const {
|
|
// TODO: This may be worth removing. Check regression tests for diffs.
|
|
if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT))
|
|
return false;
|
|
|
|
// If we're reducing the load width in order to avoid having to use an extra
|
|
// instruction to do extension then it's probably a good idea.
|
|
if (ExtTy != ISD::NON_EXTLOAD)
|
|
return true;
|
|
// Don't reduce load width if it would prevent us from combining a shift into
|
|
// the offset.
|
|
MemSDNode *Mem = dyn_cast<MemSDNode>(Load);
|
|
assert(Mem);
|
|
const SDValue &Base = Mem->getBasePtr();
|
|
if (Base.getOpcode() == ISD::ADD &&
|
|
Base.getOperand(1).getOpcode() == ISD::SHL &&
|
|
Base.getOperand(1).hasOneUse() &&
|
|
Base.getOperand(1).getOperand(1).getOpcode() == ISD::Constant) {
|
|
// The shift can be combined if it matches the size of the value being
|
|
// loaded (and so reducing the width would make it not match).
|
|
uint64_t ShiftAmount = Base.getOperand(1).getConstantOperandVal(1);
|
|
uint64_t LoadBytes = Mem->getMemoryVT().getSizeInBits()/8;
|
|
if (ShiftAmount == Log2_32(LoadBytes))
|
|
return false;
|
|
}
|
|
// We have no reason to disallow reducing the load width, so allow it.
|
|
return true;
|
|
}
|
|
|
|
// Truncations from 64-bit GPR to 32-bit GPR is free.
|
|
bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
|
|
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
|
|
return false;
|
|
unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
|
|
unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
|
|
return NumBits1 > NumBits2;
|
|
}
|
|
bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
|
|
if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
|
|
return false;
|
|
unsigned NumBits1 = VT1.getSizeInBits();
|
|
unsigned NumBits2 = VT2.getSizeInBits();
|
|
return NumBits1 > NumBits2;
|
|
}
|
|
|
|
/// Check if it is profitable to hoist instruction in then/else to if.
|
|
/// Not profitable if I and it's user can form a FMA instruction
|
|
/// because we prefer FMSUB/FMADD.
|
|
bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const {
|
|
if (I->getOpcode() != Instruction::FMul)
|
|
return true;
|
|
|
|
if (!I->hasOneUse())
|
|
return true;
|
|
|
|
Instruction *User = I->user_back();
|
|
|
|
if (User &&
|
|
!(User->getOpcode() == Instruction::FSub ||
|
|
User->getOpcode() == Instruction::FAdd))
|
|
return true;
|
|
|
|
const TargetOptions &Options = getTargetMachine().Options;
|
|
const DataLayout &DL = I->getModule()->getDataLayout();
|
|
EVT VT = getValueType(DL, User->getOperand(0)->getType());
|
|
|
|
return !(isFMAFasterThanFMulAndFAdd(VT) &&
|
|
isOperationLegalOrCustom(ISD::FMA, VT) &&
|
|
(Options.AllowFPOpFusion == FPOpFusion::Fast ||
|
|
Options.UnsafeFPMath));
|
|
}
|
|
|
|
// All 32-bit GPR operations implicitly zero the high-half of the corresponding
|
|
// 64-bit GPR.
|
|
bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
|
|
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
|
|
return false;
|
|
unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
|
|
unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
|
|
return NumBits1 == 32 && NumBits2 == 64;
|
|
}
|
|
bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
|
|
if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
|
|
return false;
|
|
unsigned NumBits1 = VT1.getSizeInBits();
|
|
unsigned NumBits2 = VT2.getSizeInBits();
|
|
return NumBits1 == 32 && NumBits2 == 64;
|
|
}
|
|
|
|
bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
|
|
EVT VT1 = Val.getValueType();
|
|
if (isZExtFree(VT1, VT2)) {
|
|
return true;
|
|
}
|
|
|
|
if (Val.getOpcode() != ISD::LOAD)
|
|
return false;
|
|
|
|
// 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
|
|
return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
|
|
VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
|
|
VT1.getSizeInBits() <= 32);
|
|
}
|
|
|
|
bool AArch64TargetLowering::isExtFreeImpl(const Instruction *Ext) const {
|
|
if (isa<FPExtInst>(Ext))
|
|
return false;
|
|
|
|
// Vector types are not free.
|
|
if (Ext->getType()->isVectorTy())
|
|
return false;
|
|
|
|
for (const Use &U : Ext->uses()) {
|
|
// The extension is free if we can fold it with a left shift in an
|
|
// addressing mode or an arithmetic operation: add, sub, and cmp.
|
|
|
|
// Is there a shift?
|
|
const Instruction *Instr = cast<Instruction>(U.getUser());
|
|
|
|
// Is this a constant shift?
|
|
switch (Instr->getOpcode()) {
|
|
case Instruction::Shl:
|
|
if (!isa<ConstantInt>(Instr->getOperand(1)))
|
|
return false;
|
|
break;
|
|
case Instruction::GetElementPtr: {
|
|
gep_type_iterator GTI = gep_type_begin(Instr);
|
|
auto &DL = Ext->getModule()->getDataLayout();
|
|
std::advance(GTI, U.getOperandNo()-1);
|
|
Type *IdxTy = GTI.getIndexedType();
|
|
// This extension will end up with a shift because of the scaling factor.
|
|
// 8-bit sized types have a scaling factor of 1, thus a shift amount of 0.
|
|
// Get the shift amount based on the scaling factor:
|
|
// log2(sizeof(IdxTy)) - log2(8).
|
|
uint64_t ShiftAmt =
|
|
countTrailingZeros(DL.getTypeStoreSizeInBits(IdxTy)) - 3;
|
|
// Is the constant foldable in the shift of the addressing mode?
|
|
// I.e., shift amount is between 1 and 4 inclusive.
|
|
if (ShiftAmt == 0 || ShiftAmt > 4)
|
|
return false;
|
|
break;
|
|
}
|
|
case Instruction::Trunc:
|
|
// Check if this is a noop.
|
|
// trunc(sext ty1 to ty2) to ty1.
|
|
if (Instr->getType() == Ext->getOperand(0)->getType())
|
|
continue;
|
|
LLVM_FALLTHROUGH;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
// At this point we can use the bfm family, so this extension is free
|
|
// for that use.
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Check if both Op1 and Op2 are shufflevector extracts of either the lower
|
|
/// or upper half of the vector elements.
|
|
static bool areExtractShuffleVectors(Value *Op1, Value *Op2) {
|
|
auto areTypesHalfed = [](Value *FullV, Value *HalfV) {
|
|
auto *FullVT = cast<VectorType>(FullV->getType());
|
|
auto *HalfVT = cast<VectorType>(HalfV->getType());
|
|
return FullVT->getBitWidth() == 2 * HalfVT->getBitWidth();
|
|
};
|
|
|
|
auto extractHalf = [](Value *FullV, Value *HalfV) {
|
|
auto *FullVT = cast<VectorType>(FullV->getType());
|
|
auto *HalfVT = cast<VectorType>(HalfV->getType());
|
|
return FullVT->getNumElements() == 2 * HalfVT->getNumElements();
|
|
};
|
|
|
|
Constant *M1, *M2;
|
|
Value *S1Op1, *S2Op1;
|
|
if (!match(Op1, m_ShuffleVector(m_Value(S1Op1), m_Undef(), m_Constant(M1))) ||
|
|
!match(Op2, m_ShuffleVector(m_Value(S2Op1), m_Undef(), m_Constant(M2))))
|
|
return false;
|
|
|
|
// Check that the operands are half as wide as the result and we extract
|
|
// half of the elements of the input vectors.
|
|
if (!areTypesHalfed(S1Op1, Op1) || !areTypesHalfed(S2Op1, Op2) ||
|
|
!extractHalf(S1Op1, Op1) || !extractHalf(S2Op1, Op2))
|
|
return false;
|
|
|
|
// Check the mask extracts either the lower or upper half of vector
|
|
// elements.
|
|
int M1Start = -1;
|
|
int M2Start = -1;
|
|
int NumElements = cast<VectorType>(Op1->getType())->getNumElements() * 2;
|
|
if (!ShuffleVectorInst::isExtractSubvectorMask(M1, NumElements, M1Start) ||
|
|
!ShuffleVectorInst::isExtractSubvectorMask(M2, NumElements, M2Start) ||
|
|
M1Start != M2Start || (M1Start != 0 && M2Start != (NumElements / 2)))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
|
|
/// of the vector elements.
|
|
static bool areExtractExts(Value *Ext1, Value *Ext2) {
|
|
auto areExtDoubled = [](Instruction *Ext) {
|
|
return Ext->getType()->getScalarSizeInBits() ==
|
|
2 * Ext->getOperand(0)->getType()->getScalarSizeInBits();
|
|
};
|
|
|
|
if (!match(Ext1, m_ZExtOrSExt(m_Value())) ||
|
|
!match(Ext2, m_ZExtOrSExt(m_Value())) ||
|
|
!areExtDoubled(cast<Instruction>(Ext1)) ||
|
|
!areExtDoubled(cast<Instruction>(Ext2)))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Check if sinking \p I's operands to I's basic block is profitable, because
|
|
/// the operands can be folded into a target instruction, e.g.
|
|
/// shufflevectors extracts and/or sext/zext can be folded into (u,s)subl(2).
|
|
bool AArch64TargetLowering::shouldSinkOperands(
|
|
Instruction *I, SmallVectorImpl<Use *> &Ops) const {
|
|
if (!I->getType()->isVectorTy())
|
|
return false;
|
|
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
|
|
switch (II->getIntrinsicID()) {
|
|
case Intrinsic::aarch64_neon_umull:
|
|
if (!areExtractShuffleVectors(II->getOperand(0), II->getOperand(1)))
|
|
return false;
|
|
Ops.push_back(&II->getOperandUse(0));
|
|
Ops.push_back(&II->getOperandUse(1));
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
switch (I->getOpcode()) {
|
|
case Instruction::Sub:
|
|
case Instruction::Add: {
|
|
if (!areExtractExts(I->getOperand(0), I->getOperand(1)))
|
|
return false;
|
|
|
|
// If the exts' operands extract either the lower or upper elements, we
|
|
// can sink them too.
|
|
auto Ext1 = cast<Instruction>(I->getOperand(0));
|
|
auto Ext2 = cast<Instruction>(I->getOperand(1));
|
|
if (areExtractShuffleVectors(Ext1, Ext2)) {
|
|
Ops.push_back(&Ext1->getOperandUse(0));
|
|
Ops.push_back(&Ext2->getOperandUse(0));
|
|
}
|
|
|
|
Ops.push_back(&I->getOperandUse(0));
|
|
Ops.push_back(&I->getOperandUse(1));
|
|
|
|
return true;
|
|
}
|
|
default:
|
|
return false;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
|
|
unsigned &RequiredAligment) const {
|
|
if (!LoadedType.isSimple() ||
|
|
(!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
|
|
return false;
|
|
// Cyclone supports unaligned accesses.
|
|
RequiredAligment = 0;
|
|
unsigned NumBits = LoadedType.getSizeInBits();
|
|
return NumBits == 32 || NumBits == 64;
|
|
}
|
|
|
|
/// A helper function for determining the number of interleaved accesses we
|
|
/// will generate when lowering accesses of the given type.
|
|
unsigned
|
|
AArch64TargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
|
|
const DataLayout &DL) const {
|
|
return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
|
|
}
|
|
|
|
MachineMemOperand::Flags
|
|
AArch64TargetLowering::getMMOFlags(const Instruction &I) const {
|
|
if (Subtarget->getProcFamily() == AArch64Subtarget::Falkor &&
|
|
I.getMetadata(FALKOR_STRIDED_ACCESS_MD) != nullptr)
|
|
return MOStridedAccess;
|
|
return MachineMemOperand::MONone;
|
|
}
|
|
|
|
bool AArch64TargetLowering::isLegalInterleavedAccessType(
|
|
VectorType *VecTy, const DataLayout &DL) const {
|
|
|
|
unsigned VecSize = DL.getTypeSizeInBits(VecTy);
|
|
unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
|
|
|
|
// Ensure the number of vector elements is greater than 1.
|
|
if (VecTy->getNumElements() < 2)
|
|
return false;
|
|
|
|
// Ensure the element type is legal.
|
|
if (ElSize != 8 && ElSize != 16 && ElSize != 32 && ElSize != 64)
|
|
return false;
|
|
|
|
// Ensure the total vector size is 64 or a multiple of 128. Types larger than
|
|
// 128 will be split into multiple interleaved accesses.
|
|
return VecSize == 64 || VecSize % 128 == 0;
|
|
}
|
|
|
|
/// Lower an interleaved load into a ldN intrinsic.
|
|
///
|
|
/// E.g. Lower an interleaved load (Factor = 2):
|
|
/// %wide.vec = load <8 x i32>, <8 x i32>* %ptr
|
|
/// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
|
|
/// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
|
|
///
|
|
/// Into:
|
|
/// %ld2 = { <4 x i32>, <4 x i32> } call llvm.aarch64.neon.ld2(%ptr)
|
|
/// %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0
|
|
/// %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1
|
|
bool AArch64TargetLowering::lowerInterleavedLoad(
|
|
LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
|
|
ArrayRef<unsigned> Indices, unsigned Factor) const {
|
|
assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
|
|
"Invalid interleave factor");
|
|
assert(!Shuffles.empty() && "Empty shufflevector input");
|
|
assert(Shuffles.size() == Indices.size() &&
|
|
"Unmatched number of shufflevectors and indices");
|
|
|
|
const DataLayout &DL = LI->getModule()->getDataLayout();
|
|
|
|
VectorType *VecTy = Shuffles[0]->getType();
|
|
|
|
// Skip if we do not have NEON and skip illegal vector types. We can
|
|
// "legalize" wide vector types into multiple interleaved accesses as long as
|
|
// the vector types are divisible by 128.
|
|
if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(VecTy, DL))
|
|
return false;
|
|
|
|
unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);
|
|
|
|
// A pointer vector can not be the return type of the ldN intrinsics. Need to
|
|
// load integer vectors first and then convert to pointer vectors.
|
|
Type *EltTy = VecTy->getVectorElementType();
|
|
if (EltTy->isPointerTy())
|
|
VecTy =
|
|
VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
|
|
|
|
IRBuilder<> Builder(LI);
|
|
|
|
// The base address of the load.
|
|
Value *BaseAddr = LI->getPointerOperand();
|
|
|
|
if (NumLoads > 1) {
|
|
// If we're going to generate more than one load, reset the sub-vector type
|
|
// to something legal.
|
|
VecTy = VectorType::get(VecTy->getVectorElementType(),
|
|
VecTy->getVectorNumElements() / NumLoads);
|
|
|
|
// We will compute the pointer operand of each load from the original base
|
|
// address using GEPs. Cast the base address to a pointer to the scalar
|
|
// element type.
|
|
BaseAddr = Builder.CreateBitCast(
|
|
BaseAddr, VecTy->getVectorElementType()->getPointerTo(
|
|
LI->getPointerAddressSpace()));
|
|
}
|
|
|
|
Type *PtrTy = VecTy->getPointerTo(LI->getPointerAddressSpace());
|
|
Type *Tys[2] = {VecTy, PtrTy};
|
|
static const Intrinsic::ID LoadInts[3] = {Intrinsic::aarch64_neon_ld2,
|
|
Intrinsic::aarch64_neon_ld3,
|
|
Intrinsic::aarch64_neon_ld4};
|
|
Function *LdNFunc =
|
|
Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
|
|
|
|
// Holds sub-vectors extracted from the load intrinsic return values. The
|
|
// sub-vectors are associated with the shufflevector instructions they will
|
|
// replace.
|
|
DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
|
|
|
|
for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
|
|
|
|
// If we're generating more than one load, compute the base address of
|
|
// subsequent loads as an offset from the previous.
|
|
if (LoadCount > 0)
|
|
BaseAddr =
|
|
Builder.CreateConstGEP1_32(VecTy->getVectorElementType(), BaseAddr,
|
|
VecTy->getVectorNumElements() * Factor);
|
|
|
|
CallInst *LdN = Builder.CreateCall(
|
|
LdNFunc, Builder.CreateBitCast(BaseAddr, PtrTy), "ldN");
|
|
|
|
// Extract and store the sub-vectors returned by the load intrinsic.
|
|
for (unsigned i = 0; i < Shuffles.size(); i++) {
|
|
ShuffleVectorInst *SVI = Shuffles[i];
|
|
unsigned Index = Indices[i];
|
|
|
|
Value *SubVec = Builder.CreateExtractValue(LdN, Index);
|
|
|
|
// Convert the integer vector to pointer vector if the element is pointer.
|
|
if (EltTy->isPointerTy())
|
|
SubVec = Builder.CreateIntToPtr(
|
|
SubVec, VectorType::get(SVI->getType()->getVectorElementType(),
|
|
VecTy->getVectorNumElements()));
|
|
SubVecs[SVI].push_back(SubVec);
|
|
}
|
|
}
|
|
|
|
// Replace uses of the shufflevector instructions with the sub-vectors
|
|
// returned by the load intrinsic. If a shufflevector instruction is
|
|
// associated with more than one sub-vector, those sub-vectors will be
|
|
// concatenated into a single wide vector.
|
|
for (ShuffleVectorInst *SVI : Shuffles) {
|
|
auto &SubVec = SubVecs[SVI];
|
|
auto *WideVec =
|
|
SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
|
|
SVI->replaceAllUsesWith(WideVec);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Lower an interleaved store into a stN intrinsic.
|
|
///
|
|
/// E.g. Lower an interleaved store (Factor = 3):
|
|
/// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
|
|
/// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
|
|
/// store <12 x i32> %i.vec, <12 x i32>* %ptr
|
|
///
|
|
/// Into:
|
|
/// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
|
|
/// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
|
|
/// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
|
|
/// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
|
|
///
|
|
/// Note that the new shufflevectors will be removed and we'll only generate one
|
|
/// st3 instruction in CodeGen.
|
|
///
|
|
/// Example for a more general valid mask (Factor 3). Lower:
|
|
/// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
|
|
/// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
|
|
/// store <12 x i32> %i.vec, <12 x i32>* %ptr
|
|
///
|
|
/// Into:
|
|
/// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
|
|
/// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
|
|
/// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
|
|
/// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
|
|
bool AArch64TargetLowering::lowerInterleavedStore(StoreInst *SI,
|
|
ShuffleVectorInst *SVI,
|
|
unsigned Factor) const {
|
|
assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
|
|
"Invalid interleave factor");
|
|
|
|
VectorType *VecTy = SVI->getType();
|
|
assert(VecTy->getVectorNumElements() % Factor == 0 &&
|
|
"Invalid interleaved store");
|
|
|
|
unsigned LaneLen = VecTy->getVectorNumElements() / Factor;
|
|
Type *EltTy = VecTy->getVectorElementType();
|
|
VectorType *SubVecTy = VectorType::get(EltTy, LaneLen);
|
|
|
|
const DataLayout &DL = SI->getModule()->getDataLayout();
|
|
|
|
// Skip if we do not have NEON and skip illegal vector types. We can
|
|
// "legalize" wide vector types into multiple interleaved accesses as long as
|
|
// the vector types are divisible by 128.
|
|
if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(SubVecTy, DL))
|
|
return false;
|
|
|
|
unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);
|
|
|
|
Value *Op0 = SVI->getOperand(0);
|
|
Value *Op1 = SVI->getOperand(1);
|
|
IRBuilder<> Builder(SI);
|
|
|
|
// StN intrinsics don't support pointer vectors as arguments. Convert pointer
|
|
// vectors to integer vectors.
|
|
if (EltTy->isPointerTy()) {
|
|
Type *IntTy = DL.getIntPtrType(EltTy);
|
|
unsigned NumOpElts = Op0->getType()->getVectorNumElements();
|
|
|
|
// Convert to the corresponding integer vector.
|
|
Type *IntVecTy = VectorType::get(IntTy, NumOpElts);
|
|
Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
|
|
Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
|
|
|
|
SubVecTy = VectorType::get(IntTy, LaneLen);
|
|
}
|
|
|
|
// The base address of the store.
|
|
Value *BaseAddr = SI->getPointerOperand();
|
|
|
|
if (NumStores > 1) {
|
|
// If we're going to generate more than one store, reset the lane length
|
|
// and sub-vector type to something legal.
|
|
LaneLen /= NumStores;
|
|
SubVecTy = VectorType::get(SubVecTy->getVectorElementType(), LaneLen);
|
|
|
|
// We will compute the pointer operand of each store from the original base
|
|
// address using GEPs. Cast the base address to a pointer to the scalar
|
|
// element type.
|
|
BaseAddr = Builder.CreateBitCast(
|
|
BaseAddr, SubVecTy->getVectorElementType()->getPointerTo(
|
|
SI->getPointerAddressSpace()));
|
|
}
|
|
|
|
auto Mask = SVI->getShuffleMask();
|
|
|
|
Type *PtrTy = SubVecTy->getPointerTo(SI->getPointerAddressSpace());
|
|
Type *Tys[2] = {SubVecTy, PtrTy};
|
|
static const Intrinsic::ID StoreInts[3] = {Intrinsic::aarch64_neon_st2,
|
|
Intrinsic::aarch64_neon_st3,
|
|
Intrinsic::aarch64_neon_st4};
|
|
Function *StNFunc =
|
|
Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys);
|
|
|
|
for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
|
|
|
|
SmallVector<Value *, 5> Ops;
|
|
|
|
// Split the shufflevector operands into sub vectors for the new stN call.
|
|
for (unsigned i = 0; i < Factor; i++) {
|
|
unsigned IdxI = StoreCount * LaneLen * Factor + i;
|
|
if (Mask[IdxI] >= 0) {
|
|
Ops.push_back(Builder.CreateShuffleVector(
|
|
Op0, Op1, createSequentialMask(Builder, Mask[IdxI], LaneLen, 0)));
|
|
} else {
|
|
unsigned StartMask = 0;
|
|
for (unsigned j = 1; j < LaneLen; j++) {
|
|
unsigned IdxJ = StoreCount * LaneLen * Factor + j;
|
|
if (Mask[IdxJ * Factor + IdxI] >= 0) {
|
|
StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
|
|
break;
|
|
}
|
|
}
|
|
// Note: Filling undef gaps with random elements is ok, since
|
|
// those elements were being written anyway (with undefs).
|
|
// In the case of all undefs we're defaulting to using elems from 0
|
|
// Note: StartMask cannot be negative, it's checked in
|
|
// isReInterleaveMask
|
|
Ops.push_back(Builder.CreateShuffleVector(
|
|
Op0, Op1, createSequentialMask(Builder, StartMask, LaneLen, 0)));
|
|
}
|
|
}
|
|
|
|
// If we generating more than one store, we compute the base address of
|
|
// subsequent stores as an offset from the previous.
|
|
if (StoreCount > 0)
|
|
BaseAddr = Builder.CreateConstGEP1_32(SubVecTy->getVectorElementType(),
|
|
BaseAddr, LaneLen * Factor);
|
|
|
|
Ops.push_back(Builder.CreateBitCast(BaseAddr, PtrTy));
|
|
Builder.CreateCall(StNFunc, Ops);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
|
|
unsigned AlignCheck) {
|
|
return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
|
|
(DstAlign == 0 || DstAlign % AlignCheck == 0));
|
|
}
|
|
|
|
EVT AArch64TargetLowering::getOptimalMemOpType(
|
|
uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
|
|
bool ZeroMemset, bool MemcpyStrSrc,
|
|
const AttributeList &FuncAttributes) const {
|
|
bool CanImplicitFloat =
|
|
!FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat);
|
|
bool CanUseNEON = Subtarget->hasNEON() && CanImplicitFloat;
|
|
bool CanUseFP = Subtarget->hasFPARMv8() && CanImplicitFloat;
|
|
// Only use AdvSIMD to implement memset of 32-byte and above. It would have
|
|
// taken one instruction to materialize the v2i64 zero and one store (with
|
|
// restrictive addressing mode). Just do i64 stores.
|
|
bool IsSmallMemset = IsMemset && Size < 32;
|
|
auto AlignmentIsAcceptable = [&](EVT VT, unsigned AlignCheck) {
|
|
if (memOpAlign(SrcAlign, DstAlign, AlignCheck))
|
|
return true;
|
|
bool Fast;
|
|
return allowsMisalignedMemoryAccesses(VT, 0, 1, &Fast) && Fast;
|
|
};
|
|
|
|
if (CanUseNEON && IsMemset && !IsSmallMemset &&
|
|
AlignmentIsAcceptable(MVT::v2i64, 16))
|
|
return MVT::v2i64;
|
|
if (CanUseFP && !IsSmallMemset && AlignmentIsAcceptable(MVT::f128, 16))
|
|
return MVT::f128;
|
|
if (Size >= 8 && AlignmentIsAcceptable(MVT::i64, 8))
|
|
return MVT::i64;
|
|
if (Size >= 4 && AlignmentIsAcceptable(MVT::i32, 4))
|
|
return MVT::i32;
|
|
return MVT::Other;
|
|
}
|
|
|
|
// 12-bit optionally shifted immediates are legal for adds.
|
|
bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
|
|
if (Immed == std::numeric_limits<int64_t>::min()) {
|
|
LLVM_DEBUG(dbgs() << "Illegal add imm " << Immed
|
|
<< ": avoid UB for INT64_MIN\n");
|
|
return false;
|
|
}
|
|
// Same encoding for add/sub, just flip the sign.
|
|
Immed = std::abs(Immed);
|
|
bool IsLegal = ((Immed >> 12) == 0 ||
|
|
((Immed & 0xfff) == 0 && Immed >> 24 == 0));
|
|
LLVM_DEBUG(dbgs() << "Is " << Immed
|
|
<< " legal add imm: " << (IsLegal ? "yes" : "no") << "\n");
|
|
return IsLegal;
|
|
}
|
|
|
|
// Integer comparisons are implemented with ADDS/SUBS, so the range of valid
|
|
// immediates is the same as for an add or a sub.
|
|
bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
|
|
return isLegalAddImmediate(Immed);
|
|
}
|
|
|
|
/// isLegalAddressingMode - Return true if the addressing mode represented
|
|
/// by AM is legal for this target, for a load/store of the specified type.
|
|
bool AArch64TargetLowering::isLegalAddressingMode(const DataLayout &DL,
|
|
const AddrMode &AM, Type *Ty,
|
|
unsigned AS, Instruction *I) const {
|
|
// AArch64 has five basic addressing modes:
|
|
// reg
|
|
// reg + 9-bit signed offset
|
|
// reg + SIZE_IN_BYTES * 12-bit unsigned offset
|
|
// reg1 + reg2
|
|
// reg + SIZE_IN_BYTES * reg
|
|
|
|
// No global is ever allowed as a base.
|
|
if (AM.BaseGV)
|
|
return false;
|
|
|
|
// No reg+reg+imm addressing.
|
|
if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
|
|
return false;
|
|
|
|
// check reg + imm case:
|
|
// i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
|
|
uint64_t NumBytes = 0;
|
|
if (Ty->isSized()) {
|
|
uint64_t NumBits = DL.getTypeSizeInBits(Ty);
|
|
NumBytes = NumBits / 8;
|
|
if (!isPowerOf2_64(NumBits))
|
|
NumBytes = 0;
|
|
}
|
|
|
|
if (!AM.Scale) {
|
|
int64_t Offset = AM.BaseOffs;
|
|
|
|
// 9-bit signed offset
|
|
if (isInt<9>(Offset))
|
|
return true;
|
|
|
|
// 12-bit unsigned offset
|
|
unsigned shift = Log2_64(NumBytes);
|
|
if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
|
|
// Must be a multiple of NumBytes (NumBytes is a power of 2)
|
|
(Offset >> shift) << shift == Offset)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
|
|
|
|
return AM.Scale == 1 || (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes);
|
|
}
|
|
|
|
bool AArch64TargetLowering::shouldConsiderGEPOffsetSplit() const {
|
|
// Consider splitting large offset of struct or array.
|
|
return true;
|
|
}
|
|
|
|
int AArch64TargetLowering::getScalingFactorCost(const DataLayout &DL,
|
|
const AddrMode &AM, Type *Ty,
|
|
unsigned AS) const {
|
|
// Scaling factors are not free at all.
|
|
// Operands | Rt Latency
|
|
// -------------------------------------------
|
|
// Rt, [Xn, Xm] | 4
|
|
// -------------------------------------------
|
|
// Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
|
|
// Rt, [Xn, Wm, <extend> #imm] |
|
|
if (isLegalAddressingMode(DL, AM, Ty, AS))
|
|
// Scale represents reg2 * scale, thus account for 1 if
|
|
// it is not equal to 0 or 1.
|
|
return AM.Scale != 0 && AM.Scale != 1;
|
|
return -1;
|
|
}
|
|
|
|
bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
|
|
VT = VT.getScalarType();
|
|
|
|
if (!VT.isSimple())
|
|
return false;
|
|
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
case MVT::f32:
|
|
case MVT::f64:
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
const MCPhysReg *
|
|
AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
|
|
// LR is a callee-save register, but we must treat it as clobbered by any call
|
|
// site. Hence we include LR in the scratch registers, which are in turn added
|
|
// as implicit-defs for stackmaps and patchpoints.
|
|
static const MCPhysReg ScratchRegs[] = {
|
|
AArch64::X16, AArch64::X17, AArch64::LR, 0
|
|
};
|
|
return ScratchRegs;
|
|
}
|
|
|
|
bool
|
|
AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N,
|
|
CombineLevel Level) const {
|
|
N = N->getOperand(0).getNode();
|
|
EVT VT = N->getValueType(0);
|
|
// If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
|
|
// it with shift to let it be lowered to UBFX.
|
|
if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
|
|
isa<ConstantSDNode>(N->getOperand(1))) {
|
|
uint64_t TruncMask = N->getConstantOperandVal(1);
|
|
if (isMask_64(TruncMask) &&
|
|
N->getOperand(0).getOpcode() == ISD::SRL &&
|
|
isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
|
|
Type *Ty) const {
|
|
assert(Ty->isIntegerTy());
|
|
|
|
unsigned BitSize = Ty->getPrimitiveSizeInBits();
|
|
if (BitSize == 0)
|
|
return false;
|
|
|
|
int64_t Val = Imm.getSExtValue();
|
|
if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
|
|
return true;
|
|
|
|
if ((int64_t)Val < 0)
|
|
Val = ~Val;
|
|
if (BitSize == 32)
|
|
Val &= (1LL << 32) - 1;
|
|
|
|
unsigned LZ = countLeadingZeros((uint64_t)Val);
|
|
unsigned Shift = (63 - LZ) / 16;
|
|
// MOVZ is free so return true for one or fewer MOVK.
|
|
return Shift < 3;
|
|
}
|
|
|
|
bool AArch64TargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
|
|
unsigned Index) const {
|
|
if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
|
|
return false;
|
|
|
|
return (Index == 0 || Index == ResVT.getVectorNumElements());
|
|
}
|
|
|
|
/// Turn vector tests of the signbit in the form of:
|
|
/// xor (sra X, elt_size(X)-1), -1
|
|
/// into:
|
|
/// cmge X, X, #0
|
|
static SDValue foldVectorXorShiftIntoCmp(SDNode *N, SelectionDAG &DAG,
|
|
const AArch64Subtarget *Subtarget) {
|
|
EVT VT = N->getValueType(0);
|
|
if (!Subtarget->hasNEON() || !VT.isVector())
|
|
return SDValue();
|
|
|
|
// There must be a shift right algebraic before the xor, and the xor must be a
|
|
// 'not' operation.
|
|
SDValue Shift = N->getOperand(0);
|
|
SDValue Ones = N->getOperand(1);
|
|
if (Shift.getOpcode() != AArch64ISD::VASHR || !Shift.hasOneUse() ||
|
|
!ISD::isBuildVectorAllOnes(Ones.getNode()))
|
|
return SDValue();
|
|
|
|
// The shift should be smearing the sign bit across each vector element.
|
|
auto *ShiftAmt = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
|
|
EVT ShiftEltTy = Shift.getValueType().getVectorElementType();
|
|
if (!ShiftAmt || ShiftAmt->getZExtValue() != ShiftEltTy.getSizeInBits() - 1)
|
|
return SDValue();
|
|
|
|
return DAG.getNode(AArch64ISD::CMGEz, SDLoc(N), VT, Shift.getOperand(0));
|
|
}
|
|
|
|
// Generate SUBS and CSEL for integer abs.
|
|
static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
|
|
EVT VT = N->getValueType(0);
|
|
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDLoc DL(N);
|
|
|
|
// Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
|
|
// and change it to SUB and CSEL.
|
|
if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
|
|
N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
|
|
N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
|
|
if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
|
|
if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
|
|
SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
|
|
N0.getOperand(0));
|
|
// Generate SUBS & CSEL.
|
|
SDValue Cmp =
|
|
DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
|
|
N0.getOperand(0), DAG.getConstant(0, DL, VT));
|
|
return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
|
|
DAG.getConstant(AArch64CC::PL, DL, MVT::i32),
|
|
SDValue(Cmp.getNode(), 1));
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const AArch64Subtarget *Subtarget) {
|
|
if (DCI.isBeforeLegalizeOps())
|
|
return SDValue();
|
|
|
|
if (SDValue Cmp = foldVectorXorShiftIntoCmp(N, DAG, Subtarget))
|
|
return Cmp;
|
|
|
|
return performIntegerAbsCombine(N, DAG);
|
|
}
|
|
|
|
SDValue
|
|
AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
|
|
SelectionDAG &DAG,
|
|
SmallVectorImpl<SDNode *> &Created) const {
|
|
AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
|
|
if (isIntDivCheap(N->getValueType(0), Attr))
|
|
return SDValue(N,0); // Lower SDIV as SDIV
|
|
|
|
// fold (sdiv X, pow2)
|
|
EVT VT = N->getValueType(0);
|
|
if ((VT != MVT::i32 && VT != MVT::i64) ||
|
|
!(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
|
|
return SDValue();
|
|
|
|
SDLoc DL(N);
|
|
SDValue N0 = N->getOperand(0);
|
|
unsigned Lg2 = Divisor.countTrailingZeros();
|
|
SDValue Zero = DAG.getConstant(0, DL, VT);
|
|
SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
|
|
|
|
// Add (N0 < 0) ? Pow2 - 1 : 0;
|
|
SDValue CCVal;
|
|
SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL);
|
|
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
|
|
SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp);
|
|
|
|
Created.push_back(Cmp.getNode());
|
|
Created.push_back(Add.getNode());
|
|
Created.push_back(CSel.getNode());
|
|
|
|
// Divide by pow2.
|
|
SDValue SRA =
|
|
DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, DL, MVT::i64));
|
|
|
|
// If we're dividing by a positive value, we're done. Otherwise, we must
|
|
// negate the result.
|
|
if (Divisor.isNonNegative())
|
|
return SRA;
|
|
|
|
Created.push_back(SRA.getNode());
|
|
return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
|
|
}
|
|
|
|
static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const AArch64Subtarget *Subtarget) {
|
|
if (DCI.isBeforeLegalizeOps())
|
|
return SDValue();
|
|
|
|
// The below optimizations require a constant RHS.
|
|
if (!isa<ConstantSDNode>(N->getOperand(1)))
|
|
return SDValue();
|
|
|
|
ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(1));
|
|
const APInt &ConstValue = C->getAPIntValue();
|
|
|
|
// Multiplication of a power of two plus/minus one can be done more
|
|
// cheaply as as shift+add/sub. For now, this is true unilaterally. If
|
|
// future CPUs have a cheaper MADD instruction, this may need to be
|
|
// gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
|
|
// 64-bit is 5 cycles, so this is always a win.
|
|
// More aggressively, some multiplications N0 * C can be lowered to
|
|
// shift+add+shift if the constant C = A * B where A = 2^N + 1 and B = 2^M,
|
|
// e.g. 6=3*2=(2+1)*2.
|
|
// TODO: consider lowering more cases, e.g. C = 14, -6, -14 or even 45
|
|
// which equals to (1+2)*16-(1+2).
|
|
SDValue N0 = N->getOperand(0);
|
|
// TrailingZeroes is used to test if the mul can be lowered to
|
|
// shift+add+shift.
|
|
unsigned TrailingZeroes = ConstValue.countTrailingZeros();
|
|
if (TrailingZeroes) {
|
|
// Conservatively do not lower to shift+add+shift if the mul might be
|
|
// folded into smul or umul.
|
|
if (N0->hasOneUse() && (isSignExtended(N0.getNode(), DAG) ||
|
|
isZeroExtended(N0.getNode(), DAG)))
|
|
return SDValue();
|
|
// Conservatively do not lower to shift+add+shift if the mul might be
|
|
// folded into madd or msub.
|
|
if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ADD ||
|
|
N->use_begin()->getOpcode() == ISD::SUB))
|
|
return SDValue();
|
|
}
|
|
// Use ShiftedConstValue instead of ConstValue to support both shift+add/sub
|
|
// and shift+add+shift.
|
|
APInt ShiftedConstValue = ConstValue.ashr(TrailingZeroes);
|
|
|
|
unsigned ShiftAmt, AddSubOpc;
|
|
// Is the shifted value the LHS operand of the add/sub?
|
|
bool ShiftValUseIsN0 = true;
|
|
// Do we need to negate the result?
|
|
bool NegateResult = false;
|
|
|
|
if (ConstValue.isNonNegative()) {
|
|
// (mul x, 2^N + 1) => (add (shl x, N), x)
|
|
// (mul x, 2^N - 1) => (sub (shl x, N), x)
|
|
// (mul x, (2^N + 1) * 2^M) => (shl (add (shl x, N), x), M)
|
|
APInt SCVMinus1 = ShiftedConstValue - 1;
|
|
APInt CVPlus1 = ConstValue + 1;
|
|
if (SCVMinus1.isPowerOf2()) {
|
|
ShiftAmt = SCVMinus1.logBase2();
|
|
AddSubOpc = ISD::ADD;
|
|
} else if (CVPlus1.isPowerOf2()) {
|
|
ShiftAmt = CVPlus1.logBase2();
|
|
AddSubOpc = ISD::SUB;
|
|
} else
|
|
return SDValue();
|
|
} else {
|
|
// (mul x, -(2^N - 1)) => (sub x, (shl x, N))
|
|
// (mul x, -(2^N + 1)) => - (add (shl x, N), x)
|
|
APInt CVNegPlus1 = -ConstValue + 1;
|
|
APInt CVNegMinus1 = -ConstValue - 1;
|
|
if (CVNegPlus1.isPowerOf2()) {
|
|
ShiftAmt = CVNegPlus1.logBase2();
|
|
AddSubOpc = ISD::SUB;
|
|
ShiftValUseIsN0 = false;
|
|
} else if (CVNegMinus1.isPowerOf2()) {
|
|
ShiftAmt = CVNegMinus1.logBase2();
|
|
AddSubOpc = ISD::ADD;
|
|
NegateResult = true;
|
|
} else
|
|
return SDValue();
|
|
}
|
|
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
SDValue ShiftedVal = DAG.getNode(ISD::SHL, DL, VT, N0,
|
|
DAG.getConstant(ShiftAmt, DL, MVT::i64));
|
|
|
|
SDValue AddSubN0 = ShiftValUseIsN0 ? ShiftedVal : N0;
|
|
SDValue AddSubN1 = ShiftValUseIsN0 ? N0 : ShiftedVal;
|
|
SDValue Res = DAG.getNode(AddSubOpc, DL, VT, AddSubN0, AddSubN1);
|
|
assert(!(NegateResult && TrailingZeroes) &&
|
|
"NegateResult and TrailingZeroes cannot both be true for now.");
|
|
// Negate the result.
|
|
if (NegateResult)
|
|
return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
|
|
// Shift the result.
|
|
if (TrailingZeroes)
|
|
return DAG.getNode(ISD::SHL, DL, VT, Res,
|
|
DAG.getConstant(TrailingZeroes, DL, MVT::i64));
|
|
return Res;
|
|
}
|
|
|
|
static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
|
|
SelectionDAG &DAG) {
|
|
// Take advantage of vector comparisons producing 0 or -1 in each lane to
|
|
// optimize away operation when it's from a constant.
|
|
//
|
|
// The general transformation is:
|
|
// UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
|
|
// AND(VECTOR_CMP(x,y), constant2)
|
|
// constant2 = UNARYOP(constant)
|
|
|
|
// Early exit if this isn't a vector operation, the operand of the
|
|
// unary operation isn't a bitwise AND, or if the sizes of the operations
|
|
// aren't the same.
|
|
EVT VT = N->getValueType(0);
|
|
if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
|
|
N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
|
|
VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
|
|
return SDValue();
|
|
|
|
// Now check that the other operand of the AND is a constant. We could
|
|
// make the transformation for non-constant splats as well, but it's unclear
|
|
// that would be a benefit as it would not eliminate any operations, just
|
|
// perform one more step in scalar code before moving to the vector unit.
|
|
if (BuildVectorSDNode *BV =
|
|
dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
|
|
// Bail out if the vector isn't a constant.
|
|
if (!BV->isConstant())
|
|
return SDValue();
|
|
|
|
// Everything checks out. Build up the new and improved node.
|
|
SDLoc DL(N);
|
|
EVT IntVT = BV->getValueType(0);
|
|
// Create a new constant of the appropriate type for the transformed
|
|
// DAG.
|
|
SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
|
|
// The AND node needs bitcasts to/from an integer vector type around it.
|
|
SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
|
|
SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
|
|
N->getOperand(0)->getOperand(0), MaskConst);
|
|
SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
|
|
return Res;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG,
|
|
const AArch64Subtarget *Subtarget) {
|
|
// First try to optimize away the conversion when it's conditionally from
|
|
// a constant. Vectors only.
|
|
if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG))
|
|
return Res;
|
|
|
|
EVT VT = N->getValueType(0);
|
|
if (VT != MVT::f32 && VT != MVT::f64)
|
|
return SDValue();
|
|
|
|
// Only optimize when the source and destination types have the same width.
|
|
if (VT.getSizeInBits() != N->getOperand(0).getValueSizeInBits())
|
|
return SDValue();
|
|
|
|
// If the result of an integer load is only used by an integer-to-float
|
|
// conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
|
|
// This eliminates an "integer-to-vector-move" UOP and improves throughput.
|
|
SDValue N0 = N->getOperand(0);
|
|
if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
|
|
// Do not change the width of a volatile load.
|
|
!cast<LoadSDNode>(N0)->isVolatile()) {
|
|
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
|
|
SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
|
|
LN0->getPointerInfo(), LN0->getAlignment(),
|
|
LN0->getMemOperand()->getFlags());
|
|
|
|
// Make sure successors of the original load stay after it by updating them
|
|
// to use the new Chain.
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
|
|
|
|
unsigned Opcode =
|
|
(N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
|
|
return DAG.getNode(Opcode, SDLoc(N), VT, Load);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// Fold a floating-point multiply by power of two into floating-point to
|
|
/// fixed-point conversion.
|
|
static SDValue performFpToIntCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const AArch64Subtarget *Subtarget) {
|
|
if (!Subtarget->hasNEON())
|
|
return SDValue();
|
|
|
|
SDValue Op = N->getOperand(0);
|
|
if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
|
|
Op.getOpcode() != ISD::FMUL)
|
|
return SDValue();
|
|
|
|
SDValue ConstVec = Op->getOperand(1);
|
|
if (!isa<BuildVectorSDNode>(ConstVec))
|
|
return SDValue();
|
|
|
|
MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
|
|
uint32_t FloatBits = FloatTy.getSizeInBits();
|
|
if (FloatBits != 32 && FloatBits != 64)
|
|
return SDValue();
|
|
|
|
MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
|
|
uint32_t IntBits = IntTy.getSizeInBits();
|
|
if (IntBits != 16 && IntBits != 32 && IntBits != 64)
|
|
return SDValue();
|
|
|
|
// Avoid conversions where iN is larger than the float (e.g., float -> i64).
|
|
if (IntBits > FloatBits)
|
|
return SDValue();
|
|
|
|
BitVector UndefElements;
|
|
BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
|
|
int32_t Bits = IntBits == 64 ? 64 : 32;
|
|
int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, Bits + 1);
|
|
if (C == -1 || C == 0 || C > Bits)
|
|
return SDValue();
|
|
|
|
MVT ResTy;
|
|
unsigned NumLanes = Op.getValueType().getVectorNumElements();
|
|
switch (NumLanes) {
|
|
default:
|
|
return SDValue();
|
|
case 2:
|
|
ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
|
|
break;
|
|
case 4:
|
|
ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64;
|
|
break;
|
|
}
|
|
|
|
if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps())
|
|
return SDValue();
|
|
|
|
assert((ResTy != MVT::v4i64 || DCI.isBeforeLegalizeOps()) &&
|
|
"Illegal vector type after legalization");
|
|
|
|
SDLoc DL(N);
|
|
bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
|
|
unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfp2fxs
|
|
: Intrinsic::aarch64_neon_vcvtfp2fxu;
|
|
SDValue FixConv =
|
|
DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ResTy,
|
|
DAG.getConstant(IntrinsicOpcode, DL, MVT::i32),
|
|
Op->getOperand(0), DAG.getConstant(C, DL, MVT::i32));
|
|
// We can handle smaller integers by generating an extra trunc.
|
|
if (IntBits < FloatBits)
|
|
FixConv = DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), FixConv);
|
|
|
|
return FixConv;
|
|
}
|
|
|
|
/// Fold a floating-point divide by power of two into fixed-point to
|
|
/// floating-point conversion.
|
|
static SDValue performFDivCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const AArch64Subtarget *Subtarget) {
|
|
if (!Subtarget->hasNEON())
|
|
return SDValue();
|
|
|
|
SDValue Op = N->getOperand(0);
|
|
unsigned Opc = Op->getOpcode();
|
|
if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
|
|
!Op.getOperand(0).getValueType().isSimple() ||
|
|
(Opc != ISD::SINT_TO_FP && Opc != ISD::UINT_TO_FP))
|
|
return SDValue();
|
|
|
|
SDValue ConstVec = N->getOperand(1);
|
|
if (!isa<BuildVectorSDNode>(ConstVec))
|
|
return SDValue();
|
|
|
|
MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
|
|
int32_t IntBits = IntTy.getSizeInBits();
|
|
if (IntBits != 16 && IntBits != 32 && IntBits != 64)
|
|
return SDValue();
|
|
|
|
MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
|
|
int32_t FloatBits = FloatTy.getSizeInBits();
|
|
if (FloatBits != 32 && FloatBits != 64)
|
|
return SDValue();
|
|
|
|
// Avoid conversions where iN is larger than the float (e.g., i64 -> float).
|
|
if (IntBits > FloatBits)
|
|
return SDValue();
|
|
|
|
BitVector UndefElements;
|
|
BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
|
|
int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, FloatBits + 1);
|
|
if (C == -1 || C == 0 || C > FloatBits)
|
|
return SDValue();
|
|
|
|
MVT ResTy;
|
|
unsigned NumLanes = Op.getValueType().getVectorNumElements();
|
|
switch (NumLanes) {
|
|
default:
|
|
return SDValue();
|
|
case 2:
|
|
ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
|
|
break;
|
|
case 4:
|
|
ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64;
|
|
break;
|
|
}
|
|
|
|
if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps())
|
|
return SDValue();
|
|
|
|
SDLoc DL(N);
|
|
SDValue ConvInput = Op.getOperand(0);
|
|
bool IsSigned = Opc == ISD::SINT_TO_FP;
|
|
if (IntBits < FloatBits)
|
|
ConvInput = DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL,
|
|
ResTy, ConvInput);
|
|
|
|
unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfxs2fp
|
|
: Intrinsic::aarch64_neon_vcvtfxu2fp;
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(),
|
|
DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), ConvInput,
|
|
DAG.getConstant(C, DL, MVT::i32));
|
|
}
|
|
|
|
/// An EXTR instruction is made up of two shifts, ORed together. This helper
|
|
/// searches for and classifies those shifts.
|
|
static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
|
|
bool &FromHi) {
|
|
if (N.getOpcode() == ISD::SHL)
|
|
FromHi = false;
|
|
else if (N.getOpcode() == ISD::SRL)
|
|
FromHi = true;
|
|
else
|
|
return false;
|
|
|
|
if (!isa<ConstantSDNode>(N.getOperand(1)))
|
|
return false;
|
|
|
|
ShiftAmount = N->getConstantOperandVal(1);
|
|
Src = N->getOperand(0);
|
|
return true;
|
|
}
|
|
|
|
/// EXTR instruction extracts a contiguous chunk of bits from two existing
|
|
/// registers viewed as a high/low pair. This function looks for the pattern:
|
|
/// <tt>(or (shl VAL1, \#N), (srl VAL2, \#RegWidth-N))</tt> and replaces it
|
|
/// with an EXTR. Can't quite be done in TableGen because the two immediates
|
|
/// aren't independent.
|
|
static SDValue tryCombineToEXTR(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
assert(N->getOpcode() == ISD::OR && "Unexpected root");
|
|
|
|
if (VT != MVT::i32 && VT != MVT::i64)
|
|
return SDValue();
|
|
|
|
SDValue LHS;
|
|
uint32_t ShiftLHS = 0;
|
|
bool LHSFromHi = false;
|
|
if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
|
|
return SDValue();
|
|
|
|
SDValue RHS;
|
|
uint32_t ShiftRHS = 0;
|
|
bool RHSFromHi = false;
|
|
if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
|
|
return SDValue();
|
|
|
|
// If they're both trying to come from the high part of the register, they're
|
|
// not really an EXTR.
|
|
if (LHSFromHi == RHSFromHi)
|
|
return SDValue();
|
|
|
|
if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
|
|
return SDValue();
|
|
|
|
if (LHSFromHi) {
|
|
std::swap(LHS, RHS);
|
|
std::swap(ShiftLHS, ShiftRHS);
|
|
}
|
|
|
|
return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
|
|
DAG.getConstant(ShiftRHS, DL, MVT::i64));
|
|
}
|
|
|
|
static SDValue tryCombineToBSL(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
EVT VT = N->getValueType(0);
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc DL(N);
|
|
|
|
if (!VT.isVector())
|
|
return SDValue();
|
|
|
|
SDValue N0 = N->getOperand(0);
|
|
if (N0.getOpcode() != ISD::AND)
|
|
return SDValue();
|
|
|
|
SDValue N1 = N->getOperand(1);
|
|
if (N1.getOpcode() != ISD::AND)
|
|
return SDValue();
|
|
|
|
// We only have to look for constant vectors here since the general, variable
|
|
// case can be handled in TableGen.
|
|
unsigned Bits = VT.getScalarSizeInBits();
|
|
uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
|
|
for (int i = 1; i >= 0; --i)
|
|
for (int j = 1; j >= 0; --j) {
|
|
BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
|
|
BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
|
|
if (!BVN0 || !BVN1)
|
|
continue;
|
|
|
|
bool FoundMatch = true;
|
|
for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
|
|
ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
|
|
ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
|
|
if (!CN0 || !CN1 ||
|
|
CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
|
|
FoundMatch = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (FoundMatch)
|
|
return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
|
|
N0->getOperand(1 - i), N1->getOperand(1 - j));
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
|
|
const AArch64Subtarget *Subtarget) {
|
|
// Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
EVT VT = N->getValueType(0);
|
|
|
|
if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
|
|
return SDValue();
|
|
|
|
if (SDValue Res = tryCombineToEXTR(N, DCI))
|
|
return Res;
|
|
|
|
if (SDValue Res = tryCombineToBSL(N, DCI))
|
|
return Res;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue performANDCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDValue LHS = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
if (!VT.isVector() || !DAG.getTargetLoweringInfo().isTypeLegal(VT))
|
|
return SDValue();
|
|
|
|
BuildVectorSDNode *BVN =
|
|
dyn_cast<BuildVectorSDNode>(N->getOperand(1).getNode());
|
|
if (!BVN)
|
|
return SDValue();
|
|
|
|
// AND does not accept an immediate, so check if we can use a BIC immediate
|
|
// instruction instead. We do this here instead of using a (and x, (mvni imm))
|
|
// pattern in isel, because some immediates may be lowered to the preferred
|
|
// (and x, (movi imm)) form, even though an mvni representation also exists.
|
|
APInt DefBits(VT.getSizeInBits(), 0);
|
|
APInt UndefBits(VT.getSizeInBits(), 0);
|
|
if (resolveBuildVector(BVN, DefBits, UndefBits)) {
|
|
SDValue NewOp;
|
|
|
|
DefBits = ~DefBits;
|
|
if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, SDValue(N, 0), DAG,
|
|
DefBits, &LHS)) ||
|
|
(NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, SDValue(N, 0), DAG,
|
|
DefBits, &LHS)))
|
|
return NewOp;
|
|
|
|
UndefBits = ~UndefBits;
|
|
if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, SDValue(N, 0), DAG,
|
|
UndefBits, &LHS)) ||
|
|
(NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, SDValue(N, 0), DAG,
|
|
UndefBits, &LHS)))
|
|
return NewOp;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue performSRLCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
EVT VT = N->getValueType(0);
|
|
if (VT != MVT::i32 && VT != MVT::i64)
|
|
return SDValue();
|
|
|
|
// Canonicalize (srl (bswap i32 x), 16) to (rotr (bswap i32 x), 16), if the
|
|
// high 16-bits of x are zero. Similarly, canonicalize (srl (bswap i64 x), 32)
|
|
// to (rotr (bswap i64 x), 32), if the high 32-bits of x are zero.
|
|
SDValue N0 = N->getOperand(0);
|
|
if (N0.getOpcode() == ISD::BSWAP) {
|
|
SDLoc DL(N);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue N00 = N0.getOperand(0);
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
|
|
uint64_t ShiftAmt = C->getZExtValue();
|
|
if (VT == MVT::i32 && ShiftAmt == 16 &&
|
|
DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(32, 16)))
|
|
return DAG.getNode(ISD::ROTR, DL, VT, N0, N1);
|
|
if (VT == MVT::i64 && ShiftAmt == 32 &&
|
|
DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(64, 32)))
|
|
return DAG.getNode(ISD::ROTR, DL, VT, N0, N1);
|
|
}
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue performBitcastCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
SelectionDAG &DAG) {
|
|
// Wait 'til after everything is legalized to try this. That way we have
|
|
// legal vector types and such.
|
|
if (DCI.isBeforeLegalizeOps())
|
|
return SDValue();
|
|
|
|
// Remove extraneous bitcasts around an extract_subvector.
|
|
// For example,
|
|
// (v4i16 (bitconvert
|
|
// (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
|
|
// becomes
|
|
// (extract_subvector ((v8i16 ...), (i64 4)))
|
|
|
|
// Only interested in 64-bit vectors as the ultimate result.
|
|
EVT VT = N->getValueType(0);
|
|
if (!VT.isVector())
|
|
return SDValue();
|
|
if (VT.getSimpleVT().getSizeInBits() != 64)
|
|
return SDValue();
|
|
// Is the operand an extract_subvector starting at the beginning or halfway
|
|
// point of the vector? A low half may also come through as an
|
|
// EXTRACT_SUBREG, so look for that, too.
|
|
SDValue Op0 = N->getOperand(0);
|
|
if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR &&
|
|
!(Op0->isMachineOpcode() &&
|
|
Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG))
|
|
return SDValue();
|
|
uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue();
|
|
if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
|
|
if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0)
|
|
return SDValue();
|
|
} else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) {
|
|
if (idx != AArch64::dsub)
|
|
return SDValue();
|
|
// The dsub reference is equivalent to a lane zero subvector reference.
|
|
idx = 0;
|
|
}
|
|
// Look through the bitcast of the input to the extract.
|
|
if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST)
|
|
return SDValue();
|
|
SDValue Source = Op0->getOperand(0)->getOperand(0);
|
|
// If the source type has twice the number of elements as our destination
|
|
// type, we know this is an extract of the high or low half of the vector.
|
|
EVT SVT = Source->getValueType(0);
|
|
if (!SVT.isVector() ||
|
|
SVT.getVectorNumElements() != VT.getVectorNumElements() * 2)
|
|
return SDValue();
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
|
|
|
|
// Create the simplified form to just extract the low or high half of the
|
|
// vector directly rather than bothering with the bitcasts.
|
|
SDLoc dl(N);
|
|
unsigned NumElements = VT.getVectorNumElements();
|
|
if (idx) {
|
|
SDValue HalfIdx = DAG.getConstant(NumElements, dl, MVT::i64);
|
|
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx);
|
|
} else {
|
|
SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, dl, MVT::i32);
|
|
return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT,
|
|
Source, SubReg),
|
|
0);
|
|
}
|
|
}
|
|
|
|
static SDValue performConcatVectorsCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
SelectionDAG &DAG) {
|
|
SDLoc dl(N);
|
|
EVT VT = N->getValueType(0);
|
|
SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
|
|
|
|
// Optimize concat_vectors of truncated vectors, where the intermediate
|
|
// type is illegal, to avoid said illegality, e.g.,
|
|
// (v4i16 (concat_vectors (v2i16 (truncate (v2i64))),
|
|
// (v2i16 (truncate (v2i64)))))
|
|
// ->
|
|
// (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))),
|
|
// (v4i32 (bitcast (v2i64))),
|
|
// <0, 2, 4, 6>)))
|
|
// This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed
|
|
// on both input and result type, so we might generate worse code.
|
|
// On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8.
|
|
if (N->getNumOperands() == 2 &&
|
|
N0->getOpcode() == ISD::TRUNCATE &&
|
|
N1->getOpcode() == ISD::TRUNCATE) {
|
|
SDValue N00 = N0->getOperand(0);
|
|
SDValue N10 = N1->getOperand(0);
|
|
EVT N00VT = N00.getValueType();
|
|
|
|
if (N00VT == N10.getValueType() &&
|
|
(N00VT == MVT::v2i64 || N00VT == MVT::v4i32) &&
|
|
N00VT.getScalarSizeInBits() == 4 * VT.getScalarSizeInBits()) {
|
|
MVT MidVT = (N00VT == MVT::v2i64 ? MVT::v4i32 : MVT::v8i16);
|
|
SmallVector<int, 8> Mask(MidVT.getVectorNumElements());
|
|
for (size_t i = 0; i < Mask.size(); ++i)
|
|
Mask[i] = i * 2;
|
|
return DAG.getNode(ISD::TRUNCATE, dl, VT,
|
|
DAG.getVectorShuffle(
|
|
MidVT, dl,
|
|
DAG.getNode(ISD::BITCAST, dl, MidVT, N00),
|
|
DAG.getNode(ISD::BITCAST, dl, MidVT, N10), Mask));
|
|
}
|
|
}
|
|
|
|
// Wait 'til after everything is legalized to try this. That way we have
|
|
// legal vector types and such.
|
|
if (DCI.isBeforeLegalizeOps())
|
|
return SDValue();
|
|
|
|
// If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
|
|
// splat. The indexed instructions are going to be expecting a DUPLANE64, so
|
|
// canonicalise to that.
|
|
if (N0 == N1 && VT.getVectorNumElements() == 2) {
|
|
assert(VT.getScalarSizeInBits() == 64);
|
|
return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N0, DAG),
|
|
DAG.getConstant(0, dl, MVT::i64));
|
|
}
|
|
|
|
// Canonicalise concat_vectors so that the right-hand vector has as few
|
|
// bit-casts as possible before its real operation. The primary matching
|
|
// destination for these operations will be the narrowing "2" instructions,
|
|
// which depend on the operation being performed on this right-hand vector.
|
|
// For example,
|
|
// (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS))))
|
|
// becomes
|
|
// (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
|
|
|
|
if (N1->getOpcode() != ISD::BITCAST)
|
|
return SDValue();
|
|
SDValue RHS = N1->getOperand(0);
|
|
MVT RHSTy = RHS.getValueType().getSimpleVT();
|
|
// If the RHS is not a vector, this is not the pattern we're looking for.
|
|
if (!RHSTy.isVector())
|
|
return SDValue();
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
|
|
|
|
MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
|
|
RHSTy.getVectorNumElements() * 2);
|
|
return DAG.getNode(ISD::BITCAST, dl, VT,
|
|
DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
|
|
DAG.getNode(ISD::BITCAST, dl, RHSTy, N0),
|
|
RHS));
|
|
}
|
|
|
|
static SDValue tryCombineFixedPointConvert(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
SelectionDAG &DAG) {
|
|
// Wait until after everything is legalized to try this. That way we have
|
|
// legal vector types and such.
|
|
if (DCI.isBeforeLegalizeOps())
|
|
return SDValue();
|
|
// Transform a scalar conversion of a value from a lane extract into a
|
|
// lane extract of a vector conversion. E.g., from foo1 to foo2:
|
|
// double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
|
|
// double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
|
|
//
|
|
// The second form interacts better with instruction selection and the
|
|
// register allocator to avoid cross-class register copies that aren't
|
|
// coalescable due to a lane reference.
|
|
|
|
// Check the operand and see if it originates from a lane extract.
|
|
SDValue Op1 = N->getOperand(1);
|
|
if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
|
|
// Yep, no additional predication needed. Perform the transform.
|
|
SDValue IID = N->getOperand(0);
|
|
SDValue Shift = N->getOperand(2);
|
|
SDValue Vec = Op1.getOperand(0);
|
|
SDValue Lane = Op1.getOperand(1);
|
|
EVT ResTy = N->getValueType(0);
|
|
EVT VecResTy;
|
|
SDLoc DL(N);
|
|
|
|
// The vector width should be 128 bits by the time we get here, even
|
|
// if it started as 64 bits (the extract_vector handling will have
|
|
// done so).
|
|
assert(Vec.getValueSizeInBits() == 128 &&
|
|
"unexpected vector size on extract_vector_elt!");
|
|
if (Vec.getValueType() == MVT::v4i32)
|
|
VecResTy = MVT::v4f32;
|
|
else if (Vec.getValueType() == MVT::v2i64)
|
|
VecResTy = MVT::v2f64;
|
|
else
|
|
llvm_unreachable("unexpected vector type!");
|
|
|
|
SDValue Convert =
|
|
DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
// AArch64 high-vector "long" operations are formed by performing the non-high
|
|
// version on an extract_subvector of each operand which gets the high half:
|
|
//
|
|
// (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
|
|
//
|
|
// However, there are cases which don't have an extract_high explicitly, but
|
|
// have another operation that can be made compatible with one for free. For
|
|
// example:
|
|
//
|
|
// (dupv64 scalar) --> (extract_high (dup128 scalar))
|
|
//
|
|
// This routine does the actual conversion of such DUPs, once outer routines
|
|
// have determined that everything else is in order.
|
|
// It also supports immediate DUP-like nodes (MOVI/MVNi), which we can fold
|
|
// similarly here.
|
|
static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
|
|
switch (N.getOpcode()) {
|
|
case AArch64ISD::DUP:
|
|
case AArch64ISD::DUPLANE8:
|
|
case AArch64ISD::DUPLANE16:
|
|
case AArch64ISD::DUPLANE32:
|
|
case AArch64ISD::DUPLANE64:
|
|
case AArch64ISD::MOVI:
|
|
case AArch64ISD::MOVIshift:
|
|
case AArch64ISD::MOVIedit:
|
|
case AArch64ISD::MOVImsl:
|
|
case AArch64ISD::MVNIshift:
|
|
case AArch64ISD::MVNImsl:
|
|
break;
|
|
default:
|
|
// FMOV could be supported, but isn't very useful, as it would only occur
|
|
// if you passed a bitcast' floating point immediate to an eligible long
|
|
// integer op (addl, smull, ...).
|
|
return SDValue();
|
|
}
|
|
|
|
MVT NarrowTy = N.getSimpleValueType();
|
|
if (!NarrowTy.is64BitVector())
|
|
return SDValue();
|
|
|
|
MVT ElementTy = NarrowTy.getVectorElementType();
|
|
unsigned NumElems = NarrowTy.getVectorNumElements();
|
|
MVT NewVT = MVT::getVectorVT(ElementTy, NumElems * 2);
|
|
|
|
SDLoc dl(N);
|
|
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NarrowTy,
|
|
DAG.getNode(N->getOpcode(), dl, NewVT, N->ops()),
|
|
DAG.getConstant(NumElems, dl, MVT::i64));
|
|
}
|
|
|
|
static bool isEssentiallyExtractHighSubvector(SDValue N) {
|
|
if (N.getOpcode() == ISD::BITCAST)
|
|
N = N.getOperand(0);
|
|
if (N.getOpcode() != ISD::EXTRACT_SUBVECTOR)
|
|
return false;
|
|
return cast<ConstantSDNode>(N.getOperand(1))->getAPIntValue() ==
|
|
N.getOperand(0).getValueType().getVectorNumElements() / 2;
|
|
}
|
|
|
|
/// Helper structure to keep track of ISD::SET_CC operands.
|
|
struct GenericSetCCInfo {
|
|
const SDValue *Opnd0;
|
|
const SDValue *Opnd1;
|
|
ISD::CondCode CC;
|
|
};
|
|
|
|
/// Helper structure to keep track of a SET_CC lowered into AArch64 code.
|
|
struct AArch64SetCCInfo {
|
|
const SDValue *Cmp;
|
|
AArch64CC::CondCode CC;
|
|
};
|
|
|
|
/// Helper structure to keep track of SetCC information.
|
|
union SetCCInfo {
|
|
GenericSetCCInfo Generic;
|
|
AArch64SetCCInfo AArch64;
|
|
};
|
|
|
|
/// Helper structure to be able to read SetCC information. If set to
|
|
/// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
|
|
/// GenericSetCCInfo.
|
|
struct SetCCInfoAndKind {
|
|
SetCCInfo Info;
|
|
bool IsAArch64;
|
|
};
|
|
|
|
/// Check whether or not \p Op is a SET_CC operation, either a generic or
|
|
/// an
|
|
/// AArch64 lowered one.
|
|
/// \p SetCCInfo is filled accordingly.
|
|
/// \post SetCCInfo is meanginfull only when this function returns true.
|
|
/// \return True when Op is a kind of SET_CC operation.
|
|
static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
|
|
// If this is a setcc, this is straight forward.
|
|
if (Op.getOpcode() == ISD::SETCC) {
|
|
SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
|
|
SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
|
|
SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
|
|
SetCCInfo.IsAArch64 = false;
|
|
return true;
|
|
}
|
|
// Otherwise, check if this is a matching csel instruction.
|
|
// In other words:
|
|
// - csel 1, 0, cc
|
|
// - csel 0, 1, !cc
|
|
if (Op.getOpcode() != AArch64ISD::CSEL)
|
|
return false;
|
|
// Set the information about the operands.
|
|
// TODO: we want the operands of the Cmp not the csel
|
|
SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
|
|
SetCCInfo.IsAArch64 = true;
|
|
SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
|
|
cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
|
|
|
|
// Check that the operands matches the constraints:
|
|
// (1) Both operands must be constants.
|
|
// (2) One must be 1 and the other must be 0.
|
|
ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
|
|
ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
|
|
|
|
// Check (1).
|
|
if (!TValue || !FValue)
|
|
return false;
|
|
|
|
// Check (2).
|
|
if (!TValue->isOne()) {
|
|
// Update the comparison when we are interested in !cc.
|
|
std::swap(TValue, FValue);
|
|
SetCCInfo.Info.AArch64.CC =
|
|
AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
|
|
}
|
|
return TValue->isOne() && FValue->isNullValue();
|
|
}
|
|
|
|
// Returns true if Op is setcc or zext of setcc.
|
|
static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
|
|
if (isSetCC(Op, Info))
|
|
return true;
|
|
return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
|
|
isSetCC(Op->getOperand(0), Info));
|
|
}
|
|
|
|
// The folding we want to perform is:
|
|
// (add x, [zext] (setcc cc ...) )
|
|
// -->
|
|
// (csel x, (add x, 1), !cc ...)
|
|
//
|
|
// The latter will get matched to a CSINC instruction.
|
|
static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
|
|
assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
|
|
SDValue LHS = Op->getOperand(0);
|
|
SDValue RHS = Op->getOperand(1);
|
|
SetCCInfoAndKind InfoAndKind;
|
|
|
|
// If neither operand is a SET_CC, give up.
|
|
if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
|
|
std::swap(LHS, RHS);
|
|
if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
|
|
return SDValue();
|
|
}
|
|
|
|
// FIXME: This could be generatized to work for FP comparisons.
|
|
EVT CmpVT = InfoAndKind.IsAArch64
|
|
? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
|
|
: InfoAndKind.Info.Generic.Opnd0->getValueType();
|
|
if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
|
|
return SDValue();
|
|
|
|
SDValue CCVal;
|
|
SDValue Cmp;
|
|
SDLoc dl(Op);
|
|
if (InfoAndKind.IsAArch64) {
|
|
CCVal = DAG.getConstant(
|
|
AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), dl,
|
|
MVT::i32);
|
|
Cmp = *InfoAndKind.Info.AArch64.Cmp;
|
|
} else
|
|
Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0,
|
|
*InfoAndKind.Info.Generic.Opnd1,
|
|
ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true),
|
|
CCVal, DAG, dl);
|
|
|
|
EVT VT = Op->getValueType(0);
|
|
LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, dl, VT));
|
|
return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
|
|
}
|
|
|
|
// The basic add/sub long vector instructions have variants with "2" on the end
|
|
// which act on the high-half of their inputs. They are normally matched by
|
|
// patterns like:
|
|
//
|
|
// (add (zeroext (extract_high LHS)),
|
|
// (zeroext (extract_high RHS)))
|
|
// -> uaddl2 vD, vN, vM
|
|
//
|
|
// However, if one of the extracts is something like a duplicate, this
|
|
// instruction can still be used profitably. This function puts the DAG into a
|
|
// more appropriate form for those patterns to trigger.
|
|
static SDValue performAddSubLongCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
SelectionDAG &DAG) {
|
|
if (DCI.isBeforeLegalizeOps())
|
|
return SDValue();
|
|
|
|
MVT VT = N->getSimpleValueType(0);
|
|
if (!VT.is128BitVector()) {
|
|
if (N->getOpcode() == ISD::ADD)
|
|
return performSetccAddFolding(N, DAG);
|
|
return SDValue();
|
|
}
|
|
|
|
// Make sure both branches are extended in the same way.
|
|
SDValue LHS = N->getOperand(0);
|
|
SDValue RHS = N->getOperand(1);
|
|
if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
|
|
LHS.getOpcode() != ISD::SIGN_EXTEND) ||
|
|
LHS.getOpcode() != RHS.getOpcode())
|
|
return SDValue();
|
|
|
|
unsigned ExtType = LHS.getOpcode();
|
|
|
|
// It's not worth doing if at least one of the inputs isn't already an
|
|
// extract, but we don't know which it'll be so we have to try both.
|
|
if (isEssentiallyExtractHighSubvector(LHS.getOperand(0))) {
|
|
RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
|
|
if (!RHS.getNode())
|
|
return SDValue();
|
|
|
|
RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
|
|
} else if (isEssentiallyExtractHighSubvector(RHS.getOperand(0))) {
|
|
LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
|
|
if (!LHS.getNode())
|
|
return SDValue();
|
|
|
|
LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
|
|
}
|
|
|
|
return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
|
|
}
|
|
|
|
// Massage DAGs which we can use the high-half "long" operations on into
|
|
// something isel will recognize better. E.g.
|
|
//
|
|
// (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
|
|
// (aarch64_neon_umull (extract_high (v2i64 vec)))
|
|
// (extract_high (v2i64 (dup128 scalar)))))
|
|
//
|
|
static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
SelectionDAG &DAG) {
|
|
if (DCI.isBeforeLegalizeOps())
|
|
return SDValue();
|
|
|
|
SDValue LHS = N->getOperand(1);
|
|
SDValue RHS = N->getOperand(2);
|
|
assert(LHS.getValueType().is64BitVector() &&
|
|
RHS.getValueType().is64BitVector() &&
|
|
"unexpected shape for long operation");
|
|
|
|
// Either node could be a DUP, but it's not worth doing both of them (you'd
|
|
// just as well use the non-high version) so look for a corresponding extract
|
|
// operation on the other "wing".
|
|
if (isEssentiallyExtractHighSubvector(LHS)) {
|
|
RHS = tryExtendDUPToExtractHigh(RHS, DAG);
|
|
if (!RHS.getNode())
|
|
return SDValue();
|
|
} else if (isEssentiallyExtractHighSubvector(RHS)) {
|
|
LHS = tryExtendDUPToExtractHigh(LHS, DAG);
|
|
if (!LHS.getNode())
|
|
return SDValue();
|
|
}
|
|
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
|
|
N->getOperand(0), LHS, RHS);
|
|
}
|
|
|
|
static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
|
|
MVT ElemTy = N->getSimpleValueType(0).getScalarType();
|
|
unsigned ElemBits = ElemTy.getSizeInBits();
|
|
|
|
int64_t ShiftAmount;
|
|
if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
|
|
APInt SplatValue, SplatUndef;
|
|
unsigned SplatBitSize;
|
|
bool HasAnyUndefs;
|
|
if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
|
|
HasAnyUndefs, ElemBits) ||
|
|
SplatBitSize != ElemBits)
|
|
return SDValue();
|
|
|
|
ShiftAmount = SplatValue.getSExtValue();
|
|
} else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
|
|
ShiftAmount = CVN->getSExtValue();
|
|
} else
|
|
return SDValue();
|
|
|
|
unsigned Opcode;
|
|
bool IsRightShift;
|
|
switch (IID) {
|
|
default:
|
|
llvm_unreachable("Unknown shift intrinsic");
|
|
case Intrinsic::aarch64_neon_sqshl:
|
|
Opcode = AArch64ISD::SQSHL_I;
|
|
IsRightShift = false;
|
|
break;
|
|
case Intrinsic::aarch64_neon_uqshl:
|
|
Opcode = AArch64ISD::UQSHL_I;
|
|
IsRightShift = false;
|
|
break;
|
|
case Intrinsic::aarch64_neon_srshl:
|
|
Opcode = AArch64ISD::SRSHR_I;
|
|
IsRightShift = true;
|
|
break;
|
|
case Intrinsic::aarch64_neon_urshl:
|
|
Opcode = AArch64ISD::URSHR_I;
|
|
IsRightShift = true;
|
|
break;
|
|
case Intrinsic::aarch64_neon_sqshlu:
|
|
Opcode = AArch64ISD::SQSHLU_I;
|
|
IsRightShift = false;
|
|
break;
|
|
}
|
|
|
|
if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) {
|
|
SDLoc dl(N);
|
|
return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
|
|
DAG.getConstant(-ShiftAmount, dl, MVT::i32));
|
|
} else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) {
|
|
SDLoc dl(N);
|
|
return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
|
|
DAG.getConstant(ShiftAmount, dl, MVT::i32));
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// The CRC32[BH] instructions ignore the high bits of their data operand. Since
|
|
// the intrinsics must be legal and take an i32, this means there's almost
|
|
// certainly going to be a zext in the DAG which we can eliminate.
|
|
static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
|
|
SDValue AndN = N->getOperand(2);
|
|
if (AndN.getOpcode() != ISD::AND)
|
|
return SDValue();
|
|
|
|
ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
|
|
if (!CMask || CMask->getZExtValue() != Mask)
|
|
return SDValue();
|
|
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
|
|
N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
|
|
}
|
|
|
|
static SDValue combineAcrossLanesIntrinsic(unsigned Opc, SDNode *N,
|
|
SelectionDAG &DAG) {
|
|
SDLoc dl(N);
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0),
|
|
DAG.getNode(Opc, dl,
|
|
N->getOperand(1).getSimpleValueType(),
|
|
N->getOperand(1)),
|
|
DAG.getConstant(0, dl, MVT::i64));
|
|
}
|
|
|
|
static SDValue performIntrinsicCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const AArch64Subtarget *Subtarget) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
unsigned IID = getIntrinsicID(N);
|
|
switch (IID) {
|
|
default:
|
|
break;
|
|
case Intrinsic::aarch64_neon_vcvtfxs2fp:
|
|
case Intrinsic::aarch64_neon_vcvtfxu2fp:
|
|
return tryCombineFixedPointConvert(N, DCI, DAG);
|
|
case Intrinsic::aarch64_neon_saddv:
|
|
return combineAcrossLanesIntrinsic(AArch64ISD::SADDV, N, DAG);
|
|
case Intrinsic::aarch64_neon_uaddv:
|
|
return combineAcrossLanesIntrinsic(AArch64ISD::UADDV, N, DAG);
|
|
case Intrinsic::aarch64_neon_sminv:
|
|
return combineAcrossLanesIntrinsic(AArch64ISD::SMINV, N, DAG);
|
|
case Intrinsic::aarch64_neon_uminv:
|
|
return combineAcrossLanesIntrinsic(AArch64ISD::UMINV, N, DAG);
|
|
case Intrinsic::aarch64_neon_smaxv:
|
|
return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV, N, DAG);
|
|
case Intrinsic::aarch64_neon_umaxv:
|
|
return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV, N, DAG);
|
|
case Intrinsic::aarch64_neon_fmax:
|
|
return DAG.getNode(ISD::FMAXIMUM, SDLoc(N), N->getValueType(0),
|
|
N->getOperand(1), N->getOperand(2));
|
|
case Intrinsic::aarch64_neon_fmin:
|
|
return DAG.getNode(ISD::FMINIMUM, SDLoc(N), N->getValueType(0),
|
|
N->getOperand(1), N->getOperand(2));
|
|
case Intrinsic::aarch64_neon_fmaxnm:
|
|
return DAG.getNode(ISD::FMAXNUM, SDLoc(N), N->getValueType(0),
|
|
N->getOperand(1), N->getOperand(2));
|
|
case Intrinsic::aarch64_neon_fminnm:
|
|
return DAG.getNode(ISD::FMINNUM, SDLoc(N), N->getValueType(0),
|
|
N->getOperand(1), N->getOperand(2));
|
|
case Intrinsic::aarch64_neon_smull:
|
|
case Intrinsic::aarch64_neon_umull:
|
|
case Intrinsic::aarch64_neon_pmull:
|
|
case Intrinsic::aarch64_neon_sqdmull:
|
|
return tryCombineLongOpWithDup(IID, N, DCI, DAG);
|
|
case Intrinsic::aarch64_neon_sqshl:
|
|
case Intrinsic::aarch64_neon_uqshl:
|
|
case Intrinsic::aarch64_neon_sqshlu:
|
|
case Intrinsic::aarch64_neon_srshl:
|
|
case Intrinsic::aarch64_neon_urshl:
|
|
return tryCombineShiftImm(IID, N, DAG);
|
|
case Intrinsic::aarch64_crc32b:
|
|
case Intrinsic::aarch64_crc32cb:
|
|
return tryCombineCRC32(0xff, N, DAG);
|
|
case Intrinsic::aarch64_crc32h:
|
|
case Intrinsic::aarch64_crc32ch:
|
|
return tryCombineCRC32(0xffff, N, DAG);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue performExtendCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
SelectionDAG &DAG) {
|
|
// If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
|
|
// we can convert that DUP into another extract_high (of a bigger DUP), which
|
|
// helps the backend to decide that an sabdl2 would be useful, saving a real
|
|
// extract_high operation.
|
|
if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
|
|
N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
|
|
SDNode *ABDNode = N->getOperand(0).getNode();
|
|
unsigned IID = getIntrinsicID(ABDNode);
|
|
if (IID == Intrinsic::aarch64_neon_sabd ||
|
|
IID == Intrinsic::aarch64_neon_uabd) {
|
|
SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG);
|
|
if (!NewABD.getNode())
|
|
return SDValue();
|
|
|
|
return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
|
|
NewABD);
|
|
}
|
|
}
|
|
|
|
// This is effectively a custom type legalization for AArch64.
|
|
//
|
|
// Type legalization will split an extend of a small, legal, type to a larger
|
|
// illegal type by first splitting the destination type, often creating
|
|
// illegal source types, which then get legalized in isel-confusing ways,
|
|
// leading to really terrible codegen. E.g.,
|
|
// %result = v8i32 sext v8i8 %value
|
|
// becomes
|
|
// %losrc = extract_subreg %value, ...
|
|
// %hisrc = extract_subreg %value, ...
|
|
// %lo = v4i32 sext v4i8 %losrc
|
|
// %hi = v4i32 sext v4i8 %hisrc
|
|
// Things go rapidly downhill from there.
|
|
//
|
|
// For AArch64, the [sz]ext vector instructions can only go up one element
|
|
// size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
|
|
// take two instructions.
|
|
//
|
|
// This implies that the most efficient way to do the extend from v8i8
|
|
// to two v4i32 values is to first extend the v8i8 to v8i16, then do
|
|
// the normal splitting to happen for the v8i16->v8i32.
|
|
|
|
// This is pre-legalization to catch some cases where the default
|
|
// type legalization will create ill-tempered code.
|
|
if (!DCI.isBeforeLegalizeOps())
|
|
return SDValue();
|
|
|
|
// We're only interested in cleaning things up for non-legal vector types
|
|
// here. If both the source and destination are legal, things will just
|
|
// work naturally without any fiddling.
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
EVT ResVT = N->getValueType(0);
|
|
if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
|
|
return SDValue();
|
|
// If the vector type isn't a simple VT, it's beyond the scope of what
|
|
// we're worried about here. Let legalization do its thing and hope for
|
|
// the best.
|
|
SDValue Src = N->getOperand(0);
|
|
EVT SrcVT = Src->getValueType(0);
|
|
if (!ResVT.isSimple() || !SrcVT.isSimple())
|
|
return SDValue();
|
|
|
|
// If the source VT is a 64-bit vector, we can play games and get the
|
|
// better results we want.
|
|
if (SrcVT.getSizeInBits() != 64)
|
|
return SDValue();
|
|
|
|
unsigned SrcEltSize = SrcVT.getScalarSizeInBits();
|
|
unsigned ElementCount = SrcVT.getVectorNumElements();
|
|
SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
|
|
SDLoc DL(N);
|
|
Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
|
|
|
|
// Now split the rest of the operation into two halves, each with a 64
|
|
// bit source.
|
|
EVT LoVT, HiVT;
|
|
SDValue Lo, Hi;
|
|
unsigned NumElements = ResVT.getVectorNumElements();
|
|
assert(!(NumElements & 1) && "Splitting vector, but not in half!");
|
|
LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
|
|
ResVT.getVectorElementType(), NumElements / 2);
|
|
|
|
EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
|
|
LoVT.getVectorNumElements());
|
|
Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
|
|
DAG.getConstant(0, DL, MVT::i64));
|
|
Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
|
|
DAG.getConstant(InNVT.getVectorNumElements(), DL, MVT::i64));
|
|
Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
|
|
Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
|
|
|
|
// Now combine the parts back together so we still have a single result
|
|
// like the combiner expects.
|
|
return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
|
|
}
|
|
|
|
static SDValue splitStoreSplat(SelectionDAG &DAG, StoreSDNode &St,
|
|
SDValue SplatVal, unsigned NumVecElts) {
|
|
assert(!St.isTruncatingStore() && "cannot split truncating vector store");
|
|
unsigned OrigAlignment = St.getAlignment();
|
|
unsigned EltOffset = SplatVal.getValueType().getSizeInBits() / 8;
|
|
|
|
// Create scalar stores. This is at least as good as the code sequence for a
|
|
// split unaligned store which is a dup.s, ext.b, and two stores.
|
|
// Most of the time the three stores should be replaced by store pair
|
|
// instructions (stp).
|
|
SDLoc DL(&St);
|
|
SDValue BasePtr = St.getBasePtr();
|
|
uint64_t BaseOffset = 0;
|
|
|
|
const MachinePointerInfo &PtrInfo = St.getPointerInfo();
|
|
SDValue NewST1 =
|
|
DAG.getStore(St.getChain(), DL, SplatVal, BasePtr, PtrInfo,
|
|
OrigAlignment, St.getMemOperand()->getFlags());
|
|
|
|
// As this in ISel, we will not merge this add which may degrade results.
|
|
if (BasePtr->getOpcode() == ISD::ADD &&
|
|
isa<ConstantSDNode>(BasePtr->getOperand(1))) {
|
|
BaseOffset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
|
|
BasePtr = BasePtr->getOperand(0);
|
|
}
|
|
|
|
unsigned Offset = EltOffset;
|
|
while (--NumVecElts) {
|
|
unsigned Alignment = MinAlign(OrigAlignment, Offset);
|
|
SDValue OffsetPtr =
|
|
DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
|
|
DAG.getConstant(BaseOffset + Offset, DL, MVT::i64));
|
|
NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
|
|
PtrInfo.getWithOffset(Offset), Alignment,
|
|
St.getMemOperand()->getFlags());
|
|
Offset += EltOffset;
|
|
}
|
|
return NewST1;
|
|
}
|
|
|
|
/// Replace a splat of zeros to a vector store by scalar stores of WZR/XZR. The
|
|
/// load store optimizer pass will merge them to store pair stores. This should
|
|
/// be better than a movi to create the vector zero followed by a vector store
|
|
/// if the zero constant is not re-used, since one instructions and one register
|
|
/// live range will be removed.
|
|
///
|
|
/// For example, the final generated code should be:
|
|
///
|
|
/// stp xzr, xzr, [x0]
|
|
///
|
|
/// instead of:
|
|
///
|
|
/// movi v0.2d, #0
|
|
/// str q0, [x0]
|
|
///
|
|
static SDValue replaceZeroVectorStore(SelectionDAG &DAG, StoreSDNode &St) {
|
|
SDValue StVal = St.getValue();
|
|
EVT VT = StVal.getValueType();
|
|
|
|
// It is beneficial to scalarize a zero splat store for 2 or 3 i64 elements or
|
|
// 2, 3 or 4 i32 elements.
|
|
int NumVecElts = VT.getVectorNumElements();
|
|
if (!(((NumVecElts == 2 || NumVecElts == 3) &&
|
|
VT.getVectorElementType().getSizeInBits() == 64) ||
|
|
((NumVecElts == 2 || NumVecElts == 3 || NumVecElts == 4) &&
|
|
VT.getVectorElementType().getSizeInBits() == 32)))
|
|
return SDValue();
|
|
|
|
if (StVal.getOpcode() != ISD::BUILD_VECTOR)
|
|
return SDValue();
|
|
|
|
// If the zero constant has more than one use then the vector store could be
|
|
// better since the constant mov will be amortized and stp q instructions
|
|
// should be able to be formed.
|
|
if (!StVal.hasOneUse())
|
|
return SDValue();
|
|
|
|
// If the store is truncating then it's going down to i16 or smaller, which
|
|
// means it can be implemented in a single store anyway.
|
|
if (St.isTruncatingStore())
|
|
return SDValue();
|
|
|
|
// If the immediate offset of the address operand is too large for the stp
|
|
// instruction, then bail out.
|
|
if (DAG.isBaseWithConstantOffset(St.getBasePtr())) {
|
|
int64_t Offset = St.getBasePtr()->getConstantOperandVal(1);
|
|
if (Offset < -512 || Offset > 504)
|
|
return SDValue();
|
|
}
|
|
|
|
for (int I = 0; I < NumVecElts; ++I) {
|
|
SDValue EltVal = StVal.getOperand(I);
|
|
if (!isNullConstant(EltVal) && !isNullFPConstant(EltVal))
|
|
return SDValue();
|
|
}
|
|
|
|
// Use a CopyFromReg WZR/XZR here to prevent
|
|
// DAGCombiner::MergeConsecutiveStores from undoing this transformation.
|
|
SDLoc DL(&St);
|
|
unsigned ZeroReg;
|
|
EVT ZeroVT;
|
|
if (VT.getVectorElementType().getSizeInBits() == 32) {
|
|
ZeroReg = AArch64::WZR;
|
|
ZeroVT = MVT::i32;
|
|
} else {
|
|
ZeroReg = AArch64::XZR;
|
|
ZeroVT = MVT::i64;
|
|
}
|
|
SDValue SplatVal =
|
|
DAG.getCopyFromReg(DAG.getEntryNode(), DL, ZeroReg, ZeroVT);
|
|
return splitStoreSplat(DAG, St, SplatVal, NumVecElts);
|
|
}
|
|
|
|
/// Replace a splat of a scalar to a vector store by scalar stores of the scalar
|
|
/// value. The load store optimizer pass will merge them to store pair stores.
|
|
/// This has better performance than a splat of the scalar followed by a split
|
|
/// vector store. Even if the stores are not merged it is four stores vs a dup,
|
|
/// followed by an ext.b and two stores.
|
|
static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode &St) {
|
|
SDValue StVal = St.getValue();
|
|
EVT VT = StVal.getValueType();
|
|
|
|
// Don't replace floating point stores, they possibly won't be transformed to
|
|
// stp because of the store pair suppress pass.
|
|
if (VT.isFloatingPoint())
|
|
return SDValue();
|
|
|
|
// We can express a splat as store pair(s) for 2 or 4 elements.
|
|
unsigned NumVecElts = VT.getVectorNumElements();
|
|
if (NumVecElts != 4 && NumVecElts != 2)
|
|
return SDValue();
|
|
|
|
// If the store is truncating then it's going down to i16 or smaller, which
|
|
// means it can be implemented in a single store anyway.
|
|
if (St.isTruncatingStore())
|
|
return SDValue();
|
|
|
|
// Check that this is a splat.
|
|
// Make sure that each of the relevant vector element locations are inserted
|
|
// to, i.e. 0 and 1 for v2i64 and 0, 1, 2, 3 for v4i32.
|
|
std::bitset<4> IndexNotInserted((1 << NumVecElts) - 1);
|
|
SDValue SplatVal;
|
|
for (unsigned I = 0; I < NumVecElts; ++I) {
|
|
// Check for insert vector elements.
|
|
if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
|
|
return SDValue();
|
|
|
|
// Check that same value is inserted at each vector element.
|
|
if (I == 0)
|
|
SplatVal = StVal.getOperand(1);
|
|
else if (StVal.getOperand(1) != SplatVal)
|
|
return SDValue();
|
|
|
|
// Check insert element index.
|
|
ConstantSDNode *CIndex = dyn_cast<ConstantSDNode>(StVal.getOperand(2));
|
|
if (!CIndex)
|
|
return SDValue();
|
|
uint64_t IndexVal = CIndex->getZExtValue();
|
|
if (IndexVal >= NumVecElts)
|
|
return SDValue();
|
|
IndexNotInserted.reset(IndexVal);
|
|
|
|
StVal = StVal.getOperand(0);
|
|
}
|
|
// Check that all vector element locations were inserted to.
|
|
if (IndexNotInserted.any())
|
|
return SDValue();
|
|
|
|
return splitStoreSplat(DAG, St, SplatVal, NumVecElts);
|
|
}
|
|
|
|
static SDValue splitStores(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
|
|
SelectionDAG &DAG,
|
|
const AArch64Subtarget *Subtarget) {
|
|
|
|
StoreSDNode *S = cast<StoreSDNode>(N);
|
|
if (S->isVolatile() || S->isIndexed())
|
|
return SDValue();
|
|
|
|
SDValue StVal = S->getValue();
|
|
EVT VT = StVal.getValueType();
|
|
if (!VT.isVector())
|
|
return SDValue();
|
|
|
|
// If we get a splat of zeros, convert this vector store to a store of
|
|
// scalars. They will be merged into store pairs of xzr thereby removing one
|
|
// instruction and one register.
|
|
if (SDValue ReplacedZeroSplat = replaceZeroVectorStore(DAG, *S))
|
|
return ReplacedZeroSplat;
|
|
|
|
// FIXME: The logic for deciding if an unaligned store should be split should
|
|
// be included in TLI.allowsMisalignedMemoryAccesses(), and there should be
|
|
// a call to that function here.
|
|
|
|
if (!Subtarget->isMisaligned128StoreSlow())
|
|
return SDValue();
|
|
|
|
// Don't split at -Oz.
|
|
if (DAG.getMachineFunction().getFunction().hasMinSize())
|
|
return SDValue();
|
|
|
|
// Don't split v2i64 vectors. Memcpy lowering produces those and splitting
|
|
// those up regresses performance on micro-benchmarks and olden/bh.
|
|
if (VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
|
|
return SDValue();
|
|
|
|
// Split unaligned 16B stores. They are terrible for performance.
|
|
// Don't split stores with alignment of 1 or 2. Code that uses clang vector
|
|
// extensions can use this to mark that it does not want splitting to happen
|
|
// (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
|
|
// eliminating alignment hazards is only 1 in 8 for alignment of 2.
|
|
if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
|
|
S->getAlignment() <= 2)
|
|
return SDValue();
|
|
|
|
// If we get a splat of a scalar convert this vector store to a store of
|
|
// scalars. They will be merged into store pairs thereby removing two
|
|
// instructions.
|
|
if (SDValue ReplacedSplat = replaceSplatVectorStore(DAG, *S))
|
|
return ReplacedSplat;
|
|
|
|
SDLoc DL(S);
|
|
unsigned NumElts = VT.getVectorNumElements() / 2;
|
|
// Split VT into two.
|
|
EVT HalfVT =
|
|
EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts);
|
|
SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
|
|
DAG.getConstant(0, DL, MVT::i64));
|
|
SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
|
|
DAG.getConstant(NumElts, DL, MVT::i64));
|
|
SDValue BasePtr = S->getBasePtr();
|
|
SDValue NewST1 =
|
|
DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
|
|
S->getAlignment(), S->getMemOperand()->getFlags());
|
|
SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
|
|
DAG.getConstant(8, DL, MVT::i64));
|
|
return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
|
|
S->getPointerInfo(), S->getAlignment(),
|
|
S->getMemOperand()->getFlags());
|
|
}
|
|
|
|
/// Target-specific DAG combine function for post-increment LD1 (lane) and
|
|
/// post-increment LD1R.
|
|
static SDValue performPostLD1Combine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
bool IsLaneOp) {
|
|
if (DCI.isBeforeLegalizeOps())
|
|
return SDValue();
|
|
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
EVT VT = N->getValueType(0);
|
|
|
|
unsigned LoadIdx = IsLaneOp ? 1 : 0;
|
|
SDNode *LD = N->getOperand(LoadIdx).getNode();
|
|
// If it is not LOAD, can not do such combine.
|
|
if (LD->getOpcode() != ISD::LOAD)
|
|
return SDValue();
|
|
|
|
// The vector lane must be a constant in the LD1LANE opcode.
|
|
SDValue Lane;
|
|
if (IsLaneOp) {
|
|
Lane = N->getOperand(2);
|
|
auto *LaneC = dyn_cast<ConstantSDNode>(Lane);
|
|
if (!LaneC || LaneC->getZExtValue() >= VT.getVectorNumElements())
|
|
return SDValue();
|
|
}
|
|
|
|
LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
|
|
EVT MemVT = LoadSDN->getMemoryVT();
|
|
// Check if memory operand is the same type as the vector element.
|
|
if (MemVT != VT.getVectorElementType())
|
|
return SDValue();
|
|
|
|
// Check if there are other uses. If so, do not combine as it will introduce
|
|
// an extra load.
|
|
for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
|
|
++UI) {
|
|
if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
|
|
continue;
|
|
if (*UI != N)
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue Addr = LD->getOperand(1);
|
|
SDValue Vector = N->getOperand(0);
|
|
// Search for a use of the address operand that is an increment.
|
|
for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
|
|
Addr.getNode()->use_end(); UI != UE; ++UI) {
|
|
SDNode *User = *UI;
|
|
if (User->getOpcode() != ISD::ADD
|
|
|| UI.getUse().getResNo() != Addr.getResNo())
|
|
continue;
|
|
|
|
// If the increment is a constant, it must match the memory ref size.
|
|
SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
|
|
if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
|
|
uint32_t IncVal = CInc->getZExtValue();
|
|
unsigned NumBytes = VT.getScalarSizeInBits() / 8;
|
|
if (IncVal != NumBytes)
|
|
continue;
|
|
Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
|
|
}
|
|
|
|
// To avoid cycle construction make sure that neither the load nor the add
|
|
// are predecessors to each other or the Vector.
|
|
SmallPtrSet<const SDNode *, 32> Visited;
|
|
SmallVector<const SDNode *, 16> Worklist;
|
|
Visited.insert(N);
|
|
Worklist.push_back(User);
|
|
Worklist.push_back(LD);
|
|
Worklist.push_back(Vector.getNode());
|
|
if (SDNode::hasPredecessorHelper(LD, Visited, Worklist) ||
|
|
SDNode::hasPredecessorHelper(User, Visited, Worklist))
|
|
continue;
|
|
|
|
SmallVector<SDValue, 8> Ops;
|
|
Ops.push_back(LD->getOperand(0)); // Chain
|
|
if (IsLaneOp) {
|
|
Ops.push_back(Vector); // The vector to be inserted
|
|
Ops.push_back(Lane); // The lane to be inserted in the vector
|
|
}
|
|
Ops.push_back(Addr);
|
|
Ops.push_back(Inc);
|
|
|
|
EVT Tys[3] = { VT, MVT::i64, MVT::Other };
|
|
SDVTList SDTys = DAG.getVTList(Tys);
|
|
unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
|
|
SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
|
|
MemVT,
|
|
LoadSDN->getMemOperand());
|
|
|
|
// Update the uses.
|
|
SDValue NewResults[] = {
|
|
SDValue(LD, 0), // The result of load
|
|
SDValue(UpdN.getNode(), 2) // Chain
|
|
};
|
|
DCI.CombineTo(LD, NewResults);
|
|
DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result
|
|
DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register
|
|
|
|
break;
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
/// Simplify ``Addr`` given that the top byte of it is ignored by HW during
|
|
/// address translation.
|
|
static bool performTBISimplification(SDValue Addr,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
SelectionDAG &DAG) {
|
|
APInt DemandedMask = APInt::getLowBitsSet(64, 56);
|
|
KnownBits Known;
|
|
TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
|
|
!DCI.isBeforeLegalizeOps());
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
if (TLI.SimplifyDemandedBits(Addr, DemandedMask, Known, TLO)) {
|
|
DCI.CommitTargetLoweringOpt(TLO);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static SDValue performSTORECombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
SelectionDAG &DAG,
|
|
const AArch64Subtarget *Subtarget) {
|
|
if (SDValue Split = splitStores(N, DCI, DAG, Subtarget))
|
|
return Split;
|
|
|
|
if (Subtarget->supportsAddressTopByteIgnored() &&
|
|
performTBISimplification(N->getOperand(2), DCI, DAG))
|
|
return SDValue(N, 0);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
|
|
/// Target-specific DAG combine function for NEON load/store intrinsics
|
|
/// to merge base address updates.
|
|
static SDValue performNEONPostLDSTCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
SelectionDAG &DAG) {
|
|
if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
|
|
return SDValue();
|
|
|
|
unsigned AddrOpIdx = N->getNumOperands() - 1;
|
|
SDValue Addr = N->getOperand(AddrOpIdx);
|
|
|
|
// Search for a use of the address operand that is an increment.
|
|
for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
|
|
UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
|
|
SDNode *User = *UI;
|
|
if (User->getOpcode() != ISD::ADD ||
|
|
UI.getUse().getResNo() != Addr.getResNo())
|
|
continue;
|
|
|
|
// Check that the add is independent of the load/store. Otherwise, folding
|
|
// it would create a cycle.
|
|
SmallPtrSet<const SDNode *, 32> Visited;
|
|
SmallVector<const SDNode *, 16> Worklist;
|
|
Visited.insert(Addr.getNode());
|
|
Worklist.push_back(N);
|
|
Worklist.push_back(User);
|
|
if (SDNode::hasPredecessorHelper(N, Visited, Worklist) ||
|
|
SDNode::hasPredecessorHelper(User, Visited, Worklist))
|
|
continue;
|
|
|
|
// Find the new opcode for the updating load/store.
|
|
bool IsStore = false;
|
|
bool IsLaneOp = false;
|
|
bool IsDupOp = false;
|
|
unsigned NewOpc = 0;
|
|
unsigned NumVecs = 0;
|
|
unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
|
|
switch (IntNo) {
|
|
default: llvm_unreachable("unexpected intrinsic for Neon base update");
|
|
case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post;
|
|
NumVecs = 2; break;
|
|
case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post;
|
|
NumVecs = 3; break;
|
|
case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post;
|
|
NumVecs = 4; break;
|
|
case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post;
|
|
NumVecs = 2; IsStore = true; break;
|
|
case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post;
|
|
NumVecs = 3; IsStore = true; break;
|
|
case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post;
|
|
NumVecs = 4; IsStore = true; break;
|
|
case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post;
|
|
NumVecs = 2; break;
|
|
case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post;
|
|
NumVecs = 3; break;
|
|
case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post;
|
|
NumVecs = 4; break;
|
|
case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post;
|
|
NumVecs = 2; IsStore = true; break;
|
|
case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post;
|
|
NumVecs = 3; IsStore = true; break;
|
|
case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post;
|
|
NumVecs = 4; IsStore = true; break;
|
|
case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost;
|
|
NumVecs = 2; IsDupOp = true; break;
|
|
case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost;
|
|
NumVecs = 3; IsDupOp = true; break;
|
|
case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost;
|
|
NumVecs = 4; IsDupOp = true; break;
|
|
case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost;
|
|
NumVecs = 2; IsLaneOp = true; break;
|
|
case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost;
|
|
NumVecs = 3; IsLaneOp = true; break;
|
|
case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost;
|
|
NumVecs = 4; IsLaneOp = true; break;
|
|
case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost;
|
|
NumVecs = 2; IsStore = true; IsLaneOp = true; break;
|
|
case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost;
|
|
NumVecs = 3; IsStore = true; IsLaneOp = true; break;
|
|
case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost;
|
|
NumVecs = 4; IsStore = true; IsLaneOp = true; break;
|
|
}
|
|
|
|
EVT VecTy;
|
|
if (IsStore)
|
|
VecTy = N->getOperand(2).getValueType();
|
|
else
|
|
VecTy = N->getValueType(0);
|
|
|
|
// If the increment is a constant, it must match the memory ref size.
|
|
SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
|
|
if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
|
|
uint32_t IncVal = CInc->getZExtValue();
|
|
unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
|
|
if (IsLaneOp || IsDupOp)
|
|
NumBytes /= VecTy.getVectorNumElements();
|
|
if (IncVal != NumBytes)
|
|
continue;
|
|
Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
|
|
}
|
|
SmallVector<SDValue, 8> Ops;
|
|
Ops.push_back(N->getOperand(0)); // Incoming chain
|
|
// Load lane and store have vector list as input.
|
|
if (IsLaneOp || IsStore)
|
|
for (unsigned i = 2; i < AddrOpIdx; ++i)
|
|
Ops.push_back(N->getOperand(i));
|
|
Ops.push_back(Addr); // Base register
|
|
Ops.push_back(Inc);
|
|
|
|
// Return Types.
|
|
EVT Tys[6];
|
|
unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
|
|
unsigned n;
|
|
for (n = 0; n < NumResultVecs; ++n)
|
|
Tys[n] = VecTy;
|
|
Tys[n++] = MVT::i64; // Type of write back register
|
|
Tys[n] = MVT::Other; // Type of the chain
|
|
SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
|
|
|
|
MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
|
|
SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
|
|
MemInt->getMemoryVT(),
|
|
MemInt->getMemOperand());
|
|
|
|
// Update the uses.
|
|
std::vector<SDValue> NewResults;
|
|
for (unsigned i = 0; i < NumResultVecs; ++i) {
|
|
NewResults.push_back(SDValue(UpdN.getNode(), i));
|
|
}
|
|
NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
|
|
DCI.CombineTo(N, NewResults);
|
|
DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
|
|
|
|
break;
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
// Checks to see if the value is the prescribed width and returns information
|
|
// about its extension mode.
|
|
static
|
|
bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) {
|
|
ExtType = ISD::NON_EXTLOAD;
|
|
switch(V.getNode()->getOpcode()) {
|
|
default:
|
|
return false;
|
|
case ISD::LOAD: {
|
|
LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
|
|
if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8)
|
|
|| (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) {
|
|
ExtType = LoadNode->getExtensionType();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
case ISD::AssertSext: {
|
|
VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
|
|
if ((TypeNode->getVT() == MVT::i8 && width == 8)
|
|
|| (TypeNode->getVT() == MVT::i16 && width == 16)) {
|
|
ExtType = ISD::SEXTLOAD;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
case ISD::AssertZext: {
|
|
VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
|
|
if ((TypeNode->getVT() == MVT::i8 && width == 8)
|
|
|| (TypeNode->getVT() == MVT::i16 && width == 16)) {
|
|
ExtType = ISD::ZEXTLOAD;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
case ISD::Constant:
|
|
case ISD::TargetConstant: {
|
|
return std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) <
|
|
1LL << (width - 1);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// This function does a whole lot of voodoo to determine if the tests are
|
|
// equivalent without and with a mask. Essentially what happens is that given a
|
|
// DAG resembling:
|
|
//
|
|
// +-------------+ +-------------+ +-------------+ +-------------+
|
|
// | Input | | AddConstant | | CompConstant| | CC |
|
|
// +-------------+ +-------------+ +-------------+ +-------------+
|
|
// | | | |
|
|
// V V | +----------+
|
|
// +-------------+ +----+ | |
|
|
// | ADD | |0xff| | |
|
|
// +-------------+ +----+ | |
|
|
// | | | |
|
|
// V V | |
|
|
// +-------------+ | |
|
|
// | AND | | |
|
|
// +-------------+ | |
|
|
// | | |
|
|
// +-----+ | |
|
|
// | | |
|
|
// V V V
|
|
// +-------------+
|
|
// | CMP |
|
|
// +-------------+
|
|
//
|
|
// The AND node may be safely removed for some combinations of inputs. In
|
|
// particular we need to take into account the extension type of the Input,
|
|
// the exact values of AddConstant, CompConstant, and CC, along with the nominal
|
|
// width of the input (this can work for any width inputs, the above graph is
|
|
// specific to 8 bits.
|
|
//
|
|
// The specific equations were worked out by generating output tables for each
|
|
// AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
|
|
// problem was simplified by working with 4 bit inputs, which means we only
|
|
// needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
|
|
// extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
|
|
// patterns present in both extensions (0,7). For every distinct set of
|
|
// AddConstant and CompConstants bit patterns we can consider the masked and
|
|
// unmasked versions to be equivalent if the result of this function is true for
|
|
// all 16 distinct bit patterns of for the current extension type of Input (w0).
|
|
//
|
|
// sub w8, w0, w1
|
|
// and w10, w8, #0x0f
|
|
// cmp w8, w2
|
|
// cset w9, AArch64CC
|
|
// cmp w10, w2
|
|
// cset w11, AArch64CC
|
|
// cmp w9, w11
|
|
// cset w0, eq
|
|
// ret
|
|
//
|
|
// Since the above function shows when the outputs are equivalent it defines
|
|
// when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
|
|
// would be expensive to run during compiles. The equations below were written
|
|
// in a test harness that confirmed they gave equivalent outputs to the above
|
|
// for all inputs function, so they can be used determine if the removal is
|
|
// legal instead.
|
|
//
|
|
// isEquivalentMaskless() is the code for testing if the AND can be removed
|
|
// factored out of the DAG recognition as the DAG can take several forms.
|
|
|
|
static bool isEquivalentMaskless(unsigned CC, unsigned width,
|
|
ISD::LoadExtType ExtType, int AddConstant,
|
|
int CompConstant) {
|
|
// By being careful about our equations and only writing the in term
|
|
// symbolic values and well known constants (0, 1, -1, MaxUInt) we can
|
|
// make them generally applicable to all bit widths.
|
|
int MaxUInt = (1 << width);
|
|
|
|
// For the purposes of these comparisons sign extending the type is
|
|
// equivalent to zero extending the add and displacing it by half the integer
|
|
// width. Provided we are careful and make sure our equations are valid over
|
|
// the whole range we can just adjust the input and avoid writing equations
|
|
// for sign extended inputs.
|
|
if (ExtType == ISD::SEXTLOAD)
|
|
AddConstant -= (1 << (width-1));
|
|
|
|
switch(CC) {
|
|
case AArch64CC::LE:
|
|
case AArch64CC::GT:
|
|
if ((AddConstant == 0) ||
|
|
(CompConstant == MaxUInt - 1 && AddConstant < 0) ||
|
|
(AddConstant >= 0 && CompConstant < 0) ||
|
|
(AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant))
|
|
return true;
|
|
break;
|
|
case AArch64CC::LT:
|
|
case AArch64CC::GE:
|
|
if ((AddConstant == 0) ||
|
|
(AddConstant >= 0 && CompConstant <= 0) ||
|
|
(AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant))
|
|
return true;
|
|
break;
|
|
case AArch64CC::HI:
|
|
case AArch64CC::LS:
|
|
if ((AddConstant >= 0 && CompConstant < 0) ||
|
|
(AddConstant <= 0 && CompConstant >= -1 &&
|
|
CompConstant < AddConstant + MaxUInt))
|
|
return true;
|
|
break;
|
|
case AArch64CC::PL:
|
|
case AArch64CC::MI:
|
|
if ((AddConstant == 0) ||
|
|
(AddConstant > 0 && CompConstant <= 0) ||
|
|
(AddConstant < 0 && CompConstant <= AddConstant))
|
|
return true;
|
|
break;
|
|
case AArch64CC::LO:
|
|
case AArch64CC::HS:
|
|
if ((AddConstant >= 0 && CompConstant <= 0) ||
|
|
(AddConstant <= 0 && CompConstant >= 0 &&
|
|
CompConstant <= AddConstant + MaxUInt))
|
|
return true;
|
|
break;
|
|
case AArch64CC::EQ:
|
|
case AArch64CC::NE:
|
|
if ((AddConstant > 0 && CompConstant < 0) ||
|
|
(AddConstant < 0 && CompConstant >= 0 &&
|
|
CompConstant < AddConstant + MaxUInt) ||
|
|
(AddConstant >= 0 && CompConstant >= 0 &&
|
|
CompConstant >= AddConstant) ||
|
|
(AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant))
|
|
return true;
|
|
break;
|
|
case AArch64CC::VS:
|
|
case AArch64CC::VC:
|
|
case AArch64CC::AL:
|
|
case AArch64CC::NV:
|
|
return true;
|
|
case AArch64CC::Invalid:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static
|
|
SDValue performCONDCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
SelectionDAG &DAG, unsigned CCIndex,
|
|
unsigned CmpIndex) {
|
|
unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue();
|
|
SDNode *SubsNode = N->getOperand(CmpIndex).getNode();
|
|
unsigned CondOpcode = SubsNode->getOpcode();
|
|
|
|
if (CondOpcode != AArch64ISD::SUBS)
|
|
return SDValue();
|
|
|
|
// There is a SUBS feeding this condition. Is it fed by a mask we can
|
|
// use?
|
|
|
|
SDNode *AndNode = SubsNode->getOperand(0).getNode();
|
|
unsigned MaskBits = 0;
|
|
|
|
if (AndNode->getOpcode() != ISD::AND)
|
|
return SDValue();
|
|
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) {
|
|
uint32_t CNV = CN->getZExtValue();
|
|
if (CNV == 255)
|
|
MaskBits = 8;
|
|
else if (CNV == 65535)
|
|
MaskBits = 16;
|
|
}
|
|
|
|
if (!MaskBits)
|
|
return SDValue();
|
|
|
|
SDValue AddValue = AndNode->getOperand(0);
|
|
|
|
if (AddValue.getOpcode() != ISD::ADD)
|
|
return SDValue();
|
|
|
|
// The basic dag structure is correct, grab the inputs and validate them.
|
|
|
|
SDValue AddInputValue1 = AddValue.getNode()->getOperand(0);
|
|
SDValue AddInputValue2 = AddValue.getNode()->getOperand(1);
|
|
SDValue SubsInputValue = SubsNode->getOperand(1);
|
|
|
|
// The mask is present and the provenance of all the values is a smaller type,
|
|
// lets see if the mask is superfluous.
|
|
|
|
if (!isa<ConstantSDNode>(AddInputValue2.getNode()) ||
|
|
!isa<ConstantSDNode>(SubsInputValue.getNode()))
|
|
return SDValue();
|
|
|
|
ISD::LoadExtType ExtType;
|
|
|
|
if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) ||
|
|
!checkValueWidth(AddInputValue2, MaskBits, ExtType) ||
|
|
!checkValueWidth(AddInputValue1, MaskBits, ExtType) )
|
|
return SDValue();
|
|
|
|
if(!isEquivalentMaskless(CC, MaskBits, ExtType,
|
|
cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(),
|
|
cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue()))
|
|
return SDValue();
|
|
|
|
// The AND is not necessary, remove it.
|
|
|
|
SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0),
|
|
SubsNode->getValueType(1));
|
|
SDValue Ops[] = { AddValue, SubsNode->getOperand(1) };
|
|
|
|
SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops);
|
|
DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode());
|
|
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
// Optimize compare with zero and branch.
|
|
static SDValue performBRCONDCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
SelectionDAG &DAG) {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
// Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions
|
|
// will not be produced, as they are conditional branch instructions that do
|
|
// not set flags.
|
|
if (MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening))
|
|
return SDValue();
|
|
|
|
if (SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3))
|
|
N = NV.getNode();
|
|
SDValue Chain = N->getOperand(0);
|
|
SDValue Dest = N->getOperand(1);
|
|
SDValue CCVal = N->getOperand(2);
|
|
SDValue Cmp = N->getOperand(3);
|
|
|
|
assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
|
|
unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
|
|
if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
|
|
return SDValue();
|
|
|
|
unsigned CmpOpc = Cmp.getOpcode();
|
|
if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
|
|
return SDValue();
|
|
|
|
// Only attempt folding if there is only one use of the flag and no use of the
|
|
// value.
|
|
if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
|
|
return SDValue();
|
|
|
|
SDValue LHS = Cmp.getOperand(0);
|
|
SDValue RHS = Cmp.getOperand(1);
|
|
|
|
assert(LHS.getValueType() == RHS.getValueType() &&
|
|
"Expected the value type to be the same for both operands!");
|
|
if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
|
|
return SDValue();
|
|
|
|
if (isNullConstant(LHS))
|
|
std::swap(LHS, RHS);
|
|
|
|
if (!isNullConstant(RHS))
|
|
return SDValue();
|
|
|
|
if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
|
|
LHS.getOpcode() == ISD::SRL)
|
|
return SDValue();
|
|
|
|
// Fold the compare into the branch instruction.
|
|
SDValue BR;
|
|
if (CC == AArch64CC::EQ)
|
|
BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
|
|
else
|
|
BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
|
|
|
|
// Do not add new nodes to DAG combiner worklist.
|
|
DCI.CombineTo(N, BR, false);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Optimize some simple tbz/tbnz cases. Returns the new operand and bit to test
|
|
// as well as whether the test should be inverted. This code is required to
|
|
// catch these cases (as opposed to standard dag combines) because
|
|
// AArch64ISD::TBZ is matched during legalization.
|
|
static SDValue getTestBitOperand(SDValue Op, unsigned &Bit, bool &Invert,
|
|
SelectionDAG &DAG) {
|
|
|
|
if (!Op->hasOneUse())
|
|
return Op;
|
|
|
|
// We don't handle undef/constant-fold cases below, as they should have
|
|
// already been taken care of (e.g. and of 0, test of undefined shifted bits,
|
|
// etc.)
|
|
|
|
// (tbz (trunc x), b) -> (tbz x, b)
|
|
// This case is just here to enable more of the below cases to be caught.
|
|
if (Op->getOpcode() == ISD::TRUNCATE &&
|
|
Bit < Op->getValueType(0).getSizeInBits()) {
|
|
return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
|
|
}
|
|
|
|
// (tbz (any_ext x), b) -> (tbz x, b) if we don't use the extended bits.
|
|
if (Op->getOpcode() == ISD::ANY_EXTEND &&
|
|
Bit < Op->getOperand(0).getValueSizeInBits()) {
|
|
return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
|
|
}
|
|
|
|
if (Op->getNumOperands() != 2)
|
|
return Op;
|
|
|
|
auto *C = dyn_cast<ConstantSDNode>(Op->getOperand(1));
|
|
if (!C)
|
|
return Op;
|
|
|
|
switch (Op->getOpcode()) {
|
|
default:
|
|
return Op;
|
|
|
|
// (tbz (and x, m), b) -> (tbz x, b)
|
|
case ISD::AND:
|
|
if ((C->getZExtValue() >> Bit) & 1)
|
|
return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
|
|
return Op;
|
|
|
|
// (tbz (shl x, c), b) -> (tbz x, b-c)
|
|
case ISD::SHL:
|
|
if (C->getZExtValue() <= Bit &&
|
|
(Bit - C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
|
|
Bit = Bit - C->getZExtValue();
|
|
return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
|
|
}
|
|
return Op;
|
|
|
|
// (tbz (sra x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits in x
|
|
case ISD::SRA:
|
|
Bit = Bit + C->getZExtValue();
|
|
if (Bit >= Op->getValueType(0).getSizeInBits())
|
|
Bit = Op->getValueType(0).getSizeInBits() - 1;
|
|
return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
|
|
|
|
// (tbz (srl x, c), b) -> (tbz x, b+c)
|
|
case ISD::SRL:
|
|
if ((Bit + C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
|
|
Bit = Bit + C->getZExtValue();
|
|
return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
|
|
}
|
|
return Op;
|
|
|
|
// (tbz (xor x, -1), b) -> (tbnz x, b)
|
|
case ISD::XOR:
|
|
if ((C->getZExtValue() >> Bit) & 1)
|
|
Invert = !Invert;
|
|
return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
|
|
}
|
|
}
|
|
|
|
// Optimize test single bit zero/non-zero and branch.
|
|
static SDValue performTBZCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
SelectionDAG &DAG) {
|
|
unsigned Bit = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
|
|
bool Invert = false;
|
|
SDValue TestSrc = N->getOperand(1);
|
|
SDValue NewTestSrc = getTestBitOperand(TestSrc, Bit, Invert, DAG);
|
|
|
|
if (TestSrc == NewTestSrc)
|
|
return SDValue();
|
|
|
|
unsigned NewOpc = N->getOpcode();
|
|
if (Invert) {
|
|
if (NewOpc == AArch64ISD::TBZ)
|
|
NewOpc = AArch64ISD::TBNZ;
|
|
else {
|
|
assert(NewOpc == AArch64ISD::TBNZ);
|
|
NewOpc = AArch64ISD::TBZ;
|
|
}
|
|
}
|
|
|
|
SDLoc DL(N);
|
|
return DAG.getNode(NewOpc, DL, MVT::Other, N->getOperand(0), NewTestSrc,
|
|
DAG.getConstant(Bit, DL, MVT::i64), N->getOperand(3));
|
|
}
|
|
|
|
// vselect (v1i1 setcc) ->
|
|
// vselect (v1iXX setcc) (XX is the size of the compared operand type)
|
|
// FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
|
|
// condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
|
|
// such VSELECT.
|
|
static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT CCVT = N0.getValueType();
|
|
|
|
if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
|
|
CCVT.getVectorElementType() != MVT::i1)
|
|
return SDValue();
|
|
|
|
EVT ResVT = N->getValueType(0);
|
|
EVT CmpVT = N0.getOperand(0).getValueType();
|
|
// Only combine when the result type is of the same size as the compared
|
|
// operands.
|
|
if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
|
|
return SDValue();
|
|
|
|
SDValue IfTrue = N->getOperand(1);
|
|
SDValue IfFalse = N->getOperand(2);
|
|
SDValue SetCC =
|
|
DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
|
|
N0.getOperand(0), N0.getOperand(1),
|
|
cast<CondCodeSDNode>(N0.getOperand(2))->get());
|
|
return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
|
|
IfTrue, IfFalse);
|
|
}
|
|
|
|
/// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
|
|
/// the compare-mask instructions rather than going via NZCV, even if LHS and
|
|
/// RHS are really scalar. This replaces any scalar setcc in the above pattern
|
|
/// with a vector one followed by a DUP shuffle on the result.
|
|
static SDValue performSelectCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT ResVT = N->getValueType(0);
|
|
|
|
if (N0.getOpcode() != ISD::SETCC)
|
|
return SDValue();
|
|
|
|
// Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered
|
|
// scalar SetCCResultType. We also don't expect vectors, because we assume
|
|
// that selects fed by vector SETCCs are canonicalized to VSELECT.
|
|
assert((N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) &&
|
|
"Scalar-SETCC feeding SELECT has unexpected result type!");
|
|
|
|
// If NumMaskElts == 0, the comparison is larger than select result. The
|
|
// largest real NEON comparison is 64-bits per lane, which means the result is
|
|
// at most 32-bits and an illegal vector. Just bail out for now.
|
|
EVT SrcVT = N0.getOperand(0).getValueType();
|
|
|
|
// Don't try to do this optimization when the setcc itself has i1 operands.
|
|
// There are no legal vectors of i1, so this would be pointless.
|
|
if (SrcVT == MVT::i1)
|
|
return SDValue();
|
|
|
|
int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits();
|
|
if (!ResVT.isVector() || NumMaskElts == 0)
|
|
return SDValue();
|
|
|
|
SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts);
|
|
EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
|
|
|
|
// Also bail out if the vector CCVT isn't the same size as ResVT.
|
|
// This can happen if the SETCC operand size doesn't divide the ResVT size
|
|
// (e.g., f64 vs v3f32).
|
|
if (CCVT.getSizeInBits() != ResVT.getSizeInBits())
|
|
return SDValue();
|
|
|
|
// Make sure we didn't create illegal types, if we're not supposed to.
|
|
assert(DCI.isBeforeLegalize() ||
|
|
DAG.getTargetLoweringInfo().isTypeLegal(SrcVT));
|
|
|
|
// First perform a vector comparison, where lane 0 is the one we're interested
|
|
// in.
|
|
SDLoc DL(N0);
|
|
SDValue LHS =
|
|
DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
|
|
SDValue RHS =
|
|
DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
|
|
SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
|
|
|
|
// Now duplicate the comparison mask we want across all other lanes.
|
|
SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
|
|
SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask);
|
|
Mask = DAG.getNode(ISD::BITCAST, DL,
|
|
ResVT.changeVectorElementTypeToInteger(), Mask);
|
|
|
|
return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
|
|
}
|
|
|
|
/// Get rid of unnecessary NVCASTs (that don't change the type).
|
|
static SDValue performNVCASTCombine(SDNode *N) {
|
|
if (N->getValueType(0) == N->getOperand(0).getValueType())
|
|
return N->getOperand(0);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// If all users of the globaladdr are of the form (globaladdr + constant), find
|
|
// the smallest constant, fold it into the globaladdr's offset and rewrite the
|
|
// globaladdr as (globaladdr + constant) - constant.
|
|
static SDValue performGlobalAddressCombine(SDNode *N, SelectionDAG &DAG,
|
|
const AArch64Subtarget *Subtarget,
|
|
const TargetMachine &TM) {
|
|
auto *GN = cast<GlobalAddressSDNode>(N);
|
|
if (Subtarget->ClassifyGlobalReference(GN->getGlobal(), TM) !=
|
|
AArch64II::MO_NO_FLAG)
|
|
return SDValue();
|
|
|
|
uint64_t MinOffset = -1ull;
|
|
for (SDNode *N : GN->uses()) {
|
|
if (N->getOpcode() != ISD::ADD)
|
|
return SDValue();
|
|
auto *C = dyn_cast<ConstantSDNode>(N->getOperand(0));
|
|
if (!C)
|
|
C = dyn_cast<ConstantSDNode>(N->getOperand(1));
|
|
if (!C)
|
|
return SDValue();
|
|
MinOffset = std::min(MinOffset, C->getZExtValue());
|
|
}
|
|
uint64_t Offset = MinOffset + GN->getOffset();
|
|
|
|
// Require that the new offset is larger than the existing one. Otherwise, we
|
|
// can end up oscillating between two possible DAGs, for example,
|
|
// (add (add globaladdr + 10, -1), 1) and (add globaladdr + 9, 1).
|
|
if (Offset <= uint64_t(GN->getOffset()))
|
|
return SDValue();
|
|
|
|
// Check whether folding this offset is legal. It must not go out of bounds of
|
|
// the referenced object to avoid violating the code model, and must be
|
|
// smaller than 2^21 because this is the largest offset expressible in all
|
|
// object formats.
|
|
//
|
|
// This check also prevents us from folding negative offsets, which will end
|
|
// up being treated in the same way as large positive ones. They could also
|
|
// cause code model violations, and aren't really common enough to matter.
|
|
if (Offset >= (1 << 21))
|
|
return SDValue();
|
|
|
|
const GlobalValue *GV = GN->getGlobal();
|
|
Type *T = GV->getValueType();
|
|
if (!T->isSized() ||
|
|
Offset > GV->getParent()->getDataLayout().getTypeAllocSize(T))
|
|
return SDValue();
|
|
|
|
SDLoc DL(GN);
|
|
SDValue Result = DAG.getGlobalAddress(GV, DL, MVT::i64, Offset);
|
|
return DAG.getNode(ISD::SUB, DL, MVT::i64, Result,
|
|
DAG.getConstant(MinOffset, DL, MVT::i64));
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
switch (N->getOpcode()) {
|
|
default:
|
|
LLVM_DEBUG(dbgs() << "Custom combining: skipping\n");
|
|
break;
|
|
case ISD::ADD:
|
|
case ISD::SUB:
|
|
return performAddSubLongCombine(N, DCI, DAG);
|
|
case ISD::XOR:
|
|
return performXorCombine(N, DAG, DCI, Subtarget);
|
|
case ISD::MUL:
|
|
return performMulCombine(N, DAG, DCI, Subtarget);
|
|
case ISD::SINT_TO_FP:
|
|
case ISD::UINT_TO_FP:
|
|
return performIntToFpCombine(N, DAG, Subtarget);
|
|
case ISD::FP_TO_SINT:
|
|
case ISD::FP_TO_UINT:
|
|
return performFpToIntCombine(N, DAG, DCI, Subtarget);
|
|
case ISD::FDIV:
|
|
return performFDivCombine(N, DAG, DCI, Subtarget);
|
|
case ISD::OR:
|
|
return performORCombine(N, DCI, Subtarget);
|
|
case ISD::AND:
|
|
return performANDCombine(N, DCI);
|
|
case ISD::SRL:
|
|
return performSRLCombine(N, DCI);
|
|
case ISD::INTRINSIC_WO_CHAIN:
|
|
return performIntrinsicCombine(N, DCI, Subtarget);
|
|
case ISD::ANY_EXTEND:
|
|
case ISD::ZERO_EXTEND:
|
|
case ISD::SIGN_EXTEND:
|
|
return performExtendCombine(N, DCI, DAG);
|
|
case ISD::BITCAST:
|
|
return performBitcastCombine(N, DCI, DAG);
|
|
case ISD::CONCAT_VECTORS:
|
|
return performConcatVectorsCombine(N, DCI, DAG);
|
|
case ISD::SELECT:
|
|
return performSelectCombine(N, DCI);
|
|
case ISD::VSELECT:
|
|
return performVSelectCombine(N, DCI.DAG);
|
|
case ISD::LOAD:
|
|
if (performTBISimplification(N->getOperand(1), DCI, DAG))
|
|
return SDValue(N, 0);
|
|
break;
|
|
case ISD::STORE:
|
|
return performSTORECombine(N, DCI, DAG, Subtarget);
|
|
case AArch64ISD::BRCOND:
|
|
return performBRCONDCombine(N, DCI, DAG);
|
|
case AArch64ISD::TBNZ:
|
|
case AArch64ISD::TBZ:
|
|
return performTBZCombine(N, DCI, DAG);
|
|
case AArch64ISD::CSEL:
|
|
return performCONDCombine(N, DCI, DAG, 2, 3);
|
|
case AArch64ISD::DUP:
|
|
return performPostLD1Combine(N, DCI, false);
|
|
case AArch64ISD::NVCAST:
|
|
return performNVCASTCombine(N);
|
|
case ISD::INSERT_VECTOR_ELT:
|
|
return performPostLD1Combine(N, DCI, true);
|
|
case ISD::INTRINSIC_VOID:
|
|
case ISD::INTRINSIC_W_CHAIN:
|
|
switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
|
|
case Intrinsic::aarch64_neon_ld2:
|
|
case Intrinsic::aarch64_neon_ld3:
|
|
case Intrinsic::aarch64_neon_ld4:
|
|
case Intrinsic::aarch64_neon_ld1x2:
|
|
case Intrinsic::aarch64_neon_ld1x3:
|
|
case Intrinsic::aarch64_neon_ld1x4:
|
|
case Intrinsic::aarch64_neon_ld2lane:
|
|
case Intrinsic::aarch64_neon_ld3lane:
|
|
case Intrinsic::aarch64_neon_ld4lane:
|
|
case Intrinsic::aarch64_neon_ld2r:
|
|
case Intrinsic::aarch64_neon_ld3r:
|
|
case Intrinsic::aarch64_neon_ld4r:
|
|
case Intrinsic::aarch64_neon_st2:
|
|
case Intrinsic::aarch64_neon_st3:
|
|
case Intrinsic::aarch64_neon_st4:
|
|
case Intrinsic::aarch64_neon_st1x2:
|
|
case Intrinsic::aarch64_neon_st1x3:
|
|
case Intrinsic::aarch64_neon_st1x4:
|
|
case Intrinsic::aarch64_neon_st2lane:
|
|
case Intrinsic::aarch64_neon_st3lane:
|
|
case Intrinsic::aarch64_neon_st4lane:
|
|
return performNEONPostLDSTCombine(N, DCI, DAG);
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case ISD::GlobalAddress:
|
|
return performGlobalAddressCombine(N, DAG, Subtarget, getTargetMachine());
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
// Check if the return value is used as only a return value, as otherwise
|
|
// we can't perform a tail-call. In particular, we need to check for
|
|
// target ISD nodes that are returns and any other "odd" constructs
|
|
// that the generic analysis code won't necessarily catch.
|
|
bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
|
|
SDValue &Chain) const {
|
|
if (N->getNumValues() != 1)
|
|
return false;
|
|
if (!N->hasNUsesOfValue(1, 0))
|
|
return false;
|
|
|
|
SDValue TCChain = Chain;
|
|
SDNode *Copy = *N->use_begin();
|
|
if (Copy->getOpcode() == ISD::CopyToReg) {
|
|
// If the copy has a glue operand, we conservatively assume it isn't safe to
|
|
// perform a tail call.
|
|
if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
|
|
MVT::Glue)
|
|
return false;
|
|
TCChain = Copy->getOperand(0);
|
|
} else if (Copy->getOpcode() != ISD::FP_EXTEND)
|
|
return false;
|
|
|
|
bool HasRet = false;
|
|
for (SDNode *Node : Copy->uses()) {
|
|
if (Node->getOpcode() != AArch64ISD::RET_FLAG)
|
|
return false;
|
|
HasRet = true;
|
|
}
|
|
|
|
if (!HasRet)
|
|
return false;
|
|
|
|
Chain = TCChain;
|
|
return true;
|
|
}
|
|
|
|
// Return whether the an instruction can potentially be optimized to a tail
|
|
// call. This will cause the optimizers to attempt to move, or duplicate,
|
|
// return instructions to help enable tail call optimizations for this
|
|
// instruction.
|
|
bool AArch64TargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
|
|
return CI->isTailCall();
|
|
}
|
|
|
|
bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
|
|
SDValue &Offset,
|
|
ISD::MemIndexedMode &AM,
|
|
bool &IsInc,
|
|
SelectionDAG &DAG) const {
|
|
if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
|
|
return false;
|
|
|
|
Base = Op->getOperand(0);
|
|
// All of the indexed addressing mode instructions take a signed
|
|
// 9 bit immediate offset.
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
|
|
int64_t RHSC = RHS->getSExtValue();
|
|
if (Op->getOpcode() == ISD::SUB)
|
|
RHSC = -(uint64_t)RHSC;
|
|
if (!isInt<9>(RHSC))
|
|
return false;
|
|
IsInc = (Op->getOpcode() == ISD::ADD);
|
|
Offset = Op->getOperand(1);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
|
|
SDValue &Offset,
|
|
ISD::MemIndexedMode &AM,
|
|
SelectionDAG &DAG) const {
|
|
EVT VT;
|
|
SDValue Ptr;
|
|
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
|
|
VT = LD->getMemoryVT();
|
|
Ptr = LD->getBasePtr();
|
|
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
|
|
VT = ST->getMemoryVT();
|
|
Ptr = ST->getBasePtr();
|
|
} else
|
|
return false;
|
|
|
|
bool IsInc;
|
|
if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
|
|
return false;
|
|
AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
|
|
return true;
|
|
}
|
|
|
|
bool AArch64TargetLowering::getPostIndexedAddressParts(
|
|
SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
|
|
ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
|
|
EVT VT;
|
|
SDValue Ptr;
|
|
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
|
|
VT = LD->getMemoryVT();
|
|
Ptr = LD->getBasePtr();
|
|
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
|
|
VT = ST->getMemoryVT();
|
|
Ptr = ST->getBasePtr();
|
|
} else
|
|
return false;
|
|
|
|
bool IsInc;
|
|
if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
|
|
return false;
|
|
// Post-indexing updates the base, so it's not a valid transform
|
|
// if that's not the same as the load's pointer.
|
|
if (Ptr != Base)
|
|
return false;
|
|
AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
|
|
return true;
|
|
}
|
|
|
|
static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
|
|
SelectionDAG &DAG) {
|
|
SDLoc DL(N);
|
|
SDValue Op = N->getOperand(0);
|
|
|
|
if (N->getValueType(0) != MVT::i16 || Op.getValueType() != MVT::f16)
|
|
return;
|
|
|
|
Op = SDValue(
|
|
DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32,
|
|
DAG.getUNDEF(MVT::i32), Op,
|
|
DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
|
|
0);
|
|
Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op);
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op));
|
|
}
|
|
|
|
static void ReplaceReductionResults(SDNode *N,
|
|
SmallVectorImpl<SDValue> &Results,
|
|
SelectionDAG &DAG, unsigned InterOp,
|
|
unsigned AcrossOp) {
|
|
EVT LoVT, HiVT;
|
|
SDValue Lo, Hi;
|
|
SDLoc dl(N);
|
|
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
|
|
std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
|
|
SDValue InterVal = DAG.getNode(InterOp, dl, LoVT, Lo, Hi);
|
|
SDValue SplitVal = DAG.getNode(AcrossOp, dl, LoVT, InterVal);
|
|
Results.push_back(SplitVal);
|
|
}
|
|
|
|
static std::pair<SDValue, SDValue> splitInt128(SDValue N, SelectionDAG &DAG) {
|
|
SDLoc DL(N);
|
|
SDValue Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, N);
|
|
SDValue Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64,
|
|
DAG.getNode(ISD::SRL, DL, MVT::i128, N,
|
|
DAG.getConstant(64, DL, MVT::i64)));
|
|
return std::make_pair(Lo, Hi);
|
|
}
|
|
|
|
// Create an even/odd pair of X registers holding integer value V.
|
|
static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
|
|
SDLoc dl(V.getNode());
|
|
SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i64);
|
|
SDValue VHi = DAG.getAnyExtOrTrunc(
|
|
DAG.getNode(ISD::SRL, dl, MVT::i128, V, DAG.getConstant(64, dl, MVT::i64)),
|
|
dl, MVT::i64);
|
|
if (DAG.getDataLayout().isBigEndian())
|
|
std::swap (VLo, VHi);
|
|
SDValue RegClass =
|
|
DAG.getTargetConstant(AArch64::XSeqPairsClassRegClassID, dl, MVT::i32);
|
|
SDValue SubReg0 = DAG.getTargetConstant(AArch64::sube64, dl, MVT::i32);
|
|
SDValue SubReg1 = DAG.getTargetConstant(AArch64::subo64, dl, MVT::i32);
|
|
const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
|
|
return SDValue(
|
|
DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
|
|
}
|
|
|
|
static void ReplaceCMP_SWAP_128Results(SDNode *N,
|
|
SmallVectorImpl<SDValue> &Results,
|
|
SelectionDAG &DAG,
|
|
const AArch64Subtarget *Subtarget) {
|
|
assert(N->getValueType(0) == MVT::i128 &&
|
|
"AtomicCmpSwap on types less than 128 should be legal");
|
|
|
|
if (Subtarget->hasLSE()) {
|
|
// LSE has a 128-bit compare and swap (CASP), but i128 is not a legal type,
|
|
// so lower it here, wrapped in REG_SEQUENCE and EXTRACT_SUBREG.
|
|
SDValue Ops[] = {
|
|
createGPRPairNode(DAG, N->getOperand(2)), // Compare value
|
|
createGPRPairNode(DAG, N->getOperand(3)), // Store value
|
|
N->getOperand(1), // Ptr
|
|
N->getOperand(0), // Chain in
|
|
};
|
|
|
|
MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
|
|
|
|
unsigned Opcode;
|
|
switch (MemOp->getOrdering()) {
|
|
case AtomicOrdering::Monotonic:
|
|
Opcode = AArch64::CASPX;
|
|
break;
|
|
case AtomicOrdering::Acquire:
|
|
Opcode = AArch64::CASPAX;
|
|
break;
|
|
case AtomicOrdering::Release:
|
|
Opcode = AArch64::CASPLX;
|
|
break;
|
|
case AtomicOrdering::AcquireRelease:
|
|
case AtomicOrdering::SequentiallyConsistent:
|
|
Opcode = AArch64::CASPALX;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unexpected ordering!");
|
|
}
|
|
|
|
MachineSDNode *CmpSwap = DAG.getMachineNode(
|
|
Opcode, SDLoc(N), DAG.getVTList(MVT::Untyped, MVT::Other), Ops);
|
|
DAG.setNodeMemRefs(CmpSwap, {MemOp});
|
|
|
|
unsigned SubReg1 = AArch64::sube64, SubReg2 = AArch64::subo64;
|
|
if (DAG.getDataLayout().isBigEndian())
|
|
std::swap(SubReg1, SubReg2);
|
|
Results.push_back(DAG.getTargetExtractSubreg(SubReg1, SDLoc(N), MVT::i64,
|
|
SDValue(CmpSwap, 0)));
|
|
Results.push_back(DAG.getTargetExtractSubreg(SubReg2, SDLoc(N), MVT::i64,
|
|
SDValue(CmpSwap, 0)));
|
|
Results.push_back(SDValue(CmpSwap, 1)); // Chain out
|
|
return;
|
|
}
|
|
|
|
auto Desired = splitInt128(N->getOperand(2), DAG);
|
|
auto New = splitInt128(N->getOperand(3), DAG);
|
|
SDValue Ops[] = {N->getOperand(1), Desired.first, Desired.second,
|
|
New.first, New.second, N->getOperand(0)};
|
|
SDNode *CmpSwap = DAG.getMachineNode(
|
|
AArch64::CMP_SWAP_128, SDLoc(N),
|
|
DAG.getVTList(MVT::i64, MVT::i64, MVT::i32, MVT::Other), Ops);
|
|
|
|
MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
|
|
DAG.setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
|
|
|
|
Results.push_back(SDValue(CmpSwap, 0));
|
|
Results.push_back(SDValue(CmpSwap, 1));
|
|
Results.push_back(SDValue(CmpSwap, 3));
|
|
}
|
|
|
|
void AArch64TargetLowering::ReplaceNodeResults(
|
|
SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
|
|
switch (N->getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Don't know how to custom expand this");
|
|
case ISD::BITCAST:
|
|
ReplaceBITCASTResults(N, Results, DAG);
|
|
return;
|
|
case ISD::VECREDUCE_ADD:
|
|
case ISD::VECREDUCE_SMAX:
|
|
case ISD::VECREDUCE_SMIN:
|
|
case ISD::VECREDUCE_UMAX:
|
|
case ISD::VECREDUCE_UMIN:
|
|
Results.push_back(LowerVECREDUCE(SDValue(N, 0), DAG));
|
|
return;
|
|
|
|
case AArch64ISD::SADDV:
|
|
ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::SADDV);
|
|
return;
|
|
case AArch64ISD::UADDV:
|
|
ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::UADDV);
|
|
return;
|
|
case AArch64ISD::SMINV:
|
|
ReplaceReductionResults(N, Results, DAG, ISD::SMIN, AArch64ISD::SMINV);
|
|
return;
|
|
case AArch64ISD::UMINV:
|
|
ReplaceReductionResults(N, Results, DAG, ISD::UMIN, AArch64ISD::UMINV);
|
|
return;
|
|
case AArch64ISD::SMAXV:
|
|
ReplaceReductionResults(N, Results, DAG, ISD::SMAX, AArch64ISD::SMAXV);
|
|
return;
|
|
case AArch64ISD::UMAXV:
|
|
ReplaceReductionResults(N, Results, DAG, ISD::UMAX, AArch64ISD::UMAXV);
|
|
return;
|
|
case ISD::FP_TO_UINT:
|
|
case ISD::FP_TO_SINT:
|
|
assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
|
|
// Let normal code take care of it by not adding anything to Results.
|
|
return;
|
|
case ISD::ATOMIC_CMP_SWAP:
|
|
ReplaceCMP_SWAP_128Results(N, Results, DAG, Subtarget);
|
|
return;
|
|
}
|
|
}
|
|
|
|
bool AArch64TargetLowering::useLoadStackGuardNode() const {
|
|
if (Subtarget->isTargetAndroid() || Subtarget->isTargetFuchsia())
|
|
return TargetLowering::useLoadStackGuardNode();
|
|
return true;
|
|
}
|
|
|
|
unsigned AArch64TargetLowering::combineRepeatedFPDivisors() const {
|
|
// Combine multiple FDIVs with the same divisor into multiple FMULs by the
|
|
// reciprocal if there are three or more FDIVs.
|
|
return 3;
|
|
}
|
|
|
|
TargetLoweringBase::LegalizeTypeAction
|
|
AArch64TargetLowering::getPreferredVectorAction(MVT VT) const {
|
|
// During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8,
|
|
// v4i16, v2i32 instead of to promote.
|
|
if (VT == MVT::v1i8 || VT == MVT::v1i16 || VT == MVT::v1i32 ||
|
|
VT == MVT::v1f32)
|
|
return TypeWidenVector;
|
|
|
|
return TargetLoweringBase::getPreferredVectorAction(VT);
|
|
}
|
|
|
|
// Loads and stores less than 128-bits are already atomic; ones above that
|
|
// are doomed anyway, so defer to the default libcall and blame the OS when
|
|
// things go wrong.
|
|
bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
|
|
unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
|
|
return Size == 128;
|
|
}
|
|
|
|
// Loads and stores less than 128-bits are already atomic; ones above that
|
|
// are doomed anyway, so defer to the default libcall and blame the OS when
|
|
// things go wrong.
|
|
TargetLowering::AtomicExpansionKind
|
|
AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
|
|
unsigned Size = LI->getType()->getPrimitiveSizeInBits();
|
|
return Size == 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None;
|
|
}
|
|
|
|
// For the real atomic operations, we have ldxr/stxr up to 128 bits,
|
|
TargetLowering::AtomicExpansionKind
|
|
AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
|
|
if (AI->isFloatingPointOperation())
|
|
return AtomicExpansionKind::CmpXChg;
|
|
|
|
unsigned Size = AI->getType()->getPrimitiveSizeInBits();
|
|
if (Size > 128) return AtomicExpansionKind::None;
|
|
// Nand not supported in LSE.
|
|
if (AI->getOperation() == AtomicRMWInst::Nand) return AtomicExpansionKind::LLSC;
|
|
// Leave 128 bits to LLSC.
|
|
return (Subtarget->hasLSE() && Size < 128) ? AtomicExpansionKind::None : AtomicExpansionKind::LLSC;
|
|
}
|
|
|
|
TargetLowering::AtomicExpansionKind
|
|
AArch64TargetLowering::shouldExpandAtomicCmpXchgInIR(
|
|
AtomicCmpXchgInst *AI) const {
|
|
// If subtarget has LSE, leave cmpxchg intact for codegen.
|
|
if (Subtarget->hasLSE())
|
|
return AtomicExpansionKind::None;
|
|
// At -O0, fast-regalloc cannot cope with the live vregs necessary to
|
|
// implement cmpxchg without spilling. If the address being exchanged is also
|
|
// on the stack and close enough to the spill slot, this can lead to a
|
|
// situation where the monitor always gets cleared and the atomic operation
|
|
// can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
|
|
if (getTargetMachine().getOptLevel() == 0)
|
|
return AtomicExpansionKind::None;
|
|
return AtomicExpansionKind::LLSC;
|
|
}
|
|
|
|
Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
|
|
AtomicOrdering Ord) const {
|
|
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
|
|
Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
|
|
bool IsAcquire = isAcquireOrStronger(Ord);
|
|
|
|
// Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
|
|
// intrinsic must return {i64, i64} and we have to recombine them into a
|
|
// single i128 here.
|
|
if (ValTy->getPrimitiveSizeInBits() == 128) {
|
|
Intrinsic::ID Int =
|
|
IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
|
|
Function *Ldxr = Intrinsic::getDeclaration(M, Int);
|
|
|
|
Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
|
|
Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
|
|
|
|
Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
|
|
Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
|
|
Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
|
|
Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
|
|
return Builder.CreateOr(
|
|
Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
|
|
}
|
|
|
|
Type *Tys[] = { Addr->getType() };
|
|
Intrinsic::ID Int =
|
|
IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
|
|
Function *Ldxr = Intrinsic::getDeclaration(M, Int, Tys);
|
|
|
|
Type *EltTy = cast<PointerType>(Addr->getType())->getElementType();
|
|
|
|
const DataLayout &DL = M->getDataLayout();
|
|
IntegerType *IntEltTy = Builder.getIntNTy(DL.getTypeSizeInBits(EltTy));
|
|
Value *Trunc = Builder.CreateTrunc(Builder.CreateCall(Ldxr, Addr), IntEltTy);
|
|
|
|
return Builder.CreateBitCast(Trunc, EltTy);
|
|
}
|
|
|
|
void AArch64TargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
|
|
IRBuilder<> &Builder) const {
|
|
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
|
|
Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::aarch64_clrex));
|
|
}
|
|
|
|
Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
|
|
Value *Val, Value *Addr,
|
|
AtomicOrdering Ord) const {
|
|
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
|
|
bool IsRelease = isReleaseOrStronger(Ord);
|
|
|
|
// Since the intrinsics must have legal type, the i128 intrinsics take two
|
|
// parameters: "i64, i64". We must marshal Val into the appropriate form
|
|
// before the call.
|
|
if (Val->getType()->getPrimitiveSizeInBits() == 128) {
|
|
Intrinsic::ID Int =
|
|
IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
|
|
Function *Stxr = Intrinsic::getDeclaration(M, Int);
|
|
Type *Int64Ty = Type::getInt64Ty(M->getContext());
|
|
|
|
Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
|
|
Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
|
|
Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
|
|
return Builder.CreateCall(Stxr, {Lo, Hi, Addr});
|
|
}
|
|
|
|
Intrinsic::ID Int =
|
|
IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
|
|
Type *Tys[] = { Addr->getType() };
|
|
Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
|
|
|
|
const DataLayout &DL = M->getDataLayout();
|
|
IntegerType *IntValTy = Builder.getIntNTy(DL.getTypeSizeInBits(Val->getType()));
|
|
Val = Builder.CreateBitCast(Val, IntValTy);
|
|
|
|
return Builder.CreateCall(Stxr,
|
|
{Builder.CreateZExtOrBitCast(
|
|
Val, Stxr->getFunctionType()->getParamType(0)),
|
|
Addr});
|
|
}
|
|
|
|
bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters(
|
|
Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
|
|
return Ty->isArrayTy();
|
|
}
|
|
|
|
bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext &,
|
|
EVT) const {
|
|
return false;
|
|
}
|
|
|
|
static Value *UseTlsOffset(IRBuilder<> &IRB, unsigned Offset) {
|
|
Module *M = IRB.GetInsertBlock()->getParent()->getParent();
|
|
Function *ThreadPointerFunc =
|
|
Intrinsic::getDeclaration(M, Intrinsic::thread_pointer);
|
|
return IRB.CreatePointerCast(
|
|
IRB.CreateConstGEP1_32(IRB.getInt8Ty(), IRB.CreateCall(ThreadPointerFunc),
|
|
Offset),
|
|
IRB.getInt8PtrTy()->getPointerTo(0));
|
|
}
|
|
|
|
Value *AArch64TargetLowering::getIRStackGuard(IRBuilder<> &IRB) const {
|
|
// Android provides a fixed TLS slot for the stack cookie. See the definition
|
|
// of TLS_SLOT_STACK_GUARD in
|
|
// https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
|
|
if (Subtarget->isTargetAndroid())
|
|
return UseTlsOffset(IRB, 0x28);
|
|
|
|
// Fuchsia is similar.
|
|
// <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value.
|
|
if (Subtarget->isTargetFuchsia())
|
|
return UseTlsOffset(IRB, -0x10);
|
|
|
|
return TargetLowering::getIRStackGuard(IRB);
|
|
}
|
|
|
|
void AArch64TargetLowering::insertSSPDeclarations(Module &M) const {
|
|
// MSVC CRT provides functionalities for stack protection.
|
|
if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment()) {
|
|
// MSVC CRT has a global variable holding security cookie.
|
|
M.getOrInsertGlobal("__security_cookie",
|
|
Type::getInt8PtrTy(M.getContext()));
|
|
|
|
// MSVC CRT has a function to validate security cookie.
|
|
FunctionCallee SecurityCheckCookie = M.getOrInsertFunction(
|
|
"__security_check_cookie", Type::getVoidTy(M.getContext()),
|
|
Type::getInt8PtrTy(M.getContext()));
|
|
if (Function *F = dyn_cast<Function>(SecurityCheckCookie.getCallee())) {
|
|
F->setCallingConv(CallingConv::Win64);
|
|
F->addAttribute(1, Attribute::AttrKind::InReg);
|
|
}
|
|
return;
|
|
}
|
|
TargetLowering::insertSSPDeclarations(M);
|
|
}
|
|
|
|
Value *AArch64TargetLowering::getSDagStackGuard(const Module &M) const {
|
|
// MSVC CRT has a global variable holding security cookie.
|
|
if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
|
|
return M.getGlobalVariable("__security_cookie");
|
|
return TargetLowering::getSDagStackGuard(M);
|
|
}
|
|
|
|
Function *AArch64TargetLowering::getSSPStackGuardCheck(const Module &M) const {
|
|
// MSVC CRT has a function to validate security cookie.
|
|
if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
|
|
return M.getFunction("__security_check_cookie");
|
|
return TargetLowering::getSSPStackGuardCheck(M);
|
|
}
|
|
|
|
Value *AArch64TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
|
|
// Android provides a fixed TLS slot for the SafeStack pointer. See the
|
|
// definition of TLS_SLOT_SAFESTACK in
|
|
// https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
|
|
if (Subtarget->isTargetAndroid())
|
|
return UseTlsOffset(IRB, 0x48);
|
|
|
|
// Fuchsia is similar.
|
|
// <zircon/tls.h> defines ZX_TLS_UNSAFE_SP_OFFSET with this value.
|
|
if (Subtarget->isTargetFuchsia())
|
|
return UseTlsOffset(IRB, -0x8);
|
|
|
|
return TargetLowering::getSafeStackPointerLocation(IRB);
|
|
}
|
|
|
|
bool AArch64TargetLowering::isMaskAndCmp0FoldingBeneficial(
|
|
const Instruction &AndI) const {
|
|
// Only sink 'and' mask to cmp use block if it is masking a single bit, since
|
|
// this is likely to be fold the and/cmp/br into a single tbz instruction. It
|
|
// may be beneficial to sink in other cases, but we would have to check that
|
|
// the cmp would not get folded into the br to form a cbz for these to be
|
|
// beneficial.
|
|
ConstantInt* Mask = dyn_cast<ConstantInt>(AndI.getOperand(1));
|
|
if (!Mask)
|
|
return false;
|
|
return Mask->getValue().isPowerOf2();
|
|
}
|
|
|
|
void AArch64TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
|
|
// Update IsSplitCSR in AArch64unctionInfo.
|
|
AArch64FunctionInfo *AFI = Entry->getParent()->getInfo<AArch64FunctionInfo>();
|
|
AFI->setIsSplitCSR(true);
|
|
}
|
|
|
|
void AArch64TargetLowering::insertCopiesSplitCSR(
|
|
MachineBasicBlock *Entry,
|
|
const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
|
|
const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
|
|
const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
|
|
if (!IStart)
|
|
return;
|
|
|
|
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
|
|
MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
|
|
MachineBasicBlock::iterator MBBI = Entry->begin();
|
|
for (const MCPhysReg *I = IStart; *I; ++I) {
|
|
const TargetRegisterClass *RC = nullptr;
|
|
if (AArch64::GPR64RegClass.contains(*I))
|
|
RC = &AArch64::GPR64RegClass;
|
|
else if (AArch64::FPR64RegClass.contains(*I))
|
|
RC = &AArch64::FPR64RegClass;
|
|
else
|
|
llvm_unreachable("Unexpected register class in CSRsViaCopy!");
|
|
|
|
unsigned NewVR = MRI->createVirtualRegister(RC);
|
|
// Create copy from CSR to a virtual register.
|
|
// FIXME: this currently does not emit CFI pseudo-instructions, it works
|
|
// fine for CXX_FAST_TLS since the C++-style TLS access functions should be
|
|
// nounwind. If we want to generalize this later, we may need to emit
|
|
// CFI pseudo-instructions.
|
|
assert(Entry->getParent()->getFunction().hasFnAttribute(
|
|
Attribute::NoUnwind) &&
|
|
"Function should be nounwind in insertCopiesSplitCSR!");
|
|
Entry->addLiveIn(*I);
|
|
BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
|
|
.addReg(*I);
|
|
|
|
// Insert the copy-back instructions right before the terminator.
|
|
for (auto *Exit : Exits)
|
|
BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
|
|
TII->get(TargetOpcode::COPY), *I)
|
|
.addReg(NewVR);
|
|
}
|
|
}
|
|
|
|
bool AArch64TargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const {
|
|
// Integer division on AArch64 is expensive. However, when aggressively
|
|
// optimizing for code size, we prefer to use a div instruction, as it is
|
|
// usually smaller than the alternative sequence.
|
|
// The exception to this is vector division. Since AArch64 doesn't have vector
|
|
// integer division, leaving the division as-is is a loss even in terms of
|
|
// size, because it will have to be scalarized, while the alternative code
|
|
// sequence can be performed in vector form.
|
|
bool OptSize =
|
|
Attr.hasAttribute(AttributeList::FunctionIndex, Attribute::MinSize);
|
|
return OptSize && !VT.isVector();
|
|
}
|
|
|
|
bool AArch64TargetLowering::enableAggressiveFMAFusion(EVT VT) const {
|
|
return Subtarget->hasAggressiveFMA() && VT.isFloatingPoint();
|
|
}
|
|
|
|
unsigned
|
|
AArch64TargetLowering::getVaListSizeInBits(const DataLayout &DL) const {
|
|
if (Subtarget->isTargetDarwin() || Subtarget->isTargetWindows())
|
|
return getPointerTy(DL).getSizeInBits();
|
|
|
|
return 3 * getPointerTy(DL).getSizeInBits() + 2 * 32;
|
|
}
|
|
|
|
void AArch64TargetLowering::finalizeLowering(MachineFunction &MF) const {
|
|
MF.getFrameInfo().computeMaxCallFrameSize(MF);
|
|
TargetLoweringBase::finalizeLowering(MF);
|
|
}
|
|
|
|
// Unlike X86, we let frame lowering assign offsets to all catch objects.
|
|
bool AArch64TargetLowering::needsFixedCatchObjects() const {
|
|
return false;
|
|
}
|